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KUMARBAZIN YENİLGİSİ: MARKOV ZİNCİRİ 

VE MARTİNGALE TEMELLİ BİR SİMÜLASYON  

MURAT SAĞIR1 

VEDAT SAĞLAM 2 

Giriş 

Markov zincirleri, olasılık süreçlerinin uzun dönem limit 

davranışlarını incelemede vazgeçilemez bir öneme ve yaygın bir 

kullanıma sahiptir (Norris, 1998) . Bir Markov zincirlerinin geçiş 

olasılıkları çok önemli olsa da bu geçişler altında değişmezlik ve 

denge özellikleri taşıyan özel fonksiyonlar da bir o kadar önemlidir 

ve istisnai özellikler sergiler. Dolayısı ile harmonik fonksiyonlar, 

Markov zincirlerinin yapısını anlamada kilit önem sahiptir (Woess, 

2000). Fakat bu vazgeçilemez öneme rağmen, harmonik 

fonksiyonlar hakkında bilgi sahibi olmak her zaman kolay değildir 

(Kelvin & Tait, 1867).  Özellikle Laplace denklemlerinin 

çözümünün sağlayacağı yarar tartışılmaz ama analizin sunulduğu 

biçim, işin ehli matematikçiler tarafından itici, sıradan matematik 

öğrencileri için ise oldukça zor gelmiştir. 
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Bir Markov zinciri için harmonik fonksiyon kavramı, geçiş 

operatörü altında ortalama değer özelliği ile tanımlanır(Levin & 

Peres, 2017). Özellikle ayrık durum uzaylarında (örneğin rasgele 

yürüyüş sürecinde) harmonik fonksiyonlar, sınır değer problemleri 

ve durma zamanları ile yakından ilişkilidir. Harmonik fonsiyonların 

bu özellikleri Dirichlet probleminin stokastik yorumunda hayati bir 

öneme sahip olmalarına neden olur (Doob & Doob, 1984; Woess, 

2000). Ek olarak Markov zincirleri ile martingale teorisi arasındaki 

ilişki harmonik fonsiyonlar ile mümkün olur (Durrett, 2019). Uygun 

koşullar altında, harmonik bir fonksiyonun zincir boyunca 

değerlendirilmesi bir martingale oluşturur.  

Bu bölümde, Markov zincirleri üzerinde tanımlı martingale 

yapılar ile harmonik fonksiyonlar ve bunların arasındaki ilişkiler ele 

alınmaktadır. Özellikle harmonik fonksiyonların özelliklerinden 

olan maksimum ilkesi ve eşsizlik teoremiyle literatürde kumarbazın 

yenilgisi (Grimmett & Stirzaker, 2020) olarak bilenen problemin 

çözümü incelendi.  Ayrıca teorik sonuçların bir uygulaması olarak 

sayısal simülasyonlara yer verildi.  

Martingale 

Martingale, ortalama değeri sabit kalan bir süreçtir. 

Martingalenin sahip olduğu bu sabitlik bir dengeleme özelliğidir. 

Martingalelerin tanımlanması, genellikle stokastik bir sürecin 

dönüşümünü anlamada önemli bir adımdır. 

(𝑋𝑛)𝑛≥0 bir Markov zinciri ve ℤ üzerindeki basit simetrik bir 

rastgele yürüyüş olsun. 

Yürüyüşün ortalama değeri sabittir; aslında yürüyüşün 

gelecekteki bir zamandaki ortalama değerinin her zaman yalnızca 

mevcut değer olması gibi daha güçlü bir özelliğe sahiptir. Yani, 

𝔼(𝑋𝑛) = 𝔼(𝑋0),                                                 (1) 

ve daha güçlü özellik şunu söylüyor: 𝑛 ≥ 𝑚 için, 
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𝔼(𝑋𝑛 − 𝑋𝑚 ∣ 𝑋0 = 𝑖0, … , 𝑋𝑚 = 𝑖𝑚) = 0                   (2) 

ise (𝑋𝑛)𝑛≥0 bir martingaledir.  

Kesinlik için bir Markov zinciri (𝑋𝑛)𝑛≥0 olsun ve yalnızca 

𝑋0, … , 𝑋𝑛'ye bağlı tüm kümelerin koleksiyonu ℱ𝑛 olsun. (ℱ𝑛)𝑛≥0 

dizisine (𝑋𝑛)𝑛≥0'ın filtrelenmesi denir ve ℱ𝑛 𝑛 zamanına kadar 

zincirin bilgi durumunu veya geçmişini temsil eden bir dizi olarak 

kabul edilir. Bir (𝑀𝑛)𝑛≥0 işlemine, eğer 𝑀𝑛 yalnızca 𝑋0, … , 𝑋𝑛'ye 

bağlıysa adapte edilmiş denir. Bir (𝑀𝑛)𝑛≥0 işlemine, eğer tüm n 

değerleri için 𝔼|𝑀𝑛| < ∞ ise integral denir. Uyarlanmış bir 

integrallenebilir işlem (𝑀𝑛)𝑛≥0, eğer 

𝔼[(𝑀𝑛+1 − 𝑀𝑛)1𝐴] = 0                                            (3) 

tüm 𝐴 ∈ ℱ𝑛 ve tüm 𝑛 için. ℱ𝑛 koleksiyonu, aşağıdaki gibi 

temel olayların sayılabilir birleşimlerinden oluştuğundan 

{𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑛 = 𝑖𝑛},                                   (4) 

bu martingale özelliği tüm 𝑖0, … , 𝑖𝑛 ve tüm 𝑛 için aşağıdaki 

denkleme eşdeğerdir: 

𝔼(𝑀𝑛+1 − 𝑀𝑛 ∣ 𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛) = 0                     (5) 

Martingale özelliğinin üçüncü bir formülasyonu, koşullu 

beklenti kavramını içerir. İntegrallenebilir bir rastgele değişken 𝑌 

verildiğinde, aşağıdaki koşullu beklenen değer 

tanımlanabilir(Norris, 1998).  

𝔼(𝑌 ∣ ℱ𝑛) = ∑  

𝑖0,…,𝑖𝑛

𝔼(𝑌 ∣ 𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛)1{𝑋0=𝑖0,…,𝑋𝑛=𝑖𝑛}.   (6) 

𝑌'den 𝔼(𝑌 ∣ ℱ𝑛)'ye geçerken, her bir temel olay olan 𝐴 ∈

ℱ𝑛'de, 𝑌 rastgele değişkenini ortalama değeri 𝔼( 𝑌 ∣ 𝐴 ) ile 

değiştirilir. Uyarlanmış bir integrallenebilir sürecin (𝑀𝑛)𝑛≥0 bir 

martingale olup olmadığını kontrol etmek, ancak ve ancak 

bütün 𝑛′ler için aşağıdaki koşul sağlandığında mümkündür: 
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𝔼(𝑀𝑛+1 ∣ ℱ𝑛) = 𝑀𝑛                                    (7) 

Koşullu beklenti kısmi bir ortalamadır, dolayısıyla işlemi 

tamamlanır ve koşullu beklenen değer ortalaması alınırsa tam 

beklenen değer elde edilmelidir. 

𝔼(𝔼(𝑌 ∣ ℱ𝑛)) = 𝔼(𝑌)                                            (8) 

Tam beklenen değer formülününün geçerliliği martingaleler 

için kolayca gösterilebilir  

𝔼(𝑀𝑛) = 𝔼(𝔼(𝑀𝑛+1 ∣ ℱ𝑛)) = 𝔼(𝑀𝑛+1)                  (9) 

tümevarım yoluyla 

𝔼(𝑀𝑛) = 𝔼(𝑀0)                                     (10) 

olur. Bu durum, martingalenin orijinal tanımında 𝐴 = Ω 

aldığımızda zaten açıktı. 

Bir rastgele değişkenin 

𝑇: Ω → {0,1,2, … } ∪ {∞}                           (11) 

𝑛 < ∞ için {𝑇 = 𝑛} ∈ ℱ𝑛 ise bir durma zamanıdır. Eşdeğer 

bir koşul, 𝑛 < ∞ için {𝑇 ≤ 𝑛} ∈ ℱ𝑛 olmasıdır.  

Teorem 1 (İsteğe bağlı durdurma teoremi). (𝑀𝑛)𝑛≥0 bir 

martingale ve 𝑇 bir durdurma zamanı olsun. Aşağıdaki koşullardan 

en az birinin geçerli olduğunu varsayalım: 

1.  𝑇 ≤ 𝑛 hemen hemen her yerde olacak şekilde bir 𝑛 ∈

𝑁 vardır 

2. 𝑇 < ∞ hemen hemen her yerde sabit bir 𝐶 > 0 için 

|𝑀𝑛| ≤ 𝐶 her 𝑛 ≤ 𝑇. 

O zaman  

𝔼(𝑀𝑇) = 𝔼(𝑀0)                             (12) 

olur (Williams, 1991) 
--4--



İspat. (i)'nin geçerli olduğunu varsayalım. O zaman  

𝑀𝑇 − 𝑀0 = (𝑀𝑇 − 𝑀𝑇−1) + ⋯ + (𝑀1 − 𝑀0)

 = ∑  

𝑛−1

𝑘=0

  (𝑀𝑘+1 − 𝑀𝑘)1𝑘<𝑇
       (13) 

Şimdi {𝑘 < 𝑇} = {𝑇 ≤ 𝑘}𝑐 ∈ ℱ𝑘 çünkü 𝑇 bir durma 

süresidir ve bu nedenle 

𝔼[(𝑀𝑘+1 − 𝑀𝑘)1𝑘<𝑇] = 0                           (14) 

çünkü (𝑀𝑘)𝑘≥0 bir martingale olduğundan. Dolayısıyla 

𝔼(𝑀𝑇) − 𝔼(𝑀0) = ∑  

𝑛−1

𝑘=0

𝔼[(𝑀𝑘+1 − 𝑀𝑘)1𝑘<𝑇] = 0      (15) 

1'i değil de 2'yi varsayarsak, önceki argüman durma süresi 

𝑇 ∧ 𝑛 için geçerlidir, böylece E 𝔼(𝑀𝑇∧𝑛) = 𝔼(𝑀0) olur. O zaman 

|𝔼𝑀𝑇 − 𝔼𝑀0| = |𝔼𝑀𝑇 − 𝔼𝑀𝑇∧𝑛|                     (16) 

işlemlere devam edilsin ∣ 𝐸(𝑋) ∣≤ 𝐸 ∣ 𝑋 ∣ olduğundan 

|𝔼𝑀𝑇 − 𝔼𝑀𝑇∧𝑛| = |𝔼(𝑀𝑇 − 𝑀𝑇∧𝑛)| ≤ 𝔼|𝑀𝑇 − 𝑀𝑇∧𝑛|    (17) 

Ayrıca 

|𝑀𝑇 − 𝑀𝑇∧𝑛| = |𝑀𝑇 − 𝑀𝑛|𝟏{𝑇>𝑛} ≤ (|𝑀𝑇| + |𝑀𝑛|)𝟏{𝑇>𝑛}

≤ 2𝐶𝟏{𝑇>𝑛}.                                                               (18) 

olur. Beklenen değer alındığında tüm n için: 

|𝔼𝑀𝑇 − 𝔼𝑀𝑇∧𝑛| ≤ 𝔼|𝑀𝑇 − 𝑀𝑇∧𝑛| ≤ 𝔼[2𝐶𝟏{𝑇>𝑛}]

= 2𝐶𝑃(𝑇 > 𝑛).                                                        (19) 

Ancak 𝑛 → ∞ iken 𝑃(𝑇 > 𝑛) → 0 olduğundan  

|𝔼𝑀𝑇 − 𝔼𝑀0| ≤ 2𝐶𝑃(𝑇 > 𝑛) = 0                (20) 

olur. Böylece 𝔼𝑀𝑇 = 𝔼𝑀0 
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Basit simetrik rastgele yürüyüş (𝑋𝑛)𝑛≥0 için, 𝑋0 = 0 

olduğunu varsayılsın ve aşağıdaki tanım verilsin: 

𝑇 = inf{𝑛 ≥ 0: 𝑋𝑛 = −𝑎 veya 𝑋𝑛 = 𝑏} 

Burada 𝑎, 𝑏 ∈ ℕ birer parametredir ve verilmelidir. O zaman 

𝑇 bir durma süresidir ve sonlu kapalı sınıfların tekrarı nedeniyle 𝑇 <

∞'dir. Dolayısıyla, isteğe bağlı durdurma teoreminin (ii) koşulu, 

𝑀𝑛 = 𝑋𝑛 ve 𝐶 = 𝑎 ∨ 𝑏 için geçerlidir. 𝔼𝑋𝑇 = 𝔼𝑋0 = 0 olduğunu 

sonucuna ulaşılır.  

𝑝 = ℙ(𝑋𝑛 𝑏 𝑑𝑒𝑛 ö𝑛𝑐𝑒 − 𝑎 𝑦𝑎 ç𝑎𝑟𝑝𝑎𝑟)               (21) 

Olasılık 𝑝 olan 𝑋𝑇 = −𝑎 ve olasılık 1 − 𝑝 olan 𝑋𝑇 = 𝑏  

biliniyor, bu nedenle 

0 = 𝔼(𝑋𝑇) = 𝑝(−𝑎) + (1 − 𝑝)𝑏                      (22) 

olur. Buradan p olasılığı aşağıdaki gibi olmalıdır.  

𝑝 =
𝑏

𝑎 + 𝑏
. 

p'yi hesaplamanın tamamen farklı, Markovyen bir yolu vardır. 

Ancak 𝔼𝑋𝑇 = 0 sonucunun ardındaki sezgi çok açıktır: Adil bir 

oyun oynayan bir kumarbaz, kayıpları 𝑎'ya veya kazançları 𝑏'ye 

ulaştığında, hangisi daha erken gerçekleşirse, kumarhaneden ayrılır; 

oyun adil olduğundan, ortalama kazanç sıfır olmalıdır. 

Örneğin sonsuz zengin bir kumarhanede adil bir oyun 

oynamaya devam eden ve kesin olarak mahvolma sonucunun ortaya 

çıktığı bir kumarbazın mantığa aykırı durumunu ele alalım. Bu oyun, 

sonlu bir bitiş süresinde sona erer. 

𝑇 = inf{𝑛 ≥ 0: 𝑋𝑛 = −𝑎}                          (23) 

Burada 𝑎, kumarbazın başlangıçtaki servetidir. 𝑋𝑇 = −𝑎 

olduğundan, 

𝔼(𝑋𝑇) = −𝑎 ≠ 0 = 𝔼𝑋0 
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Ancak bu, isteğe bağlı durdurma teoremine aykırı değildir 

çünkü ne (i) koşulu ne de (ii) koşulu karşılanmaktadır. Dolayısıyla, 

sezgi 𝔼𝑋𝑇 = 𝔼𝑋0'ın oldukça açık olduğunu gösterse de her zaman 

doğru olmadığı için biraz dikkatli olmak gerekir. 

