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CHAPTER I 

 

 

Remarks on Non-Newtonian 2-Normed Spaces 

 

 

Cenap DUYAR1  

Nihan GÜNGÖR 2 

 

Introduction 

The theory of 2-normed spaces was first developed by Gahler in 

1965. Between 1973 and 1977, Diminnie, Gahler and White made 

detailed studies on 2-inner product spaces and introduced the 

concept of strictly convexity on 2-normed spaces. Especially in 

2001, Gunawan and Mashadi discussed the concepts of convergence 

and Cauchy sequence in 2-normed spaces. However, in their study 

in the same year, they generalized 2-normed spaces to n-normed 

spaces (Gunawan & Mashadi, 2001). In recent years, the new studies 

have been carried out on the equivalence of 𝑛 -normed spaces 
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(Diminnie et al., 1973; Dutta, 2010; Duyar et al., 2017; Oğur, 2018; 

Oğur, 2022). 

Now let us summarize the mentioned concepts by using their 

sources (Dutta, 2010; Gunawan & Mashadi, 2001; White, 1969)  

Definition 1.1. If a real-valued non-negative function 

𝑑: 𝐸 × 𝐸 × 𝐸 → ℝ+ ∪ {0}  satisfies the following conditions, then 

this function is called a 2-metric and the pair (𝐸, 𝑑) is called a 2-

metric space: 

(2M1) There is a point 𝑠 in 𝐸 such that 𝑑(𝑢, 𝑣, 𝑠) ≠ 0 for different 

points 𝑢 and 𝑣 of 𝐸. 

(2M2) When 𝑑(𝑢, 𝑣, 𝑠) = 0, at least two of the elements 𝑢, 𝑣, 𝑠 must 

be equal. 

(2M3) 𝑑(𝑢, 𝑣, 𝑠) = 𝑑(𝑢, 𝑠, 𝑣) = 𝑑(𝑣, 𝑠, 𝑢). 

(2M4) 𝑑(𝑢, 𝑣, 𝑠) ≤ 𝑑(𝑢, 𝑣, 𝑤) + 𝑑(𝑢, 𝑤, 𝑠) + 𝑑(𝑤, 𝑠, 𝑣). 

Definition 1.2. (Gähler, 1965) Let 𝐸 be a real linear space 

with dimension greater than one. A real-valued function ‖. ‖  on 

𝐸 × 𝐸 that satisfies the following conditions is called a 2-norm on 

𝐸, and the pair (𝐸, ‖. ‖) is called a 2-norm space: 

(2N1) ‖𝑢, 𝑣‖ ≥ 0 for each 𝑢, 𝑣 ∈ 𝐸  and ‖𝑢, 𝑣‖ = 0 if and only if 

the set {𝑢, 𝑣} 𝑖𝑠 linearly dependent, 

(2N2) ‖𝑢, 𝑣‖ = ‖𝑣, 𝑢‖ for each 𝑢, 𝑣 ∈ 𝐸, 

(2N3) ‖𝑎𝑢, 𝑣‖ = |𝑎|‖𝑢, 𝑣‖ for each 𝑢, 𝑣 ∈ 𝐸 and 𝑎 ∈ ℝ, 

(2N4) ‖𝑢 + 𝑣, 𝑠‖ ≤ ‖𝑢, 𝑠‖ + ‖𝑣, 𝑠‖ for each 𝑢, 𝑣, 𝑠 ∈ 𝐸. 
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There is the following relation between 2-normed space and 

2-metric space: 

𝑑(𝑢, 𝑣, 𝑠) = ‖𝑢 − 𝑠, 𝑣 − 𝑠‖. 

According to the property (2M2) here, it can easily be seen 

that ‖. ‖  is a non-negative function. Also, for each 𝑎 ∈ ℝ , the 

equality ‖𝑢, 𝑣‖ = ‖𝑢, 𝑣 + 𝑎𝑢‖ holds. 2-normed linear spaces are a 

special case of 2-metric spaces.  

Now let us state the definition of a convergent sequence and 

Cauchy sequence in the 2-normed space (White, 1969; Malceski & 

Anevsk, 2014; Dutta, 2010). 

 Definition 1.3. Let {𝑢𝑛} be a sequence in the 2-normed space 

𝐸. If there is an element 𝑢 ∈ 𝐸 such that lim
𝑛→∞

‖𝑢𝑛 − 𝑢, 𝑣‖ = 0 for all 

𝑣 ∈ 𝐸, then the sequence {𝑢𝑛} is said to be convergent to the point 

𝑢 and, lim
𝑛→∞

𝑢𝑛 = 𝑢
2  is written to indicate this convergence. 

Definition 1.4. Let 𝐸 be a 2-normed space and let {𝑢𝑛} be a 

sequence in 𝐸. If  

lim
𝑛→∞

‖𝑢𝑛 − 𝑢𝑚, 𝑣‖ = 0
2  

for a 𝑣 ∈ 𝐸, then {𝑢𝑛} is called a Cauchy sequence in 𝐸.  

Non-Newtonian calculus was developed by Grossmann and 

Katz between 1967 and 1970. They first defined classical, geometric, 

quadratic and harmonic calculus, then bigeometric, biquadratic and 

biharmonic calculus. In 1972, they completed the book that formed 

the basic framework of non-Newtonian calculus. The expression *-

calculus is also used instead of non-Newtonian calculus. It has many 

applications such as science, mathematics and engineering. Çakmak 
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and Başar (2012) obtained some new results on sequence spaces and 

Değirmen (2021) obtained some new results for non-Newtonian 

approach to 𝐶∗-algebras. 

In the study conducted by Duyar, Sağır and Oğur (2015), 

some basic topological properties on the non-Newtonian real axis 

were introduced and investigated. Also, one can take a look at the 

recent studies such as those by Işık and Eryılmaz (2023) on the 

properties of linear spaces defined over non-Newtonian fields and 

by Rohman and Eryılmaz (2023) on fundamental results in 𝜈 -

normed spaces, and by Sager and Sağır (2021) on quasi-Banach 

algebra of non-Newtonian bicomplex numbers. Now, by making use 

of these works, and especially those of Grossmann and Katz (1972), 

the definitions and theorems to be used in this study will be given 

and the theory of non-Newtonian calculus will be briefly 

summarized. 

Definition 1.5 A generator is an injective function whose 

domain is ℝ  and whose range is a subset 𝐴  of ℝ . Arithmetic 

operations with respect to a generator 𝜑:ℝ → 𝐴, where 𝑢 and 𝑣 are 

elements of 𝐴, are defined as follows and are called as 𝜑-arithmetic: 

 𝜑- summation       𝑢 ⨁ 𝑣 = 𝜑{𝜑−1(𝑢) + 𝜑−1(𝑣)}            

 𝜑- substraction     𝑢 ⊖ 𝑣 = 𝜑{𝜑−1(𝑢) − 𝜑−1(𝑣)}  

 𝜑- product             𝑢 ⨀ 𝑣 = 𝜑{𝜑−1(𝑢) ∙ 𝜑−1(𝑣)} 

 𝜑- division              𝑢 ⊘ 𝑣 = 𝜑{𝜑−1(𝑢) ∕ 𝜑−1(𝑣)}  

 𝜑- ordering            𝑢 <𝜑 𝑣 ⇔  𝜑−1(𝑢) < 𝜑−1(𝑣). 

𝜑-zero number is denoted by 0̇ = 𝜑(0) and 𝜑-one number is 

denoted by 1̇ = 𝜑(1). In general, 𝜑-integers are denoted as follows:   
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… ,𝜑(−2), 𝜑(−1), 𝜑(0), 𝜑(1), 𝜑(2), … . 

Numbers that satisfy the condition 0̇ <𝜑 𝑢  are called 𝜑 -positive 

numbers and those that satisfy the condition 𝑢 <𝜑 0̇ are called 𝜑 -

negative numbers. Thus, according to 𝜑 -arithmetic, each integer 𝑛 

is denoted by �̇� = 𝜑(𝑛). The set  

ℝ(𝑁)𝜑 = ℝ(𝑁) = ℝ𝜑 = {𝜑(𝑢): 𝑢 ∈ ℝ} 

is called non-Newtonian real numbers set. Summation and Product 

operations and ordering relaion is defined as follows: 

⊕:ℝ𝜑 × ℝ𝜑 → ℝ𝜑,   (𝑢, 𝑣) →  𝑢 ⨁ 𝑣 = 𝜑{𝜑
−1(𝑢) + 𝜑−1(𝑣)} 

⊗: ℝ𝜑 × ℝ𝜑 → ℝ𝜑, (𝑢, 𝑣) →  𝑢 ⊗  𝑣 = 𝜑{𝜑−1(𝑢) ∙ 𝜑−1(𝑣)} 

≤𝜑 :  𝑢 ≤𝜑 𝑣 ⇔ 𝜑−1(𝑢) < 𝜑−1(𝑣), 𝑢 ∈ ℝ𝜑, 𝑣 ∈ ℝ𝜑. 

(ℝ𝜑, ⊕, ⊗, ≤𝜑) is a complete ordered field (Çakmak & Başar, 

2012). The 𝜑-square of a number 𝑢 ∈ ℝ𝜑 denoted by 𝑢2𝜑 is defined 

as 𝑢2𝜑 = 𝑢⊗ 𝑢 = 𝜑{[𝜑−1(𝑢)]2} . Also, we define the 𝑝 -non-

Newtonian power with 𝑢𝑝𝜑 = 𝜑{[𝜑−1(𝑢)]𝑝}  and q-non-Newtonian 

root with √𝑢
𝑞𝜑

= 𝜑{√𝜑−1(𝑢)
𝑞

}  of a number 𝑢 ∈ ℝ𝜑 . The 𝜑 - 

absolute value of 𝑢 ∈ ℝ𝜑 is denoted by 

|𝑢|𝜑 = {

𝑢    , 0̇ <𝜑 𝑢 

0    , 𝑢 = 0̇   

0̇ ⊖ 𝑢, 𝑢 <𝜑 0̇      

. 

The 𝜑- absolute value has the following peoperties with 𝑢, 𝑣 ∈ ℝ𝜑: 

(i) |𝑢 ⊗  𝑣|𝜑 = |𝑢|𝜑⊗ |𝑣|𝜑 

(ii) |𝑢 ⊕  𝑣|𝜑 = |𝑢|𝜑⊕ |𝑣|𝜑 

(iii) ||𝑢|𝜑⊖ |𝑣|𝜑|𝜑
≤𝜑 |𝑢 ⊖ 𝑣|𝜑. 

Definition 1.6. If a function 𝑑𝜑: 𝐸 × 𝐸 → ℝ𝜑  satisfies the 

following non-Newtonian metric axioms, where E is a non-empty 
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set, then the function 𝑑𝜑  is called a 𝜑 -metric on 𝐸  and the pair 

(𝐸, 𝑑𝜑) is called a non-Newtonian metric space: For 𝑢, 𝑣, 𝑧 ∈ 𝐸, 

(𝜑𝑀1) 𝑑𝜑(𝑢, 𝑣) = 0̇ ⇔ 𝑢 = 𝑣, 

(𝜑𝑀2) 𝑑𝜑(𝑢, 𝑣) = 𝑑𝜑(𝑣, 𝑢), 

(𝜑𝑀3) 𝑑𝜑(𝑢, 𝑣) ≤𝜑 𝑑𝜑(𝑢, 𝑧) ⊕ 𝑑𝜑(𝑧, 𝑣). 

The function 𝑑𝜑: ℝ𝜑 × ℝ𝜑 → ℝ𝜑, (𝑢, 𝑣) → 𝑑𝜑(𝑢, 𝑣) = |𝑢 ⊖ 𝑣|𝜑 

is a non-Newtonian metric on ℝ𝜑. 

Definition 1.7. (Değirmen, 2021; Çakmak & Başar, 2012) Let 

𝐸  be a non-empty set and let the 𝜑 -addition and 𝜑 -product 

operations on 𝐸 be defined as follows: 

 ⊕𝐸: 𝐸 × 𝐸 → 𝐸, (𝑢, 𝑣) → 𝑢 ⊕𝐸 𝑣,   

 ⊙𝐸: ℝ𝜑 × 𝐸 → 𝐸, (𝑎, 𝑣) → 𝑎 ⊙𝐸 𝑣. 

In this case, if the following conditions are satisfied, then the set 𝐸 

is called a linear space over the field ℝ𝜑: 

(1) (𝐸,⊕𝐸) is a abelian group by 𝜑- arithmetic. 

(2) 𝑎 ⊙𝐸 (𝑢 ⊕𝐸 𝑣) = (𝑎 ⊙𝐸 𝑢)⊕𝐸 (𝑎 ⊙𝐸 𝑣)  

for all 𝑢, 𝑣 ∈ 𝐸 and 𝑎 ∈ ℝ𝜑. 

(3) (𝑎 ⊕𝐸 𝑏) ⊙𝐸 𝑢 = (𝑎 ⊙𝐸 𝑢)⊕𝐸 (𝑎 ⊙𝐸 𝑣)  

for all 𝑢, 𝑣 ∈ 𝐸 and 𝑎, 𝑏 ∈ ℝ𝜑. 

(4) (𝑎 ⊙𝐸 𝑏) ⊙𝐸 𝑢 = 𝑎 ⊙𝐸 (𝑏 ⊙𝐸 𝑢)  

for all 𝑢 ∈ 𝐸 and 𝑎, 𝑏 ∈ ℝ𝜑. 

(5) 𝑢 ⊙𝐸 1ℝ𝜑 = 𝑢, where 1ℝ𝜑 is the unity of ℝ𝜑. 

The establishment of the ∗ -calculus is accomplished by 

employing two generators, namely 𝛾:ℝ → 𝐴 = ℝ𝛾 and 𝜑:ℝ → 𝐵 =

ℝ𝜑 , which are chosen arbitrarily. Let 𝛾  and 𝜑  defined an 

isomorphism 𝜄 as follows: 
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𝜄: ℝ𝛾 → ℝ𝜑, 𝜄(𝑢) = 𝜑(𝛾
−1(𝑢)). 

ℝ            ℝ 

𝛾 ↓             ↓  𝜑 

ℝ𝛾  
→
𝜄

     ℝ𝜑 

Then  

𝜄(𝑢⨁𝛾𝑣) = 𝜄(𝑢)⨁𝜑𝜄(𝑣)            

𝜄(𝑢 ⊖𝛾 𝑣) = 𝜄(𝑢) ⊖𝜑 𝜄(𝑣) 

𝜄(𝑢⨂𝛾𝑣) = 𝜄(𝑢)⨂𝜑𝜄(𝑣) 

𝜄(𝑢 ⊘𝛾 𝑣) = 𝜄(𝑢) ⊘𝜑 𝜄(𝑣) (𝑣 ≠ 0̇) 

𝑢 <𝛾 𝑣 ⇔ 𝜄(𝑢) <𝜑 𝜄(𝑣), 

for any 𝑢, 𝑣 ∈ ℝ𝛾. 

Definition 1.8. (Çakmak & Başar, 2012; Rohman & Eryılmaz, 

2023) Let 𝐸 be a linear space over ℝ𝜑. The function ‖. ‖𝜑: 𝐸 → ℝ𝜑 

is called 𝜑-norm on 𝐸, if it is satisfies 

(𝜑𝑁1) ‖𝑢‖𝜑 ≥𝜑 0̇ = 𝜑(0) and ‖𝑢‖𝜑 = 0̇ ⇔ 𝑢 = 0,  

(𝜑𝑁2) ‖𝜇 ⊙𝐸 𝑢‖𝜑 = |𝜇|𝜑⊗‖𝑢‖𝜑  

(𝜑𝑁3) ‖𝑢 ⊕𝐸 𝑣‖𝜑 ≤ ‖𝑢‖𝜑⊕‖𝑣‖𝜑  

for all 𝑢, 𝑣 ∈ 𝐸  and 𝜇 ∈ ℝ𝜑 . The ordered pair (𝐸, ‖. ‖𝜑) is called 

non-Newtonian normed space or 𝜑 -normed space. Here ‖𝑢‖𝜑 =

𝜄(‖𝑢‖). It is clear that 

|‖𝑢‖𝜑 − ‖𝑣‖𝜑|𝜑
≤𝜑 ‖𝑢 ⊖𝐸 𝑣‖𝜑. 

The inequality shows that the function 𝑢 → ‖𝑢‖𝜑 is a 𝜑-continuous 

function. Furthermore, for any 𝑢, 𝑢0, 𝑣, 𝑣0 ∈ 𝐸 and 𝜇, 𝜇0 ∈ ℝ𝜑, 

‖(𝑢⨁𝐸𝑣)⊖𝐸 (𝑢0⨁𝐸𝑣0)‖𝜑 ≤𝜑 ‖𝑢 ⊖𝐸 𝑢0‖𝜑⨁‖𝑣 ⊖𝐸 𝑣0‖𝜑 
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and 

‖(𝜇 ⊙𝐸 𝑢) ⊖𝐸 (𝜇0⊙𝐸 𝑢0)‖𝜑 ≤𝜑 (|𝜇|𝜑⊙‖𝑢⊖𝐸 𝑢0‖𝜑) 

                                                          ⨁(|𝑢0|𝜑⊙‖𝜇⊖𝐸 𝜇0‖𝜑). 

The continuity of 𝜑 -norm function implies that the mappings 
(𝑢, 𝑣) → 𝑢⨁𝐸𝑣  and (𝜇, 𝑣) → 𝜇 ⊙𝐸 𝑣  are 𝜑 -continuous from 𝐸  to 

𝐸. 

In this study, for the first time, a non-Newtonian 2-normed space (in 

short, a 2 𝜑 -normed space) will be introduced and the non-

Newtonian counterparts of the concepts of convergence of sequences 

and Cauchy sequence known for 2-normed spaces and  and some 

related basic properties will be investigated. 

Main Results 

Definition 2.1. Let 𝐸 be a nonempty set. If a function 𝑑𝜑 on 

𝐸 × 𝐸 × 𝐸 to 𝑅𝜑
+ ∪ {0̇} satisfies the following properties, then 𝑑𝜑 is 

called a non-Newtonian 2-metric (or 2𝜑-metric) on 𝐸 and the pair 

(𝐸, 𝑑)  is called a non-Newtonian 2-metric space (or 2𝜑 -metric 

space): 

(i) There is an element 𝑧 in 𝐸 such that 𝑑𝜑(𝑢, 𝑣, 𝑧) ≠ 0̇ = 𝜑(0) for 

different points 𝑢 and 𝑣 of 𝐸. 

