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BOLUM 0

KUMARBAZIN YENILGISI: MARKOV ZINCIRI
VE MARTINGALE TEMELLI BiR SIMULASYON

MURAT SAGIR!
VEDAT SAGLAM 2
Giris

Markov zincirleri, olasilik siireglerinin uzun dénem limit
davraniglarini incelemede vazgecilemez bir dneme ve yaygin bir
kullanima sahiptir (Norris, 1998) . Bir Markov zincirlerinin gegis
olasiliklar1 ¢cok 6nemli olsa da bu gecisler altinda degismezlik ve
denge ozellikleri tasiyan 6zel fonksiyonlar da bir o kadar 6nemlidir
ve istisnai Ozellikler sergiler. Dolayis1 ile harmonik fonksiyonlar,
Markov zincirlerinin yapisini anlamada kilit 6nem sahiptir (Woess,
2000). Fakat bu vazgegilemez Oneme ragmen, harmonik
fonksiyonlar hakkinda bilgi sahibi olmak her zaman kolay degildir
(Kelvin & Tait, 1867). Ozellikle Laplace denklemlerinin
¢Oziimiiniin saglayacag1 yarar tartisilmaz ama analizin sunuldugu
bi¢im, isin ehli matematikgiler tarafindan itici, siradan matematik

ogrencileri icin ise oldukca zor gelmistir.

! Dr. Ogr. Uyesi, Iskenderun Teknik Universitesi, Isletme ve Yonetim Bilimleri
Fakiiltesi, Ekonomi Boliimii Orcid: 0000-0001-7567-9327

2 Prof. Dr., Ondokuz Mayis Universitesi,Fen Edebiyet Fakiiltesi, Istatistik Boliimii
Orcid: 0000-0002- 8586-1373
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Bir Markov zinciri i¢in harmonik fonksiyon kavrami, gecis
operatorii altinda ortalama deger 6zelligi ile tanimlanir(Levin &
Peres, 2017). Ozellikle ayrik durum uzaylarinda (6rnegin rasgele
yiirliyiis siirecinde) harmonik fonksiyonlar, sinir deger problemleri
ve durma zamanlari ile yakindan iligkilidir. Harmonik fonsiyonlarin
bu 6zellikleri Dirichlet probleminin stokastik yorumunda hayati bir
oneme sahip olmalarina neden olur (Doob & Doob, 1984; Woess,
2000). Ek olarak Markov zincirleri ile martingale teorisi arasindaki
iliski harmonik fonsiyonlar ile miimkiin olur (Durrett, 2019). Uygun
kosullar altinda, harmonik bir fonksiyonun zincir boyunca
degerlendirilmesi bir martingale olusturur.

Bu béliimde, Markov zincirleri iizerinde tanimli martingale
yapilar ile harmonik fonksiyonlar ve bunlarin arasindaki iligkiler ele
alinmaktadir. Ozellikle harmonik fonksiyonlarin 6zelliklerinden
olan maksimum ilkesi ve essizlik teoremiyle literatiirde kumarbazin
yenilgisi (Grimmett & Stirzaker, 2020) olarak bilenen problemin
¢coziimii incelendi. Ayrica teorik sonuglarin bir uygulamasi olarak
sayisal simiilasyonlara yer verildi.

Martingale

Martingale, ortalama degeri sabit kalan bir siiregtir.
Martingalenin sahip oldugu bu sabitlik bir dengeleme o6zelligidir.
Martingalelerin tanimlanmasi, genellikle stokastik bir siirecin
doniisiimiinii anlamada 6nemli bir adimdir.

(Xn)nso bir Markov zinciri ve Z tizerindeki basit simetrik bir
rastgele yliriiyiis olsun.

Yirliylisiin ortalama degeri sabittir; aslinda yiirliyiisiin
gelecekteki bir zamandaki ortalama degerinin her zaman yalnizca
mevcut deger olmasi gibi daha giiclii bir 6zellige sahiptir. Yani,

E(X,) = E(X,), (D

ve daha gii¢lii 6zellik sunu soyliiyor: n = m igin,
D



EX,, — X, | Xo = ig, oo, Xy = i) = O 2)
ise (X;)nso bir martingaledir.