Az önce ele alınan örnek, (𝑋𝑛)𝑛≥0 zincirinin kendisinin bir 

martingale olması bakımından oldukça özeldi. Açıkçası, bu genel 

olarak doğru değildir; aslında bir martingale zorunlu olarak gerçel 

(reel) değerlidir ve genel olarak durum uzayı I'in R'de bulunması 

konusunda bir zorluk yoktur. Yine de, her Markov zincirine bir dizi 

martingale eşlik eder ve bu martingaleler zinciri karakterize eder. 

Bu, martingaleler ve Markov zincirleri arasındaki derin bağlantının 

temelidir. 

𝑓: 𝐼 → ℝ fonksiyonu ve geçiş matrisi P olan bir Markov 

zinciri (𝑋𝑛)𝑛≥0 verildiğinde, şunu elde ettiğimizi hatırlayalım: 

(𝑃𝑛𝑓)(𝑖) = ∑  

𝑗∈𝐼

𝑝𝑖𝑗
(𝑛)

𝑓𝑗 = 𝔼𝑖(𝑓(𝑋𝑛))                    (24) 

Ayrıca 𝑛 = 1 için  

(𝑃𝑓)(𝑖) = ∑  

𝑗

𝑃(𝑖, 𝑗)𝑓(𝑗), (𝑃 − 𝐼)𝑓 = 𝑃𝑓 − 𝑓    (25) 

Teorem 2. (𝑋𝑛)𝑛≥0, değerleri 𝐼'de olan rastgele bir süreç ve 

𝑃 stokastik bir matris olsun. (𝑋𝑛)𝑛≥0'ın filtrelenmesi için (ℱ𝑛)𝑛≥0 

(ℱ𝑛 = 𝜎(𝑋0, … , 𝑋𝑛)) yazın. Bu durumda aşağıdakiler eşdeğerdir: 

(𝑋𝑛)𝑛≥0 geçiş matrisi 𝑃 olan bir Markov zinciridir;tüm sınırlı 

fonksiyonlar 𝑓: 𝑆 → ℝ için aşağıdaki süreç bir martingale'dir (Ethier 

& Kurtz, 2009)  

𝑀𝑛
𝑓

= 𝑓(𝑋𝑛) − 𝑓(𝑋0) − ∑  

𝑛−1

𝑚=0

(𝑃 − 𝐼)𝑓(𝑋𝑚)     (26) 
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İspat. İlk durumun geçerli olduğunu varsayalım. 𝑓 sınırlı bir 

fonksiyon olsun. Yani |𝑓| ≤ 𝐶 diyelim. O zaman 

|(𝑃𝑓)(𝑖)| = |∑  

𝑗∈𝐼

 𝑝𝑖𝑗𝑓𝑗| ≤ sup
𝑗

 |𝑓𝑗| = 𝐶             (27) 

ve  

|(𝑃 − 𝐼)𝑓(𝑖)| = |𝑃𝑓(𝑖) − 𝑓(𝑖)| ≤ |𝑃𝑓(𝑖)| + |𝑓(𝑖)| ≤ 𝐶 + 𝐶

= 2𝐶                                                                             (28) 

olur. Böylece 

|𝑀𝑛
𝑓

| ≤ |𝑓(𝑋𝑛)| + |𝑓(𝑋0)| + ∑  

𝑛−1

𝑚=0

|(𝑃 − 𝐼)𝑓(𝑋𝑚)|

= 2(𝑛 + 1)sup
𝑗

 |𝑓𝑗| ≤ 2(𝑛 + 1)𝐶 < ∞                (29) 

Yani 𝑀𝑛
𝑓
 her 𝑛 için integrallenebilir. 𝐴 = {𝑋0 = 𝑖0, … , 𝑋𝑛 =

𝑖𝑛} olsun.  

𝔼(𝑀𝑛+1
𝑓

− 𝑀𝑛
𝑓

∣ 𝐴) = 𝔼[𝑓(𝑋𝑛+1) − (𝑃𝑓)(𝑋𝑛) ∣ 𝐴] = 0   (30) 

olduğunu gösterilmelidir. Fark açık yazılırsa:  

𝑀𝑛+1
𝑓

− 𝑀𝑛
𝑓

=(𝑓(𝑋𝑛+1) − 𝑓(𝑋0) − ∑  

𝑛

𝑚=0

  (𝑃 − 𝐼)𝑓(𝑋𝑚))

 − (𝑓(𝑋𝑛) − 𝑓(𝑋0) − ∑  

𝑛−1

𝑚=0

  (𝑃 − 𝐼)𝑓(𝑋𝑚))

=𝑓(𝑋𝑛+1) − 𝑓(𝑋𝑛) − (𝑃 − 𝐼)𝑓(𝑋𝑛)

=𝑓(𝑋𝑛+1) − 𝑃𝑓(𝑋𝑛).

  (31) 

Beklenen değer alındığında  

𝔼[𝑀𝑛+1
𝑓

− 𝑀𝑛
𝑓

∣ 𝐴] = 𝔼[𝑓(𝑋𝑛+1) ∣ 𝐴] − Pf(𝑋𝑛)          (32) 
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yazılır. Markov özelliğinden  

𝔼[𝑓(𝑋𝑛+1) ∣ 𝐴] = 𝔼[𝑓(𝑋𝑛+1) ∣ 𝑋𝑛] = Pf(𝑋𝑛)              (33) 

elde edilir. Böylece 

𝔼[𝑀𝑛+1
𝑓

− 𝑀𝑛
𝑓

∣ 𝐴] = 𝔼[𝑓(𝑋𝑛+1) − (𝑃𝑓)(𝑋𝑛) ∣ 𝐴]

= Pf(𝑋𝑛) − Pf(𝑋𝑛) = 0                                           (40) 

ve bu nedenle (𝑀𝑛
𝑓

)
𝑛≥0

 bir martingale'dir. Öte yandan, eğer ikinci 

durum geçerliyse, o zaman bütün sınırlı 𝑓 fonksiyonlar için 

aşağıdaki eşitlik geçerlidir. 

𝔼[𝑓(𝑋𝑛+1) − (𝑃𝑓)(𝑋𝑛) ∣ 𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛] = 0   (41) 

𝑓 = 1{𝑖𝑛+1} alınsın. O zaman 

𝑓(𝑋𝑛+1) = 𝟏{𝑋𝑛+1=𝑗}                          (42) 

olur.  

𝔼[𝑓(𝑋𝑛+1) ∣ 𝐴] = 𝔼[𝑓(𝑋𝑛+1) ∣ 𝑋𝑛] = Pf(𝑋𝑛)               (43) 

yukarıdaki denklemden  

𝔼[𝟏{𝑋𝑛+1=𝑖𝑛+1} ∣ 𝐴] = Pf(𝑋𝑛) = ∑  

𝑘

𝑃(𝑋𝑛, 𝑘)𝟏{𝑘=𝑖𝑛+1}

= 𝑃(𝑋𝑛, 𝑖𝑛+1)                                                             (44) 

elde edilir. Sol taraf, tanım gereği 

ℙ(𝑋𝑛+1 = 𝑖𝑛+1 ∣ 𝐴)                               (45) 

dir. Dolayısıyla 

ℙ(𝑋𝑛+1 = 𝑖𝑛+1 ∣ 𝐴) = 𝑃(𝑋𝑛, 𝑖𝑛+1)                    (46) 

elde edilir. Bu da tam Markov özelliğinden: 

ℙ(𝑋𝑛+1 = 𝑖𝑛+1 ∣ 𝑋0 = 𝑖0, … , 𝑋𝑛 = 𝑖𝑛)

= ℙ(𝑋𝑛+1 = 𝑖𝑛+1 ∣ 𝑋𝑛 = 𝑖𝑛) = 𝑝𝑖𝑛𝑖𝑛+1
               (47) 
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yazılır. Böylece (𝑋𝑛)𝑛≥0 süreçi, geçiş matrisi 𝑃 olan bir Markov 

zinciridir. 

Harmonik Fonksiyonlar 

Harmonik fonksiyonlar, gerçek Öklid uzaylarının açık alt 

kümelerinde yer alırlar. Bu bölüm boyunca n, 1'den büyük sabit bir 

pozitif tam sayıyı, 𝛺 ise 𝑅𝑛'nin açık, boş olmayan bir alt kümesini 

ifade edecektir. 𝛺 üzerinde tanımlanan, iki kez sürekli türevlenebilir, 

kompleks değerler alabilen bir 𝑢 fonksiyonu, aşağıdakileri 

sağlandığı takdirde 𝛺 üzerinde harmoniktir: 

Δ𝑢 ≡ 0                                                   (48) 

Burada 𝛥 = 𝐷1
2 + ⋯ + 𝐷𝑛

2 ve 𝐷𝑗  2, j’inci koordinat 

değişkenine göre ikinci kısmi türevi ifade eder. 𝛥 operatörüne 

Laplasyen, 𝛥𝑢 ≡ 0 denklemine ise Laplace denklemi denir. 𝐸 ⊂ 𝐑𝑛 

kümesi üzerinde (mutlaka açık olmayan) tanımlanmış bir u 

fonksiyonunun E üzerinde harmonik olduğunu, 𝑢'nun E'yi içeren 

açık bir küme üzerinde harmonik bir fonksiyona genişletilebilmesi 

durumunda söyleriz. 

𝑥 = (𝑥1, … , 𝑥𝑛) ifadesinin 𝐑𝑛'deki tipik bir noktayı ve |𝑥| =

(𝑥1 2 + ⋯ + 𝑥𝑛 2)
1

2 ifadesinin x'in Öklit normunu gösterdiğini 

varsayalım. En basit sabit olmayan harmonik fonksiyonlar koordinat 

fonksiyonlarıdır; örneğin, 𝑢(𝑥) = 𝑥1. 

Düzgün fonksiyonlar için Laplas denklemi herhangi bir 

kısmi türevle değişmektedir. Genel olarak her harmonik fonksiyon 

sonsuz derecede türevlenebilirdir ve dolayısıyla bir harmonik 

fonksiyonun her kısmi türevi harmoniktir.  

Harmonik Fonksiyonların Markov Zincirlerindeki Uzantısı  

Eğer aşağıdaki özellik sağlanırsa bir ℎ: 𝑉 ↦ 𝑅 fonksiyonu, 

belirli bir Markov zincirine göre harmonik denir (Axler vd., 2013).  
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ℎ(𝑖) = ∑  

𝑗∣{𝑖,𝑗}∈𝐸

𝑃𝑖𝑗ℎ(𝑗)                           (49) 

Sezgisel olarak, köşeler üzerinde tanımlanan bir fonksiyon, 

tüm komşu köşelerin ağırlıklı ortalaması ise (ağırlıklar o komşuya 

geçme olasılığına karşılık gelir) harmonik dağılım gösterir. 

Şimdi, V kümesinin bir alt kümesi olan 𝐵 ⊂ 𝑉 (bazı 

durumlarda bu alt küme sınır olarak kabul edilir) ve bu alt küme 

üzerinde tanımlanmış bir ℎ𝐵: 𝐵 ↦ 𝑅 fonksiyonuna sahip 

olduğumuzu varsayalım. O halde, ℎ𝐵 'nin harmonik bir uzantısı şu 

şekilde tanımlanan bir fonksiyondur: 

1. ℎ(𝑥) = ℎ𝐵(𝑥)∀𝑥 ∈ 𝐵 

2. h, tüm 𝑥 ∉ 𝐵 değerlerinde harmoniktir. 

Dolayısıyla, rastgele bir köşe alt kümesi ve bu alt küme 

üzerinde rastgele bir fonksiyon verildiğinde, harmonik bir uzantı bu 

alt kümedeki fonksiyonla eşleşir ve bu alt kümede olmayan köşeler 

için fonksiyon değerlerini harmonik bir şekilde "yayar". 

Ortalamada Değişmezlik Özelliği 

Bir Markov zinciri {𝑋𝑛}𝑛≥0 için tanımlı bir fonksiyon 𝑓 geçiş 

operatörü 𝑃 altında 

𝑃𝑓 = 𝑓                                            (50) 

koşulunu sağlıyorsa harmonik olarak adlandırılır (Norris, 1998). Bu 

koşul, fonksiyonun Markov zincirinin dinamiği altında koşullu 

beklenen değer anlamında değişmez olduğunu ifade eder. Sonuç 

olarak  

𝔼𝑥[𝑓(𝑋𝑛+1) ∣ 𝑋𝑛] = 𝑓(𝑋𝑛)                          (51) 

eşitliği sağlanır. Özetle bir 𝑓 fonksiyonunun harmonik olması 

𝑓(𝑋𝑛)’in bir martingale olması için gerek ve yeter koşuldur. 

Değişmezlik yerel bir özellik olmakla birlikte Markov zinciri 
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boyunca beklenen değerin korunmasını (değişmemesini) ifade eder. 

Bir Markov zincirinde birden fazla hormonik fonksiyon 

tanımlanabilir ve her biri değişmezlik özelliğini muhafaza 

edebilmektedir.  

Maksimum İlkesi 

Ortalama değer özelliğinin ayrık bir sonucu olarak, harmonik 

fonksiyonlar için maksimum ilkesi elde edilebilir. Bu ilke için 

aşağıdaki teorem verilmektedir.  

Teorem 2 (Maksimum İlkesi): Durum uzayı bağlantılı olan 

bir Markov zincirinde tanımlı ve reel değerli bir 𝑢 fonksiyonu 

harmonik olsun. Bu fonksiyon eğer iç noktada maksimuma veya 

minimuma ulaşıyor ise sabit olmak zorundadır.  

İspat: Burada ispatı yaparken kitap bölümünün kapsamı da 

göz önüne alınarak klasik analitik ispat yapılmayacaktır. Bunun 

yerine martingale özelliğinden yararlanılarak kısa bir ispat aşağıdaki 

gibidir.  

Varsayalım ki 𝑢 fonksiyonu bir iç noktada (𝑥) maksimum 

değere ulaşsın. 𝑢 harmonik olduğu için  

𝑢(𝑥) = 𝔼𝑥[𝑢(𝑋1)]                               (52) 

yazılabilir. 𝑋1 ise zincirin bir adım sonraki durumu olsun. 𝑢(𝑋1) ≤

𝑢(𝑥) olduğu açıktır. Aynı zamanda yukarıdaki denklemin 

sağlanabilmesi için 𝑢(𝑋1) = 𝑢(𝑥) olması gerekmektedir. Dolayısı 

ile 𝑥’e komşu her durum 𝑢 fonksiyonu aynı değeri alır. Durum 

uzayının bağlantılı olmasından olayı bu durum tüm durum uzayı için 

geçerli olur ve böylece 𝑢 sabit olmak zorundadır.  

Teorem 3 (Dirichlet Problemi için Eşsizlik). 