(ii) When 𝑑𝜑(𝑢, 𝑣, 𝑧) = 0̇ = 𝜑(0) , at least two of the elements 

𝑢, 𝑣, 𝑧 must be equal. 

(iii) 𝑑𝜑(𝑢, 𝑣, 𝑧) = 𝑑𝜑(𝑢, 𝑧, 𝑣) = 𝑑𝜑(𝑣, 𝑧, 𝑢). 

(iv) 𝑑𝜑(𝑢, 𝑣, 𝑧) ≤𝜑 𝑑𝜑(𝑢, 𝑣, 𝑤)⊕ 𝑑𝜑(𝑢, 𝑤, 𝑧) ⊕ 𝑑𝜑(𝑤, 𝑣, 𝑧). 

Definition 2.2. Let 𝐸  be a 𝜑 -linear space of dimension 

greater than 1̇ = 𝜑(1)  on the field ℝ𝜑 . If a function ‖. , . ‖𝜑  on 
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𝐸 × 𝐸 to 𝑅𝜑
+ satisfies the following properties, then this function is 

called a non-Newtonian 2-norm (or 2𝜑 -norm) on 𝐸  and the pair 

(𝐸, ‖. , . ‖𝜑)  is called a non-Newtonian 2-normed space (or 2𝜑 -

normed space): 

(N1) ‖𝑢, 𝑣‖𝜑 = 0̇ = 𝜑(0) ⇔  𝑢 and 𝑣 are linearly dependent, 

(N2) ‖𝑢, 𝑣‖𝜑 = ‖𝑣, 𝑢‖𝜑 for all 𝑢, 𝑣 ∈ 𝐸, 

(N3) ‖𝑎 ⊙𝐸 𝑢, 𝑣‖𝜑 = |𝑎|𝜑⊙‖𝑢, 𝑣‖𝜑  

for all 𝑢, 𝑣 ∈ 𝐸 and 𝑎 ∈ ℝ𝜑,  

(N4) ‖𝑢⨁𝐸𝑣, 𝑧‖𝜑 ≤𝜑 ‖𝑢, 𝑧‖𝜑⨁‖𝑣, 𝑧‖𝜑 for all 𝑢, 𝑣, 𝑧 ∈ 𝐸. 

In parallel with the definition of 𝜑-normed space,  

‖𝑢, 𝑣‖𝜑 = 𝜄(‖𝑢, 𝑣‖) 

is written for all 𝑢, 𝑣 ∈ 𝐸. Obviously, there is equality  

𝑑𝜑(𝑢, 𝑣, 𝑧) = ‖𝑢 ⊖𝐸 𝑧, 𝑣 ⊖𝐸 𝑧‖𝜑 

between 2𝜑-metric and 2𝜑-norm. From the definitions of the non-

Newtonian 2-metric space and the 2𝜑-normed space, it is seen that 

the 𝜑-real valued function ‖. , . ‖𝜑 does not take 𝜑-negative values. 

Also, for all 𝑢, 𝑣 ∈ 𝐸  and all 𝑎 ∈ ℝ𝜑 , the equality ‖𝑢, 𝑣‖𝜑 =

‖𝑢, 𝑣⨁𝐸𝑎 ⊙𝐸 𝑢‖𝜑 holds. 

The definitions and basic properties of the concepts of 

convergence of a sequence and Cauchy sequence in non-Newtonian 

normed spaces can be found in the work of Rohman and İlker (2023). 

In this section, the definitions of convergence of a sequence in 2𝜑-
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normed space and Cauchy sequence will be given and some related 

properties will be given. 

Definition 2.3. Let {𝑢𝑛} be a sequence in a non-Newtonian 2-

normed linear space 𝐸. If ,for every 𝑣 ∈ 𝐸, we can find a 𝑢 ∈ 𝐸 such 

that  

lim
𝑛→∞

‖𝑢𝑛⊖𝐸 𝑢, 𝑣‖𝜑 = 0̇, 

then the sequence {𝑢𝑛}  is said to 2𝜑 -converge to 𝑢  and 

lim
𝑛→∞

𝑢𝑛 = 𝑢
2𝜑

 or 𝑢𝑛
2𝜑
→ 𝑢 is written. 

Definition 2.4. Let 𝐸  be a 2𝜑 -normed linear space and let 

{𝑢𝑛} be a sequence in this space. If there are linearly independent 

𝑣, 𝑧 ∈ 𝐸 such that 

lim
𝑛,𝑚→∞

‖𝑢𝑛⊖𝐸 𝑢𝑚, 𝑣‖𝜑 = 0̇ and lim
𝑛,𝑚→∞

‖𝑢𝑛⊖𝐸 𝑢𝑚, 𝑧‖𝜑 = 0̇ 

then the sequence {𝑢𝑛} is said to 2𝜑-Cauchy sequence.  

Theorem 2.5. Let 𝐸 be a 2𝜑-normed linear space. 

(i) If {𝑢𝑛} is a 2𝜑-Cauchy sequence in 𝐸 with respect to 𝑢 and 𝑣, 

then {‖𝑢𝑛, 𝑢‖𝜑} and {‖𝑢𝑛, 𝑣‖𝜑} are ℝ𝜑- Cauchy sequences. 

(ii) If {𝑢𝑛} and {𝑣𝑛} are  2𝜑-Cauchy sequences in 𝐸 with respect to 

𝑢 and 𝑣, and also {𝜇𝑛} is a ℝ𝜑- Cauchy sequence, then {𝑢𝑛⊕𝐸 𝑣𝑛} 

and {𝜇𝑛⨀𝐸𝑣𝑛} are 2𝜑-Cauchy sequences. 

Proof. (i) Since 

‖𝑢𝑛, 𝑢‖𝜑 = 𝜄(‖𝑢𝑛, 𝑢‖) = 𝜄(‖(𝑢𝑛⊝𝐸 𝑢𝑚) ⊕𝐸 𝑢𝑚, 𝑢‖) 

                         ≤𝜑 𝜄(‖(𝑢𝑛⊝𝐸 𝑢𝑚), 𝑢‖⊕ ‖𝑢𝑚, 𝑢‖) 

= ‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑⊕‖𝑢𝑚, 𝑢‖𝜑,           
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we have  

‖𝑢𝑛, 𝑢‖𝜑⊝‖𝑢𝑚, 𝑢‖𝜑 ≤𝜑 ‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑. 

Similarly, one gets 

‖𝑢𝑚, 𝑢‖𝜑⊝‖𝑢𝑛, 𝑢‖𝜑 ≤𝜑 ‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑. 

Therefore 

|‖𝑢𝑛, 𝑢‖𝜑⊝‖𝑢𝑚, 𝑢‖𝜑|𝜑
≤𝜑 ‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑. 

Thus {‖𝑢𝑛, 𝑢‖𝜑}  is a ℝ𝜑 -Cauchy sequence, since 

lim
𝑛,𝑚→∞

‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑 = 0̇ . Similarly, it can be seen that 

{‖𝑢𝑛, 𝑣‖𝜑} is an ℝ𝜑-Cauchy sequence. 

(ii) We have 

‖(𝑢𝑛⊕𝐸 𝑣𝑛) ⊝𝐸 (𝑢𝑚⊕𝐸 𝑣𝑚), 𝑢‖𝜑 

= ‖(𝑢𝑛⊝𝐸 𝑣𝑛) ⊕𝐸 (𝑢𝑚⊝𝐸 𝑣𝑚), 𝑢‖𝜑 

≤𝜑 ‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑⊕‖𝑣𝑛⊝𝐸 𝑣𝑚, 𝑢‖𝜑 

and similarly 

‖(𝑢𝑛⊕𝐸 𝑣𝑛) ⊝𝐸 (𝑢𝑚⊕𝐸 𝑣𝑚), 𝑣‖𝜑 ≤𝜑 ‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑 

                                                                   ⊕ ‖𝑣𝑛⊝𝐸 𝑣𝑚, 𝑣‖𝜑. 

Then, according to the hypothesis, {𝑢𝑛⊕𝐸 𝑣𝑛} is a 2𝜑-Cauchy 

sequence in 𝐸. Since  

‖(𝜇𝑛⨀𝐸𝑢𝑛) ⊝𝐸 (𝜇𝑚⨀𝐸𝑢𝑚), 𝑢‖𝜑 

= 𝜄(‖(𝜇𝑛⨀𝐸𝑢𝑛) ⊝𝐸 (𝜇𝑚⨀𝐸𝑢𝑚), 𝑢‖) 
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≤𝜑 𝜄(‖(𝜇𝑛⨀𝐸𝑢𝑛) ⊝𝐸 (𝜇𝑛⨀𝐸𝑢𝑚), 𝑢‖

⊕ ‖(𝜇𝑛⨀𝐸𝑢𝑚) ⊝𝐸 (𝜇𝑚⨀𝐸𝑢𝑚), 𝑢‖) 

= 𝜄(|𝜇𝑛|𝜑⨀𝐸‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖ ⊕ |𝜇𝑛 − 𝜇𝑚|𝜑⨀𝐸‖𝑢𝑚, 𝑢‖) 

= 𝜄(|𝜇𝑛|𝜑⨀𝐸‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖) ⊕ 𝜄(|𝜇𝑛 − 𝜇𝑚|𝜑⨀𝐸‖𝑢𝑚, 𝑢‖) 

= |𝜇𝑛|𝜑⨀𝐸‖𝑢𝑛⊝𝐸 𝑢𝑚, 𝑢‖𝜑⊕ |𝜇𝑛 − 𝜇𝑚|𝜑⨀𝐸‖𝑢𝑚, 𝑢‖𝜑, 

Using the fact that {𝑢𝑛} is a 2𝜑-Cauchy sequences in 𝐸 and {𝜇𝑛} is 

a ℝ𝜑- Cauchy sequence, we have 

‖(𝜇𝑛⨀𝐸𝑢𝑛) ⊝𝐸 (𝜇𝑚⨀𝐸𝑢𝑚), 𝑢‖𝜑 → 0. 

Similarly  

‖(𝜇𝑛⨀𝐸𝑢𝑛) ⊝𝐸 (𝜇𝑚⨀𝐸𝑢𝑚), 𝑣‖𝜑 → 0. 

Hence {𝜇𝑛⨀𝐸𝑢𝑛}  is a 2𝜑-Cauchy sequence in 𝐸. 

Theorem 2.6. In any 2𝜑-normed linear space, The following 

properties hold: 

 (i) If 𝑢𝑛
2𝜑
→ 𝑢 and 𝑣𝑛

2𝜑
→ 𝑣, then 𝑢𝑛⊕𝐸 𝑣𝑛

2𝜑
→ 𝑢 ⊕𝐸 𝑣. 

(ii) If 𝑢𝑛
2𝜑
→ 𝑢 and 𝜇𝑛

|.|𝜑
→ 𝜇, then 𝜇𝑛⨀𝐸𝑢𝑛

2𝜑
→ 𝜇⨀𝐸𝑢. 

(iii ) If dim𝐸 ≥ 2, 𝑢𝑛
2𝜑
→ 𝑢 and 𝑢𝑛

2𝜑
→ 𝑣, then 𝑢 = 𝑣. 

Proof. (i) By Definition 2.2 (N4), we have 

‖(𝑢𝑛⊕𝐸 𝑣𝑛) ⊝𝐸 (𝑢 ⊕𝐸 𝑣), 𝑧‖𝜑 

= ‖(𝑢𝑛⊝𝐸 𝑢)⊕𝐸 (𝑣𝑛⊝𝐸 𝑣), 𝑧‖𝜑  

≤𝜑 ‖𝑢𝑛⊝𝐸 𝑢, 𝑧‖𝜑⊕‖𝑣𝑛⊝𝐸 𝑣, 𝑧‖𝜑
2𝜑
→ 0𝜑 
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for each 𝑧 ∈ 𝐸 and so 𝑢𝑛⊕𝐸 𝑣𝑛
2𝜑
→ 𝑢 ⊕𝐸 𝑣. 

(ii) By Definition 2.2 (N3) and (N4), we have 

‖𝜇𝑛⨀𝐸𝑢𝑛⊝𝐸 𝜇⨀𝐸𝑢, 𝑧‖𝜑 

= ‖(𝜇𝑛⨀𝐸𝑢𝑛⊝𝐸 𝜇𝑛⨀𝐸𝑢)⊕𝐸 (𝜇𝑛⨀𝐸𝑢 ⊝𝐸 𝜇⨀𝐸𝑢), 𝑧‖𝜑 

≤𝜑 ‖𝜇𝑛⨀𝐸𝑢𝑛⊝𝐸 𝜇𝑛⨀𝐸𝑢, 𝑧‖𝜑⊕‖𝜇𝑛⨀𝐸𝑢 ⊝𝐸 𝜇⨀𝐸𝑢, 𝑧‖𝜑 

= (|𝜇𝑛|𝜑⨀‖𝑢𝑛⊝𝐸 𝑢, 𝑧‖𝜑) ⊕ (|𝜇𝑛 − 𝜇|𝜑⨀‖𝑢, 𝑧‖𝜑) 

≤𝜑 𝑀‖𝑢𝑛⊝𝐸 𝑢, 𝑧‖𝜑⊕ (|𝜇𝑛 − 𝜇|𝜑⨀‖𝑢, 𝑧‖𝜑), 

using the fact that a 𝜑-convergent sequence is bounded. Hence we 

find 𝜇𝑛⨀𝐸𝑢𝑛
2𝜑
→ 𝜇⨀𝐸𝑢, since 𝑢𝑛

2𝜑
→ 𝑢 and 𝜇𝑛

|.|𝜑
→ 𝜇. 

(iii) We can write 

‖𝑢 ⊝𝐸 𝑣, 𝑧‖𝜑  ≤𝜑 ‖𝑢𝑛⊝𝐸 𝑣, 𝑧‖𝜑⊕‖𝑢⊝𝐸 𝑢𝑛, 𝑧‖𝜑 

and ‖𝑢 ⊝𝐸 𝑣, 𝑧‖𝜑 = 0𝜑  for for each 𝑧 ∈ 𝐸 , since 𝑢𝑛
2𝜑
→ 𝑢  and 𝑢𝑛

2𝜑
→ 𝑣 . Therefore 𝑢 ⊝𝐸 𝑣  is  linearly dependent on 𝑧 for all 𝑧 ∈ 𝐸 . 

Since dim𝐸, It is only possible for 𝑢 ⊝𝐸 𝑣 to be linearly dependent 

on each z if 𝑢 ⊝𝐸 𝑣 = 0. 
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CHAPTER II 

 

 

On Measurable Sets in Multiplicative Calculus 

 

 

Oğuz OĞUR1 
 

Introduction 

Classical Newtonian analysis has long been a fundamental tool in 

mathematical analysis. However, the Non-Newtonian Calculus, 

developed by (Grossman & Katz 1972), aimed to overcome the 

limitations of traditional analysis and introduced a new perspective. 

This alternative type of calculus, which replaces addition and 

multiplication with multiplication and exponential operations, offers 

a distinctive approach to mathematical modeling and problem-

solving (Grossman, 1979), (Stanley, 1999). 

Non-Newtonian and Multiplicative Calculus have provided 

innovative solutions in areas such as differential and integral 

equations, sequence spaces, and calculus of variations. (Bashirov, 
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Kurpinar & Özyapıcı, 2008) laid the theoretical foundations of 

Multiplicative Calculus and emphasized its importance in 

applications. This method has proven to be a significant tool, 

especially in complex analysis (Uzer, 2010) and the study of 

function spaces (Çakmak & Başar, 2014). 

Studies on sequence spaces and matrix transformations (Çakmak & 

Başar, 2012, 2015; Türkmen & Başar, 2012) have highlighted the 

impact of non-Newtonian and Multiplicative Calculus in abstract 

mathematics. (Değirmen, 2021) conducted an in-depth analysis of 

C*-algebras using Non-Newtonian approaches, while (Değirmen & 

Duyar, 2023) explored Non-Newtonian interpretations of Fibonacci 

and Lucas numbers. (Torres, 2021) demonstrated the applicability of 

this type of calculus in the calculus of variations, opening new 

avenues for solving mathematical problems. 

Additionally, studies on integral equations (Güngör, 2020a, 2020b, 

2022) have shown how Non-Newtonian analysis diversifies solution 

methods. In topology, (Duyar, Sağır & Oğur, 2015), as well as 

(Duyar & Oğur, 2017), investigated fundamental topological 

properties of the Non-Newtonian real line. Also, recent studies, such 

as those by (Işık & Eryılmaz, 2023) on the properties of linear spaces 

defined over Non-Newtonian fields and by (Rohman & Eryılmaz, 

2023) on fundamental results in ν-normed spaces, have contributed 

significantly to the understanding and development of alternative 

mathematical frameworks. 

Finally, Non-Newtonian analysis has found a broad application area 

in measure theory. (Oğur & Demir, 2019, 2020) examined the Non-

Newtonian Lebesgue measure, while (Duyar & Sağır, 2017) studied 
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its implications on the Non-Newtonian interpretation of real 

numbers. (Oğur & Güneş, 2024) extended these findings by 

exploring Non-Newtonian measurable sets, further demonstrating 

the potential of this type of calculus in abstract mathematics. 

Now, let’s introduce some basic concepts in non-Newtonian 

analysis. Let 𝜌 be a generator which is an injective function from 

ℝ   𝑡𝑜 𝐴 = ℝ(𝑁)𝜌 ⊆ ℝ. Let’s define the non-Newtonian algebraic 

operations as follows; 

 

 𝜌 − 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛  𝑠+̇𝑡 = 𝜌(𝜌−1(𝑠) + 𝜌−1(𝑡)) 

 𝜌 − 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠−̇𝑡 = 𝜌(𝜌−1(𝑠) − 𝜌−1(𝑡)) 

 𝜌 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠 ×̇ 𝑡 = 𝜌(𝜌−1(𝑠) × 𝜌−1(𝑡)) 

 𝜌 − 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛  𝑠 ÷̇ 𝑡 = 𝜌(𝜌−1(𝑠) ÷ 𝜌−1(𝑡)) 

 𝜌 − 𝑜𝑟𝑑𝑒𝑟  𝑠 <̇ 𝑡 ⟺ 𝜌−1(𝑠) < 𝜌−1(𝑡) 

 

for any  𝑠, 𝑡 ∈ ℝ(𝑁)𝜌 (Grossman & Katz, 1972). The non-

Newtonian absolute value of any element of 𝑡 ∈ ℝ(𝑁)𝜌 defines as 

follows 

 |𝑡|𝜌 = {

𝑡, 𝑖𝑓 𝑡 >̇ 0̇

0̇, 𝑖𝑓 𝑡 =̇ 0̇

0̇−̇𝑡 𝑖𝑓 𝑡 <̇ 0̇

 

where  𝜌(0) = 0̇.  Also, we have √𝑡
𝑛 𝜌

= 𝜌(√𝜌−1(𝑡)
𝑛

)  and 𝑡𝑛𝜌 =

𝜌((𝜌−1(𝑡))
𝑛
) (Grossman & Katz, 1972).  