Kesinlik i¢in bir Markov zinciri (X,,)nso olsun ve yalnizca
Xo, ..., X;,'ye bagl tim kiimelerin koleksiyonu F, olsun. (F,)ns0
dizisine (X, )nso'n filtrelenmesi denir ve F, n zamanmna kadar
zincirin bilgi durumunu veya ge¢misini temsil eden bir dizi olarak
kabul edilir. Bir (M,,),,s0 islemine, eger M,, yalnizca X, ..., X,,'ye
bagliysa adapte edilmis denir. Bir (M,,),so islemine, eger tim n
degerleri i¢in E|M,| < oo ise integral denir. Uyarlanmis bir
integrallenebilir islem (M,,),,50, cger

E[(Mnﬂ - Mn)lA] =0 3)

tim A € F, ve tim n i¢in. F, koleksiyonu, asagidaki gibi
temel olaylarin sayilabilir birlesimlerinden olustugundan

{Xo=1i0, X1 =13, ..., Xy = Un}, 4

bu martingale 6zelligi tiim i, ..., i,, ve tiim n i¢in agagidaki
denkleme esdegerdir:

]E(M'l’l+1 - Mn | XO = io, ...,Xn = ln) =0 (5)

Martingale 6zelliginin t¢lincli bir formiilasyonu, kosullu
beklenti kavrami igerir. Integrallenebilir bir rastgele degisken Y
verildiginde, asagidaki kosullu beklenen deger
tanimlanabilir(Norris, 1998).

BV 1) = > B 1 Xo =gy Xo = i) Lixymiysymin)s (6)

Lo,-ln

Y'den E(Y | F,)'ye gecerken, her bir temel olay olan A €
F,'de, Y rastgele degiskenini ortalama degeri E(Y | A) ile
degistirilir. Uyarlanmis bir integrallenebilir siirecin (M) bir
martingale olup olmadigin1 kontrol etmek, ancak ve ancak
biitiin n'ler i¢in asagidaki kosul saglandiginda miimkiindiir:
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]E(Mn+1 | Tn) =M, @)

Kosullu beklenti kismi bir ortalamadir, dolayisiyla islemi
tamamlanir ve kosullu beklenen deger ortalamasi alinirsa tam
beklenen deger elde edilmelidir.

E(E(Y | %)) = E(Y) (8)

Tam beklenen deger formiiliiniiniin gegerliligi martingaleler
icin kolayca gosterilebilir

E(My) = E(E(M11 | 7)) = E(Mnys) )
tiimevarim yoluyla
E(M,) = E(M,) (10)

olur. Bu durum, martingalenin orijinal taniminda A = ()
aldigimizda zaten agikti.

Bir rastgele degiskenin
T:Q-{0,1,2,..} U {o0} (11)

n < oo i¢in {T = n} € F, ise bir durma zamanidir. Esdeger
bir kosul, n < o i¢in {T < n} € F, olmasidur.

Teorem 1 (istege bagh durdurma teoremi). (M,,),>, bir
martingale ve T bir durdurma zamani olsun. Asagidaki kosullardan
en az birinin gegerli oldugunu varsayalim:

1. T < nhemen hemen her yerde olacak sekilde birn €
N vardir

2. T < oo hemen hemen her yerde sabit bir C > 0 i¢in
IM,,| < Chern<T.
O zaman
E(My) = E(Mo) (12)
olur (Williams, 1991)



Ispat. (i)nin gegerli oldugunu varsayalim. O zaman

Mr — M, = (MT - MT—1) + ot (Ml - Mo)

n—1

= Z (Myp1 — M) Lyer (13)
k=0

Simdi {k<T}={T <k} €F, cinki T bir durma
stiresidir ve bu nedenle
E[(Mg41 — M) lp<r] = 0 (14)
clinkii (M} ) s bir martingale oldugundan. Dolayisiyla
n-1

E(M7) — IE(MO) = E[(Mk+1 - Mk)1k<T] =0 (15)
k=0

1'1 degil de 2'yi varsayarsak, dnceki argliman durma siiresi
T A n igin gegerlidir, boylece E E(My,,) = E(M,) olur. O zaman

|EM7 — EMy| = [EMy — EM7pq| (16)
islemlere devam edilsin | E(X) I< E | X | oldugundan
|EM7 — EMppn| = [E(M7 — Mpan)| < E|Mp — Mrpy|  (17)
Ayrica

My — Mppn| = My — My |1rsny < (IM7] + My ) Lrsny
< 2C1psn). (18)

olur. Beklenen deger alindiginda tiim n i¢in:

|EM; — EMppn| < E|My — Mypgl < E[2C1g7sp]
= 2CP(T > n). (19)

Ancak n — oo iken P(T > n) — 0 oldugundan
|EM; — EM,| < 2CP(T >n) =0 (20)
olur. Boylece EM; = EM,