{𝑋𝑛}𝑛≥0 indirgenemez bir Markov zinciri, 𝐵 ⊂ 𝑉 ve ℎ𝐵: 𝐵 ↦ 𝑅 

verildiğinde, köşeler üzerindeki fonksiyon 𝑥 ∈ 𝑉 ∖ 𝐵 için  

ℎ(𝑥) = 𝔼𝑥[ℎ𝐵(𝑋𝑇𝐵
)]                           (53) 
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fonksiyonu ℎ𝐵 'nin benzersiz harmonik uzantısıdır (Lawler ve Limic 

2010). Yani bir 𝑥 köşesinden başlayıp 𝐵'deki ilk köşeye ulaşana 

kadar rastgele bir yürüyüş gerçekleştirilirse, 𝑇𝐵, B'ye ilk ulaştığınız 

zamanı gösterir: 

𝑇𝐵 = 𝑖𝑛𝑓{𝑛 ≥ 0: 𝑋𝑛 ∈ 𝐵}                         (54) 

𝑋𝑇𝐵
, B'de ulaştığınız ilk köşeyi gösterir. Ve ℎ𝐵(𝑋𝑇𝐵

), o 

köşedeki fonksiyon değeridir. Dolayısıyla, bu fonksiyonun beklenen 

değerinin ℎ𝐵 'nin harmonik bir uzantısıdır.  

ℎ𝐵(𝑥)'in tüm 𝑥 ∈ 𝐵 için aynı 𝑣 değeri olduğu durumu 

düşünmek faydalı olabilir. Bu durumda, 𝐸[ℎ𝐵(𝑋𝑇𝐵
)] = 𝑣 de olur, 

çünkü B'ye her ulaştığımızda her zaman 𝑣 değerini alırız. 

Dolayısıyla, ilginç olan tek durum, 𝑥 ∈ 𝐵'deki farklı köşelerin farklı 

ℎ𝐵(𝑥) değerlerine sahip olmasıdır. 

İspat 1: Öncelikle 𝑥 ∈ 𝐵 durumunu ele alalım. Bu durumda 

𝑇𝐵 = 0 olur. 

ℎ(𝑥) = 𝔼[ℎ𝐵(𝑥)] = ℎ𝐵(𝑥)                            (55) 

Böylece 𝑥 ∈ 𝐵 için harmonik genişleme tanımı gösterimiş 

oldu. Diğer taraftan 𝑥 ∉ 𝐵 olduğu durumda rastgele yürüyüşün 

tanımı gereği aşağıdaki eşitlik yazılabilir. 

ℎ(𝑥) = 𝔼[ℎ𝐵(𝑋𝑇𝐵
)] = ∑  

𝑦∣{𝑥,𝑦}∈𝐸

𝑃𝑥𝑦𝔼[ℎ𝐵 ∣ 𝑥1 = 𝑦]     (56) 

Ancak zincir Markov olduğundan ve dolayısıyla zamana 

bağlı homojen (yani hafızasız) olduğundan:  

𝐸[ ℎ𝐵 ∣∣ 𝑥1 = 𝑦 ] = 𝐸[ ℎ𝐵 ∣∣ 𝑥0 = 𝑦 ] = ℎ(𝑦)            (57) 

elde edilir. Bu nedenle, harmonik özellik için gerekli olan  

ℎ(𝑥) = ∑ 𝑃𝑥𝑦ℎ(𝑦)

( 𝑦∣
∣{𝑥, 𝑦} ∈ 𝐸 )

                            (58) 
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sağlanmış olur. 

Dirichlet Problemi için eşsizlik teoreminin ispatı maksimum 

ilkesi teoremi ile de gösterilebilir.  

İspat 2: Fonksiyonumuzun benzersizliğine dair sezgisel 

bakış açısı, harmonik genişlemeyi tümevarımsal olarak 

düşünmekten gelir; burada B temel durumdur ve tümevarımsal adım, 

değeri bir köşeden komşularına yayarak tek bir çözüme ulaşır.  

Matematik dili ile , iki harmonik genişlememiz olduğunu 

varsayalım: ℎ ve 𝑢. Şimdi, tüm 𝑥 ∈ 𝐵 için ℎ(𝑥) = ℎ𝐵(𝑥) = 𝑢(𝑥) 

‘dur, Dolayısı ile  

ℎ(𝑥) − 𝑢(𝑥) = 0                                     (59) 

yazılabilir. Öyleyse, ℎ(𝑥) − 𝑢(𝑥)'in maksimum olduğu 𝑥𝑖 ∉ 𝐵 

köşesini ele alınsın. Hem ℎ hem de 𝑢 harmonik olduğundan, ℎ(𝑥𝑖) −

𝑢(𝑥𝑖) değeri, her 𝑗 ∣ {𝑖, 𝑗} ∈ 𝐸 için ℎ(𝑥𝑗) − 𝑢(𝑥𝑗)'nin ağırlıklı 

ortalamasıdır. ℎ(𝑥𝑖) − 𝑢(𝑥𝑖) global maksimum olduğundan, 

ortalamanın doğru sonuç vermesinin tek yolu ℎ(𝑥𝑗) − 𝑢(𝑥𝑗) = 𝑣 =

ℎ(𝑥𝑖) − 𝑢(𝑥𝑖) olmasıdır (eğer biri daha yüksek olsaydı, maksimum 

olmazdı; eğer biri daha düşük olsaydı, ağırlıklı ortalama işe 

yaramazdı). Bu argümanı, her 𝑗'nin tüm komşularının da 𝑣 değerine 

sahip olması gerektiğini söylemek için uygulamaya benzer şekilde 

devam edebiliriz. Ancak 𝑥𝑖 'den bir 𝑏 ∈ 𝐵'ye giden bir yol 

olduğundan, 𝑏'nin de 𝑣 değerine sahip olması gerekir, ancak 𝑣 =

ℎ(𝑏) − 𝑢(𝑏) = 0 olduğunu bildiğimiz için, değerlerdeki maksimum 

fark sıfırdır. 

Tamamlayıcı olması açısından, minimum değerin sıfır 

olduğunun da gösterilmesi gerekmektedir. ℎ(𝑥) − 𝑢(𝑥)'in minimum 

olduğu 𝑥𝑖 ∉ 𝐵 köşesini ele alalım. Hem ℎ hem de 𝑢 harmonik 

olduğundan, ℎ(𝑥𝑖) − 𝑢(𝑥𝑖) değeri, her 𝑗 ∣ {𝑖, 𝑗} ∈ 𝐸 için ℎ(𝑥𝑗) −

𝑢(𝑥𝑗)'nin ağırlıklı ortalamasıdır. ℎ(𝑥𝑖) − 𝑢(𝑥𝑖) küresel minimum 
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olduğundan, ortalamanın doğru olması için tek yol ℎ(𝑥𝑗) − 𝑢(𝑥𝑗) =

𝑣 = ℎ(𝑥𝑖) − 𝑢(𝑥𝑖) olmasıdır. Bu argümanı, her 𝑗'nin tüm 

komşularının da 𝑣 değerine sahip olması gerektiğini söylemek için 

uygulamaya devam edebiliriz. Ancak 𝑥𝑖 'den bir 𝑏 ∈ 𝐵'ye giden bir 

yol olduğundan, 𝑏'nin de 𝑣 değerine sahip olması gerekir, ancak 𝑣 =

ℎ(𝑏) − 𝑣(𝑏) = 0 olduğunu bildiğimiz için, değerlerdeki minimum 

fark sıfırdır. Dolayısıyla, zincirimizdeki tüm düğümler 𝑥 için 𝑔(𝑥) =

𝑢(𝑥) olduğu sonucu çıkar. Bu nedenle, iki genişletme 

fonksiyonumuz ℎ ve 𝑢 eşit olmalıdır ve bu nedenle herhangi bir 𝐵 

kümesi ve ℎ𝐵 fonksiyonu için yalnızca bir, benzersiz harmonik 

genişletme olabilir (Vöcking, 2002). 

Uygulama: Kumarbazın Yenilgisi 

Bölüme ait uygulamada yukarıda anlatılan martingale ve 

durdurma zamanları ve farmonik fonksiyonların maksimum ve 

eşsizlik özelliklerinin hepsinin harmanlayacak bir örnek olarak 

kumarbazın yenilgisi (Gambler’s Ruin) örneğini simüle edeceğiz.  

Bir kumarbazın sermeyesini (𝑋𝑛)𝑛≥0 ile gösterelim. Her 

oyunda (adımda) kubarbaz 𝑝 olasılığı ile bir TL (burada başka bir 

miktar ya da başka bir para birimi de seçilebilir) kazanmakta ve 1 −

𝑝 = 𝑞 olasılığı ile bir TL kaybetmektedir. Dolayısı ile bu rasgele 

yürüyüş süreci  

𝑋𝑛+1 = {
𝑋𝑛 + 1,  olasılık 𝑝
𝑋𝑛 − 1,  olasılık 𝑞

                        (60) 

şeklindedir. (𝑋𝑛)𝑛≥0 durum uzayı  

𝑆 = {0,1,2, … , 𝑁}                                (61) 

olan bir Markov zinciridir. Bu Markov zincirinde 0 (iflas) ve 𝑁 

(hedeflenen ve kumarbazın ulaştığında oyunu sonlandıracağı 

kazanç) yutan elemanlardır. Dolayısı ile sıfır (iflas) mecburi 

durdurma ve 𝑁 isteğe bağlı durdurma olmak üzere, durdurma 

zamanı aşağıdaki gibi tanımlanabilir.  
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𝑇 = 𝑖𝑛𝑓{𝑛 ≥ 0: 𝑋𝑛 ∈ {0, 𝑁}}                         (62) 

Kumarbazın aklındaki o paraya (𝑁) ulaşma olasılığı  

ℎ(𝑥) = ℙ𝑥(𝑋𝑇 = 𝑁)                      (63) 

olarak tanımlansın. Markov özelliğinden  𝑥 ∈ {1, … , 𝑁 − 1} için 

ℎ(𝑥) = 𝑝ℎ(𝑥 + 1) + 𝑞ℎ(𝑥 − 1)                      (64) 

olur. Dolayısıyla ℎ fonksiyonu, iç noktalarda harmonik bir 

fonksiyondur ve sınır koşulları 

ℎ(0) = 0, ℎ(𝑁) = 1  

şeklindedir. Bu, klasik bir Dirichlet problemidir.  𝑛 ≥ 0 için  

𝑀𝑛 = ℎ(𝑋𝑛)                                       (65) 

olarak tanımlansın. ℎ fonksiyonu harmonik olduğundan (𝑀𝑛)𝑛≥0 

zinciri denklem (62)’deki  𝑇 durdurma zamanı dikkate alındığında 

ortalama değişmezlik özelliğinden bir sınırlı bir martingale 

oluşturur.  

Adil oyun varsayımında 𝑝 = 𝑞 = 1/2’dir. Bu varsayın 

altında çözüm doğrusal olup  

ℎ(𝑥) =
𝑥

𝑁
                                            (66) 

olur. Eğer 𝑝 ≠ 𝑞 olursa (adil olmayan oyun) o zaman  

  ℎ(𝑥) =
1 − (𝑞/𝑝)𝑥

1 − (𝑞/𝑝)𝑁
                                  (67) 

olarak elde edilir. Harmonik fonksiyonların maksimum ilkesi ve 

Dirichlet problemini çözümünün eşsizlik teoremi gereğince, 

kumarbazın kazanma olasılığını tanımlayan fonksiyon tekdir.  

Teorik olarak elde edilen ve harmonik fonksiyon olarak 

tanımlanan kazanma olasılığı, başlangıç sermayesi 𝑥 için, 10 bin 

bağımsız rastgele yürüyüş adil bir oyun  (𝑝 = 0,5) için simüle 
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edilmiş ve kumarbazın aklında kararlaştırdığı ve ulaştığında 

oyundan çekileceği değer olan 𝑁’e ulaşma olasılığı hesaplanmıştır. 

Şekil 1, simülasyon sonuçlarının teorik olarak elde edilen harmonik 

ℎ(𝑥) = 𝑥 𝑁⁄  fonksiyonu ile uyumlu olduğunu göstermektedir. 

Şekil 1: Adil bir oyun için kazanma olasılığının teorik ve 

simülasyon değerlerinin grafiği 

 

Adil olmayan bir oyunda( 𝑝 ≠ 0,5) ℎ(𝑋𝑛) sürecinin zaman 

grafiği aşağıdaki gibidir.  

Şekil 2. ℎ(𝑋𝑛)’in zaman grafiği 

 

Şekil 2 incelendiğinde Markov zincirinin yutulma 

durumlarına yaklaştığında (0, N) martingale değerinin sıfıra 

yakınsadığı gözlenmektedir. Bu davranış, isteğe bağlı durma teoremi 

altında teorik olarak beklenen sonucu desteklemektedir. 
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Sonuç 

Bu kitap bölümde, ayrık zamanlı Markov zincirleri 

ekseninde harmonik fonksiyonlar ve martingale yapıları birlikte 

incelendi. Özetle harmonik fonksiyonların değişmezlik özellikleri 

bu fonksiyonların martingale özellikler göstermesini sağlamaktadır. 

Böylece Markov zincirlerinin uzun dönem davranışları martingale 

teorisi bağlamında incelenebilir. 

Harmonik fonksiyonlar maksimum ilkesi ve dirichlet 

probleminin çözümünde teklik özelliklerine sahiptir. Bununla 

birlikte martingale teorisinde yer alan durma zamanları etkin bir 

şekilde gerçek hayatın modellenmesinde önemli argümanlar sergiler. 

Durma zamanları, klasik sınır değer problemlerinde stokastik bir 

vizyon sağlar.  

Kumarbazın yenilgisi problemi, martingale ve harmonik 

fonksiyonların Markov zincirlerine uygulanması olarak sunulan 

teorik çerçevenin bir uygulaması olarak düşünüldü; harmonik 

fonksiyonların yardımıyla kazanma olasılıkları türetilmiş ve elde 

edilen sonuçlar martingale temelli simülasyonlarla desteklendi. 

Simülasyon sonuçlarının, teorik sonuçları doğruladığı gözlemlendi.   

Gelecekte, kitap bölümünde yer alan ayrık zamanlı (kesikli 

zamanlı) teorinin sürekli zamanlı Markov süreçlerine genişletilmesi 

irdelenebilir.  Ayrıca teorik çerçevenin enerji temelli maliyet 

fonksiyonları içeren durma problemlerine genişletilmesi literatüre 

önemli katkılar sağlayacaktır.  
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HETEROJENLİK, TERCİH POLİTİKASI VE 

DAĞILIMSAL ASİMETRİ: HETEROJEN BİR 
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Giriş 

Kuyruk modelleri, telekomünikasyon, sağlık hizmetleri, 

üretim sistemleri, bilgisayar ağları ve ulaşım gibi birçok alanda, 

sistem kapasitesinin etkin biçimde planlanabilmesinde 

kullanılmaktadır. (Gross ve Harris, 1998). Bu modeller arasında 

bekleme alanı olmayan kuyruk sistemleri, gerçek hayattaki birçok 

durumu oldukça gerçekçi biçimde temsil etmeleri nedeniyle özel bir 

öneme sahiptir. 