 At this point, we can introduce geometric analysis, a specific 

case within the broader framework of non-Newtonian analysis. For 

this purpose, setting 𝜌(𝑠) = exp (𝑠) will be sufficient. Let  
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𝜌: ℝ → ℝ+, 𝑠 → 𝜌(𝑠) = 𝑒𝑥𝑝 (𝑠)  

and so 

 𝜌−1: ℝ+ → ℝ, 𝜌−1(𝑡) = ln (𝑡) .  

Thus, we get  

 ℝ(𝑁)𝜌 = ℝ𝑒𝑥𝑝 = {𝑒𝑥𝑝(𝑠): 𝑠 ∈ ℝ} = ℝ
+, 

 ℝ𝑒𝑥𝑝
+ = {𝑒𝑥𝑝(𝑠): 𝑠 ∈ ℝ+} = (1,+∞)  

and  

 ℝ𝑒𝑥𝑝
− = {𝑒𝑥𝑝(𝑠): 𝑠 ∈ ℝ−} = (0,1) 

where 𝑒𝑥𝑝(0) = 1.  By the definition, we have the multiplicative 

sum of 𝑠, 𝑡 ∈ ℝ𝑒𝑥𝑝 as follows; 

 𝑠+̇𝑡 = 𝑒𝑥𝑝(𝑙𝑛𝑠 + 𝑙𝑛𝑡) = 𝑒ln (𝑠𝑡) = 𝑠𝑡. 

By using similar way, we get the multiplicative algebraic operations 

as follows; 

  

𝑠+̇𝑡 = 𝑠𝑡 

𝑠−̇𝑡 = 𝑠 𝑡⁄  

𝑠 ×̇ 𝑡 = 𝑠𝑙𝑛𝑡 

𝑠 ÷̇ 𝑡 = 𝑠
1
𝑙𝑛𝑡 

  

In this section, we will use the symbols (, )𝑒𝑥𝑝,   𝜆𝑒𝑥𝑝,

∑.𝑒𝑥𝑝  ,    𝑖𝑛𝑓
𝑒𝑥𝑝

,    𝑠𝑢𝑝
𝑒𝑥𝑝

  to represent the open interval, Lebesgue 

measure, sum, infimum and supremum, respectively, in the context 

of multiplicative calculus. 
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Let us now present some definitions and results commonly known 

in real analysis; to this end, it will suffice to provide the fundamental 

concepts outlined in Natanson's book (Natanson, 1964).  

 Definition 1. The length of an open interval (𝑎, 𝑏), 𝑖. 𝑒. , 𝑏 −

𝑎, is called the measure of the interval (𝑎, 𝑏). This number is written 

as  

 𝜆(𝑎, 𝑏) = 𝑏 − 𝑎 

(Natanson, 1964). 

 Definition 2. The measure 𝜆(𝐺) of a non-void bounded open 

set 𝐺 is the sum of the lengths of all its component intervals 𝜚𝑘; 

 𝜆(𝐺) = ∑ 𝜆(𝜚𝑘)𝑘  

(Natanson, 1964). 

 Theorem 1. Let 𝐺1 and 𝐺2  be two bounded open sets. If 

𝐺1 ⊂ 𝐺2, then  

𝜆(𝐺1) ≤ 𝜆(𝐺2) 

(Natanson, 1964). 

 Theorem 2. If the bounded open set 𝐺 is the union of a finite 

or denumerable family of pairwise disjoint open sets, i. e.  

 𝐺 = ⋃ 𝐺𝑘𝑘  ,     𝐺𝑘 ∩ 𝐺𝑙 = ∅  𝑓𝑜𝑟  𝑘 ≠ 𝑙, 

then 

 𝜆(𝐺) = ∑ 𝜆(𝐺𝑘)𝑘  

(Natanson, 1964). 

 Definition 3. The measure of a non-void bounded closed set 

𝐹 is the number 

 𝜆(𝐹) = 𝐷 − 𝐶 − 𝜆(𝑇 − 𝐹) 
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where  𝑇 = [𝐶, 𝐷] is the smallest closed interval containing the set 

𝐹 (Natanson, 1964). 

 Definition 4. The outer measure 𝜆𝑜(𝐸) of a bounded set 𝐸 is 

defined as 

 𝜆𝑜(𝐸) = 𝑖𝑛𝑓{𝜆(𝑇): 𝐸 ⊂ 𝑇,   𝑇 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡} 

(Natanson, 1964). 

 Definition 5. The inner measure 𝜆𝑖(𝐸) of a bounded set 𝐸 is 

defined as 

 𝜆𝑖(𝐸) = 𝑠𝑢𝑝{𝜆(𝑈): 𝑈 ⊂ 𝐸,   𝑈 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡} 

(Natanson, 1964). 

 It is clear that by the definition of inner and outer measure, 

the inner 𝜆𝑖(𝐸) and outer measure 𝜆𝑜(𝐸) are well-defined for every 

bounded set 𝐸. 

 The definition of measure of open intervals, as known in real 

analysis, has been extended to Non-Newtonian analysis by Duyar 

and Sağır as follows; 

 Definition 6. The measure 𝜆𝑁(𝑠, 𝑡) of an open interval (𝑠, 𝑡) 

in ℝ(𝑁)𝜌 is defined by 

 𝜆𝑁(𝑠, 𝑡) = 𝜌(𝜆(𝜌
−1(𝑠), 𝜌−1(𝑡))) = 𝑡−̇𝑠 

(Duyar&Sağır, 2017).  

 Additionally, in this study, fundamental definitions and 

theorems regarding the measurements of non-Newtonian bounded 

open sets are presented. Considering the definition above, the 
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measure of closed sets in Non-Newtonian analysis was provided by 

Oğuz and Demir as follows; 

 Definition 7. The measure of a non-void bounded closed set 

𝐹 in ℝ(𝑁)𝜌 is defined as follows; 

 𝜆𝑁F = 𝜌 (𝜆(𝜌
−1(𝐶), 𝜌−1(𝐷)) − 𝜆(𝜌−1(𝑆 − 𝐹))) 

where  𝑆 = [𝐶, 𝐷] is the smallest closed interval containing the set 𝐹 

in ℝ(𝑁)𝜌 (Oğur & Demir, 2020). 

 In this section, these concepts, which have been extended to 

Non-Newtonian analysis, will be further adapted to geometric 

analysis by taking the special case 𝜌(𝑥) = 𝑒𝑥𝑝(𝑥). The fundamental 

definitions and properties of measurable sets in geometric analysis 

will be examined. This special case will provide convenience for 

applications of multiplicative measurable sets. 

 Following this general information, we can now give the 

definition of the Lebesgue measure of open sets in geometric 

analysis by taking 𝜌(𝑥) = 𝑒𝑥𝑝(𝑥) in (Duyar & Sağır, 2017). 

 Definition 8. The measure of a multiplicative open interval 

(𝑠, 𝑡)𝑒𝑥𝑝 is defined by  

   𝜆𝑒𝑥𝑝(𝑠, 𝑡)𝑒𝑥𝑝 = 𝑒𝑥𝑝(𝜆(𝑙𝑛𝑠, 𝑙𝑛𝑡)) 

   = 𝑒𝑥𝑝(𝑙𝑛𝑡 − 𝑙𝑛𝑠) 

   = 𝑒𝑥𝑝 (𝑙𝑛
𝑡

𝑠
) 

   =
𝑡

𝑠
 

where  𝜆 is Lebesgue measure in real line. 

 Example 1. The measure of the interval (1,4)𝑒𝑥𝑝  can be 
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found as follows 

   𝜆𝑒𝑥𝑝(1,4)𝑒𝑥𝑝 = 𝑒𝑥𝑝(𝜆(𝑙𝑛1, 𝑙𝑛4)) 

   = 𝑒𝑥𝑝((𝑙𝑛4 − 𝑙𝑛1)) 

   =4. 

 Example 2.   𝜆𝑒𝑥𝑝(𝑒
1, 𝑒3)𝑒𝑥𝑝 = 𝑒𝑥𝑝(𝜆(𝑙𝑛𝑒

1, 𝑙𝑛𝑒3)) 

     = 𝑒2. 

 Definition 9. Let (𝛾𝑘) be a family of component of intervals 

of bounded open set 𝑇 𝑖𝑛 ℝ𝑒𝑥𝑝. Then, the multiplicative measure of 

𝐺 is defined as follows 

   𝜆𝑒𝑥𝑝(𝑇) = ∑   𝜆𝑒𝑥𝑝(𝑠𝑘, 𝑡𝑘)𝑒𝑥𝑝𝑘𝑒𝑥𝑝
 

       = ∑ (𝑡𝑘−̇𝑠𝑘)𝑘𝑒𝑥𝑝
  

       = ∑ (𝑡𝑘 ÷ 𝑠𝑘)𝑘𝑒𝑥𝑝
 

       =exp(∑ 𝑙𝑛(𝑡𝑘 ÷ 𝑠𝑘)𝑘 ) 

       =exp(𝑙𝑛(∏ (𝑡𝑘 ÷ 𝑠𝑘)𝑘 )) 

       =∏ (𝑡𝑘 ÷ 𝑠𝑘)𝑘  

where  𝛾𝑘 = (𝑠𝑘, 𝑡𝑘)𝑒𝑥𝑝. 

 Example 3. Let 𝑇 = (1,3)𝑒𝑥𝑝⋃(4,7)𝑒𝑥𝑝⋃(16, 𝑒
6)𝑒𝑥𝑝. 

Then, the multiplicative measure of 𝑇 is 

   𝜆𝑒𝑥𝑝(𝑇) =
3

1

7

4

𝑒6

16
=
21𝑒6

64
. 

 Having defined the Lebesgue measure for open sets in the 

multiplicative sense, we can now proceed to define the measure for 

bounded, closed sets within this framework. 
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 Definition 10. Let 𝑈 be a bounded, closed set in the sense of 

multiplicative sense. Then, the multiplicative measure of 𝑈  is 

defined as 

   𝜆𝑒𝑥𝑝(𝑈) = 𝑒𝑥𝑝{𝜆(𝑙𝑛𝐾, 𝑙𝑛𝐿) − 𝜆(𝑙𝑛(𝑆 − 𝑈))}. 

Here, the set 𝑆 = [𝐾, 𝐿]𝑒𝑥𝑝 is smallest interval containing the set 𝑈. 

It is note that the set 𝑆 − 𝑈 is an open set in sense of multiplicative 

calculus. 

 Example 4. Let 𝑈 = [𝑒1, 𝑒2]𝑒𝑥𝑝 ∪ [𝑒
3, 𝑒4]𝑒𝑥𝑝 . Then, the 

multiplicative measure of  𝑈 is  

   𝜆𝑒𝑥𝑝(𝑈) = 𝑒𝑥𝑝{𝜆(𝑙𝑛𝑒
1, 𝑙𝑛𝑒4) − 𝜆(𝑙𝑛𝑒2, 𝑙𝑛𝑒3)} 

      =𝑒𝑥𝑝{(𝑙𝑛𝑒4 − 𝑙𝑛𝑒1) − (𝑙𝑛𝑒3 − 𝑙𝑛𝑒2)} 

      =𝑒𝑥𝑝 {𝑙𝑛 (
𝑒4𝑒2

𝑒1𝑒3
)} 

      = 𝑒2. 

 Theorem 3. If the set 𝑈  can be write as union of finite 

pairwise disjoint sets in multiplicative sense, i. e. 𝑈 = ⋃ 𝑈𝑙
𝑟
𝑙=1 ,

𝑈𝑙 ∩ 𝑈𝑠 = ∅ 𝑓𝑜𝑟 𝑙 ≠ 𝑠. Then, we have  

   𝜆𝑒𝑥𝑝(𝑈) = ∏ (  𝜆𝑒𝑥𝑝(𝑈𝑙))
𝑟
𝑙=1 . 

 Proof. It is clear that 𝑙𝑛(𝑈) = ⋃ 𝑙𝑛(𝑈𝑙)
𝑟
𝑙=1 . Then, by the 

measure properties in real case, we have  

   𝜆𝑒𝑥𝑝(𝑙𝑛(𝑈)) = 𝑒𝑥𝑝(∑ 𝜆(𝑙𝑛(𝑈𝑙))
𝑟
𝑙=1 ) 

     = 𝑒𝑥𝑝 (∑ 𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝑈𝑙))))
𝑟
𝑙=1 ) 

     = 𝑒𝑥𝑝 (∑ 𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝑈𝑙))
𝑟
𝑙=1 ) 
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     = 𝑒𝑥𝑝 (𝑙𝑛(∏ 𝜆𝑒𝑥𝑝(𝑈𝑙)
𝑟
𝑙=1 )) 

     = ∏ (  𝜆𝑒𝑥𝑝(𝑈𝑙))
𝑟
𝑙=1 . 

 Definition 11. Let 𝐸 be a non-empty, bounded set in ℝ𝑒𝑥𝑝. 

The multiplicative outer and inner measure of 𝐸  are defined as 

follows, respectively, 

𝜆𝑒𝑥𝑝
𝑜 (𝐸) = 𝑖𝑛𝑓

𝑒𝑥𝑝
{  𝜆𝑒𝑥𝑝(𝐺): 𝐸

⊂ 𝐺, 𝐺 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 ℝ𝑒𝑥𝑝} 

and 

𝜆𝑒𝑥𝑝
𝑖 (𝐸) = 𝑠𝑢𝑝

𝑒𝑥𝑝
{  𝜆𝑒𝑥𝑝(𝐹): 𝐹 ⊂ 𝐸, 𝐺 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 ℝ𝑒𝑥𝑝} . 

Theorem 4. If 𝐺 𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛, 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 ℝ𝑒𝑥𝑝, then  

   𝜆𝑒𝑥𝑝(𝐺) = 𝜆𝑒𝑥𝑝
𝑜 (𝐺) = 𝜆𝑒𝑥𝑝

𝑖 (𝐺). 

 Proof. Let 𝐸 be an open set with 𝐺 ⊂ 𝐸 and 𝐹 be a closed 

set with 𝐹 ⊂ 𝐺 𝑖𝑛 ℝ𝑒𝑥𝑝. Thus, we have  

 𝜆𝑒𝑥𝑝
𝑜 (𝐺) = 𝑖𝑛𝑓𝐺⊂𝐸{  𝜆𝑒𝑥𝑝(𝐸)}

𝑒𝑥𝑝
 

    = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐺⊂𝑙𝑛𝐸𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐸))} 

    = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐺⊂𝑙𝑛𝐸𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐸))))} 

    = 𝑒𝑥𝑝{𝑖𝑛𝑓𝑙𝑛𝐺⊂𝑙𝑛𝐸𝜆(𝑙𝑛(𝐸))} 

    = 𝑒𝑥𝑝{𝜆(𝑙𝑛(𝐺))} 

    =   𝜆𝑒𝑥𝑝(𝐺) 

and 

 𝜆𝑒𝑥𝑝
𝑖 (𝐺) = 𝑠𝑢𝑝𝐹⊂𝐺{  𝜆𝑒𝑥𝑝(𝐹)}

𝑒𝑥𝑝
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     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐹⊂𝑙𝑛𝐺𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐹))} 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐹⊂𝑙𝑛𝐺𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐹))))} 

     = 𝑒𝑥𝑝{𝑠𝑢𝑝𝑙𝑛𝐹⊂𝑙𝑛𝐺𝜆(𝑙𝑛(𝐹))} 

     = 𝑒𝑥𝑝{𝜆(𝑙𝑛(𝐹))}  

     =   𝜆𝑒𝑥𝑝(𝐺)     

which gives the proof. 

 Theorem 5. If  𝐹 is a bounded, closed set 𝑖𝑛 ℝ𝑒𝑥𝑝, then we 

have   

   𝜆𝑒𝑥𝑝(𝐹) = 𝜆𝑒𝑥𝑝
𝑜 (𝐹) = 𝜆𝑒𝑥𝑝

𝑖 (𝐹).  

 Proof. The proof is derived in a manner similar to the one 

above. 

 Theorem 6. For every bounded set 𝑀 𝑖𝑛 ℝ𝑒𝑥𝑝 we have the 

following inequality; 

 𝜆𝑒𝑥𝑝
𝑖 (𝑀) ≤̇ 𝜆𝑒𝑥𝑝

𝑜 (𝑀). 

 Proof. Let 𝐺 be an open set with 𝑀 ⊂ 𝐺 and 𝐹 be a closed 

set with 𝐹 ⊂ 𝑀 𝑖𝑛 ℝ𝑒𝑥𝑝. Then, we get 

 𝜆𝑒𝑥𝑝
𝑖 (𝑀) = 𝑠𝑢𝑝𝐹⊂𝑀{  𝜆𝑒𝑥𝑝(𝐹)}

𝑒𝑥𝑝
 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐹⊂𝑙𝑛𝑀𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐹))} 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐹⊂𝑙𝑛𝑀𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐹))))} 

     = 𝑒𝑥𝑝{𝑠𝑢𝑝𝑙𝑛𝐹⊂𝑙𝑛𝑀𝜆(𝑙𝑛(𝐹))} 

     ≤̇ 𝑒𝑥𝑝{𝑖𝑛𝑓𝑙𝑛𝑀⊂𝑙𝑛𝐺𝜆(𝑙𝑛(𝐺))}
̇  
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     = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝑀⊂𝑙𝑛𝐺𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺))))} 

     = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝑀⊂𝑙𝑛𝐺𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐺))} 

     = 𝑖𝑛𝑓𝑀⊂𝐺{  𝜆𝑒𝑥𝑝(𝐺)}
𝑒𝑥𝑝

 

     = 𝜆𝑒𝑥𝑝
𝑜 (𝑀). 

 Theorem 7. Let 𝐶  and 𝐷 be two bounded sets 𝑖𝑛 ℝ𝑒𝑥𝑝 . If 

𝐶 ⊂ 𝐷, then we have  

 𝜆𝑒𝑥𝑝
𝑖 (𝐶) ≤̇ 𝜆𝑒𝑥𝑝

𝑖 (𝐷) 

and 

 𝜆𝑒𝑥𝑝
𝑜 (𝐶) ≤̇ 𝜆𝑒𝑥𝑝

𝑜 (𝐷). 