Basit simetrik rastgele yiriyls (X,)nso i¢in, X, =0
oldugunu varsayilsin ve asagidaki tanim verilsin:

T =inf{n = 0: X,, = —a veya X,, = b}

Burada a, b € N birer parametredir ve verilmelidir. O zaman
T bir durma siiresidir ve sonlu kapali siniflarin tekrar1 nedeniyle T <
oo'dir. Dolayisiyla, istege bagli durdurma teoreminin (ii) kosulu,
M, =X, ve C =aV b igin gecerlidir. EX; = EX, = 0 oldugunu
sonucuna ulasilir.

p = P(X,, b den 6nce — a ya carpar) (21)

Olasilik p olan X; = —a ve olasilhik 1 —p olan Xy = b
biliniyor, bu nedenle

0=EXr) =p(-a)+ (1 —-p)b (22)
olur. Buradan p olasilig1 asagidaki gibi olmalidir.
b
P=a+p

p'vi hesaplamanin tamamen farkli, Markovyen bir yolu vardir.
Ancak EXr = 0 sonucunun ardindaki sezgi cok agiktir: Adil bir
oyun oynayan bir kumarbaz, kayiplari a'ya veya kazanglar1 b'ye
ulastiginda, hangisi daha erken gergeklesirse, kumarhaneden ayrilir;
oyun adil oldugundan, ortalama kazang sifir olmalidir.

Ornegin sonsuz zengin bir kumarhanede adil bir oyun
oynamaya devam eden ve kesin olarak mahvolma sonucunun ortaya
¢iktig1 bir kumarbazin mantiga aykiri durumunu ele alalim. Bu oyun,
sonlu bir bitis siiresinde sona erer.

T =inf{n > 0: X, = —a} (23)
Burada a, kumarbazin baslangictaki servetidir. Xy = —a
oldugundan,
]E(XT) = —a # O = ]EXO
--6--



Ancak bu, istege bagli durdurma teoremine aykirt degildir
¢linkii ne (i) kosulu ne de (ii) kosulu karsilanmaktadir. Dolayistyla,
sezgi EX; = EX,'n oldukca agik oldugunu gosterse de her zaman
dogru olmadigi i¢in biraz dikkatli olmak gerekir.

Az Once ele alinan 6rnek, (X,,),so zincirinin kendisinin bir
martingale olmasi bakimindan olduk¢a 6zeldi. Agikcasi, bu genel
olarak dogru degildir; aslinda bir martingale zorunlu olarak gercel
(reel) degerlidir ve genel olarak durum uzay1 I'in R'de bulunmasi
konusunda bir zorluk yoktur. Yine de, her Markov zincirine bir dizi
martingale eslik eder ve bu martingaleler zinciri karakterize eder.
Bu, martingaleler ve Markov zincirleri arasindaki derin baglantinin
temelidir.

f:I - R fonksiyonu ve gecis matrisi P olan bir Markov
zinciri (X,)nso verildiginde, sunu elde ettigimizi hatirlayalim:

P OO =) PP f = E(f () (24)
jel

Ayrican = 1 i¢in

PHW =) PGIFG),  (P=Df=Pf—f (25)
J

Teorem 2. (X,,),>0, degerleri I'de olan rastgele bir siireg ve
P stokastik bir matris olsun. (X,),so'n filtrelenmesi i¢in (F,) 0
(Tn = d(Xy, ..., Xn)) yazin. Bu durumda asagidakiler esdegerdir:

(X, )nso gecis matrisi P olan bir Markov zinciridir;tim smirh
fonksiyonlar f: S — R i¢in asagidaki siire¢ bir martingale'dir (Ethier
& Kurtz, 2009)

ML= fO) = f(X) = ) (P=Df(w) (26)
m=0



Ispat. ik durumun gegerli oldugunu varsayalim. f smirl bir
fonksiyon olsun. Yani |f| < C diyelim. O zaman

EHOI=|Y pufi| <swlil=c @

jel
ve

|((P=DfOI=IPfO—-fOI<IPFDI+IfDI=C+C
=2C (28)

olur. Boylece

n-—1
[ME] < 1 G+ X1+ D 1P = Df )]
m=0

=2(n+ Dsup|fj| <2(n+ 1)C < 0 (29)
]

Yani M,’: her n i¢in integrallenebilir. A = {X, = iy, ..., X, =
i} olsun.