Bu kitapta ele alınan farklı tercih olasılıklı heterojen kuyruk 

sistemi, Poisson süreci ile gelen müşterilerin, hizmet süreleri üstel 
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dağılıma sahip iki heterojen paralel sunucu tarafından hizmet 

gördüğü ve bekleme alanının bulunmadığı bir sistemdir. Sisteme 

gelen bir müşteri, her iki sunucunun da dolu olması durumunda 

hizmet alamadan sistemi terk eder. Bu özellik, modeli “kayıp 

sistemleri” sınıfına dahil etmektedir (Ross, 2014). 

Heterojen kuyruk modeli, özellikle kapasitenin sınırlı, 

beklemenin mümkün olmadığı ve sunucuların hizmet hızlarının 

farklı olduğu durumların modellenmesinde kullanılmaktadır. 

Sunucular arasındaki heterojenlik, pratikte sıklıkla karşılaşılan bir 

durumdur; çünkü çalışanların deneyim düzeyleri, makinelerin teknik 

kapasiteleri veya hizmet kanallarının fiziksel özellikleri çoğu zaman 

birbirinden farklıdır (Kleinrock, 1975). Heterojen kuyruk 

sistemlerinin en yaygın modelleme aracı olarak kullanıldığı alanlar 

arasında sağlık hizmetleri gelmektedir. Çünkü acil servisler, yoğun 

bakım üniteleri, ameliyathaneler gibi ortamlarda, hasta kabul 

kapasitesi kısıtlıdır ve acil durumlarda beklemek genellikle 

imkansızdır. Özellikle farklı uzmanlık alanlarına sahip iki doktorun 

ya da farklı donanımlara sahip iki ameliyathanenin olduğu durumlar 

için, heterojen kuyruk modeli hasta kayıp olasılığını ve sistem 

doluluk oranını analiz etmek için yeterli matematiksel donanımı 

sağlamaktadır. (Green, 2006). 

Benzer şekilde, telekomünikasyon sistemlerinde sınırlı 

sayıda kanalın bulunduğu ve çağrıların bekletilmeden reddedildiği 

durumlar klasik kayıp sistemleriyle modellenmektedir. Farklı bant 

genişliğine veya işlem hızına sahip iki sunucunun yer aldığı hücresel 

ağlar ya da anahtarlama sistemleri, heterojen sunuculu kayıp 

kuyruklarının önemli uygulama alanları arasındadır (Kelly, 2011). 

Benzer şekilde üretim ve imalat sistemlerindeki farklı makine 

kullanımı da heterojen kuyruk modelleri ile modellenebilir 

(Buzacott ve Shanthikumar, 1993). Buna ek olarak, bilgisayar ve 

bilişim sistemlerinde, işlemci çekirdekleri veya sunucular farklı 

hızlara sahip olması ve tampon belleğin bulunmaması da heterojen 

kuyruk modelleri ile modellenebilmektedir (Trivedi, 2002).  

Bu kitapta bir heterojen kuyruk modeli ayrıntılı biçimde ele 

alınacak; denge durum denklemleri ve sistemdeki kişi sayısının 

dağılımı elde edilecektir. Ayrıca sistemdeki kişi sayısına ait 
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momentler kapalı formda elde edilecektir. Elde edilen momentler ile 

kitlesel konum, dağılım ve yayılım ölçüleri elde edilecektir. Ayrıca 

sistemi oluşturan parametrelerden tercih olasılığının (tercih 

politikasının) ve hizmet oranlarının (𝜇1, 𝜇2) heterojenliğinin (Gini 

indeks ile elde edilmektedir) kitlesel konum, dağılım ve yayılım 

ölçüleri üzerindeki etkisi sayısal analizler ile sezgisel olarak 

incelenecektir.  

Farklı Tercih Olasılıklı Heterojen Kuyruk Sistemi 

Müşteriler sisteme 𝜆 parametreli Poisson akımı gelir. Her bir 

müşterinin 𝑘. kanalda hizmet süresi 1 𝜇𝑘⁄ (𝑘 = 1,2) ortalaması üstel 

dağılıma sahiptir. Geliş anında müşteri kanalların her ikisi boş ise 𝑝 

ve 𝑞(1 − 𝑝) olasılığı ile sırayla birinci ve ikinci kanalda hizmet alır. 

Yalnız bir kanal boş ise hizmetini bu kanalda alır. Sisteme gelen 

müşteri kanalların her ikisini de dolu bulursa hizmet almadan 

müşteri sistemi terk eder. Bu modele ait geçiş diyagramı aşağıdaki 

gibidir. 

 

Şekil 1: Modele ait geçiş diyagramı 

Limit Olasılıkları 

{𝜉𝑡 = 𝑖, 𝜂𝑡 = 𝑗; 𝑡 ≥ 0} iki boyutlu sürekli parametreli 

Markov zinciri dikkate alınıyor. Burada 𝑖 = 𝑗 = 0,1,2 dir. Bu 

bağlamda 𝑃(𝜉𝑡 = 𝑖, 𝜂𝑡 = 𝑗) = 𝑃𝑖𝑗(𝑡) olasılıklarının bulunması 

gerekiyor. 𝑃𝑖𝑗(𝑡) 𝑡 süresinde birinci kanalda  𝑖 tane , ikinci kanalda  

--22--



𝑗 tane müşterinin olması olasılığını gösterelim. ℎ → 0 için 𝑃𝑖𝑗(𝑡) 

olasılıklarının Kolmogorov diferansiyel denklemler şöyledir.  

𝑃00
′ (𝑡) = −𝜆𝑃00(𝑡) + 𝜇1𝑃10(𝑡) + 𝜇2𝑃01(𝑡) (1) 

𝑃10
′ (𝑡) = −(𝜆 + 𝜇1)𝑃10(𝑡) + 𝑝𝜆𝑃00(𝑡) + 𝜇2𝑃11(𝑡) (2) 

𝑃01
′ (𝑡) = −(𝜆 + 𝜇2)𝑃10(𝑡) + 𝑞𝜆𝑃00(𝑡) + 𝜇1𝑃11(𝑡) (3) 

𝑃11
′ (𝑡) = −(𝜇1 + 𝜇2)𝑃11(𝑡) + 𝜆(𝑃01(𝑡) + 𝑃10(𝑡)) (4) 

Bu diferansiyel denklemlere ait sabit durum (steady-state) 

olasılıkları aşağıdaki gibidir. 

0 = −𝜆𝑃00 + 𝜇1𝑃10 + 𝜇2𝑃01                (5) 

0 = −(𝜆 + 𝜇1)𝑃10 + 𝑝𝜆𝑃00 + 𝜇2𝑃11 (6) 

0 = −(𝜆 + 𝜇2)𝑃01 + 𝑞𝜆𝑃00 + 𝜇1𝑃11 (7) 

0 = −(𝜇1 + 𝜇2)𝑃11 + 𝜆(𝑃01 + 𝑃10) (8) 

𝑋 sistemdeki müşteri sayısını gösteren bir tesadüfi değişken 

olmak üzere olasılık fonksiyonu  𝑝𝑘 = 𝑃(𝑋 = 𝑘) olsun. Ayrıca: 

𝑝0 = 𝑃00, 𝑝1 = 𝑃01 + 𝑃10,     𝑝2 = 𝑃11 (9) 

olarak alınıyor. Burada 𝑝0 sistemin boş olması, 𝑝1 kanallardan 

birisinin boş olması ve 𝑝2’de her iki kanalın dolu olması olasılığıdır. 

𝑝2 aynı zamanda sisteme gelen müşterinin hizmet almadan ayrılması 

(kaybolması) olasılığını da ifade eder. Böylece 𝑃(𝑋 = 𝑘) aşağıdaki 

gibi tanımlanır.  

𝑃(𝑋 = 𝑘) =

{
  
 

  
 

𝑎

a + b + c
, 𝑘 = 0

𝑏

a + b + c
, 𝑘 = 1

c

a + b + c
, 𝑘 = 2

       0 ,          𝑑𝑑

 (10) 

Burada 𝑎 = 𝜇1𝜇2(2𝜆 + 𝜇1 + 𝜇2), 𝑏 = 𝜆(𝜇1 + 𝜇2)(𝜆 +
𝑝𝜇2 + 𝑞𝜇1), 𝑐 = 𝜆2(𝜆 + 𝑝𝜇2 + 𝑞𝜇1) olarak tanımlanmaktadır 
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(Saglam ve Torun, 2005) Dolayısı ile sisteme etkin geliş oranı 

aşağıdaki gibidir. 

𝜆𝑒𝑓𝑓 = 𝜆(1 − 𝑝2) (11) 

Bu kitapta tanıtılan heterojen kuyruk sisteminde tercih 

olasılığı 𝑝 = 1/2 alındığında sistem 𝑀/𝑀𝑖/2/0 ‘a dönüşmektedir. 

Momentler 

Bu alt başlıkta müşteri sayısına ait sıfır etrafındaki 

momentler elde edilecektir. Momentleri bulmadan önce olasılık 

üreten fonksiyonu elde edelim. Sistemdeki müşteri sayısına ait 

olasılık üreten fonksiyon aşağıdaki gibidir.  

𝜂𝑋(𝑠) = 𝐸(𝑠
𝑋) = ∑𝑠𝑥𝑃(𝑋 = 𝑘)

2

𝑘=0

=
1

a + b + c
(𝑎 + 𝑏𝑠 + 𝑐𝑠2) 

(12) 

olarak elde edilir. Olasılık üreten fonksiyon yardımı ile sıfır 

etrafındaki ilk dört moment aşağıdaki gibi elde edilir.  

(𝑋) = 𝑚1 =
𝑑

𝑑𝑠
𝜂𝑋(𝑠)|

𝑠=1
=

𝑏 + 2𝑐

(a + b + c)
 (13) 

𝐸(𝑋(𝑋 − 1)) =
𝑑2

𝑑𝑠2
𝜂𝑋(𝑠)|

𝑠=1

=
2𝑐

(a + b + c)
 (14) 

Dolayısı ile  

𝐸(𝑋2) − 𝐸(𝑋) =
2𝑐

(a + b + c)
 (15) 

𝐸(𝑋2) = 𝑚2 =
𝑏 + 4𝑐

(a + b + c)
 (16) 

𝑛 ≥ 3 için 

𝑑𝑛

𝑑𝑠𝑛
𝜂𝑋(𝑠)|

𝑠=1
= 0 

(17) 
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olur. Bunun sebebi sistemde en fazla iki kişinin olabileceği 

gerçeğidir. Dolayısı ile  

𝐸(𝑋(𝑋 − 1)(𝑋 − 3)) = 0 (18) 

ve  

𝐸(𝑋(𝑋 − 1)(𝑋 − 3)(𝑥 − 4)) = 0 (19) 

eşitlikleri geçerlidir. Bu eşitliklerden ve 1. ve 2. sıfır etrafındaki 

momentlerden yararlanarak sıfır etrafındaki 3. ve 4. momentler 

aşağıdaki gibi elde edilir.  

𝐸(𝑋3) = 𝑚3 =
𝑏 + 8𝑐

(a + b + c)
 (20) 

𝐸(𝑋4) = 𝑚4 =
𝑏 + 16𝑐

(a + b + c)
 (21) 

Bu dağılımın momentleri kullanılarak sırasıyla Beklenen 

değer, Varyans, Değişim Katsayısı, Çarpıklık ve Basıklık katsayısı 

hesaplanabilir (Sağlam vd., 2018; Stewart, 2009) 

𝐸(𝑋) =  𝑚1 (22) 

𝑉𝑎𝑟(𝑋) = 𝜎2 = 𝑚2 −𝑚1
2 (23) 

Ç𝐾 = 𝛼3 =
𝐸(𝑋 − 𝐸(𝑋))

3

𝜎3

=
𝑚3 − 3𝑚1𝑚2 + 2𝑚1

3

(𝑚2 −𝑚1
2)3 2⁄

 
(24) 

𝐵𝑆 = 𝛼4 =
𝐸(𝑋 − 𝐸(𝑋))

4

𝜎4

=
𝑚4 − 4𝑚1𝑚3 + 6𝑚1

2𝑚2 − 3𝑚1
4

(𝑚2 −𝑚1
2)2

 
(25) 

Uygulama 

Bu bölümde yukarıda tanıtılan heterojen kuyruk modelinin 

nümerik örnekleri verilecektir. Özellikle kanallar arasındaki 
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heterojenliğin büyük olduğu durumlarda sistemdeki kişi sayısının 

dağılımlı hakkında konum ve dağılım ölçülerinin nasıl etkilendiği ve 

bunun yanında çarpıklık ve basıklık katsayısının nasıl etkilendiği 

araştırılacaktır. Modeldeki kişi sayılarına ait varyansın tercih 

olasılığı sayesinde azaltılabilir olup olmadığı araştırılacaktır. Özel 

olarak sistemdeki kişi sayısının az olması âtıl zaman oluşumu ile 

verimliliği düşürürken, sistemim dolu olması (bu modelde sistemde 

iki kişinin olması) yeni gelen müşterilerin kaybolması maliyetini 

doğuracaktır. Bu durumda heterojen ortalamalara sahip kanallardan 

hızlı olanın seçilmesi politikası benimsenebilir. Bu tercih olasılığı 

yük dengeleme parametresi olarak kullanılabilir. Bu tercih 

olasılığının yarı yarıya durumundan (%50 olasılığından) fazla olmalı 

gerekir. Fakat optimal tercih olasılığının %50 ile %100 arasından 

nasıl belirlenebilir olduğu sadece sistemdeki kişi sayısının 

ortalaması ile üst mertebeden momentleri ile elde edilen kitlesel 

göstergeler ile karar verilmelidir. Aslında heterojenlik ve 

yönlendirme olasılığı, yalnızca ortalamayı değil dağılımın şeklini de 

belirgin biçimde etkilemektedir. İlk olarak heterojenliğin bir ölçüsü 

olarak gini indeks değerleri hesaplanmaktadır.  