 Proof. Let 𝐸 be an open set with 𝐶 ⊂ 𝐸 and 𝐺 be a closed set 

with 𝐺 ⊂ 𝑀 𝑖𝑛 ℝ𝑒𝑥𝑝. Then, we have 

 𝜆𝑒𝑥𝑝
𝑖 (𝐶) = 𝑠𝑢𝑝𝐺⊂𝐶{  𝜆𝑒𝑥𝑝(𝐺)}

𝑒𝑥𝑝
 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐺⊂𝑙𝑛𝐶𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐺))} 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐺⊂𝑙𝑛𝐶𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺))))} 

     = 𝑒𝑥𝑝{𝑠𝑢𝑝𝑙𝑛𝐺⊂𝑙𝑛𝐶𝜆(𝑙𝑛(𝐺))} 

     ≤̇ 𝑒𝑥𝑝{𝑠𝑢𝑝𝑙𝑛𝐿⊂𝑙𝑛𝐷𝜆(𝑙𝑛(𝐿))}
̇  

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐿⊂𝑙𝑛𝐷𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐿))))} 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐿⊂𝑙𝑛𝐷𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐿))} 

     = 𝑠𝑢𝑝𝐿⊂𝐷{  𝜆𝑒𝑥𝑝(𝐿)}
𝑒𝑥𝑝

 

     = 𝜆𝑒𝑥𝑝
𝑖 (𝐷). 
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The second inequality can be obtained by similar way. 
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CHAPTER III 

 

 

Non-Newtonian Approach to Fixed Point Problem in  

C −  Algebra Valued Metric Spaces 

 

 

Nilay DEĞİRMEN 1 

 

Introduction and Preliminaries 

The Banach fixed point theorem (Banach, 1922) claims that any 

contraction mapping defined on a complete metric space has exactly 

one fixed point. Since then, the theorem has been generalized to 

various other types of metric spaces, leading to new findings and 

results. 

If   is a complex Banach algebra with involution  y y→  and 

2
y y y =  for all  y  , then  we say that    is a  C −  algebra 

(Murphy, 2014). In 2014, Ma et al. (Ma, Jiang & Sun, 2014) defined 

the notion of  C −  algebra valued metric space. Since then, there 
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have been many results and applications related to  such spaces, we 

refer to (Ma and Jiang, 2015; Chandok, Kumar & Park, 2019; Asim 

and Imdad, 2020; Maheswari et al., 2022). 

Calculus, a branch of analysis and an important area of mathematics 

is the mathematical study of change and motion. The history of 

calculus has been shaped by many contributions of mathematicians 

and thinkers, culminating in the 17th century when Gottfried 

Wilhelm Leibniz and Isaac Newton independently and 

simultaneously defined and developed the fundamental principles of 

differential and integral calculus. Michael Grosman and Robert Katz 

(Grossman and Katz, 1972) created non-Newtonian calculus 

between 1967-1970 years. This new approach uses functions called 

generators to reshape arithmetic operations and introduce new 

mathematical structures, especially multiplicative arithmetic. Non-

Newtonian calculus includes various unique and infinite types of 

calculus, such as harmonic, bigeometric, geometric, and 

anageometric calculus. The field has advanced rapidly in recent 

years due to its wide-ranging applications in areas like engineering, 

economics, biology, probability theory, approximation theory and 

weighted calculus, which has led to substantial interest from many 

scholars. Particularly noteworthy are the important applications of 

multiplicative calculus in statistics (Carr and Cirillo, 2024), 

economics (Filip and Piatecki, 2014), finance (Bashirov et al., 2011), 

biomedical image analysis (Florack and van Assen, 2012), logistic 

growth models (Pinto et al., 2020), contour detection in noisy images 

(Mora, Córdova-Lepe & Del-Valle, 2012), linear and nonlinear 

signal representation (Bilgehan, 2015), physics (Czachor, 2021), 

geometric magnetic energy (Ekinci et al., 2024), exponential signal 
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processing (Özyapıcı and Bilgehan, 2016), integral equations 

(Güngör & Durmaz, 2020) and cancer treatment (Momenzadeh, Obi 

& Hincal, 2022), etc. Also, Non-Newtonian calculus has been 

applied to topological, algebraic and analysis problems in the area of 

theoretical mathematics (Işık & Eryılmaz, 2023; Rohman & 

Eryılmaz, 2023; Duyar & Oğur, 2017; Oğur & Güneş, 2024; Güngör, 

2022; Değirmen & Duyar, 2023). 

Arithmetic is a term usually associated with positive integers, but 

here the term "arithmetic" refers to a complete ordered field whose 

universe is a subset of R . The generator of an arithmetic system 

generates classical arithmetic if  I   is the identity function and 

geometric arithmetic if  exp   is the function. Let  : R U R →    be 

a bijection. Then, it is said to be a generator with range  U   and 

defines an arithmetic. The range of generator     is denoted by  .R   

Assume that : R U →   and  : R V →   be arbitrarily selected 

generators and additionally  −  calculus be represented the ordered 

pair of arithmetics  ( )arithmetic, arithmetic − −  .  

 
 
 
 
 
 
 
 
 
 

 arithmetic −  arithmetic −   
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Realm ( )A R=  ( )B R=   

Addition ( ) ( ) 
.

1 1r s r s  − −+ = +  
..

+  
 

Subtraction ( ) ( ) 
.

1 1r s r s  − −− = −  
..

−  
 

Multiplicatio

n ( ) ( ) 
.

1 1r s r s  − − =   
..

  
 

Division 
( )

( )

1. .

1
/ 0

rr
r s s

s s







−

−

    
= =    

   
 

..

/  

 

Ordering ( ) ( )
.

1 1 .r s r s − −    
..

  
 

The unique function ı  that serves as the isomorphism from  −

arithmetic to  − arithmetic satisfies 

1.  ı   is injective. 

2.  :ı U V→  is surjective. 

3. For all , U   , 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 

. ..

1

,

, / / , 0

,

,

      

              

     

    −

 
= 

 

 =  = 

  

=

 

Also, for n Z  , we note that ( )n n = . 
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If  u R   and  
. .

0 u   (or  
. .

0u  ), then we say that it is a   −  

positive number (or   −  negative number). Additionally,  R

+
  

denotes the set of   −  positive numbers. Also,  

( )
. . .

1u u u   −  
− = − = −  

  
  for all  .u R   Besides, the number  

.

u u   is called the   −   square of  ,u   denoted by  
.

2 .u   If  

 
.

0u R

+   , then we say that  ( )1 u  − 
 

  is the   − square root 

of  u  , denoted by  . u   (Grossman and Katz, 1922; Çakmak and 

Başar, 2012). 

Let  
. . . . . .

, , , , /,u U
 

 + −   
 

  and  
.. .. . .. .. ..

, , , , /,v V
 

 + −   
 

. The collection of 

all −points 
. ..

,u v
 
 
 

 is said to be the set of non-Newtonian complex 

numbers and is denoted by ( )C N , that is, 

( )
. .. . ..

, : , .C N u v u U R v V R
  

=      
  

 

We will use the abbreviation “w.r.t.” for “with respect to”. 

The  −   norm  ( )
.. .. .. .. ..

1||.|| : [ 0, )C N →    of  z   is defined by 

( )
.. ..
2 2

.. .. . . . .. .. .. ..
2 2..

1|| || 0 0z ı u v u v     
= − + − = +    

    
 



 

--40-- 

 

where  
. ..

,z u v  
=  
 

  (Tekin and Başar, 2013). 

Non-Newtonian calculus offers a new perspective in mathematical 

analysis by overcoming the limitations of classical calculus. In 

(Değirmen, 2022), the author defined the notions of a  NC

−  

algebra, a Banach  ( )C N −  algebra and a  ( )C N −  algebra as 

follows: 

Definition 1. (Değirmen, 2022) A ( )C N −  algebra is a  ( )C N −  

vector space     such that 

( ) ( )

( )

,

,

     

      

  =  

+  =  + 
 

( )

( ) ( ) ( )

,      

       

 + =  + 

  =   =  
 

for all  , ,      and  ( ).C N    

If   is a  ( )C N −  normed space w.r.t. a  −  norm 
.. ..

||.||  and 

.. .. .. .. .. .. .. ..

|| || || || || ||       for all  ,    , then     is said to be a normed  

( )C N −  algebra. If   is also a Banach space with the  −  norm  

.. ..

. ,   then   is called a Banach  ( )C N −  algebra. 

Definition 2. (Değirmen, 2022) Let     be a Banach  ( )C N −  

algebra with an  N −  involution  : ,N →    N  
→   and
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..

2.. .. .. ..

|| || || ||N  
 =   for all    , then     is said to be a  NC


−

algebra (non-Newtonian C − algebra). 

We will use the abbreviations “CA”, “CAVM”, “CAVMS”, 

“CCAVMS”, “CAVCM”, “C.S.”, “f.p.” and “u.f.p.” for “ NC

−  

algebra”,  “ NC

−  algebra valued metric”, “ NC


−  algebra valued 

metric space”, “complete NC

−  algebra valued metric space”, “

NC

−  algebra valued contractive mapping”, “Cauchy sequence”, 

“fixed point” and “unique fixed point”, respectively. 

Motivated by the preceding discussion and extensive applications of 

fixed point theory, this study discuss new types of contractive 

mappings in a novel C −algebra. We then prove several new some 

f.p. theorems based on the concept of CA and its properties. The 

main objectives of this study are to understand the place of this new 

space in the mathematical world, to establish a general mathematical 

structure, and to explore how they can be used in specific areas of 

application. 

Main Results 

The following definition presents a new type of spectrum. 

Definition 3. Let   be a CA and .  Then, the N −  spectrum 

of   is defined as 

( ) ( ) 1
: .N

N C N I     −

=   −   

Here,  
1N−

   is the set of  N −  invertible elements in     (see 

(Değirmen, 2022)). 
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We now introduce one of the fundamental definitions of the study. 

Definition 4. Let     be a CA with a unit  I   and  .   If     is  

N −  hermitian (see (Değirmen, 2022)) and  ( )
.. .. ..

[0, ),N      then  

   is said to be an  N −  positive element in  ,  denoted by  

0 ,N    where  0   mean the zero element in  .  The set  

 : 0N     is denoted by  
N

+  . For  , ;N

h     if their 

difference  N  +−    ( or   0 ),N  + −  −   then we write  

N    (or  N    ). This relation  N   is reflexive, anti - 

symmetric, transitive and so defines a partial ordering on  .N

h   

Remark 1. When     is a CA with a unit  ,I   then, for any  

,N +   we have 
.. .. .. ..

|| || 1.N I     

We are ready to enunciate the following: 

Definition 5. Let     and  :
NC

d   →   be a function 

such that 

i)  ( )0 ,
NN C

d     for all  , .     

ii)  ( ), 0
NC

d   =   if and only if  . =   

iii)  ( ) ( ), ,
N NC C

d d    =   for all  , .     

iv)  ( ) ( ) ( ), , ,
N N NNC C C

d d d       +   for all  , , .     

Then,  
NC

d    and  ( ), ,
NC

d     are called a CAVM and CAVMS, 

respectively. 
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This definition generalizes the concept of CAVMS and so the 

classical concept of metric space. If  I = =  (identity function), 

then the concepts of CA and CAVM are identical with those of 

classical  C −  algebra and  C −  algebra valued metric. 

In the following, we state some noteworthy concepts: 

Definition 6. Let  ( ), ,
NC

d     be a CAVMS. Then, the elementary 

concepts can be given as follows: 

i) ( )n    is called convergent w.r.t.  
NC

d   if for 0N    there is 

an  ( )0 0n n N=    and     such that  ( ),
N n NC

d    , 0n n   

and is denoted by 
NC

d

n 


→  or lim .
N

n
n

 
→

=   

ii) ( )n    is called a C.S. w.r.t.  
NC

d    if for every given  0N    

there is an  ( )0 0n n N=    such that  ( ),
N n m NC

d    , 0, .n m n   

iii) If every C.S. w.r.t.  
NC

d    is convergent w.r.t.  ,
NC

d    then  

( ), ,
NC

d     is called a CCAVMS. 

We proceed in this section by introducing a new definition that 

generalizes the concept of a contractive mapping on a metric space. 

Definition 7. Let  ( ), ,
NC

d     be a CAVMS. We call a mapping  

:NT →   is a CAVCM on  ,   if there is an  A   with  

.. .. .. ..

1A    such that  

( ) ( ), ,N

N NN N NC C
d T T A d A    
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for all  , .     

Now, we present our main result which is analogous to the Banach 

f.p. theorem (Banach, 1922). 

Theorem 1. If  ( ), ,
NC

d     is a CCAVMS and  NT   is a  CAVCM, 

then there is a u.f.p. in  .   

Proof: Let  *    and  
1

1 *,
j

j N j NT T  ++ = =   1,2,....j =   So, 

( ) ( )

( )

( ) ( )

( ) ( )

1 1

1

2
2

1 2

1 *

, ,

,

,

... , .

N N

N

N

N

N

N

N

j j N j N jC C

N j jC

N j jC

j
j

N N C

d d T T

A d A

A d A

A d A

   

 

 

 

 







+ −



−



− −



=

 

 

 

 

This implies that for  1j m+    
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

1 1
2 2

1
2

1 1 1 1

1 1* *

1 1* *

1 1* *

1 *

, , , ... ,

, ... ,

, ... ,

, , ...

,

N N N N

N N
N N

N N
N N

N

N N

N

m n mjNj j j mC C C C

j m
p m

N C C

j m
p m

C C

j j

C C

m

C

d d d d

A d A A d A

A d A A d A

d A d A

d A

       

   

   

   

 

   

 

 

 



+ + − +

 

 


   
   
   





+ + +

  + +  

=   + +  

=    +

+  ( )

( ) ( )

( ) ( )

( ) ( )

1
2

1 1
2 2

1 1
2 2

.. .. .. .

1 1
2 2

1 *

2 2
1 1* *

.. ..
2 2

1 1* *

2 2 2 2.. .. .. .. .. .. .. .... .. ..

1 1* *

,

| , | ... | , |

|| | , | ... | , | ||

|| , || || || || , || || ||

N

N

N N

N N

N N

m

C

j m

C C

j m
N C C

j m
N C C

d A

d A d A

d A d A I

d A d A

 

   

   

   



 

 

 





  
   

  
 

=  + + 

 + + 

 + 

( )

( )
.. ..

.

.. .. ..

1
2

..

..

1
2

2 2 2.. .. .. .. .. .... .. ..

1 *

2.. ..
2 ..

.. ..1 ..* ..
|| ||

|| , || || || ... || ||

|| ||
, 0 .

1 || ||

j

N

N

m

N C

m

m

N C

I

d A A I

A
d I

A

 

  









→

 

 
 
 
  

 
 
 
  

 + +

 →
−

 

Thus,  ( )j   is a C.S. w.r.t.  .
NC

d    Since  ( ), ,
NC

d     is complete, 

there is an element       such that  1 .
j

j N jT  
→

−= →   Also, we 

have 

( )

( ) ( )

( ) ( )1

0 ,

, ,

, , 0 ,

N

N N

N

N N

N NC

N N N j jC C

j

N j jC C

d T

d T T d T

A d A d

 

   

   



 

 



→


+ 

+

  + →
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therefore  NT  =   and so     is a f.p. of  .NT   

For uniqueness, let      be another f.p. of  NT  . Then it follows 

that 

( ) ( ) ( )0 , , ,N

N N NN N N NC C C
d d T T A d A       



 =    

and so 

( ) ( )

( )

( )

( )

( )

..

.. .. .. .. .. ..

.. .. ..

.. .. .. .. .. .. .. .. ..

2.. .. .. .. ..

.. .. ..

0 || , || || , ||

|| , ||

|| || || , || || ||

|| || || , ||

|| , ||.

N N

N

N

N

N

N

N

N NC C

C

C

C

C

d d T T

A d A

A d A

A d

d

   

 

 

 

 

 













 =

  

  

= 



 

This implies that  ( ), 0 .
NC

d   =   So, we conclude that   =   and  

   is unique. The proof is completed. 

We will use the symbol  for   : , .a a b b a b  =      

The following definition is a generalization of the Chatterjea's 

contractive condition (Chatterjea, 1972). 

Definition 8. Let  ( ), ,
NC

d     be a CAVMS. We call a mapping  

:NT →   is a Chatterjea type  CAVCM on  ,   if there is an  

( )NA


+    with  ..

.... .. ..
1

2

|| ||A    such that  
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( ) ( ) ( )( ), , ,
N N NN N N N NC C C

d T T A d T d T        +  

for all  , .     

Theorem 2. If  ( ), ,
NC

d     is a CCAVMS and  NT   is a Chatterjea 

type  CAVCM, then there is a u.f.p. in   .  

Proof: Let  *    and  
1

1 *,
n

j N j NT T  ++ = =    1,2,....j =   So, 

( ) ( )

( ) ( )( )

( ) ( )( )

( ) ( )( )
( ) ( )

( )

1 1

1 1

2 1 1

1 1 2

1 1 2

1

, ,

, ,

, ,

, ,

, ,

,

N N

N N

N N

N N

N N

N N

j j N j N jC C

N N j j N j jC C

N j N j N j N jC C

N N j N j N j N jC C

N j N j N j N jC C

j jC C

d d T T

A d T d T

A d T T d T T

A d T T d T T

A d T T A d T T

A d A d

   

   

   

   

   

  

 

 

 

 

 

 

+ −

− −

− − −

− − −

− − −

+

=

 +

=  +

 +

=  + 

=  +  ( )1,j j −

 

and hence ( ) ( ) ( )1 1, , .
N Nj j N j jC C

I A d A d     + −−   Since  

( )NA


+    with  ..

.... .. ..
1

2

|| || ,A    we can write  ( ) ( )
1N NI A
− 

 +−     and  

( ) ( )
1N NA I A
− 

 + −     with  ( )
.. .. .. ..1

|| || 1.
N

A I A
−

 −    Therefore we get  

( ) ( ) ( )
1

1 1, , .
N

N Nj j N j jC C
d A I A d    

−

+  − −    

On the other hand, for  1 ,j m+    we have 
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( )

( ) ( ) ( ) ( )

( ) ( )
21

2

1 1 1 1

1
1 1 1

1 *

1

1 *

, , , ... ,

... ,

,

N N N N

N N N

N

m

N

N

m mj jNj j j mC C C C

j j m

N C

C

d d d d

A I A A I A A I A d

d A I A

       

 

 

   





+ + − +

−
− − −

  

−



     
     
     

 
      
      
           
  

 
  
  
   

 

+ + +

 − +  − + +  − 

=   − ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

21
2

2 21 1
2 2

21 1
2 2

1

1 *

1 1

1 1* *

1
2

1 1* *

, ...