E(M),, — MJ | A) = E[f (Xns1) — (PH(X) 1 4] =0 (30)

oldugunu gosterilmelidir. Fark ac¢ik yazilirsa:
n
Ml = M5 =| f () = FX) = D (P = Df )
m=0

Ftd —Fo =Y = Dfh | OV
m=0

:f(Xn+1) - f(Xn) - (P - I)f(Xn)
=f Xn+1) — Pf(Xn).

Beklenen deger alindiginda

E[M],, — M/ | A] = E[f (X,:1) | A] - PRCX,)  (32)

+1

--8-



yazilir. Markov 6zelliginden

E[f (Xn+1) | A] = E[f (Xn41) | X5] = PI(X;,) (33)
elde edilir. Boylece

E[M/,, — ML | A] = E[f(Xns1) — (PF(X) | A]
= Pf(X,) — Pf(X,) = 0 (40)

ve bu nedenle (M,{ )n>0 bir martingale'dir. Ote yandan, eger ikinci

durum gecerliyse, o zaman biitin smirli f fonksiyonlar igin
asagidaki esitlik gecerlidir.

IE:|—f(Xn+1) - (Pf)(Xn) | Xo = i) X = in] =0 (41)

f =1y, alinsin. O zaman

f(Xn+1) = 1{Xn+1=j} (42)

olur.

E[f(Xn+1) | A] = IE':[f(Xn+1) | X5] = Pf(X;,) (43)
yukaridaki denklemden

IE:[]‘{Xn+1=in+1} | A] = Pf(Xn) = z P(Xn’ k)l{k=in+1}
k

= P(Xy, in41) (44)
elde edilir. Sol taraf, tanim geregi
PXp41 = lns1 | A) (45)
dir. Dolayisiyla
P(Xn+1 = in+1 | A) = P(Xp, i) (46)

elde edilir. Bu da tam Markov 6zelliginden:

P(Xns1 = lne1 | Xo = g, s X = i)
=PXps1 = lns1 | Xn = ip) = Pininis (47)



yazilir. Boylece (X,)nso siiregi, gegis matrisi P olan bir Markov
zinciridir.
Harmonik Fonksiyonlar

Harmonik fonksiyonlar, ger¢ek Oklid uzaylarmmn acik alt
kiimelerinde yer alirlar. Bu boliim boyunca n, 1'den biiyiik sabit bir
pozitif tam sayiy1, £ ise R™'nin agik, bos olmayan bir alt kiimesini
ifade edecektir. (2 lizerinde tanimlanan, iki kez siirekli tiirevlenebilir,
kompleks degerler alabilen bir u fonksiyonu, asagidakileri
saglandig takdirde (2 iizerinde harmoniktir:

Au=0 (48)

Burada A4 =D{+--+D; ve D;? jinci koordinat
degiskenine gore ikinci kismi tiirevi ifade eder. A4 operatoriine
Laplasyen, Au = 0 denklemine ise Laplace denklemi denir. E € R"
kiimesi tlizerinde (mutlaka acik olmayan) tanimlanmis bir u
fonksiyonunun E iizerinde harmonik oldugunu, u'nun E'yi iceren
acik bir kiime iizerinde harmonik bir fonksiyona genisletilebilmesi
durumunda sdyleriz.

x = (x4, ..., xn) ifadesinin R™'deki tipik bir noktay1 ve |x| =

1 .o
(x1 2+ -+ x, 2)z ifadesinin x'in Oklit normunu gdsterdigini
varsayalim. En basit sabit olmayan harmonik fonksiyonlar koordinat
fonksiyonlaridir; 6rnegin, u(x) = x;.

Diizgiin fonksiyonlar i¢in Laplas denklemi herhangi bir
kismi tiirevle degismektedir. Genel olarak her harmonik fonksiyon
sonsuz derecede tilirevlenebilirdir ve dolayisiyla bir harmonik
fonksiyonun her kismi tlirevi harmoniktir.

Harmonik Fonksiyonlarin Markov Zincirlerindeki Uzantis

Eger asagidaki 6zellik saglanirsa bir h:V = R fonksiyonu,
belirli bir Markov zincirine gore harmonik denir (Axler vd., 2013).

--10--



D= ) Pyh() (49)
ji{i.,j}eE
Sezgisel olarak, kdseler iizerinde tanimlanan bir fonksiyon,
tiim komsu koselerin agirlikli ortalamasi ise (agirliklar o komsuya
geeme olasiligina karsilik gelir) harmonik dagilim gosterir.