Bu kitap bölümünde ele alınan modelde, paralel kanalların 

heterojenliği Gini indeks ile ölçülebilir. Modelde yer alan paralel 

kanallar için hizmet kapasitesinin sabit ve sınırlı olduğu 

düşünüldüğünde bu kapasitenin kanallar arasında nasıl dağıldığını 

gini indeks ile ölçebiliriz (Yitzhaki, 1979). Gini indeks 0 (kanallar 

homojen) ile 1 (kanallar tamamen heterojen) arasında değerler alır 

(Alves vd, 2011). Gini indeksi, sürekli rassal değişkenler için 

aşağıdaki biçimde tanımlanabilir (Cowell, 2011): 

𝐺 =
1

2𝜇
∫  
𝑏

𝑎

∫  
𝑏

𝑎

|𝑥 − 𝑦|𝑓(𝑥)𝑓(𝑦)𝑑𝑥𝑑𝑦 
(26) 

Bizim modelimizde olduğu gibi iki noktalı ayrık dağılımlar 

için bu yukarıdaki formül daha basit bir hal alır. Özetle bu çalışmada 

ele alınan iki sunuculu sistem için Gini indeksi, 

𝐺 =

1
2
|𝜇1 − 𝜇2|

2 ⋅
𝜇1 + 𝜇2
2

=
|𝜇1 − 𝜇2|

𝜇1 + 𝜇2
 (27) 
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ile hesaplanır. Modelde genelliği bozmaksınız 𝜇1 ≥ 𝜇2 

varsayıldığında gini indeks  

𝐺 =
𝜇1 − 𝜇2
𝜇1 + 𝜇2

 (28) 

olarak belirlenir. Gini indeks değerleri göz önüne alınarak seçili bazı 

durumlar için nümerik sonuçlar aşağıdaki gibi elde edildi. 

Tablo 1: 𝜆 = 4, 2 𝑚üş/𝑑𝑘 ve 𝜇1 + 𝜇2 = 6 𝑚üş/𝑑𝑘 olmak farklı 

gini indeks ve tercih olasılıkları için konum ve yayılım ölçüleri 

𝝁𝟏 𝝁𝟐 G 𝒑 𝑬(𝑿) Varyans ÇK BK 

3,00 3,00 0,00 0,50 0,994 0,586 0,010 1,707 

3,20 2,80 0,07 

0,50 0,995 0,585 0,008 1,709 

0,60 0,994 0,586 0,011 1,707 

0,70 0,992 0,587 0,013 1,705 

0,80 0,990 0,587 0,016 1,703 

0,90 0,989 0,588 0,019 1,701 

1,00 0,987 0,589 0,022 1,699 

4,00 2,00 0,33 

0,50 1,028 0,571 -0,046 1,753 

0,60 1,020 0,575 -0,033 1,741 

0,70 1,012 0,578 -0,020 1,729 

0,80 1,003 0,582 -0,005 1,718 

0,90 0,994 0,586 0,010 1,707 

1,00 0,985 0,589 0,026 1,697 
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4,80 1,20 0,60 

0,50 1,113 0,524 -0,173 1,918 

0,60 1,100 0,531 -0,156 1,889 

0,70 1,087 0,540 -0,137 1,860 

0,80 1,072 0,548 -0,116 1,831 

0,90 1,057 0,557 -0,092 1,800 

1,00 1,039 0,565 -0,064 1,770 

5,20 0,80 0,73 

0,50 1,182 0,474 -0,254 2,101 

0,60 1,170 0,484 -0,242 2,066 

0,70 1,156 0,494 -0,227 2,028 

0,80 1,141 0,505 -0,209 1,987 

0,90 1,123 0,517 -0,187 1,943 

1,00 1,103 0,530 -0,161 1,896 

5,80 0,20 0,93 

0,50 1,339 0,327 -0,174 2,312 

0,60 1,333 0,333 -0,192 2,333 

0,70 1,327 0,340 -0,211 2,351 

0,80 1,319 0,349 -0,230 2,364 

0,90 1,309 0,359 -0,248 2,371 

1,00 1,297 0,372 -0,266 2,368 

Yukarıdaki tablo incelendiğinde gini indeksinin sıfır olduğu 

satır kanalların homojen olduğu durumu gösteriyor. Homojen 

duruma göre sistemdeki ortalama kişi sayısı yaklaşık bire eşit ve 
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çarpıklık katsayısı neredeyse sıfır olduğu için simetrik bir durum söz 

konusudur. Bu durum heterojen durumlar için bir referans noktası 

sağlamaktadır. Düşük heterojenlik durumunda (𝐺 = 0,07) olması 

durumunda yönlendirme olasılığının etkisi zayıf kalmaktadır. 

Yönlendirme olasılığı hızlı kanala doğru büyüdükçe ortalama çok az 

azalıyor, varyans çok az artıyor, çarpıklık simetriden sağa doğru 

artıyor, basıklık ise çok az düşüyor. Orta heterojenlikte (𝐺 = 0,33) 
ise yönlendirme olasılığı ile ortalama düşüyor (aslında birin 

yukarısından bire doğru toparlanıyor), fakat varyans düşük 

heterojenlikte olduğu gibi yine artıyor. Çarpıklık negatif değerlerden 

(sola çarpık durumdan) artarak önce sıfıra (simetrik durumu) daha 

sonra pozitife doğru (sağa çarpık durum) artıyor. Dolayısı ile orta 

heterojenlikte yönlendirme politikası sistemdeki kişi sayısının 

dağılımını ve çarpıklığını etkilediği nümerik olarak 

gözlemlenmektedir. Yani rastgele yönlendirme (eşit olasılıklı seçim) 

altında dağılım sola çarpık iken, hızlı kanala yönlendirme olasılığı 
(𝑝) büyüdükçe dağılım sağa çarpık bir yapıya dönüşüyor. Yüksek 

heterojenlik durumunda (𝐺 ≥ 0,6) ortalama gini indeksi artıkça 

artıyor. Bu durum sistemin dolu olması anlamına geliyor ve âtıl 

zamanın azaldığı ve sistemin verimli çalıştığı durumu ifade ediyor. 

Fakat dolu bir sistemde kayıpların olmasının kaçınılmaz olduğu da 

aşikâr. Varyans kademeli bir azalış gösteriyor. Çarpıklık bu durumda 

daima sola çarpık olarak heterojenliğe bağlı olarak artıyor. Tercih 

politikası bu sola çarpıklığın etkisini azaltsa da dağılımın simetrik 

duruma gelmesi için yeterli olmuyor. Basıklık katsayısı ise 

heterojenliğin artması ile düzgün dağılım basıklığından kalın 

kuyruklu normal dağılım basıklığına doğru bir yaklaşım sergiliyor. 

Bu durum, dağılımın basıklığının artmasına ve uç değerlerin daha 

baskın hâle gelmesine yol açmaktadır. Heterojenlik düzeyi arttıkça 

sistemdeki kişi sayısının dağılımı simetrik yapısını kaybetmekte ve 

belirgin biçimde asimetrik (sola çarpık) hâle gelmektedir. 

Yönlendirme politikası ile çarpıklığın işaret değiştirmesi, 

heterojenliğin yalnızca yayılımı değil, dağılımın yönünü de 

etkilediğini göstermektedir. Yönlendirme politikası, heterojenliğin 

neden olduğu dağılımsal etkileri tamamen ortadan kaldırmamakta; 

ancak dağılımın şeklini kısmen dengeleyici bir rol üstlenmektedir. 
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Sayısal sonuçlar, sunucuların heterojenlik düzeyinin sisteme 

ait ölçümlerde yalnızca ortalamalar için değil, dağılımın şekli 

(simetri ya da çarpık dağılım) içinde önemli etkileri olduğunu 

göstermektedir. Gini indeksi ile ölçülen heterojenlik arttıkça, 

sistemdeki kişi sayısının dağılımı daha asimetrik (sola çarpık) ve 

kalın kuyruklu bir basıklık yapısına dönüşmektedir.  Yönlendirme 

politikası bu etkiyi nispeten azaltsa da, yüksek heterojenlik 

durumlarında dağılımın kuyruk davranışı daha ağır basmaktadır. Bu 

bulgular, heterojen servis sistemlerinde yalnızca ortalama 

performans ölçütlerine odaklanmanın yetersiz olabileceğini ortaya 

koymaktadır. 

Sonuçlar ve Gelecek Çalışmalar 

Bu bölümde, önünde beklemeye müsaade edilmeyen iki 

kanallı heterojen bir servis sisteminde sunucu heterojenliğinin 

sistemdeki kişi sayısının dağılımı üzerindeki etkileri incelenmiştir. 

Sisteme ait kanallardaki hizmet oranlarının ortalamaları arasındaki 

farklılık, Gini indeksi yardımıyla nicel olarak ölçülmüş ve üç 

düzeyde sınıflandırılmıştır (düşük, orta ve yüksek). Ayrıca 

sistemdeki kişi sayısının dağılımından yararlanarak sistemdeki kişi 

sayısının olasılık üreten fonksiyon u elde edilmiştir. Daha sonra 

türev geçişleri ile sıfır etrafında ilk dört moment kapalı formda elde 

edilmiştir. Daha sonra bu momentler yardımı ile sistemdeki kişi 

sayısına ait kitlesel konum, yayılım ve dağılım ölçüleri elde 

edilmiştir. 

Kapalı formda elde edilen kitlesel konum ve dağılım ölçüleri 

sistemin heterojenliği ile nümerik olarak incelenmiştir. Sonuçlar 

sunucuların heterojenliğinin yalnızca ortalama olarak değil, 

dağılımın şeklini de belirgin biçimde etkilediğini göstermektedir. 

Heterojenlik arttıkça sistemdeki kişi sayısının dağılımı simetrik 

yapısını kaybetmekte, daha asimetrik (sola çarpık) ve düzgün 

dağılım basıklığından kalın kuyruklu normal dağılım basıklığına 

doğru bir geçiş sergilemektedir. Bu durum, sistemin çoğu zaman 

düşük doluluk seviyelerinde kalmasına rağmen, nadir gerçekleşen 

yüksek doluluk durumlarının daha baskın hâle gelmesine yol 

açmaktadır. Yönlendirme politikası (hızlı kanalı tercih etme 

olasılığı) bu etkileri kısmen dengeleyebilmekte; ancak yüksek 
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heterojenlik düzeylerinde dağılımın kuyruk davranışı baskın 

gelmekte ve yönlendirme olasılığı baskınlık altında etkisiz 

kalmaktadır.  

Gelecekte maliyet yapısı modele dahil edilerek 

genişletilebilir. Hizmet kananlarının çalıştırılmasından kaynaklanan 

işletme maliyetleri, müşterileri kaybından kaynaklanan maliyetler 

bir maliyet fonksiyonu olarak tasarlanabilir. Özellikle heterojenlik 

düzeyinin zaman içinde değiştiği dinamik kuyruk modellerinde, 

düşük ortalama doluluğa rağmen artan kuyruk kalınlığı, maliyet 

minimizasyonu açısından önemli çözümler sağlayabilir. Bu 

bağlamda, heterojenliğin yalnızca yapısal bir özellik değil, dinamik 

olarak yönetilebilen bir karar değişkeni olarak değerlendirilmesi 

hem teorik hem de uygulamalı çalışan araştırmacılar için ilgi çekici 

olabilir.  

Sonuç olarak, bu çalışma heterojen servis sistemlerinde 

dağılım temelli performans analizinin önemini vurgulamakta ve 

maliyet temelli, dinamik optimizasyon yaklaşımlarına yönelik bir 

orijin noktası olmaktadır. 
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BİYOİSTATİSTİKTE SİMÜLASYON 
YAKLAŞIMLARI VE UYGULAMALARI 

HAKAN ÖZTÜRK1 

Giriş 

Simülasyon, istatistiksel yöntemlerin performansını 
değerlendirmek amacıyla yapay veri üretimi ve bu veriler üzerinde 
sistematik analizler gerçekleştirmeyi sağlayan güçlü bir araçtır. 
Gerçek dünyadan elde edilen veriler; örneklem büyüklüğü, gözlem 
süresi, eksik veri oranı veya etki büyüklüğü gibi açılardan yetersiz 
veya ideal olmayan koşullara sahip olabilir. Bu durumda, 
araştırmacılar gerçekçi fakat kontrol edilebilir senaryolar altında 
yöntemlerin nasıl davrandığını görmek için simülasyonlara 
başvururlar (Burton, Altman, Royston & Holder, 2006). 

Biyoistatistik alanında, özellikle yeni geliştirilmiş 
istatistiksel modellerin uygulanabilirliği, güç analizi, örneklem 
büyüklüğü hesaplaması, çoklu test düzeltmeleri ve eksik veri atama 
yöntemlerinin karşılaştırılması gibi konularda simülasyon 
çalışmaları kritik öneme sahiptir. Simülasyonlar sayesinde 
“gerçeklik” olarak tanımlanabilecek veri üretim mekanizması 

 
1 Araş. Gör. Dr., Aydın Adnan Menderes Üniversitesi, Biyoistatistik AD, Orcid: 
0000-0001-8112-4934  

BÖLÜM 0
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bilinmekte ve buna göre test edilen yöntemin sapma, tutarlılık, girdi 
değişkenlerine duyarlılık gibi özellikleri incelenebilmektedir 
(Morris, White & Crowther, 2019). 

Bu kitap bölümünde amaç, biyoistatistik bağlamında 
simülasyon yaklaşımlarının kuramsal temellerini, türlerini, 
uygulama alanlarını, yazılım altyapılarını ve güncel eğilimlerini 
sistematik şekilde ele almaktır. Özellikle sağlık ve tıp alanında, 
yöntem geliştirme sürecinde veya gözlemsel verilerin doğası gereği 
sınırlı olduğu durumlarda simülasyonun nasıl etkin kullanılabileceği 
üzerinde durulacaktır. Böylece hem araştırmacılar hem de 
uygulayıcılar için rehber niteliğinde bir kaynak sunulması 
hedeflenmektedir. 

SİMÜLASYONUN KURAMSAL TEMELLERİ 

İstatistiksel açıdan simülasyon, olasılıksal süreçlerin 
bilgisayar ortamında defalarca üretilmesi ve bu süreçlerden elde 
edilen sonuçların dağılım özelliklerinin incelenmesine dayanır. 
Temelinde, büyük sayılar yasası ve olasılık kuramının rastgelelik 
ilkesine dayalıdır. Bu yönüyle simülasyon, karmaşık veya analitik 
çözümü olmayan olasılık modellerini yaklaşık yöntemlerle analiz 
etmeye olanak sağlar (Law, 2015). 

Biyoistatistikte kullanılan simülasyonların dayandığı en 
önemli kuramsal yapı Monte Carlo yöntemidir. Monte Carlo 
simülasyonları, rastgele sayılar kullanarak belirli bir istatistiğin 
(örneğin ortalama, varyans, p-değeri) dağılımını tahmin eder. Bu 
yaklaşım, özellikle karmaşık modellerin teorik olarak 
çözülemeyeceği durumlarda kullanılabilir bir alternatif sunar 
(Rubinstein & Kroese, 2017). Örneğin, klinik araştırmalarda bir 
testin Tip I hata oranı, örneklem büyüklüğü veya etki büyüklüğü 
değiştikçe nasıl değişir sorusu, binlerce rastgele veri kümesi 
üretilerek incelenebilir. 
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Simülasyon sürecinde tekrarlama kavramı kritik bir öneme 
sahiptir. Aynı senaryonun binlerce kez tekrar edilmesi, bir istatistiğin 
beklenen değerine yakınsama olanağı sağlar. Bu özellik, olasılık 
kuramının temel ilkelerinden biri olan yakınsama teoremi ile de 
uyumludur: örneklem sayısı arttıkça simülasyon ortalaması, teorik 
beklentiye yaklaşır (Morris et al., 2019). Bu nedenle simülasyon 
sayısının yeterince yüksek seçilmesi (genellikle ≥ 1000) elde edilen 
sonuçların güvenilirliği açısından önemlidir. 