, ,

| , | ... | ,

N m

N

N

Nj j

N N

N N

m

N

N N

C

C C

C C

d A I A

d A I A d A I A

d A I A d A I

 

   

   



 

 



−





− −

 

−

 

 
  
  
      

 

   
      

      
      
      

   

 
 
 
 

   − +

+   −    −

=   − + +   −( )

( ) ( ) ( ) ( )

( ) ( )

( )

.. ..

2

2 21 1
2 2

.. ..
21

2

..
1
2

1
2

1 1
2 2

1 1* *

2 2.. .. .. ..1.. ..

1 *

2.. .. .... ..

1 *

|| ||

|

| , | ... | , |

|| , || || || ...

|| , || ||

j

N

jm

N N

N N

m

N

N

N

N C C

C

N

C

A

d A I A d A I A I

d A I A

d A

   

 

 

 





−

− −

  

−



 
 
 
 

   
   
   
   

 
 
 
 

  − + +   −

  − +

+  ( )

( ) ( ) ( )

( )
( )

( )

.. ..

.. ..

..
2

..
1
2

..
1
2

2..1

.. .. .. ..2 1 1.. .. ..

1 *

.. ..1

2 ..

.. ..1 ..* 1..

|| ||

|| ||

||

, || || ... || ||

|| ||
,

1 || ||

j

N

N N

N

N

N N

m j

N C

m

N C

I

I A
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Thus,  ( )j   is a C.S. w.r.t.  .
NC

d    Since  ( ), ,
NC

d     is complete, 

there is an element       such that  1 .
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j N jT  
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−= →   Also, we 
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This means that  NT  =   and so     is a f.p. of  .NT   

For uniqueness, let      be another f.p. of  NT  . Then it follows 
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This implies that  ( ), 0 .
NC

d   =   So, we conclude that   =   and  

   is unique. The proof is completed. 

Now, we give another of generalizations of the Kannan's contractive 

condition (Kannan, 1968). 

Definition 9. Let  ( ), ,
NC

d     be a  CAVMS. We call a mapping  
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.... .. ..
1

2
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d     is a CCAVMS and  NT   is a Kannan 
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Thus,  ( )j   is a C.S. w.r.t.  .
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d    Since  ( ), ,
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d     is complete, 

there is an element       such that  1 .
j

j N jT  
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This means that  NT  =   and so     is a f.p. of  .NT   

For uniqueness, let      be another f.p. of  NT  . Then it follows 

that 
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and so   =   and     is unique. The proof is completed. 

 



 

--53-- 

 

Conclusion 

In this article, we have introduced the concept of a CAVMS. 

Additionally, we have presented f.p. results for CCAVMS. Given 

that our findings extend several known results from the existing 

literature, we believe they will be valuable for future research and 

new applications. 
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CHAPTER IV 

 

 

Bigeometric Sumudu Transform 

 

 

Nihan GÜNGÖR 1 

 

Introduction 

Integral transforms can be applied to deal with many mathematically 

stated processes and phenomena in research, engineering, and 

everyday life. They are extensively utilized across fields of 

engineering and science to easily handle problems related to thermal 

science, heat conduction, control theory, electrical networks, 

exponential growth and decay problems, statistics, physics, 

mathematics, chemistry, economics, biology, medicine, 

telecommunications, nuclear reactors, quantum mechanics, 

deflection of beams, Brownian motion, and many more. A multitude 

of innovative integral transforms has been introduced owing to their 

extensive applicability. The integral transforms that are most utilized 
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and recognized include the Laplace, Fourier, and Sumudu 

transforms. The examination of the Sumudu transforms has been 

conducted through various concepts, including fractional (Gupta et 

al., 2015), conformable fractional (Al-Zhour et al., 2019), fuzzy 

(Rahman & Ahmad, 2016), multiplicative calculus (Bhat et al., 

2019) and non-Newtonian calculus (Gungor & Dinc, 2024). 

Since the establishment of classical calculus by Newton and 

Leibnitz, numerous calculi have been developed, recognizing that a 

prominent and preferred approach to establishing a new 

mathematical system is to modify the axioms of an existing system. 

Furthermore, a mathematical problem that may be difficult or 

unresolvable with one calculus can be effectively addressed using an 

alternative calculus. Grossman and Katz (1972) developed a novel 

structure known as non-Newtonian calculus, which serves as an 

alternative to classical calculus. This framework encompasses 

various specialized calculi, including geometric, bigeometric, 

anageometric, harmonic and quadratic calculus. Modern derivatives 

and integrals have been introduced, which have transformed addition 

and subtraction into multiplication and division respectively. Non-

Newtonian calculus, the innovative work carried out by Grossman 

and Katz, has attracted considerable interest in recent years, owing 

to its extensive applications across several disciplines including 

economics, biology, integral equations, probability theory, 

approximation theory, functional analysis, differential equations, 

computer science and more from many scholars (Rybaczuk & 

Stoppel, 2000; Córdova-Lepe, 2006; Florack  & van Assen, 2012; 

Çakmak & Başar, 2014; Filip & Piatecki, 2014; Kadak & Özlük, 

2014; Duyar & Oğur, 2017; Güngör, 2020; Boruah & Hazarika, 
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2021; Czachor, 2021; Sager & Sağır, 2021; Güngör, 2022; Değirmen 

& Duyar, 2023; Rohman & Eryılmaz, 2023; Ogur & Gunes, 2024a, 

2024b) Bigeometric calculus is among the most widely recognized 

forms of non-Newtonian calculus. This calculus assesses the 

variations in function arguments and values through ratios.  

A generator is one to one function whose domain is ℝ and whose 

range is a subset of ℝ . Each generator produces precisely one 

arithmetic, and each arithmetic is produced by exactly one generator. 

Classical arithmetic is produced by the identity function 𝐼, whereas 

geometric arithmetic is produced by the exponential function. The 

range of the generator 𝜂 is denoted by ℝ𝜂 ≔ {𝜂(𝑢): 𝑢 ∈ ℝ} and 𝜂-

arithmetic operations are represented by 

𝜂-addition 𝜐+̇𝜈 = 𝜂{𝜂−1(𝜐) + 𝜂−1(𝜈)} , 

𝜂-subtraction 𝜐−̇𝜈 = 𝜂{𝜂−1(𝜐) − 𝜂−1(𝜈)} , 

𝜂-multiplication 𝜐 ×̇ 𝜈 = 𝜂{𝜂−1(𝜐) × 𝜂−1(𝜈)} , 

𝜂-division 𝜐/̇𝜈 (𝜈 ≠ 0̇) = 𝜂{𝜂−1(𝜐)/𝜂−1(𝜈)} , 

𝜂-order 𝜐 <̇ 𝜈  ⇔ 𝜂−1(𝜐) < 𝜂−1(𝜈) 

for 𝜐, 𝜈 ∈ ℝ𝜂. The establishment of the ∗-calculus is accomplished 

by employing two generators, namely 𝜂 and 𝛽, which are chosen 

arbitrarily. Here are the specific calculuses that can be derive by 

using either the exponential function exp or the identity function 𝐼 

as the generators 𝜂 and 𝛽: 
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Calculus 𝜂 𝛽 

Classical 𝐼 𝐼 

Geometric 𝐼 exp 

Anageometric exp 𝐼 

Bigeometric exp exp. 

This study will concentrate on bigeometric calculus, characterized 

as a ∗-calculus in which 𝜂  and 𝛽  are both equivalent to exp . In 

essence, when engaging with function arguments and values in 

bigeometric calculus, one utilizes geometric arithmetic. Initially, we 

will present the geometric arithmetic along with its fundamental 

characteristics. It is the responsibility of the exponential function to 

generate geometric arithmetic, and the following is a list of the 

definitions of operations: 

geometric addition 𝜐 ⊕ 𝜈 = 𝑒{ln 𝜐+ln𝜈} = 𝜐. 𝜈 , 

geometric subtraction 𝜐 ⊖ 𝜈 = 𝑒{ln 𝜐−ln𝜈} = 𝜐 ÷ 𝜈, 𝜈 ≠ 0 , 

geometric multiplication 𝜐 ⊙ 𝜈 = 𝑒{ln 𝜐×ln𝜈} = 𝜐ln 𝜈 = 𝜈ln 𝜐 , 

geometric division 𝜐 ⊘ 𝜈 = 𝑒{ln 𝜐÷ln𝜈} = 𝜐
1

ln𝜈, 𝜈 ≠ 1. 

It is evident that ln 𝜐 < ln 𝜈 if 𝜐 < 𝜈 for 𝜐, 𝜈 ∈ ℝ+. That is 𝜐 < 𝜈 ⇔

𝜂−1(𝜐) < 𝜂−1(𝜈). Thus, without loss of generality, we utilize 𝜐 < 𝜈 

in place of the geometric order 𝜐 <exp 𝜈. The geometric factorial 

notation !exp is defined as  

𝑛!exp = 𝑒
𝑛⊙ 𝑒𝑛−1⊙…⊙ 𝑒2⊙ 𝑒 = 𝑒𝑛! 

for 𝑛 ∈ ℕ. For 𝜐 ∈ ℝexp , 𝜐𝑝exp = 𝑒(ln 𝜐)
𝑝
= 𝜐ln

𝑝−1 𝜐  and √𝜐
𝑝 𝑒𝑥𝑝

=
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𝑒(ln 𝜐)
1
𝑝
. The geometric absolute value of  𝜐 ∈ ℝexp is denoted by  

|𝜐|exp = {
  𝜐      , 𝜐 > 1
  1      , 𝜐 = 1.
1/𝜐  , 𝜐 < 1

 

Hence, we can write |𝜐|exp = e
|ln𝜐|  (Boruah & Hazarika, 2018; 

2021).  

Definition 1. (Grossman & Katz, 1972; Sağır & Erdoğan, 2019; 

Güngör, 2020)  Let the function 𝑓: 𝑋 ⊂ ℝexp → ℝexp and 𝑎 ∈ 𝑋′exp, 

𝑏 ∈ ℝexp . If for every 𝜀 > 1   there is 𝛿 = 𝛿(𝜀) > 1  such that 

|𝑓(𝑥) ⊖ 𝑏 |exp < 𝜀  for all 𝑥 ∈ 𝑋  whenever 1 < |𝑥 ⊖ 𝑎 |exp < 𝛿  , 

then it is said that the 𝐵𝐺-limit of 𝑓 at 𝑎 is 𝑏 and it is articulated as 

 𝐵𝐺 lim
𝑥→𝑎

𝑓(𝑥) = 𝑏. 

Definition 2. (Grossman & Katz, 1972; Sağır & Erdoğan, 2019). Let 

the function 𝑓: 𝑋 ⊂ ℝexp → ℝexp  and 𝑎 ∈ 𝑋 . If for every 𝜀 > 1  

there is 𝛿 = 𝛿(𝜀) > 1 such that |𝑓(𝑥) ⊖ 𝑓(𝑎) |exp < 𝜀 for all 𝑥 ∈

𝑋  whenever 1 < |𝑥 ⊖ 𝑎 |exp < 𝛿  , then it is called that 𝑓  is 𝐵𝐺 -

continuous at the point 𝑎 ∈ 𝑋. 

Remark 3. (Grossman & Katz, 1972; Güngör, 2020) The limits 

 𝐵𝐺 lim
𝑥→𝑎

𝑓(𝑥)  and  lim
𝑡→ln𝑎

ln 𝑓(𝑡)  coexist and if they do exist, 

 𝐵𝐺 lim
𝑥→𝑎

𝑓(𝑥) = exp { lim
𝑡→ln𝑎

ln 𝑓(𝑒𝑡)} . Moreover, 𝑓  is 𝐵𝐺 -

continuous at 𝑎 if and only if ln 𝑓 is continuous at ln 𝑎. 

Definition 4. (Grossman & Katz, 1972; Boruah & Hazarika, 2021) 

Let the function 𝑓: (𝑟, 𝑠) ⊂ ℝexp → ℝexp   and ∈ (𝑟, 𝑠)  .  If 
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 𝐵𝐺 lim
𝑥→𝑎

𝑓(𝑥)⊖𝑓(𝑎)

𝑥⊖𝑎
exp = lim

𝑥→𝑎
[
𝑓(𝑥)

𝑓(𝑎)
]

1

ln𝑥−ln𝑎
 occurs, it is indicated by 

(𝐷𝐵𝐺𝑓)(𝑎) = 𝑓𝐵𝐺(𝑎) is called the 𝐵𝐺-derivative of 𝑓 at 𝑎.  

Remark 5. (Grossman & Katz, 1972) The derivatives 𝑓𝐵𝐺(𝑎) and 

(ln 𝑓(ln 𝑎))′  coexist and if they do exist, 𝑓𝐵𝐺(𝑎) =

exp [(ln 𝑓(𝑒ln𝑎))
′
 ] = 𝑒

𝑎
𝑓′(𝑎)

𝑓(𝑎) .  

Definition 6. (Grossman & Katz, 1972; Boruah & Hazarika, 2018) 

The 𝐵𝐺-average of a 𝐵𝐺-continuous positive function 𝑓 on [𝑟, 𝑠] ⊂

ℝexp  is defined as the exp-limit of the exp-convergent sequence 

whose 𝑛 -th term is geometric average of 𝑓(𝑎1), 𝑓(𝑎2), … , 𝑓(𝑎𝑛) 

where 𝑎1, 𝑎2, … , 𝑎𝑛 is the 𝑛-fold exp-partition of  [𝑟, 𝑠] and denoted 

by 𝑀𝐵𝐺𝑟
𝑠
 𝑓 . The 𝐵𝐺 -integral of a 𝐵𝐺 -continuous function 𝑓  on 

[𝑟, 𝑠]  is denoted by  𝐵𝐺 ∫ 𝑓(𝑥)𝑑
𝐵𝐺𝑥

𝑠

𝑟
, which is the number 

[𝑀𝐵𝐺𝑟
𝑠
 𝑓 ]

[ln 𝑠−ln𝑟]
. 

Remark 7. (Grossman & Katz, 1972; Boruah & Hazarika, 2018) If 

𝑓  is 𝐵𝐺 -continuous [𝑟, 𝑠] ⊂ ℝexp , then  𝐵𝐺 ∫ 𝑓(𝑥)𝑑
𝐵𝐺𝑥

𝑠

𝑟
=

exp [∫ ln 𝑓(𝑒𝑡)𝑑𝑡
ln 𝑠

ln 𝑟
] , i.e., the 𝐵𝐺 -integral of 𝑓  is defined by 

 𝐵𝐺 ∫ 𝑓(𝑥)𝑑
𝐵𝐺𝑥

𝑠

𝑟
= e∫  

ln𝑓(𝑥)

𝑥

𝑠
𝑟 𝑑𝑥

. 

Definition 8. (Erdoğan & Duyar, 2018) Let the function 

𝑓: [𝑎, +∞) ⊂ ℝexp → ℝexp  be ∗ -continuous on [𝑎, 𝑏] ⊂ ℝexp  for 

each 𝑎 ≤ 𝑏 . The 𝐵𝐺 -limit  𝐵𝐺 lim
𝑏→+∞

  𝐵𝐺 ∫  
𝑏

𝑎
𝑓(𝑡)𝑑𝐵𝐺𝑡  is called 

improper 𝐵𝐺 -integral of the function 𝑓  on [𝑎, +∞)  and it is 

demonstrated by  𝐵𝐺 ∫  
+∞

𝑎
𝑓(𝑡)𝑑𝐵𝐺𝑡. If the  𝐵𝐺 lim

𝑏→+∞
  𝐵𝐺 ∫  

𝑏

𝑎
𝑓(𝑡)𝑑𝐵𝐺𝑡  
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exists and is equal to a number 𝐿 ∈ ℝexp , then it is said that the 

improper 𝐵𝐺-integral  𝐵𝐺 ∫  
+∞

𝑎
𝑓(𝑡)𝑑𝐵𝐺𝑡 is 𝐵𝐺-convergent. 

Definition 9. (Gungor & Dinc, 2024) If there are 𝑀 ∈ ℝexp
+  and 𝛾 ∈

ℝexp such that 

|𝑓(𝑡)|exp ≤ 𝑀⊙ 𝑒(ln(𝛾⊙𝑡))exp = 𝑀𝛾
ln 𝑡

 

for every 𝑡 ≥ 𝑡0 with 𝑡0 ≥ 1, then it is called that 𝑓 is a function of 

𝐵𝐺-exponential order 𝛾. 

Definition 10. (Gungor & Dinc, 2024) If  𝐵𝐺lim𝑡→𝑡0+  𝑓(𝑡)  and 

 𝐵𝐺lim𝑡→𝑡0−  𝑓(𝑡) exist but are not equal, the function 𝑓 is jump 𝐵𝐺-

discontinuity at a point 𝑡0. 

Definition 11. (Gungor & Dinc, 2024) If there is a finite subinterval 

[𝑎, 𝑡1], [𝑡1, 𝑡2], … , [𝑡𝑛−1, 𝑏]  such that 𝑓  is 𝐵𝐺 -continuous on each 

(𝑡𝑖−1, 𝑡𝑖) ⊂ ℝexp with 𝑡0 = 𝑎, 𝑡𝑛 = 𝑏, 𝑖 = 1,… , 𝑛 and has the one-

sided 𝐵𝐺 -limits  𝐵𝐺lim𝑡→𝑡𝑖−1
+  𝑓(𝑡)  and  𝐵𝐺lim𝑡→𝑡𝑖

−  𝑓(𝑡) , then the 

function 𝑓  is sectionally (piecewise) 𝐵𝐺 -continuous on [𝑎, 𝑏] ⊂

ℝexp. 

Motivated by the vast applications of both bigeometric calculus and 

integral transformations, this study discusses and analyzes the 

bigeometric Sumudu transform, a special case of the non-Newtonian 

Sumudu transform in Gungor & Dinc (2024). 

Main Results 

This section presents the Sumudu transform from a bigeometric 

perspective, offering a novel viewpoint on integral transforms and a 

fundamental explanation of the underlying theory of the bigeometric 

Sumudu transform.  
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Definition 12.  The set of functions 𝔸 is defined by 

𝔸 = {𝑓(𝑡): ∃𝑀 > 𝑒, 𝜏1, 𝜏2 > 1, |𝑓(𝑡)|exp < 𝑀⊙ 𝑒
(
ln(|𝑡|exp)

ln(𝜏𝑗)
)
exp , 

𝑡 ∈ (1⊖ 𝑒)𝑗exp × [1,+∞) } 

where 𝑀 ∈ ℝexp and 𝜏1, 𝜏2 are finite exp-constants or infinite. The 

bigeometric Sumudu integral transform for a function in the set 𝔸 is 

defined as  

𝑆𝐵𝐺{𝑓(𝑡)} = 𝐹𝐵𝐺(𝜐) 

                    =  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙𝑓(𝑡)𝑑𝐵𝐺𝑡                    (1) 

for 𝜐 ∈ (⊖ 𝜏1, 𝜏2). The equation is also given as 

𝑆𝐵𝐺{𝑓(𝑡)} =  𝐵𝐺∫ 𝑒(− ln 𝑡)exp

+∞

1

⊙𝑓(𝜐 ⊙ 𝑡)𝑑𝐵𝐺𝑡.                           (2) 

The relationship between classical calculus and bigeometric calculus 

indicates that equation (1) is equal to 

𝑆𝐵𝐺{𝑓(𝑡)} =  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙𝑓(𝑡)𝑑𝐵𝐺𝑡  

                     =  𝐵𝐺 lim
𝑐→+∞

 𝐵𝐺∫𝑒
(
1
ln𝜐

 𝑒
(
− ln 𝑡
ln𝜐

)
∙ln(𝑓(𝑡)))

𝑐

1

𝑑𝐵𝐺𝑡 

                    = 𝐵𝐺 lim
𝑐→+∞

exp {∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln𝜐

)
∙
ln(𝑓(𝑡))

𝑡
𝑑𝑡

𝑐

1

} 
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                    = exp { lim
𝑐→+∞

∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln(𝑓(𝑡))

𝑡

𝑐

1

𝑑𝑡}. 

                    = exp{∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln(𝑓(𝑡))

𝑡

+∞

1

𝑑𝑡} .                      (3) 

If we change of variable as 𝑡 = 𝑒𝑧 in equation (3), it is also written 

as  

𝑆𝐵𝐺{𝑓(𝑡)} = exp{∫
1

ln 𝜐
∙ 𝑒(

−𝑧
ln𝜐

) ∙ ln(𝑓(𝑒𝑧))

+∞

0

𝑑𝑧}.                      (4) 

Remark 13. For 𝑐, 𝑡 ∈ ℝexp , let 𝑐̅ = ln 𝑐 , �̅� = ln 𝜐 . Let 𝑓(̅𝑧) =

ln(𝑓(𝑒𝑧)), where 𝑓 is a positive ℝexp-valued function. By using the 

equation (4), how the classical Sumudu transform is related to the 

bigeometric Sumudu transform is demonstrated in the following 

way: 

𝑆𝑁{𝑓(𝑡)} =  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln𝜐

)
exp

+∞

1

⊙𝑓(𝑡)𝑑𝐵𝐺𝑡   

                  = exp{∫
1

ln 𝜐
∙ 𝑒(

−z
ln𝜐

) ∙ ln(𝑓(𝑒𝑧))

+∞

0

𝑑𝑧} 

                 = exp{ lim
𝑐→+∞

∫
1

ln 𝜐
∙ 𝑒(

−z
ln𝜐

) ∙ ln(𝑓(𝑒𝑧))

ln 𝑐

0

𝑑𝑧} 

                 = exp{ lim
𝑐→̅+∞

∫
1

�̅�
∙ 𝑒(

−𝑧
�̅� ) ∙

𝑐̅

0

𝑓(̅𝑧)𝑑𝑧} 

                 = 𝑒𝑆(𝑓
̅(𝑧))
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                 = 𝑒𝑆(ln(𝑓
(𝑒𝑧))). 

 

Hence we get the expression 𝑆𝐵𝐺{𝑓(𝑡)} =  𝑒
𝑆(𝑓̅(𝑧))   = 𝑒𝑆(ln(𝑓

(𝑒𝑧))). 

Example 14.  The BG-Sumudu transform of the function 𝑓(𝑡) = 𝑡 

can be determined using the equation (4): 

𝑆𝐵𝐺{𝑡} =  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln𝜐

)
exp

+∞

1

⊙ 𝑡 𝑑𝐵𝐺𝑡    

             = exp{∫
1

ln 𝜐
∙ 𝑒(

−𝑧
ln𝜐

) ∙ ln(𝑒𝑧)

+∞

0

𝑑𝑧} 

             = exp{∫
1

ln 𝜐
∙ 𝑒(

−𝑧
ln𝜐

) ∙ 𝑧

+∞

0

𝑑𝑧} 

             = exp { lim
𝑎→+∞

∫
1

ln 𝜐
∙ 𝑒(

−𝑧
ln𝜐

) ∙ 𝑧

𝑎

0

𝑑𝑧} 

             = exp { lim
𝑎→+∞

(−𝑒
−𝑧
ln𝜐. 𝑧|

0

𝑎

+∫ 𝑒
−𝑧
ln𝜐

𝑎

0

𝑑𝑧)} 

             = exp {− lim
𝑎→+∞

(𝑎𝑒
−𝑎
ln𝜐) − lim

𝑎→+∞
ln 𝜐 𝑒

−𝑎
ln𝜐 + ln 𝜐} 

             = exp{ln 𝜐} = 𝜐 = 𝑒 ⊙ 𝜐 = 1!exp⊙𝜐. 

This result can be generalized through the application of induction 

as follows:  

𝑆𝐵𝐺{𝑡
(𝑚)exp} = 𝑚!exp⊙𝜐𝑚exp = 𝑒𝑚!⊙ 𝜐𝑚exp = 𝑒𝑚!(ln 𝜐)

𝑚
(𝑚 ∈ ℕ). 

The 𝐵𝐺 -Sumudu transforms of certain elementary functions are 

provided below. 
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𝑓(𝑡) 𝑆𝐵𝐺[𝑓(𝑡)] = 𝐹𝐵𝐺(𝜐) 

𝑒 𝑒 

𝑡 𝜐 

𝑡(𝑚)exp , 𝑚 ∈ ℕ 𝑒𝑚!⊙𝜐𝑚exp = 𝑒𝑚!(ln𝜐)
𝑚

 

𝑒(ln𝑘 ln 𝑡)exp,𝑒
1

ln𝜐 > 𝑘, 𝑘 ∈

ℝexp 

𝑒

𝑒 ⊖ 𝑘 ⊙ 𝜐
exp 

𝑡 ⊙ 𝑒(ln𝑘 ln 𝑡)exp 
𝜐

(𝑒 ⊖ 𝑘 ⊙ 𝜐)2exp
exp 

 

exp{sin(ln 𝑘 ln 𝑡)} 

𝑘 ⊙ 𝜐

𝑒 ⊕ (𝑘)2exp⊙ (𝜐)2exp
exp , 𝜐

> 1 

exp{cos(ln 𝑘 ln 𝑡)} 
𝑒

𝑒 ⊕ 𝑘2exp⊙ (𝜐)2exp
exp , 𝜐 > 1. 

 

Theorem 15 (Existence of 𝑩𝑮-Sumudu transform).  The 𝐵𝐺 -

Sumudu transform 𝑆𝐵𝐺{𝑓(𝑡)} exists for 𝑒
1

ln𝜐 > 𝛾 and 𝐵𝐺-converges 

exp-absolutely if 𝑓  is sectionally 𝐵𝐺 -continuous on [1, +∞)  and 

has 𝐵𝐺-exponential order 𝛾. 

Proof. It can be written as 

 𝐵𝐺 ∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙𝑓(𝑡)𝑑𝐵𝐺𝑡   

=
𝑒

𝜐
exp⊙  𝐵𝐺∫ 𝑒

(
− ln 𝑡
ln𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

𝑡0

1

⊕ 

⊕
𝑒

𝜐
exp⊙  𝐵𝐺∫ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

+∞

𝑡0

 .                                 (5) 
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Since 𝑓  is sectionally 𝐵𝐺 -continuous on [𝑒, 𝑡0], the function 𝑓  is 

𝐵𝐺 -continuous on (𝑒, 𝑡0) ⊂ ℝexp  with the exception of a finite 

number of points 𝑡1, 𝑡2, … , 𝑡𝑛  in (𝑒, 𝑡0). For finite constants 𝑀𝑖 ∈

ℝexp, one gets  

|𝑓(𝑡)|exp ≤ 𝑀𝑖 , 𝑡𝑖 < 𝑡 < 𝑡𝑖+1 (𝑖 = 1,2, … , 𝑛 − 1). 

In order to integrate the sectionally 𝐵𝐺-continuous function from 1 

to 𝑡0 , the exp-sum of the 𝐵𝐺 -integrals over each of the exp -

subintervals of 𝑓 is computed, that is 

 𝐵𝐺∫ 𝑒
(
− ln 𝑡
ln𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

𝑡0

1

=  𝐵𝐺∫ 𝑒
(
− ln 𝑡
ln𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

𝑡1

1

    

⊕  𝐵𝐺∫ 𝑒
(
− ln 𝑡
ln𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

𝑡2

𝑡1

⊕…⊕ 

⊕  𝐵𝐺∫ 𝑒
(
− ln 𝑡
ln𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

𝑡0

𝑡𝑛

. 

Since 𝑓  is 𝐵𝐺 -continuous and exp -bounded on every exp -

subinterval, it follows that each 𝐵𝐺 -integral is well-defined. 

Therefore, the first integral on the right side of (5) is accurate. 

Given that 𝑓  possesses 𝐵𝐺 -exponential order 𝛾 , there exist 𝑀 ∈

ℝexp
+  and 𝛾 ∈ ℝexp such that 

|𝑓(𝑡)|exp ≤ 𝑀⊙ 𝑒
(ln(𝛾)ln(𝑡))

exp 

for all 𝑡 > 𝑡0. Thus, we obtain  

| 𝐵𝐺  ∫ 𝑒
(
− ln 𝑡
ln 𝜐

)
exp⊙𝑓(𝑡)𝑑𝐵𝐺𝑡

+∞

𝑡0

|

exp
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≤  𝐵𝐺∫ 𝑒
(
− ln 𝑡
ln 𝜐

)
exp⊙

+∞

𝑡0

|𝑓(𝑡)|exp𝑑
𝐵𝐺𝑡 

≤   𝐵𝐺∫ 𝑒
(
− ln 𝑡
ln 𝜐

)
exp⊙

+∞

𝑡0

𝑀⊙ 𝑒(ln𝛾lnt)exp𝑑𝐵𝐺𝑡 

= 𝑀⊙  𝐵𝐺∫ 𝑒
(−ln𝑡(

1
ln𝜐
−ln𝛾))

exp

+∞

𝑡0

𝑑𝐵𝐺𝑡 

= 𝑀⊙  𝐵𝐺 lim
𝑐→+∞

[ 𝐵𝐺∫ 𝑒
(−ln𝑡(

1
ln𝜐
−ln𝛾))

exp

𝑐

𝑡0

𝑑𝐵𝐺𝑡] 

= 𝑀⊙  𝐵𝐺 lim
𝑐→+∞

[ 𝐵𝐺∫ exp {𝑒−ln𝑡(
1
ln𝜐
−ln𝛾)}

𝑐

𝑡0

𝑑𝐵𝐺𝑡] 

= 𝑀⊙  𝐵𝐺 lim
𝑐→+∞

[exp {∫
1

𝑡
𝑒−ln𝑡(

1
ln𝜐
−ln𝛾)

𝑐

𝑡0

𝑑𝑡}] 

= 𝑀⊙  𝐵𝐺 lim
𝑐→+∞

1

(ln 𝛾 −
1
ln𝜐
)
⋅ exp {(ln 𝛾 −

1

ln𝜐
) (ln 𝑐 − ln𝑡0)} 

= 𝑀⊙ exp { lim
𝑐→+∞

ln𝜐

(ln 𝛾 ln𝜐 − 1)
⋅ exp {(ln 𝛾 −

1

ln𝜐
) (ln 𝑐 − ln𝑡0)}} 

= 𝑀⊙ exp {
ln𝜐

(1 − ln 𝛾 ln𝜐)
⋅ exp {(ln 𝛾 −

1

ln𝜐
) ln𝑡0}}. 

The second integral on the right is also defined for 𝑒
1

ln𝜐 > 𝛾 . 

Consequently, the argument is substantiated.  

Theorem 16 (𝑩𝑮-linearity property). If 𝑓1 and 𝑓2 are two positive 

ℝexp-valued functions with existing 𝐵𝐺-Sumudu transforms, then 
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𝑆𝐵𝐺{𝜆1⊙𝑓1(𝑡) ⊕ 𝜆2⊙𝑓2(𝑡)}   = 𝜆1⊙𝑆𝐵𝐺{𝑓1(𝑡)} ⊕ 𝜆2⊙𝑆𝐵𝐺{𝑓2(𝑡)} 

where 𝜆1, 𝜆2 ∈  ℝexp. 

Proof. Suppose that 

|𝑓1(𝑡)|exp ≤ 𝑀1⊙ 𝑒(ln𝛾 ln 𝑡)exp 

|𝑓2(𝑡)|exp ≤ 𝑀2⊙ 𝑒(ln𝛾 ln 𝑡)exp . 

Consequently, we can express 

|𝜆1⊙𝑓1(𝑡) ⊕ 𝜆2⊙𝑓2(𝑡)|exp

≤ (𝜆1⊙𝑀1⊕𝜆2⊙𝑀2) ⊙ 𝑒(ln𝛾 ln 𝑡)exp , 

indicating that the 𝐵𝐺 -Sumudu transform of the function 𝜆1⊙

𝑓1(𝑡) ⊕ 𝜆2⊙𝑓2(𝑡) exists. By properties of improper 𝐵𝐺-integral, 

we find 

𝑆𝑁{𝜆1⊙𝑓1(𝑡) ⊕ 𝜆2⊙𝑓2(𝑡)} 

=  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙ (𝜆1⊙𝑓1(𝑡) ⊕ 𝜆2⊙𝑓2(𝑡))𝑑
𝐵𝐺𝑡 

= 𝜆1⊙  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙𝑓1(𝑡)𝑑
𝐵𝐺𝑡 

⊕𝜆2⊙  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙𝑓2(𝑡)𝑑
𝐵𝐺𝑡 

= 𝜆1⊙𝑆𝐵𝐺{𝑓1(𝑡)} ⊕ 𝜆2⊙𝑆𝐵𝐺{𝑓2(𝑡)} 

which completes the proof. 
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Theorem 17 ( 𝑩𝑮 -first translation theorem). If 𝑆𝐵𝐺{𝑓(𝑡)} =

𝐹𝐵𝐺(𝜐) exists for 𝑒
1

ln𝜐 > 𝛾, then 

𝑆𝐵𝐺{𝑒
(ln𝑘 ln𝑡)exp⊙𝑓(𝑡)} =

𝑒

𝑒 ⊝ 𝑘 ⊙ 𝜐
exp⊙ 𝐹𝐵𝐺 (

𝜐

𝑒 ⊝ 𝑘 ⊙ 𝜐
exp) 

for any 𝑘 ∈  ℝexp. 

Proof. Utilizing the definition of the 𝐵𝐺 -Sumudu transform as 

presented in equation (2) yields  

𝑆𝑁{𝑒
(ln𝑘 ln𝑡)exp⊙𝑓(𝑡)} 

=  𝐵𝐺∫ 𝑒(− ln 𝑡)exp

+∞

1

⊙𝑒(ln 𝑘 ln 𝑡 ln 𝜐)exp⊙𝑓(𝜐 ⊙ 𝑡)𝑑𝐵𝐺𝑡 

=  𝐵𝐺∫ 𝑒
(− ln 𝑡(1−ln𝑘 ln 𝜐))

exp

+∞

1

⊙𝑓(𝜐 ⊙ 𝑡)𝑑𝐵𝐺𝑡 

=  𝐵𝐺 lim
𝑐→+∞

( 𝐵𝐺∫exp{𝑒
− ln 𝑡(1−ln𝑘 ln𝜐)} ⊙ 𝑓(𝜐 ⊙ 𝑡)𝑑𝐵𝐺𝑡

𝑐

1

) 

=  𝐵𝐺 lim
𝑐→+∞

exp {∫
1

𝑡
𝑒− ln 𝑡(1−ln𝑘 ln𝜐) ln 𝑓((ln 𝑡)𝜐)

𝑐

1

𝑑𝑡} 

for 𝑒
1

ln𝜐 > 𝛾. If we consider it to be ln 𝑡 (1 − ln 𝑘 ln 𝜐) = 𝑤, then we 

find that 

𝑆𝑁{𝑒
(ln𝑘 ln𝑡)exp⊙𝑓(𝑡)} 

=  𝐵𝐺 lim
𝑐→+∞

exp {∫
1

𝑡
𝑒− ln 𝑡(1−ln𝑘 ln 𝜐) ln 𝑓((ln 𝑡)𝜐)

𝑐

1

𝑑𝑡} 
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=  𝐵𝐺 lim
𝑐→+∞

exp{
1

1 − ln 𝑘 ln 𝜐
∫ 𝑒−𝑤 ln 𝑓 ((

𝑤

1 − ln 𝑘 ln 𝜐
)
𝜐

)

ln 𝑐 (1−ln𝑘 ln𝜐)

0

𝑑𝑤} 

= exp {
1

1 − ln 𝑘 ln 𝜐
}  𝐵𝐺 lim

𝑐→+∞
exp { ∫ 𝑒−𝑤 ln 𝑓 ((

𝑤

1 − ln 𝑘 ln 𝜐
)
𝜐

)

ln 𝑐 (1−ln𝑘 ln 𝜐)

0

𝑑𝑤} 

=
𝑒

𝑒 ⊖ 𝑘 ⊙ 𝜐
exp⊙ 

 𝐵𝐺 lim
𝑐→+∞

( 𝐵𝐺 ∫ 𝑒(− ln𝑤)exp ⊙𝑓 (
𝜐

𝑒 ⊖ 𝑘 ⊙ 𝜐
exp⊙𝑤)

𝑐⊙(𝑒⊖𝑘⊙𝜐)

1

𝑑𝐵𝐺𝑤) 

=
𝑒

𝑒 ⊝ 𝑘 ⊙ 𝜐
exp⊙ 𝐹𝐵𝐺 (

𝜐

𝑒 ⊝ 𝑘 ⊙ 𝜐
exp). 