Simülasyon çalışmalarında rastgelelik kontrolü için seed 
(tohum) değeri kullanımı zorunludur. Seed değeri, kullanılan 
rastgele sayı üreteçlerinin aynı koşullarda tekrar çalıştırıldığında 
aynı sonuçları vermesini sağlar. Bu da bilimsel araştırmalarda 
“yeniden üretilebilirlik” ilkesinin temelini oluşturur (Burton et al., 
2006). Özellikle metodolojik çalışmalarda, kullanılan seed 
değerinin, algoritma parametrelerinin ve yazılım sürümlerinin açık 
biçimde raporlanması gereklidir. 

Simülasyonlar genellikle parametrik ve parametrik olmayan 
biçimlerde sınıflandırılır. Parametrik simülasyonlarda veri belirli 
dağılımlardan (örneğin normal, binom, Poisson) üretilirken, 
parametrik olmayan yaklaşımlarda gözlenen veriden doğrudan 
örnekleme yapılır. Bootstrap yöntemi bunun en bilinen örneğidir; 
gerçek veri kümesinden tekrar örnekleme yapılarak istatistiksel 
belirsizlik hesaplanır (Efron & Tibshirani, 1993). 

Son yıllarda biyoistatistikte, klasik Monte Carlo 
simülasyonlarının ötesinde Bayesyen simülasyon teknikleri (örneğin 
Markov Chain Monte Carlo – MCMC) yaygınlaşmıştır. Bu 
yöntemlerde amaç, posterior olasılık dağılımlarından rastgele 
örnekler çekerek karmaşık modellerde parametre tahminleri elde 
etmektir (Gelman et al., 2014). Bu yaklaşım özellikle hiyerarşik 
modeller, çok düzeyli veriler ve eksik veri analizlerinde güçlü bir 
alternatif sunar. 
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Özetle, simülasyonun kuramsal temelleri olasılık teorisi, 
rastgelelik ve tekrar kavramları üzerine inşa edilmiştir. Bu temeller, 
biyoistatistikteki uygulamaların istatistiksel doğruluk, 
genellenebilirlik ve yöntem karşılaştırmaları açısından güvenilir 
biçimde yürütülmesine olanak tanır.  

SİMÜLASYON TÜRLERİ 

Biyoistatistikte simülasyonlar, amaçlarına ve veri üretim 
mekanizmalarına göre farklı biçimlerde sınıflandırılır. Her 
simülasyon türü, belirli istatistiksel problemlere odaklanır ve 
yöntemlerin farklı koşullar altındaki davranışlarını incelemeyi 
amaçlar. En yaygın kullanılan beş temel simülasyon yaklaşımı Tablo 
1’de özetlenmiştir. 

Tablo 1 Biyoistatistikte Temel Simülasyon Türleri ve Kullanım 
Alanları 

Simülasyon Türü Temel Özellik Biyoistatistikte Kullanım 
Alanı 

Monte Carlo Rastgele veri üretimi, 
ortalama davranışın 
incelenmesi 

Güç, Tip I hata, model 
doğruluğu 

Bootstrap Gerçek veriden tekrar 
örnekleme 

Güven aralığı, yanlılık 
düzeltmesi 

Bayesyen Posterior dağılımlardan 
örnekleme 

Hiyerarşik modeller, eksik 
veri 

Mikrosimülasyon Birey düzeyinde süreç 
modelleme 

Epidemiyoloji, sağlık 
ekonomisi 

Agent-Based Model Etkileşimli ajan temsili Bulaşıcı hastalık yayılımı, 
davranış modelleri 

Monte Carlo Simülasyonu 

Monte Carlo simülasyonları, rastgele sayı üretimi yoluyla 
olasılık dağılımlarından tekrar tekrar örneklem alarak bir istatistiğin 
dağılımını tahmin etmeyi amaçlar. Bu yöntem, karmaşık veya 
analitik çözümü bulunmayan modellerin davranışını anlamaya 
olanak sağlar (Rubinstein & Kroese, 2017). 
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Biyoistatistikte, özellikle testlerin güç ve Tip I hata oranlarını 
incelemek, çoklu karşılaştırma düzeltmelerinin performansını 
değerlendirmek ve örneklem büyüklüğünün belirlenmesi için 
sıklıkla kullanılır. Örneğin, iki grup arasındaki ortalama farkını test 
eden bağımsız örneklemeler t-testinin farklı örneklem 
büyüklüklerinde gücü Monte Carlo yaklaşımıyla kolayca simüle 
edilebilir (Burton et al., 2006). 

Bootstrap Simülasyonu 

Bootstrap yöntemi, parametrik bir dağılım varsayımı 
yapmadan, mevcut veri kümesinden tekrar örnekleme yoluyla 
istatistiksel belirsizliğin tahmin edilmesini sağlar (Efron & 
Tibshirani, 1993). 

Biyoistatistiksel uygulamalarda bootstrap simülasyonlar; 
güven aralıklarının oluşturulması, parametre tahminlerindeki 
yanlılığın (bias) düzeltilmesi ve küçük örneklemlerde yöntemlerin 
kararlılığının değerlendirilmesinde önemli bir rol oynar. Ayrıca, 
medyan ya da oran gibi istatistikler söz konusu olduğunda, 
parametrik varsayımların sağlanmadığı durumlarda bootstrap 
yaklaşımı sıklıkla tercih edilir. 

Bayesyen Simülasyon 

Bayesyen simülasyonlar, olasılık dağılımlarının doğrudan 
hesaplanamadığı durumlarda Markov Chain Monte Carlo (MCMC) 
algoritmalarını kullanarak posterior dağılımlardan örnekler üretir 
(Gelman et al., 2014). 

Günümüzde hiyerarşik modeller, çok düzeyli veri yapıları ve 
eksik veri problemlerinin çözümünde en güçlü yöntemlerden biridir. 
Örneğin, bir klinik çalışmada hasta grupları arasındaki varyasyonun 
hem grup içi hem de gruplar arası belirsizliklerle birlikte 
modellenmesi MCMC simülasyonlarıyla gerçekleştirilebilir. 
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Mikrosimülasyon 

Mikrosimülasyon veya birey temelli simülasyon, birey 
düzeyinde özelliklerin zaman içinde nasıl değiştiğini izler. Her bir 
bireyin belirli bir olasılıkla hastalanması, tedavi alması veya ölmesi 
gibi süreçler, rassal geçiş olasılıklarıyla modellenir (Karnon, 2003). 

Bu yaklaşım özellikle epidemiyoloji, sağlık ekonomisi ve 
politika analizlerinde kullanılır. Örneğin, bir aşı programının toplum 
düzeyinde etkisi, bireylerin enfeksiyon geçirme olasılıklarına dayalı 
mikrosimülasyonlarla tahmin edilebilir. 

Sistem ve Agent-Based Simülasyonlar 

Sistem dinamiği ve agent-based modeller, makro düzeyde 
karmaşık sağlık sistemlerini veya bireyler arası etkileşimleri analiz 
etmek için kullanılır. Agent-based modeller, her bir bireyin “ajan” 
olarak davranış kurallarına sahip olduğu ve bu etkileşimlerin 
popülasyon düzeyinde sonuçlar ürettiği simülasyonlardır (Macal & 
North, 2010). 

Biyoistatistikte bu yöntemler, bulaşıcı hastalık yayılım 
modelleri, davranışsal müdahalelerin etkisi ve sağlık hizmeti 
kullanım dinamikleri gibi konularda kullanılmaktadır. 

 

SİMÜLASYON SÜRECİ 

Simülasyon çalışmaları, yalnızca rastgele veri üretiminden 
ibaret olmayıp dikkatli bir planlama, açık senaryo tanımı ve 
sistematik raporlama gerektirir. Biyoistatistikte yürütülen bir 
simülasyon araştırmasının geçerliliği, sürecin her adımında yapılan 
tercihlerle doğrudan ilişkilidir (Morris, White & Crowther, 2019). 
Bu nedenle, tasarım ve yürütme aşamalarının belirli standartlara 
uygun biçimde gerçekleştirilmesi önerilir (Burton et al., 2006). 

Aşağıda, simülasyon süreci altı temel adımda özetlenmiştir. 
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Amaç ve Tasarımın Belirlenmesi 

Bir simülasyon çalışmasının ilk adımı, araştırma sorusunun 
ve amacın net biçimde tanımlanmasıdır. Araştırmacı hangi yöntemi, 
hangi koşullar altında test ettiğini ve hangi ölçütlerle performans 
değerlendirmesi yapacağını önceden belirtmelidir (White et al., 
2011). 

Örneğin, “farklı örneklem büyüklüklerinde t-testinin Tip I 
hata oranı değişir mi?” veya “Benjamini–Hochberg ve Holm 
yöntemleri arasında FDR (False Discovery Rate) kontrol 
performansı açısından fark var mı?” gibi açık sorular 
tanımlanmalıdır. 

Bu aşamada ayrıca aşağıdaki tasarım bileşenleri belirlenir: 

• Senaryoların sayısı ve kombinasyonları (ör. örneklem 
büyüklüğü, varyans, etki büyüklüğü) 

• Tekrarlama sayısı — genellikle 1000 veya daha fazla 
önerilir 

• Korelasyon yapısı ve dağılım varsayımları 

• Modelin türü (ör. parametrik, parametrik olmayan, 
Bayesyen) 

Senaryo ve Veri Üretim Mekanizması 

Simülasyonun ikinci adımı, veri üretim mekanizmasının 
tanımlanmasıdır. Bu aşamada araştırmacı hangi değişkenlerin hangi 
dağılımlardan üretileceğini, aralarındaki ilişkileri ve olası hata 
yapısını açık biçimde belirtmelidir (Law, 2015). 
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Örneğin: 

• Sürekli değişkenler için normal (𝑁𝑁(𝜇𝜇,𝜎𝜎2)) veya log-
normal dağılımlar, 

• Kategorik değişkenler için Bernoulli veya multinomiyal 
dağılımlar, 

• Korelasyonlu yapılar için çok değişkenli normal 
dağılımlar tercih edilebilir. 

Ayrıca, eksik veri veya ölçüm hatası gibi durumlar 
incelenmek isteniyorsa, bunlar da veri üretim aşamasına dahil 
edilmelidir. Bu bağlamda, veri üretim modeli ile analiz modelinin 
birbirinden ayrılması, yöntemlerin yanlılık ve varyans açısından 
performanslarının daha sağlıklı biçimde değerlendirilmesine olanak 
sağlar (Morris et al., 2019). 

Modelleme ve Analiz Aşaması 

Üretilen her simülasyon tekrarında ilgili istatistiksel yöntem 
uygulanır. Bu adımda amaç, her senaryoda yöntemin ne ölçüde 
doğru sonuç verdiğini test etmektir. 

Kullanılabilecek yöntemler arasında klasik parametrik testler 
(ör. t-testi, ANOVA), regresyon modelleri (ör. doğrusal, lojistik, 
Poisson) veya çoklu karşılaştırma düzeltmeleri (ör. BH, BY, Holm) 
bulunabilir. 

Her bir yinelemede elde edilen sonuçlar (örneğin p-değeri, 
katsayı tahmini, model uyum ölçütü) kaydedilir. Böylece binlerce 
tekrar sonunda yöntemin genel performansına ilişkin istatistiksel 
özetler hesaplanabilir. 

Performans Ölçütlerinin Hesaplanması 

Simülasyonun başarısı, tanımlanmış performans ölçütleri 
üzerinden değerlendirilir. Bu ölçütler, simülasyonun amacına göre 
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değişmekle birlikte, genellikle aşağıdakileri kapsar (Burton et al., 
2006; Morris et al., 2019): 

• Tip I hata oranı: Yanlış pozitif sonuçların oranı 

• Güç: Gerçek bir etkinin tespit edilme olasılığı 

• Sapma: Tahminin gerçek değerden ortalama farkı 

• Varyans veya RMSE: Tahminlerin yayılımı 

• FDR / FWER: Çoklu karşılaştırmalarda hata kontrolü 

• Kapsama olasılığı: Güven aralığının gerçek değeri 
kapsama oranı 

Performans ölçütleri sadece tek bir senaryo için değil, farklı 
parametre kombinasyonları altında da karşılaştırılmalı; sonuçlar 
tablo veya grafik biçiminde özetlenmelidir. 

Sonuçların Özetlenmesi ve Yorumlanması 

Her simülasyon senaryosundan elde edilen sonuçlar 
birleştirilerek genel eğilimler belirlenir. Ortalama değerler, standart 
sapmalar, yüzdelikler veya oranlar kullanılabilir. Bulgular 
yorumlanırken; 

• Simülasyon parametrelerindeki değişimlerin performans 
ölçütleri üzerindeki etkisi, 

• Örneklem büyüklüğü veya varyans gibi faktörlerin güce 
etkisi, 

• Modeller arası karşılaştırmalar açık biçimde 
sunulmalıdır. 

Bu aşamada, görsel sunumlar (ör. boxplot, ısı haritaları, eğri 
grafikleri) okuyucunun senaryolar arasındaki farklılıkları kolayca 
görmesini sağlar. 
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Tekrarlanabilirlik ve Raporlama İlkeleri 

Son adım, simülasyonun yeniden üretilebilir biçimde 
raporlanmasıdır. Morris ve ark. (2019), simülasyon çalışmalarında 
aşağıdaki bilgilerin mutlaka raporlanmasını önermektedir: 

• Amaç ve senaryoların açık tanımı 

• Veri üretim mekanizması ve dağılımlar 

• Analiz yöntemi ve kullanılan yazılım 

• Performans ölçütleri ve hesaplama biçimleri 

• Tekrarlama sayısı ve seed değeri 

• Sonuçların özetlenme biçimi 

Bu ilkeler, “yeniden üretilebilir araştırma” yaklaşımının 
temelini oluşturur. Ayrıca, kullanılan kodların, parametrik değerlerin 
ve yazılım sürümlerinin açık erişimle paylaşılması, bilimsel 
şeffaflığı ve güvenilirliği artırır (Peng, 2011). 

 

SİMÜLASYONUN BİYOİSTATİSTİKTE UYGULAMA 
ALANLARI 

Simülasyon yöntemleri, biyoistatistikte hem metodolojik 
hem de uygulamalı araştırmaların temel araçlarından biri hâline 
gelmiştir. Gerçek dünyadan elde edilen sağlık verileri çoğu zaman 
eksik, dengesiz veya karmaşık yapıda olduğundan, araştırmacıların 
bu tür zorluklara karşı yöntemsel dayanıklılığı test etmeleri gerekir. 
Simülasyonlar, istatistiksel yöntemlerin farklı koşullar altında nasıl 
performans gösterdiğini değerlendirmek için kontrollü bir ortam 
sağlar (Burton et al., 2006; Morris, White & Crowther, 2019). 

Aşağıda, biyoistatistikte yaygın olarak kullanılan başlıca 
uygulama alanları özetlenmiştir. 
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Klinik Deneme Tasarımları ve Güç Analizleri 

Klinik araştırmalarda istatistiksel güç, örneklem büyüklüğü 
ve hata oranı arasındaki ilişki çoğu zaman teorik olarak 
belirlenemeyecek kadar karmaşık olabilir. Bu durumda, 
simülasyonlar farklı örneklem büyüklükleri, değişkenlik düzeyleri 
ve etki büyüklükleri altında testin performansını değerlendirmek için 
kullanılır (Vallat et al., 2021). 

Örneğin, bir faz III klinik çalışmada iki tedavi grubunun 
ortalama iyileşme sürelerinin karşılaştırılacağı varsayılsın. 
Araştırmacı, etki büyüklüğünü (δ) ve varyansı (σ2) değiştirerek 1000 
tekrarlı simülasyonlar aracılığıyla testin gücünü (1-β) tahmin 
edebilir. Böylece örneklem büyüklüğünün klinik olarak anlamlı farkı 
tespit etmek için yeterli olup olmadığı belirlenir. 

Simülasyonlar ayrıca uyarlanabilir klinik denemelerin 
planlanmasında da kullanılır. Bu tür çalışmalarda, ara analizler 
sonrası randomizasyon oranı veya örneklem büyüklüğü yeniden 
düzenlenebilir. Simülasyonlar bu adaptif kararların Tip I hata 
oranına ve güce etkisini önceden değerlendirmek için kritik bir rol 
oynar (Lee & Tsiatis, 2020). 

Eksik Veri Analizleri 

Eksik veri, biyoistatistikte en sık karşılaşılan metodolojik 
sorunlardan biridir. Eksik veri mekanizması; tamamen rastgele eksik 
(MCAR), rastgele eksik (MAR) veya rastgele olmayan eksik 
(MNAR) olabilir (Little & Rubin, 2019). 

Simülasyonlar bu mekanizmaların yöntem performansına 
etkisini değerlendirmek için kullanılır. Örneğin, çoklu atama 
yöntemleri (MICE, EM, veya missForest) farklı eksiklik oranlarında 
karşılaştırılabilir. Her senaryoda tahminlerin sapma, varyans ve 
kapsama olasılığı değerleri hesaplanarak hangi yöntemin daha 
sağlam olduğu belirlenir (Morris et al., 2019). 
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Bu yaklaşım, özellikle klinik verilerin sıklıkla eksik olduğu 
uzunlamasına çalışmalarda büyük önem taşır. Simülasyon sonuçları, 
uygun atama yönteminin seçilmesine yardımcı olur. 

Çoklu Karşılaştırma ve Hata Kontrolü 

Çoklu hipotez testleri, özellikle genomik, proteomik veya 
sağlık bilişimi çalışmalarında yaygındır. Ancak çok sayıda test 
yapılması yanlış pozitif sonuçların artmasına neden olur. 

Simülasyonlar, bu durumda kullanılan düzeltme 
yöntemlerinin (örneğin Bonferroni, Holm, Benjamini–Hochberg, 
Benjamini–Yekutieli) FDR ve FWER (Family-Wise Error Rate) 
kontrol performanslarını karşılaştırmak için kullanılır (Chen et al., 
2017). 

Örneğin, ilişkili değişkenlerden türetilen 10000 testin yer 
aldığı bir senaryo altında Benjamini–Hochberg (BH) ve Benjamini–
Yekutieli (BY) yöntemleri simüle edilerek FDR kontrol düzeyi ve 
istatistiksel güç açısından farkları değerlendirilebilir. Bu tür 
simülasyonlar, özellikle yüksek boyutlu verilerde hangi düzeltme 
yönteminin tercih edilmesi gerektiğine dair pratik öneriler sunar. 

Risk Skoru ve Nomogram Geliştirme 

Klinik risk tahmin modellerinde (örneğin mortalite, 
komplikasyon veya depresyon riski), modelin güvenilirliği hem 
örneklem büyüklüğüne hem de değişken seçimi stratejisine bağlıdır. 

Simülasyon çalışmaları, farklı örneklem büyüklükleri ve olay 
sıklıkları altında bir modelin kalibrasyon (tahmin edilen ve gözlenen 
olasılıklar arasındaki uyum) ve diskriminasyon (ayırma gücü, örn. 
AUC) performanslarını test etmek için kullanılır (Steyerberg, 2019). 

Örneğin, lojistik regresyonla oluşturulan bir risk skoru 
modelinde, varyans büyüklüğü veya bağımsız değişken sayısı 
değiştirildiğinde AUC’nin nasıl etkilendiği simülasyonlarla 
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incelenebilir. Böylece, modelin örnekleme duyarlılığı ve 
genellenebilirliği değerlendirilir. 

Yüksek Boyutlu Veri ve Makine Öğrenmesi Uygulamaları 

Simülasyonlar, makine öğrenmesi (ML) algoritmalarının 
performanslarını karşılaştırmak için sıklıkla kullanılır (Boulesteix et 
al., 2020). 

Gerçek veriler genellikle sınırlı veya dengesiz sınıf yapısına 
sahip olduğundan, simülasyonlar belirli korelasyon, etki büyüklüğü 
veya örneklem senaryolarında ML yöntemlerinin doğruluk, F1 skoru 
veya ROC-AUC gibi metriklerini inceleme olanağı sağlar. 

Ayrıca, yüksek boyutlu veri ortamlarında (p > n) değişken 
seçimi algoritmalarının hata oranları, yanlış keşif ve tahmin gücü 
bakımından karşılaştırılmasında simülasyonlar önemli rol oynar. Bu 
tür çalışmalar, özellikle genomik veya metabolomik veri 
analizlerinde metodolojik güvenilirliğin sağlanması açısından 
değerlidir. 

Sağlık Politikası ve Ekonomik Değerlendirmeler 

Sağlık politikalarının etkilerini doğrudan gerçek verilerle 
değerlendirmek her zaman mümkün değildir. Bu nedenle 
mikrosimülasyon ve sistem dinamiği modelleri sağlık ekonomisi 
çalışmalarında sıkça kullanılır (Karnon, 2003; Brennan et al., 2006). 

Bu tür simülasyonlarda bireylerin yaşam boyu maliyet, 
tedavi, hastalık geçirme ve ölüm olasılıkları modellenir. Örneğin, bir 
tarama programının maliyet-etkililiği farklı katılım oranları ve 
hastalık insidansları altında simüle edilerek değerlendirilebilir. 

Eğitimsel ve Metodolojik Çalışmalar 

Simülasyon, aynı zamanda biyoistatistik eğitiminde de güçlü 
bir öğretim aracıdır. Öğrenciler, istatistiksel kavramların soyut 
doğasını somutlaştırmak için simülasyonları kullanabilir; örneğin, 
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merkezi limit teoreminin veya örneklem dağılımlarının davranışı 
binlerce tekrarlı simülasyonla gösterilebilir (Kaplan & Haile, 2019). 

Metodolojik açıdan ise simülasyonlar, yeni istatistiksel 
yöntemlerin performansını değerlendirmede yaygın ve güçlü bir 
araçtır. 

 

YAZILIM VE KODLAMA ALTYAPISI 

Biyoistatistikte simülasyon çalışmaları, günümüzde yoğun 
biçimde bilgisayar destekli ortamlarda yürütülmektedir. 
Simülasyonun temelinde rastgele veri üretimi, tekrarlamalı 
hesaplama ve sonuçların özetlenmesi bulunduğundan, kullanılan 
yazılım altyapısının esnek, tekrarlanabilir ve paralel işlemeye uygun 
olması büyük önem taşır (Burton et al., 2006; Morris, White & 
Crowther, 2019). 

Simülasyonun başarılı yürütülebilmesi için yazılımın şu 
özellikleri sağlaması gerekir: 

• Rastgele sayı üreteçlerinin güvenilirliği (deterministik 
fakat tekrarlanabilir) 

• Yüksek performanslı döngü ve vektörleştirilmiş 
hesaplama 

• Paralel işlem desteği (çok çekirdekli CPU veya bulut 
tabanlı işlem) 

• Sonuçların kolayca özetlenip görselleştirilebilmesi 

• Reprodüksiyon ve açık kod paylaşımı olanakları 

Bu çerçevede, biyoistatistikte en yaygın kullanılan 
yazılımlardan ikisi R ve Python’dur.  
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R Ortamında Simülasyon Altyapısı 

R programlama dili, istatistiksel hesaplama ve görselleştirme 
olanakları açısından en köklü altyapılardan biridir (R Core Team, 
2024). Özellikle simülasyon temelli çalışmalar için geliştirilmiş çok 
sayıda paket içerir (Tablo 2). 

R ortamı, özellikle akademik ve metodolojik araştırmalarda 
tercih edilir; çünkü istatistiksel modelleme, veri manipülasyonu ve 
sonuç görselleştirmeyi tek çatı altında birleştirir. 

Ayrıca, R Markdown ve Quarto altyapıları sayesinde 
simülasyon kodu, sonuç tablosu ve açıklama metinleri tek bir 
yeniden üretilebilir rapor hâlinde sunulabilir. Bu tür raporlamalarda 
set.seed() fonksiyonunun kullanılması da önemlidir; çünkü bu 
fonksiyon, tüm rastgele sayı üretim süreçlerinin aynı koşullar altında 
tekrarlandığında aynı sonuçları vermesini sağlar ve böylece 
araştırmanın yeniden üretilebilirliği güvence altına alınır (Xie, 
Allaire & Grolemund, 2022; Peng, 2011). 

Tablo 2. R Ortamında Simülasyon Çalışmalarında Yaygın 
Kullanılan Paketler 

Paket Temel İşlev Öne Çıkan Kullanım 
Alanı 

simstudy Parametrik veri üretimi ve 
senaryo tanımı 

Klinik deneme, 
epidemiyolojik 
simülasyonlar 

MonteCarlo Çoklu senaryolu Monte 
Carlo deneylerinin yönetimi 

Güç analizi, hata oranı 
çalışmaları 

mvtnorm Çok değişkenli normal 
dağılımlardan örnekleme 

Korelasyon yapılı veri 
üretimi 

miceadds Eksik veri simülasyonları ve 
çoklu atama 

MCAR–MAR 
senaryoları, yöntem 
karşılaştırmaları 

doParallel, foreach Paralel simülasyon ve dağıtık 
işlem 

Büyük tekrarlı 
çalışmalar 

ggplot2, reshape2 Sonuçların görsel özeti Boxplot, ısı haritası, 
dağılım grafikleri 

 
--48--



Python Ortamında Simülasyon Altyapısı 

Python, veri bilimi ve makine öğrenmesi alanlarında yaygın 
olarak kullanılan açık kaynaklı bir programlama dilidir. 

Son yıllarda NumPy, SciPy ve PyMC gibi kütüphaneler 
sayesinde biyoistatistiksel simülasyon çalışmalarında da güçlü bir 
seçenek hâline gelmiştir (Van Rossum & Drake, 2023). Python’un 
simülasyon çalışmalarında en sık kullanılan kütüphaneleri Tablo 3’te 
özetlenmiştir. 

Python’un önemli avantajları arasında hesaplama verimliliği, 
geniş ekosistemi ve makine öğrenmesi kütüphaneleriyle kolay 
entegrasyonu yer alır. rneğin, bir biyoistatistiksel modelden elde 
edilen çıktılar doğrudan TensorFlow veya scikit-learn ortamlarında 
kullanılarak modelleme ve karşılaştırma süreçlerine aktarılabilir. Bu 
özellik, özellikle simülasyon tabanlı makine öğrenmesi 
uygulamalarında (ör. model performansı karşılaştırmaları, 
hiperparametre duyarlılığı analizleri) Python’u öne çıkarır 
(Boulesteix et al., 2020). 

Tablo 3. Python Ortamında Simülasyon Çalışmalarında Yaygın 
Kullanılan Kütüphaneler 

Paket Temel İşlev Öne Çıkan Kullanım 
Alanı 

numpy.random Rastgele sayı üretimi 
(normal, binom, Poisson vb.) 

Veri üretimi ve temel 
simülasyonlar 

scipy.stats Olasılık dağılımları ve 
istatistiksel testler 

Parametrik–parametrik 
olmayan testler 

pandas Veri çerçevesi yapısı, özet 
istatistikler 

Senaryo çıktılarının 
saklanması 

joblib, 
multiprocessing 

Paralel hesaplama Çok tekrarlı 
simülasyonlar 

PyMC Bayesyen MCMC 
simülasyonları 

Posterior tahmin, 
hiyerarşik modeller 

Matplotlib, Seaborn Görselleştirme Dağılım grafikleri, 
korelasyon matrisleri 
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Yazılım Seçimi ve Entegrasyon İlkeleri 

Her iki yazılım da güçlüdür; ancak tercih genellikle 
araştırmanın niteliğine bağlıdır. 

• R, istatistiksel modelleme ve metodolojik araştırmalar 
için uygundur. 

• Python, büyük veri, derin öğrenme veya yüksek 
performanslı hesaplama gerektiren durumlarda avantaj 
sağlar. 

Güncel eğilim, bu iki ortamın entegrasyonuna yönelmiştir. R 
kullanıcıları “reticulate” paketiyle Python kodlarını doğrudan R 
ortamında çalıştırabilir; benzer şekilde Python kullanıcıları “rpy2” 
modülüyle R fonksiyonlarına erişebilir. Bu sayede simülasyon 
sürecinde istatistiksel analiz, görselleştirme ve makine öğrenmesi 
modülleri tek bir çalışma akışında birleştirilebilir (Tippmann, 2015). 
Ayrıca, GitHub, Zenodo veya Open Science Framework (OSF) gibi 
açık erişim platformlarında simülasyon kodlarının paylaşılması, hem 
bilimsel şeffaflığı hem de metodolojik etkiyi artırır. 

 

SİMÜLASYON TASARIMI VE RAPORLAMA İLKELERİ 

Simülasyon çalışmaları, yalnızca veri üretimi ve analizinden 
ibaret değildir; aynı zamanda sistematik bir araştırma tasarımı 
sürecini de içerir. Simülasyonun amacı, kapsamı, veri üretim modeli 
ve performans ölçütleri net olarak tanımlanmadığında elde edilen 
sonuçlar metodolojik olarak güvenilirliğini yitirir (Morris, White & 
Crowther, 2019). Bu nedenle, simülasyon araştırmalarında tasarım, 
yürütme ve raporlama aşamaları belirli standartlara uygun biçimde 
planlanmalıdır. 
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Simülasyon Tasarımında Temel İlkeler 

İyi tasarlanmış bir simülasyon, hem istatistiksel hem de 
sayısal açıdan tutarlı sonuçlar üretir. Burton ve ark. (2006), 
biyoistatistikte etkili bir simülasyonun beş ana tasarım bileşenini şu 
şekilde tanımlamıştır: 

• Amaç: Simülasyonun hangi istatistiksel problemi test 
ettiği açıkça belirtilmelidir. Örneğin, “Benjamini–
Hochberg ve Holm yöntemleri arasında FDR kontrol 
düzeyinde fark var mı?” gibi doğrudan ölçülebilir bir 
araştırma sorusu formüle edilmelidir. 