 

Theorem 18 (𝑩𝑮-second translation theorem). If 𝑆𝐵𝐺{𝑓(𝑡)} =

𝐹𝐵𝐺(𝜐) and ℎ(𝑡) = {
 1 ,    1 < 𝑡 < 𝑘 
𝑓(𝑡 ⊖ 𝑘)    , 𝑡 > 𝑘

, then  

𝑆𝐵𝐺{ℎ(𝑡)} = 𝑒
(
−ln𝑘

ln𝜐
)
exp⊙𝐹𝐵𝐺(𝜐). 

Proof. Utilizing equation (3), it is evident that 

𝑆𝐵𝐺{ℎ(𝑡)} =  𝐵𝐺∫
𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙ℎ(𝑡)𝑑𝐵𝐺𝑡 

= exp{∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln(ℎ(𝑡))

𝑡

+∞

1

𝑑𝑡} 
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= exp {∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln1

𝑡

𝑘

1

𝑑𝑡 + ∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln(𝑓(𝑡 ⊖ 𝑘))

𝑡

+∞

𝑘

𝑑𝑡} 

= exp{∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln(𝑓(𝑡/𝑘))

𝑡

+∞

𝑘

𝑑𝑡}. 

Substituting 
𝑡

𝑘
= 𝑤 gives 

𝑆𝐵𝐺{ℎ(𝑡)}= exp{∫
1

ln 𝜐
∙ 𝑒
(
− ln𝑘−ln𝑤

ln𝜐
)
∙
ln(𝑓(𝑤))

𝑤

+∞

𝑘

𝑑𝑤} 

                   = exp {𝑒
(
− ln𝑘
ln 𝜐

)
} ⋅ exp {∫

1

ln 𝜐
∙ 𝑒
(
− ln𝑤
ln𝜐

)
∙
ln(𝑓(𝑤))

𝑤

+∞

1

𝑑𝑤} 

                   = 𝑒
(
− ln𝑘
ln 𝜐

)
exp⊙𝐹𝐵𝐺(𝜐) 

which completes the proof. 

Theorem 19 (𝑩𝑮-derivative theorem). If 𝑓(𝑡) is 𝐵𝐺-continuous 

on [1, +∞)  and has 𝐵𝐺 -exponential order 𝛾 , and also 𝑓𝐵𝐺(𝑡)  is 

sectionally 𝐵𝐺-continuous on [1, +∞) , then 

𝑆𝐵𝐺{𝑓
𝐵𝐺(𝑡)} =

𝑆𝐵𝐺{𝑓(𝑡)} ⊖ 𝑓(1)

𝜐
 exp 

for 𝑒
1

ln𝜐 > 𝛾. 

Proof. By using the equation (3), one gets 

𝑆𝐵𝐺{𝑓
𝐵𝐺(𝑡)} =  𝐵𝐺∫

𝑒

𝜐
exp⊙ 𝑒

(
− ln 𝑡
ln 𝜐

)
exp

+∞

1

⊙𝑓𝐵𝐺(𝑡)𝑑𝐵𝐺𝑡 
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                        = exp{∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
ln(𝑓𝐵𝐺(𝑡))

𝑡

+∞

1

𝑑𝑡} 

                        = exp

{
 
 

 
 

∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙

ln (𝑒
𝑡𝑓′(𝑡)
𝑓(𝑡) )

𝑡

+∞

1

𝑑𝑡

}
 
 

 
 

 

                        = exp{∫
1

ln 𝜐
∙ 𝑒
(
− ln 𝑡
ln 𝜐

)
∙
𝑓′(𝑡)

𝑓(𝑡)

+∞

1

𝑑𝑡} 

                        = exp {
1

ln 𝜐
∙ lim
𝑎→+∞

∫𝑒
(
− ln 𝑡
ln 𝜐

)
∙
𝑓′(𝑡)

𝑓(𝑡)

𝑎

1

𝑑𝑡}. 

The following expression is derived utilizing the method of partial 

integration: 

∫𝑒
(
− ln 𝑡
ln 𝜐

)
∙
𝑓′(𝑡)

𝑓(𝑡)

𝑎

1

𝑑𝑡 

= 𝑒
(
− ln 𝑡
ln 𝜐

)
. ln 𝑓(𝑡)|

1

𝑎

+
1

ln 𝜐
.∫ 𝑒

(
− ln 𝑡
ln 𝜐

)
∙
ln 𝑓(𝑡)

𝑡
𝑑𝑡

𝑎

1

 

= 𝑒
(
− ln𝑎
ln 𝜐

)
. ln 𝑓(𝑎) − ln 𝑓(1) +

1

ln 𝜐
.∫ 𝑒

(
− ln 𝑡
ln 𝜐

)
∙
ln 𝑓(𝑡)

𝑡
𝑑𝑡

𝑎

1

. 

Consequently, we find 

𝑆𝐵𝐺{𝑓
𝐵𝐺(𝑡)} = exp {

1

ln 𝜐
∙ ( lim
𝑎→+∞

𝑒
(
− ln𝑎
ln 𝜐

)
ln 𝑓(𝑎) − ln 𝑓(1) 
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1

ln 𝜐
.∫ 𝑒

(
− ln 𝑡
ln𝜐

)
∙
ln 𝑓(𝑡)

𝑡
𝑑𝑡

+∞

1

)}. 

Due to the fact that 𝑓 is of 𝐵𝐺-exponential order 𝛾, it follows that 

there are exits 𝑀 ∈ ℝexp
+  and 𝛾 ∈ ℝexp such that 

|𝑓(𝑡)|exp = exp{|ln 𝑓(𝑡)|} ≤ 𝑀⊙ 𝑒(ln(𝛾⊙𝑡))exp = 𝜇𝛾
ln 𝑡

 

|ln 𝑓(𝑡)| ≤ ln𝑀 𝛾ln 𝑡 . 

As a result,  

|𝑒
(
− ln𝑎
ln𝜐

)
. ln 𝑓(𝑎)| ≤ ln𝑀 𝛾ln𝑎𝑒

(
− ln𝑎
ln 𝜐

)
= ln𝑀 𝑒ln 𝑎 ln𝛾𝑒

(
− ln𝑎
ln 𝜐

)
 

= ln𝑀 𝑒−ln𝑎(− ln𝛾+
1
ln𝜐

)
 

is found. As a result of the fact that lim
𝑎→+∞

ln𝑀 𝑒−ln𝑎(− ln𝛾+
1

ln𝜐
) = 0 

for 𝑒
1

ln𝜐 > 𝛾 , we get lim
𝑎→+∞

𝑒(
−ln𝑎

ln𝜐
). ln 𝑓(𝑎) = 0  for 𝑒

1

ln𝜐 > 𝛾 . 

Therefore, we achieve 

𝑆𝐵𝐺{𝑓
𝐵𝐺(𝑡)} 

= exp{
1

ln 𝜐
∙ (∫

1

ln 𝜐
. 𝑒
(
− ln 𝑡
ln𝜐

)
.
ln 𝑓(𝑡)

𝑡
𝑑𝑡

+∞

1

− ln 𝑓(1))} 

=

(

 
 
exp {∫

1
ln 𝜐

. 𝑒
(
− ln 𝑡
ln𝜐

)
.
ln 𝑓(𝑡)
𝑡

𝑑𝑡
+∞

1
}

exp{ln 𝑓(1)}

)

 
 

1
ln𝜐

 

=
𝑆𝐵𝐺{𝑓(𝑡)} ⊖ 𝑓(1)

𝜐
 exp 

as intended. 



 

--77-- 

 

Corollary 20. Assuming that 𝑓(𝑡), 𝑓𝐵𝐺(𝑡),⋯ , 𝑓𝐵𝐺(𝑛−1)(𝑡) are 𝐵𝐺-

continuous functions on the  [1, +∞)  and exhibit 𝐵𝐺-exponential 

order 𝛾  and further supposing that  𝑓𝐵𝐺(𝑛)(𝑡)  is sectionally 𝐵𝐺 -

continuous on [1, +∞) , then follows that 

𝑆𝐵𝐺{𝑓
𝐵𝐺(𝑛)(𝑡)} =

𝑆𝐵𝐺{𝑓(𝑡)}

𝜐𝑛exp
exp⊖

𝑓(1)

𝜐𝑛exp
exp⊖

𝑓𝐵𝐺(1)

𝜐(𝑛−1)exp
exp 

⊖…⊖
𝑓𝐵𝐺(𝑛−1)(1)

𝜐
exp 

for 𝑒
1

ln𝜐 > 𝛾.  

Definition 21. The inverse 𝐵𝐺 -Sumudu transform is defined 

𝑆𝐵𝐺
−1{𝐹𝑁(𝜐)} = 𝑓(𝑡), if 𝑆𝐵𝐺{𝑓(𝑡)} = 𝐹𝐵𝐺(𝜐). 

 
Theorem 22. The inverse 𝐵𝐺-Sumudu transform is linear. 
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CHAPTER V 

 

 

A Short Note on Measurable Sets in Multiplicative 

Calculus 

 

 

Oğuz OĞUR1 

 

Introduction 

Non-Newtonian analysis, defined by (Grossman & Katz, 1972) as an 

alternative to the classical number system, has found applications 

across various fields, including physics, mechanics, mathematics 

and economics etc. (Grossman, 1979), (Stanley, 1999). The core 

concepts of non-Newtonian analysis-such as integrals, series, 

sequence spaces, convergence, metrics, and norms—have been 

thoroughly examined by numerous researchers (for details see 

references (Bashirov, Kurpinar & Özyapıcı, 2008), (Uzer, 2010), 

(Çakmak & Başar, 2014) (Değirmen, 2021), (Değirmen & Duyar, 

2023), (Torres, 2021)). Additionally, studies on integral equations 
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(Güngör, 2020a, 2020b, 2022) have shown how Non-Newtonian 

analysis diversifies solution methods. Recent studies, such as those 

by (Işık & Eryılmaz, 2023) on the properties of linear spaces defined 

over Non-Newtonian fields and by (Rohman & Eryılmaz, 2023) on 

fundamental results in ν-normed spaces, have contributed 

significantly to the understanding and development of alternative 

mathematical frameworks. 

The groundwork for the concept of measurable sets in non-

Newtonian analysis was first laid by (Duyar, Sağır & Ogur, 2015) 

and (Duyar & Ogur, 2017). Following this, (Duyar & Sağır, 2017) 

derived the Lebesgue measure for non-Newtonian open sets, laying 

the groundwork for a non-Newtonian measure concept and creating 

a need for defining measures on more general sets. To meet this 

need, (Ogur & Sezgin, 2019, 2020) as well as (Ogur & Zekiye, 

2024), introduced the notion of non-Newtonian measurable sets and 

investigated some of their key properties. 

In the second section of this book, the foundational concepts of 

multiplicative calculus were introduced, including the measures of 

multiplicative open and closed bounded sets, as well as the 

definitions and basic properties of multiplicative inner and outer 

measures. In this section, we will delve deeper into the key properties 

of these measures and define a Lebesgue measurable set using 

multiplicative inner and outer measures within the multiplicative 

framework.  

 Now, let’s introduce some basic concepts in non-Newtonian 

analysis. Let 𝜌 be a generator which is an injective function from 
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ℝ   𝑡𝑜 𝐴 = ℝ(𝑁)𝜌 ⊆ ℝ. Let’s define the non-Newtonian algebraic 

operations as follows; 

 𝜌 − 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛  𝑠+̇𝑡 = 𝜌(𝜌−1(𝑠) + 𝜌−1(𝑡)) 
 𝜌 − 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑠−̇𝑡 = 𝜌(𝜌−1(𝑠) − 𝜌−1(𝑡)) 
 𝜌 −𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠 ×̇ 𝑡 = 𝜌(𝜌−1(𝑠) × 𝜌−1(𝑡)) 
 𝜌 − 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛  𝑠 ÷̇ 𝑡 = 𝜌(𝜌−1(𝑠) ÷ 𝜌−1(𝑡)) 
 𝜌 − 𝑜𝑟𝑑𝑒𝑟  𝑠 <̇ 𝑡 ⟺ 𝜌−1(𝑠) < 𝜌−1(𝑡) 

for any  𝑠, 𝑡 ∈ ℝ(𝑁)𝜌 (Grossman & Katz, 1972). The non-

Newtonian absolute value of any element of 𝑡 ∈ ℝ(𝑁)𝜌 defines as 

follows 

 |𝑡|𝜌 = {

𝑡, 𝑖𝑓 𝑡 >̇ 0̇

0̇, 𝑖𝑓 𝑡 =̇ 0̇

0̇−̇𝑡 𝑖𝑓 𝑡 <̇ 0̇

 

where  𝜌(0) = 0̇.  Also, we have √𝑡
𝑛 𝜌

= 𝜌(√𝜌−1(𝑡)
𝑛

)  and 𝑡𝑛𝜌 =

𝜌((𝜌−1(𝑡))
𝑛
) (Grossman & Katz, 1972).  

At this point, we can introduce geometric analysis, a specific case 

within the broader framework of non-Newtonian analysis. For this 

purpose, setting 𝜌(𝑠) = exp (𝑠) will be sufficient. Let  

𝜌: ℝ → ℝ+, 𝑠 → 𝜌(𝑠) = 𝑒𝑥𝑝 (𝑠)  

and so 

 𝜌−1: ℝ+ → ℝ, 𝜌−1(𝑡) = ln (𝑡) .  

Thus, we get  

 ℝ(𝑁)𝜌 = ℝ𝑒𝑥𝑝 = {𝑒𝑥𝑝(𝑠): 𝑠 ∈ ℝ} = ℝ
+, 

 ℝ𝑒𝑥𝑝
+ = {𝑒𝑥𝑝(𝑠): 𝑠 ∈ ℝ+} = (1,+∞)  

and  
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 ℝ𝑒𝑥𝑝
− = {𝑒𝑥𝑝(𝑠): 𝑠 ∈ ℝ−} = (0,1) 

where 𝑒𝑥𝑝(0) = 1.  By the definition, we have the multiplicative 

sum of 𝑠, 𝑡 ∈ ℝ𝑒𝑥𝑝 as follows; 

 𝑠+̇𝑡 = 𝑒𝑥𝑝(𝑙𝑛𝑠 + 𝑙𝑛𝑡) = 𝑒ln (𝑠𝑡) = 𝑠𝑡. 

By using similar way, we get the multiplicative algebraic operations 

as follows; 

 

𝑠+̇𝑡 = 𝑠𝑡 
𝑠−̇𝑡 = 𝑠 𝑡⁄  

𝑠 ×̇ 𝑡 = 𝑠𝑙𝑛𝑡 

𝑠 ÷̇ 𝑡 = 𝑠
1
𝑙𝑛𝑡 

  

In this section, as in the second section of this book we will use the 

symbols (, )𝑒𝑥𝑝,   𝜆𝑒𝑥𝑝, ∑.𝑒𝑥𝑝  ,    𝑖𝑛𝑓
𝑒𝑥𝑝

,    𝑠𝑢𝑝
𝑒𝑥𝑝

  to represent the 

open interval, Lebesgue measure, sum, infimum and supremum, 

respectively, in the context of multiplicative analysis. 

Now, let us present the definitions of inner measure, outer measure, 

and Lebesgue measure, which are well-known in real analysis and 

will be used in this section. For more detailed information on these 

topics, the reader may refer to the book by Natanson (Natanson, 

1964). 

Definition 1. The outer measure 𝜆𝑜(𝐸) of a bounded set 𝐸 is defined 

as 

𝜆𝑜(𝐸) = 𝑖𝑛𝑓{𝜆(𝑇): 𝐸 ⊂ 𝑇,   𝑇 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡} 

(Natanson, 1964). 
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Definition 2. The inner measure 𝜆𝑖(𝐸) of a bounded set 𝐸 is defined 

as 

 𝜆𝑖(𝐸) = 𝑠𝑢𝑝{𝜆(𝑈): 𝑈 ⊂ 𝐸,   𝑈 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡} 

(Natanson, 1964). 

 Definition 3. A bounded set 𝐸 is said to be measurable if its 

outer and inner measures are equal; 

 𝜆𝑖(𝐸) = 𝜆𝑜(𝐸). 

The common value of these two mesures is called the measure of the 

set 𝐸 and is designated by 𝜆(𝐸). This measure is sometimes referred 

to as a Lebesgue measurable set (Natanson, 1964). 

Building on this general information, we can now present 

fundamental theorems on multiplicative inner and outer measures. 

As a special case, we will define the Lebesgue measurable set in 

geometric analysis using these measures, with 𝜌(𝑥) = 𝑒𝑥𝑝(𝑥), as 

discussed in (Oğur & Güneş, 2024). 

Theorem 1. Let 𝐸  be a bounded set with 𝐸 = ⋃ 𝐸𝑙
∞
𝑙=1  in ℝ𝑒𝑥𝑝 . 

Then, we have the following inequality; 

 𝜆𝑒𝑥𝑝
𝑜 (𝐸) ≤̇ ∑ 𝜆𝑒𝑥𝑝

𝑜 (𝐸𝑙)
∞
𝑙=1𝑒𝑥𝑝

. 

Proof. If the sum is not finite in the right side, the proof is completed. 

Assume the sum is finite. Let  𝐺 be an open set with 𝐸 ⊂ 𝐺 and 𝐺𝑙 

be open sets with 𝐸𝑙 ⊂ 𝐺𝑙 in ℝ𝑒𝑥𝑝. Thus, we get 

 𝜆𝑒𝑥𝑝
𝑜 (𝐸) = 𝑖𝑛𝑓𝐸⊂𝐺{  𝜆𝑒𝑥𝑝(𝐺)}

𝑒𝑥𝑝
 

    = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐺))} 
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    = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺))))} 

    = 𝑒𝑥𝑝{𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝜆(𝑙𝑛(𝐺))} 

    ≤̇  𝑒𝑥𝑝{∑ 𝑖𝑛𝑓𝑙𝑛𝐸𝑙⊂𝑙𝑛𝐺𝑙 𝜆(𝑙𝑛(𝐺𝑙))
∞
𝑙=1 } 

    = 𝑒𝑥𝑝 {∑ 𝑙𝑛 (𝑒𝑥𝑝 (𝑖𝑛𝑓𝑙𝑛𝐸𝑙⊂𝑙𝑛𝐺𝑙 𝜆(𝑙𝑛(𝐺𝑙))))
∞
𝑙=1 } 

    = ∑ 𝑒𝑥𝑝 (𝑖𝑛𝑓𝑙𝑛𝐸𝑙⊂𝑙𝑛𝐺𝑙 𝜆(𝑙𝑛(𝐺𝑙)))
∞
𝑙=1

𝑒𝑥𝑝
 

    = ∑ 𝑒𝑥𝑝 (𝑖𝑛𝑓𝑙𝑛𝐸𝑙⊂𝑙𝑛𝐺𝑙 𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺𝑙)))))
∞
𝑙=1

𝑒𝑥𝑝

 

    = ∑ 𝑖𝑛𝑓𝐸𝑙⊂𝐺𝑙{𝜆(𝑙𝑛(𝐺𝑙))}
𝑒𝑥𝑝∞

𝑙=1𝑒𝑥𝑝
 

    = ∑ 𝜆𝑒𝑥𝑝
𝑜 (𝐸𝑙)

∞
𝑙=1𝑒𝑥𝑝

. 