• Veri üretim mekanizması: Değişkenlerin dağılımı, 
korelasyon yapısı ve örneklem büyüklükleri 
tanımlanmalı; kullanılan rastgelelik kaynakları ve 
olasılık varsayımları raporlanmalıdır. 

• Analiz yöntemi: Her simülasyon döngüsünde uygulanan 
istatistiksel test veya model açıkça belirtilmelidir. 

• Performans ölçütleri: Güç, Tip I hata, sapma, RMSE, 
FDR veya kapsama oranı gibi ölçütlerin hesaplanma 
biçimi açıkça tanımlanmalıdır. 

• Tekrarlama yapısı: Simülasyonun kaç kez tekrarlanacağı 
ve rastgele seed değerinin nasıl kontrol edildiği 
belirtilmelidir. 

Bu unsurların açık biçimde tanımlanması hem sonuçların 
karşılaştırılabilirliğini hem de metodolojik geçerliliği artırır. 

Simülasyon Çalışmalarında Raporlama Standartları 

Simülasyon sonuçlarının bilimsel yayınlarda yer alabilmesi 
için şeffaf ve yeniden üretilebilir biçimde raporlanması gerekir. 
Morris ve ark. (2019) ile White ve ark. (2011) tarafından önerilen 
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raporlama çerçevesine göre bir simülasyon çalışması şu başlıkları 
içermelidir: 

• Giriş: Simülasyonun amacı, ilgili literatürdeki boşluk ve 
araştırma gerekçesi. 

• Yöntem: Veri üretim modeli (ör. 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖 ,
𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2)). 

− Uygulanan istatistiksel yöntem(ler) ve parametre 
değerleri. 

− Simülasyon sayısı, örneklem büyüklüğü ve 
dağılım varsayımları. 

− Kullanılan yazılım, paket ve sürümler. 

• Sonuçlar: 

− Performans ölçütlerinin tablo veya grafiklerle 
özeti. 

− Senaryolar arasındaki farkların yorumu. 

− Yöntemlerin göreli üstünlükleri ve sınırlılıkları. 

• Tartışma: 

− Bulguların genellenebilirliği, model 
varsayımlarının kısıtları ve olası yanlılık 
kaynakları. 

− Gelecekteki çalışmalar için öneriler. 

Bu çerçeve, simülasyon çalışmalarında şeffaflık, 
karşılaştırılabilirlik ve yeniden üretilebilirlik ilkelerinin korunmasını 
sağlar (Peng, 2011). 
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Yeniden Üretilebilirlik ve Şeffaflık 

Simülasyonların doğası gereği rastgelelik içerdiğinden, her 
çalışmada kullanılan seed değerleri, paket sürümleri ve kod akışı 
mutlaka raporlanmalıdır. 

Araştırmanın yeniden üretilebilirliğini güvence altına almak 
için aşağıdaki uygulamalar önerilmektedir (Sandve et al., 2013; 
Peng, 2011): 

• Kodların GitHub, Zenodo veya Open Science 
Framework (OSF) gibi açık erişim platformlarında 
paylaşılması, 

• Kullanılan yazılımların sürümlerinin ve işletim ortamının 
(ör. R 4.5.2, Python 3.13) belirtilmesi, 

• Tüm analizlerin R Markdown, Quarto veya Jupyter 
Notebook biçiminde tek bir belge altında sunulması, 

• Simülasyonların tamamının belirli bir random seed ile 
çalıştırılması, 

• Sonuçların elde edilmesinde kullanılan tüm 
fonksiyonların ve parametrelerin ek materyal olarak 
sunulması. 

Bu uygulamalar hem araştırma şeffaflığını hem de 
metodolojik güvenilirliği artırır. Özellikle metodolojik biyoistatistik 
çalışmalarında, kod paylaşımı ve yeniden üretilebilirlik raporlaması 
editoryal bir gereklilik hâline gelmiştir (Stodden et al., 2016). 

Görselleştirme ve Bulguların Sunumu 

Simülasyon sonuçlarının yalnızca tablo biçiminde değil, aynı 
zamanda görsel olarak da sunulması önerilir. Boxplot’lar, güç 
eğrileri, FDR-FWER ısı haritaları ve hata-varyans dağılımları 
yöntemlerin karşılaştırılmasında oldukça etkilidir (Burton et al., 
2006). 
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Ayrıca, sonuç grafiklerinde kullanılan renk paletleri ve eksen 
aralıkları standartlaştırılmalı; görseller, senaryolar arası farkları 
sezgisel biçimde yansıtmalıdır. 

Bu tür grafikler, hem istatistiksel yorumlamayı kolaylaştırır 
hem de okuyucunun farklı yöntemlerin performansını hızla 
karşılaştırmasına olanak tanır. 

Etik İlkeler ve Yayın Standartları 

Simülasyon çalışmaları doğrudan insan verisi içermese de, 
bilimsel dürüstlük ve şeffaflık açısından etik ilkelere tabidir. 

• Kullanılan veri setleri (örneğin açık erişimli klinik 
veriler) etik izin gerektiriyorsa kaynak belirtilmelidir. 

• Simülasyon sonuçları, gerçek veriyle birebir örtüşecek 
şekilde manipüle edilmemelidir. 

• Model sınırlılıkları ve potansiyel yanlılıklar dürüst 
biçimde raporlanmalıdır. 

Bu ilkeler, biyoistatistikte metodolojik araştırmaların 
güvenilirliğini ve akademik bütünlüğünü korur (Stodden et al., 
2016). 

Sonuç 

Simülasyon tasarımı ve raporlama ilkeleri, biyoistatistik 
araştırmalarının metodolojik kalitesini belirleyen kritik unsurlardır. 

Açıkça tanımlanmış senaryolar, şeffaf veri üretim süreçleri 
ve yeniden üretilebilir raporlama yaklaşımları, yalnızca bir 
simülasyonun doğruluğunu değil, aynı zamanda bilimsel topluluğa 
olan katkı değerini de artırır. 

Günümüzde bu ilkelerin sistematik biçimde uygulanması, 
metodolojik dergilerde yayın olasılığını artırmakta ve açık bilim 
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standartlarıyla uyumlu bir araştırma kültürünün gelişimini 
desteklemektedir. 

 

GÜNCEL YÖNTEMLER VE ARAŞTIRMA EĞİLİMLERİ 

Biyoistatistikte simülasyon yöntemleri, klasik Monte Carlo 
ve bootstrap yaklaşımlarının ötesine geçerek giderek daha karmaşık 
modelleme teknikleriyle bütünleşmektedir. Bilgisayar gücündeki 
artış, açık kaynak yazılımların gelişimi ve yüksek boyutlu verinin 
yaygınlaşması, simülasyon tabanlı yöntemleri hem teorik hem de 
uygulamalı araştırmalarda vazgeçilmez hâle getirmiştir (Morris, 
White & Crowther, 2019). Güncel eğilimler, yalnızca doğruluk 
ölçümüyle sınırlı olmayan, aynı zamanda sağlamlık (robustluk), 
nedensellik, yapay zekâ destekli simülasyon ve yüksek boyutlu veri 
modelleme alanlarında yeni olanaklar sunmaktadır. 

Robust ve Kantil Tabanlı Simülasyon Yaklaşımları 

Klasik istatistiksel modeller genellikle normal dağılım 
varsayımına dayanır; ancak sağlık verilerinde sıklıkla ağır kuyruklu, 
asimetrik veya uç değer içeren dağılımlar gözlenir. Bu durum, 
geleneksel yöntemlerin hatalı sonuçlar üretmesine yol açabilir. 

Son yıllarda, bu tür durumlara dayanıklı robust ve kantil 
tabanlı simülasyonlar geliştirilmiştir (Koenker, 2022). Bu 
yaklaşımlar, sadece ortalama etkiyi değil, aynı zamanda dağılımın 
farklı kantillerinde (örneğin 0.25, 0.5, 0.75) parametre davranışını 
analiz etmeyi mümkün kılar. 

Örneğin, klinik çalışmalarda tedavi etkisinin medyan veya 
üst kantillerde daha belirgin olup olmadığı, kantil regresyon tabanlı 
simülasyonlarla değerlendirilebilir. Bu yöntemler, özellikle 
heterojen popülasyon yapısına sahip epidemiyolojik veya pediatrik 
verilerde kullanıldığında yüksek duyarlılık sağlar. 
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Bayesyen ve Yarı-Parametrik Simülasyon Yaklaşımları 

Bayesyen yöntemlerin popülaritesi, bilgisayar tabanlı 
MCMC algoritmalarının erişilebilir hâle gelmesiyle önemli ölçüde 
artmıştır (Gelman et al., 2014). Güncel eğilimler, klasik Monte Carlo 
simülasyonlarının ötesine geçerek Bayesyen Monte Carlo (BMC) ve 
Targeted Maximum Likelihood Estimation (TMLE) gibi yarı-
parametrik modellerin simülasyon tabanlı değerlendirilmesine 
odaklanmaktadır (van der Laan & Rose, 2018). 

Bu tür modellerde, önsel dağılımlar belirsiz veya zayıf 
bilgiye dayalı olsa bile, simülasyon yoluyla posterior dağılımın 
tahmin edilmesi sağlanır. 

Örneğin, bir tedavinin klinik etkinliği hakkındaki ön 
bilgilerin posterior dağılım üzerindeki etkisi, farklı prior 
senaryolarının simüle edilmesiyle test edilebilir. 

Bu yaklaşım, özellikle adaptif klinik denemelerde karar 
verme süreçlerinin optimizasyonunda kullanılmaktadır. 

Yapay Zekâ Destekli Simülasyonlar 

YZ ve ML yöntemlerinin biyoistatistikle bütünleşmesi, 
simülasyon temelli araştırmalarda yeni bir paradigma yaratmıştır 
(Boulesteix et al., 2020). 

YZ destekli simülasyonlarda amaç, sadece önceden 
belirlenmiş parametrelerle veri üretmek değil, aynı zamanda verinin 
yapısını öğrenebilen ve gerçek veriye benzer sentetik veri setleri 
üretebilen modeller geliştirmektir. 

Bu alandaki en yeni yöntemlerden biri Generative 
Adversarial Networks (GANs) temelli simülasyonlardır. GAN’ler, 
özellikle nadir olayların modellenmesinde (ör. nadir görülen 
hastalıklar, komplikasyonlar) kullanılarak küçük örneklemlerden 
gerçekçi veri üretmeyi sağlar (Xu et al., 2019). 
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Ayrıca, simülasyon tabanlı model değerlendirme 
yaklaşımıyla YZ modellerinin yanlılık ve genellenebilirlik 
performansları test edilebilmektedir (Cranmer et al., 2020). 

Yüksek Boyutlu Veri Simülasyonları 

Modern biyomedikal araştırmalarda veriler genellikle çok 
boyutludur; örneğin gen ekspresyonu, epigenetik, proteomik veya 
metabolomik veri kümelerinde değişken sayısı (p) gözlem 
sayısından (n) fazladır. Bu durumda klasik yöntemler performans 
kaybına uğradığından, yüksek boyutlu simülasyonlar özel önem 
taşır. 

Güncel araştırmalar, Lasso, Elastic Net, Random Forest ve 
XGBoost gibi regularization ve ensemble tabanlı yöntemlerin 
yüksek boyutlu senaryolardaki yanlılık, varyans ve FDR kontrol 
performansını simülasyonlarla değerlendirmektedir (Hastie, 
Tibshirani & Friedman, 2021). 

Örneğin, p=5000 değişken ve n=300 gözlem içeren bir 
genomik veri simülasyonunda, değişken seçimi algoritmalarının 
duyarlılık ve özgüllük düzeyleri farklı korelasyon yapıları altında 
incelenebilir. 

Bu alanda kullanılan bir diğer yöntem, veri bağımlı (data-
driven) simülasyon yaklaşımıdır. Burada gerçek veri setinden elde 
edilen özet istatistikler (ör. korelasyon matrisi, varyans yapısı) 
kullanılarak sentetik veri üretilir; böylece simülasyon sonuçları daha 
gerçekçi olur (Leek & Peng, 2015). 

Nedensel Çıkarım ve Simülasyon Tabanlı Değerlendirme 

Son yıllarda nedensellik analizleri, gözlemsel verilerden 
güvenilir sonuçlar elde etmede kritik bir yöntem hâline gelmiştir. 
Ancak bu modellerin performansını analitik olarak test etmek 
genellikle zordur. 
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Bu nedenle, nedensel simülasyon çalışmaları, farklı 
karıştırıcı (confounder) yapıları veya örneklem dengesizlikleri 
altında yöntemin doğru çıkarım yapma olasılığını ölçmek için 
kullanılmaktadır (Hernán & Robins, 2020). 

Örneğin, Propensity Score Matching (PSM), Inverse 
Probability Weighting (IPW) veya Doubly Robust Estimation (DRE) 
gibi nedensel yöntemler, farklı karıştırıcı yoğunlukları altında simüle 
edilerek karşılaştırılabilir. Bu tür simülasyonlar, gerçek dünyadaki 
klinik veya epidemiyolojik verilerin hangi koşullarda güvenilir 
sonuçlar verebileceğine dair önemli çıkarımlar sağlar. 

Geleceğe Yönelik Araştırma Eğilimleri 

Biyoistatistikte simülasyon tabanlı araştırmaların 
önümüzdeki yıllarda aşağıdaki yönlerde evrilmesi beklenmektedir: 

• Açık bilim ilkeleri doğrultusunda yeniden üretilebilir 
simülasyon çerçeveleri, 

• Bulut tabanlı paralel hesaplama (ör. Google Colab, AWS, 
HPC kümeleri) ile yüksek hacimli senaryoların verimli 
çalıştırılması, 

• Veri gizliliğini koruyan simülasyon teknikleri (ör. 
farklılaştırılmış gizlilik – differential privacy), 

• Karma (hibrit) yaklaşımlar: Gerçek ve sentetik verinin 
birleştirildiği yarı-empirik simülasyonlar, 

• Eğitim amaçlı interaktif simülasyon platformları, 
özellikle tıp ve sağlık bilimleri lisansüstü eğitiminde 
kullanılabilecek dinamik ortamlar. 

Bu eğilimler, biyoistatistikte simülasyonun hem metodolojik 
hem de pedagojik işlevinin önümüzdeki dönemde daha da 
güçleneceğine işaret etmektedir. 
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