 Theorem 2. Let 𝐸  be a bounded set with 𝐸 = ⋃ 𝐸𝑙
∞
𝑙=1 ,

𝐸𝑙⋂𝐸𝑘 = ∅ 𝑓𝑜𝑟 𝑙 ≠ 𝑘 in ℝ𝑒𝑥𝑝. Then, we have 

 ∑ 𝜆𝑒𝑥𝑝
𝑖 (𝐸𝑙)

∞
𝑙=1𝑒𝑥𝑝

≤̇ 𝜆𝑒𝑥𝑝
𝑖 (𝐸). 

 Proof. Let (𝐺𝑙) be a family of closed sets with 𝐺𝑙 ⊂ 𝐸𝑙 and 

let 𝐺 = ⋃ 𝐺𝑙
∞
𝑙=1 . Thus, we get 

  𝜆𝑒𝑥𝑝
𝑖 (𝐸) = 𝑠𝑢𝑝𝐺⊂𝐸{  𝜆𝑒𝑥𝑝(𝐺)}

𝑒𝑥𝑝
 

= 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐺⊂𝑙𝑛𝐸𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐺))} 

     = 𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐺⊂𝑙𝑛𝐸𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺))))} 

     = 𝑒𝑥𝑝{𝑠𝑢𝑝𝑙𝑛𝐺⊂𝑙𝑛𝐸𝜆(𝑙𝑛(𝐺))} 
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     ≥̇  𝑒𝑥𝑝{∑ 𝑠𝑢𝑝𝑙𝑛𝐺𝑙⊂𝑙𝑛𝐸𝑙𝜆(𝑙𝑛(𝐺𝑙))
∞
𝑙=1 } 

     = 𝑒𝑥𝑝 {∑ 𝑙𝑛 (𝑒𝑥𝑝 (𝑠𝑢𝑝𝑙𝑛𝐺𝑙⊂𝑙𝑛𝐸𝑙𝜆(𝑙𝑛(𝐺𝑙))))
∞
𝑙=1 } 

     = ∑ 𝑒𝑥𝑝 (𝑠𝑢𝑝𝑙𝑛𝐺𝑙⊂𝑙𝑛𝐸𝑙𝜆(𝑙𝑛(𝐺𝑙)))
∞
𝑙=1

𝑒𝑥𝑝
 

           = ∑ 𝑒𝑥𝑝 (𝑠𝑢𝑝𝑙𝑛𝐺𝑙⊂𝑙𝑛𝐸𝑙𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺𝑙)))))
∞
𝑙=1

𝑒𝑥𝑝

 

    = ∑ ( 𝑠𝑢𝑝𝐺𝑙⊂𝐸𝑙𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺𝑙)))
𝑒𝑥𝑝

)∞
𝑙=1

𝑒𝑥𝑝
 

    = ∑ 𝑠𝑢𝑝𝐺𝑙⊂𝐸𝑙{  𝜆𝑒𝑥𝑝(𝐺𝑙)}
𝑒𝑥𝑝∞

𝑙=1𝑒𝑥𝑝
  

     = ∑ 𝜆𝑒𝑥𝑝
𝑖 (𝐸𝑙)

∞
𝑙=1𝑒𝑥𝑝

  

which gives the proof. 

 Theorem 3. Let 𝐸 be a bounded set in ℝ𝑒𝑥𝑝. If Β is an open 

interval such that 𝐸 ⊂ 𝛣, then  

   𝜆𝑒𝑥𝑝(𝛣) = 𝜆𝑒𝑥𝑝
𝑜 (𝐸)+̇𝜆𝑒𝑥𝑝

𝑖 (𝛣 − 𝐸). 

 Proof. Let 𝐺 be an open set with 𝐸 ⊂ 𝐺 and let 𝐾 be a closed 

set with 𝐾 ⊂ 𝛣 − 𝐸 in ℝ𝑒𝑥𝑝. Thus, we get 

𝜆𝑒𝑥𝑝
𝑜 (𝐸)+̇𝜆𝑒𝑥𝑝

𝑖 (𝛣 − 𝐸) = 𝑒𝑥𝑝 {𝑙𝑛 (𝜆𝑒𝑥𝑝
𝑜 (𝐸)) + 𝑙𝑛 (𝜆𝑒𝑥𝑝

𝑖 (𝛣 − 𝐸))} 

              = 𝑒𝑥𝑝{𝑙𝑛( 𝑖𝑛𝑓𝐸⊂𝐺{ 𝜆𝑒𝑥𝑝(𝐺)}
𝑒𝑥𝑝

) 

+𝑙𝑛( 𝑠𝑢𝑝𝐾⊂𝛣−𝐸{ 𝜆𝑒𝑥𝑝(𝐾)}
𝑒𝑥𝑝

)} 

   = 𝑒𝑥𝑝 {𝑙𝑛 (𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐺))}) 

             +𝑙𝑛 (𝑒𝑥𝑝 {𝑠𝑢𝑝𝑙𝑛𝐾⊂𝑙𝑛(𝛣−𝐸)𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐾))})} 
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   = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐺)) 

+𝑠𝑢𝑝𝑙𝑛𝐾⊂𝑙𝑛(𝛣−𝐸)𝑙𝑛 (  𝜆𝑒𝑥𝑝(𝐾))} 

   = 𝑒𝑥𝑝 {𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐺)))) 

+𝑠𝑢𝑝𝑙𝑛𝐾⊂𝑙𝑛(𝛣−𝐸)𝑙𝑛 (𝑒𝑥𝑝 (𝜆(𝑙𝑛(𝐾))))} 

   = 𝑒𝑥𝑝{𝑖𝑛𝑓𝑙𝑛𝐸⊂𝑙𝑛𝐺𝜆(𝑙𝑛(𝐺)) 

+𝑠𝑢𝑝𝑙𝑛𝐾⊂𝑙𝑛(𝛣−𝐸)𝜆(𝑙𝑛(𝐾))} 

   = 𝑒𝑥𝑝{𝜆𝑜(𝑙𝑛(𝐸)) + 𝜆𝑖(𝑙𝑛(𝛣 − 𝐸))} 

   = 𝑒𝑥𝑝{𝜆(𝑙𝑛(𝛣))} 

   =  𝜆𝑒𝑥𝑝(𝛣). 

Here, 𝜆𝑜 and 𝜆𝑖 are Lebesgue outer and inner measure in real line, 

respectively. 

Definition 4. Let 𝐸  be a bounded set in ℝ𝑒𝑥𝑝 . If     𝜆𝑒𝑥𝑝
𝑜 (𝐸) =

𝜆𝑒𝑥𝑝
𝑖 (𝐸), then the set 𝐸 is called multiplicative measurable set. 

Remark 1. It is easy to see that if 𝐸 is multiplicative measurable set, 

then we have 𝜆𝑜(ln (𝐸)) = 𝜆𝑖(ln (𝐸)) , where 𝜆𝑜 and 𝜆𝑖  are 

Lebesgue outer and inner measure in real line. 

Theorem 4. If 𝐸  is an open, bounded set in ℝ𝑒𝑥𝑝 , then 𝐸  is a 

multiplicative measurable set. 

Proof. The proof can be easily obtained by previously theorems. 

Theorem 5. If 𝐺  is a closed, bounded set in ℝ𝑒𝑥𝑝 , then 𝐺  is a 

multiplicative measurable set. 
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Proof. The proof can be easily obtained by previously theorems. 

Theorem 6. Let (𝐸𝑘) be a family of pairwise disjoint multiplicative 

measurable set and let 𝐸 be a bounded set with        𝐸 = ⋃ 𝐸𝑘
∞
𝑘=1  in 

ℝ𝑒𝑥𝑝. Then, the set 𝐸 is a multiplicative measurable set and  

   𝜆𝑒𝑥𝑝(𝐸) = ∑ 𝜆𝑒𝑥𝑝(𝐸𝑘)
∞
𝑘=1𝑒𝑥𝑝

. 

Proof. If 𝐸 = ⋃ 𝐸𝑘
∞
𝑘=1 , then we have                    

             𝜆𝑒𝑥𝑝
𝑜 (𝐸) ≤̇ ∑ 𝜆𝑒𝑥𝑝

𝑜 (𝐸𝑘)
∞
𝑘=1𝑒𝑥𝑝

   

and  

 ∑ 𝜆𝑒𝑥𝑝
𝑖 (𝐸𝑘)

∞
𝑘=1𝑒𝑥𝑝

≤̇ 𝜆𝑒𝑥𝑝
𝑖 (𝐸). 

Also, if 𝐸 is a bounded set in ℝ𝑒𝑥𝑝, then we have  

 𝜆𝑒𝑥𝑝
𝑖 (𝐸) ≤̇ 𝜆𝑒𝑥𝑝

𝑜 (𝐸). 

Since 𝐸𝑘 is a multiplicative measurable set for all natural numbers 

𝑘, we get 

 ∑ 𝜆𝑒𝑥𝑝(𝐸𝑘)
∞
𝑘=1𝑒𝑥𝑝

= ∑ 𝜆𝑒𝑥𝑝
𝑖 (𝐸𝑘)

∞
𝑘=1𝑒𝑥𝑝

 

         ≤̇ 𝜆𝑒𝑥𝑝
𝑖 (𝐸) 

         ≤̇ 𝜆𝑒𝑥𝑝
𝑜 (𝐸) 

          ≤̇ ∑ 𝜆𝑒𝑥𝑝
𝑜 (𝐸𝑘)

∞
𝑘=1𝑒𝑥𝑝

 

         ≤̇ ∑ 𝜆𝑒𝑥𝑝(𝐸𝑘)
∞
𝑘=1𝑒𝑥𝑝

. 

This gives the proof. 

Theorem 7. Let 𝐸1, 𝐸2, … , 𝐸𝑛 are multiplicative measurable sets in 

ℝ𝑒𝑥𝑝. Then, 𝐸 = ⋃ 𝐸𝑘
𝑛
𝑘=1  is a multiplicative measurable set. 
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 Proof. Since 𝐸𝑘  is a multiplicative measurable set for 𝑘 =

1,2, … , 𝑛, then we have ln(𝐸𝑘) is a measurable set in real line for 

𝑘 = 1,2, … , 𝑛. Thus, the set ⋃ ln (𝐸𝑘)
𝑛
𝑘=1  is a measurable set in real 

line. Since 

 ⋃ ln (𝐸𝑘)
𝑛
𝑘=1 = 𝑙𝑛(⋃ 𝐸𝑘

𝑛
𝑘=1 ) = ln(𝐸), 

the set  ln(𝐸) is measurable set. This shows that 𝐸 = ⋃ 𝐸𝑘
𝑛
𝑘=1  is a 

multiplicative measurable set in ℝ𝑒𝑥𝑝. 

 Theorem 8. Let 𝐸1, 𝐸2, … , 𝐸𝑛 are multiplicative measurable 

sets in ℝ𝑒𝑥𝑝. Then, 𝐸 = ⋂ 𝐸𝑘
𝑛
𝑘=1  is a multiplicative measurable set. 

 Proof. Since 𝐸1, 𝐸2, … , 𝐸𝑛 are multiplicative measurable sets 

in ℝ𝑒𝑥𝑝, we have ln (𝐸1), ln (𝐸2), … , ln (𝐸𝑛) are measurable sets in 

real line. Thus, we get 

 ⋂ 𝑙𝑛 (𝐸𝑘)
𝑛
𝑘=1 = 𝑙𝑛(⋂ 𝐸𝑘

𝑛
𝑘=1 ) = ln (𝐸) 

is a measurable set in real line. This shows that  𝐸 is a multiplicative 

measurable set in ℝ𝑒𝑥𝑝. 

 Theorem 9. If 𝐸  and 𝐹  are two multiplicative measurable 

sets in ℝ𝑒𝑥𝑝, then 𝐸 − 𝐹 is a multiplicative measurable set. 

 Proof. Since 𝐸 and 𝐹 are two multiplicative measurable sets, 

then ln (𝐸) and ln (𝐹) are two measurable sets in real line. Thus, we 

have  

 ln(𝐸) − 𝑙 𝑛(𝐹) = ln(𝐸 − 𝐹) 

is a measurable set in real line, which shows that  𝐸 − 𝐹  is a 

multiplicative measurable set. 
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 Theorem 10. Let 𝐸 and 𝐹 are two multiplicative measurable 

sets with 𝐹 ⊂ 𝐸 and let 𝑊 = 𝐸 − 𝐹. Then, we have 

 𝜆𝑒𝑥𝑝(𝑊) = 𝜆𝑒𝑥𝑝(𝐸)−̇𝜆𝑒𝑥𝑝(𝐹). 

 Proof. By the Theorem 9, the set 𝐸 − 𝐹 is a multiplicative 

measurable set. Since 𝐸 = 𝑊 ∪ 𝐹, we get 

 𝜆𝑒𝑥𝑝(𝐸) = 𝜆𝑒𝑥𝑝(𝑊)+̇𝜆𝑒𝑥𝑝(𝐹) 

which gives the proof. 

 Theorem 11. Let (𝐸𝑘)  be a family of multiplicative 

measurable sets in ℝ𝑒𝑥𝑝 . Then, 𝐸 = ⋂ 𝐸𝑘
∞
𝑘=1  is a multiplicative 

measurable set in ℝ𝑒𝑥𝑝. 

 Proof. Since 𝐸𝑘 is a multiplicative measurable set for all 𝑘, 

we have 𝑙𝑛(𝐸𝑘) is a measurable set for every 𝑘. Then, we have  

 ⋂ 𝑙𝑛 (𝐸𝑘)
∞
𝑘=1 = 𝑙𝑛(⋂ 𝐸𝑘

∞
𝑘=1 ) = ln (𝐸) 

is a measurable set. Thus, we get 𝐸 is a multiplicative measurable 

set. 

 Theorem 12. Let (𝐸𝑘)  be a family of multiplicative 

measurable sets with 𝐸1 ⊂ 𝐸2 ⊂ ⋯  in ℝ𝑒𝑥𝑝 . If 𝐸 = ⋃ 𝐸𝑘
∞
𝑘=1  is a 

bounded set in ℝ𝑒𝑥𝑝, then we have  

 𝜆𝑒𝑥𝑝(𝐸) = 𝑙𝑖𝑚𝑛⟶∞
𝑒𝑥𝑝

𝜆𝑒𝑥𝑝(𝐸𝑛). 

 Proof. Since 𝐸𝑘 is a multiplicative measurable set for all 𝑘, 

we have 𝑙𝑛(𝐸𝑘) is a measurable set for every 𝑘. Also, it is easy to 

see that ln(𝐸1) ⊂ 𝑙𝑛(𝐸2) ⊂ ⋯ 

and  
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 ⋃ ln (𝐸𝑘)
𝑛
𝑘=1 = 𝑙𝑛(⋃ 𝐸𝑘

𝑛
𝑘=1 ) = ln(𝐸). 

Because of boundedness of 𝐸 in ℝ𝑒𝑥𝑝, we have ln (𝐸) is bounded 

set in ℝ. Thus, we have  

 𝜆(𝑙𝑛 (𝐸)) = 𝑙𝑖𝑚𝑛⟶∞(𝜆(𝑙𝑛 (𝐸𝑛))) 

       = 𝑙𝑖𝑚𝑛⟶∞ (𝑙𝑛 (𝑒𝑥𝑝(𝜆(𝑙𝑛 (𝐸𝑛))))) 

       = 𝑙𝑖𝑚𝑛⟶∞ (𝑙𝑛 (𝜆𝑒𝑥𝑝(𝐸𝑛))). 

Therefore, we get 

 𝑒𝑥𝑝(𝜆(𝑙𝑛 (𝐸))) = 𝑒𝑥𝑝 (𝑙𝑖𝑚𝑛⟶∞ (𝑙𝑛 (𝜆𝑒𝑥𝑝(𝐸𝑛)))) 

which gives 

  𝜆𝑒𝑥𝑝(𝐸) = 𝑙𝑖𝑚𝑛⟶∞
𝑒𝑥𝑝

𝜆𝑒𝑥𝑝(𝐸𝑛). 

 Theorem 13. Let (𝐸𝑘)  be a family of multiplicative 

measurable sets with 𝐸1 ⊃ 𝐸2 ⊃ ⋯ in ℝ𝑒𝑥𝑝  and let 𝐸 = ⋂ 𝐸𝑘
∞
𝑘=1 . 

Then, we have  

 𝜆𝑒𝑥𝑝(𝐸) = 𝑙𝑖𝑚𝑛⟶∞
𝑒𝑥𝑝

𝜆𝑒𝑥𝑝(𝐸𝑛). 

 Proof. Since 𝐸𝑘 is a multiplicative measurable set for all 𝑘, 

we have 𝑙𝑛(𝐸𝑘) is a measurable set for every 𝑘. Also, we have  

 ⋂ 𝑙𝑛 (𝐸𝑘)
∞
𝑘=1 = 𝑙𝑛(⋂ 𝐸𝑘

∞
𝑘=1 ) = ln (𝐸). 

Thus, we have 

 𝜆(𝑙𝑛 (𝐸)) = 𝑙𝑖𝑚𝑛⟶∞(𝜆(𝑙𝑛 (𝐸𝑛))) 

       = 𝑙𝑖𝑚𝑛⟶∞ (𝑙𝑛 (𝑒𝑥𝑝(𝜆(𝑙𝑛 (𝐸𝑛))))) 
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       = 𝑙𝑖𝑚𝑛⟶∞ (𝑙𝑛 (𝜆𝑒𝑥𝑝(𝐸𝑛))). 

Therefore, we get  

  

𝑒𝑥𝑝(𝜆(𝑙𝑛 (𝐸))) = 𝑒𝑥𝑝 (𝑙𝑖𝑚𝑛⟶∞ (𝑙𝑛 (𝜆𝑒𝑥𝑝(𝐸𝑛)))) 

which gives 

  𝜆𝑒𝑥𝑝(𝐸) = 𝑙𝑖𝑚𝑛⟶∞
𝑒𝑥𝑝

𝜆𝑒𝑥𝑝(𝐸𝑛). 
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