Simdi, V kiimesinin bir alt kiimesi olan B c V (bazi
durumlarda bu alt kiime sinir olarak kabul edilir) ve bu alt kiime
iizerinde tanimlanmig bir hp:B —» R fonksiyonuna sahip
oldugumuzu varsayalim. O halde, hg'nin harmonik bir uzantisi su
sekilde tanimlanan bir fonksiyondur:

1. h(x) = hg(x)Vx € B
2. h, tiim x € B degerlerinde harmoniktir.

Dolayisiyla, rastgele bir kose alt kiimesi ve bu alt kiime
iizerinde rastgele bir fonksiyon verildiginde, harmonik bir uzanti bu
alt kiimedeki fonksiyonla eslesir ve bu alt kiimede olmayan koseler
icin fonksiyon degerlerini harmonik bir sekilde "yayar".

Ortalamada Degismezlik Ozelligi

Bir Markov zinciri {X;, }ns0 i¢in tanimli bir fonksiyon f gegis
operatorii P altinda

Pf=f (50)
kosulunu sagliyorsa harmonik olarak adlandirilir (Norris, 1998). Bu
kosul, fonksiyonun Markov zincirinin dinamigi altinda kosullu
beklenen deger anlaminda degismez oldugunu ifade eder. Sonug
olarak

[Ex[f(Xn+1) | Xn] = f(Xn) (51)

esitligi saglanir. Ozetle bir f fonksiyonunun harmonik olmasi

f(X,)’in bir martingale olmasi igin gerek ve yeter kosuldur.

Degismezlik yerel bir ozellik olmakla birlikte Markov zinciri
-11--



boyunca beklenen degerin korunmasini (degismemesini) ifade eder.
Bir Markov zincirinde birden fazla hormonik fonksiyon
tanimlanabilir ve her biri degismezlik 06zelligini muhafaza
edebilmektedir.

Maksimum ilkesi

Ortalama deger 6zelliginin ayrik bir sonucu olarak, harmonik
fonksiyonlar i¢in maksimum ilkesi elde edilebilir. Bu ilke igin
asagidaki teorem verilmektedir.

Teorem 2 (Maksimum Ilkesi): Durum uzay1 baglantili olan
bir Markov zincirinde tanimli ve reel degerli bir u fonksiyonu
harmonik olsun. Bu fonksiyon eger i¢ noktada maksimuma veya
minimuma ulasiyor ise sabit olmak zorundadir.

Ispat: Burada ispat1 yaparken kitap boliimiiniin kapsami da
gdz Ontine alinarak klasik analitik ispat yapilmayacaktir. Bunun
yerine martingale 6zelliginden yararlanilarak kisa bir ispat agagidaki
gibidir.

Varsayalim ki u fonksiyonu bir i¢ noktada (x) maksimum
degere ulassin. u harmonik oldugu i¢in

u(x) = Exfu(Xy)] (52)

yazilabilir. X; ise zincirin bir adim sonraki durumu olsun. u(X;) <
u(x) oldugu agiktir Aym1 zamanda yukaridaki denklemin
saglanabilmesi i¢in u(X;) = u(x) olmasi gerekmektedir. Dolayis1
ile x’e komsu her durum u fonksiyonu ayni degeri alir. Durum
uzayinin baglantili olmasindan olay1 bu durum tiim durum uzayi igin
gecerli olur ve boylece u sabit olmak zorundadir.

Teorem 3  (Dirichlet Problemi icin Essizlik).
{X,.}nso indirgenemez bir Markov zinciri, B €V ve hg:B » R
verildiginde, koseler {izerindeki fonksiyon x € V' \ B i¢in

h(x) = Ex[hs(Xr,)] (53)
--12--



fonksiyonu hg'nin benzersiz harmonik uzantisidir (Lawler ve Limic
2010). Yani bir x kosesinden baslayip B'deki ilk kdseye ulasana
kadar rastgele bir yiirliylis gerceklestirilirse, Tg, B'ye ilk ulastiginiz
zamani gosterir:

Ty = inf{n = 0: X, € B} (54)

X1y, B'de ulastigimiz ilk koseyi gosterir. Ve hB(XTB), 0
kosedeki fonksiyon degeridir. Dolayisiyla, bu fonksiyonun beklenen
degerinin hg'nin harmonik bir uzantisidir.

hg(x)'in tim x € B i¢in aymi v degeri oldugu durumu
diisiinmek faydali olabilir. Bu durumda, E [hB (XTB)] = v de olur,

clinkii B'ye her ulastigimizda her zaman v degerini alinz.
Dolayisiyla, ilging olan tek durum, x € B'deki farkli koselerin farkl
hg(x) degerlerine sahip olmasidir.

Ispat 1: Oncelikle x € B durumunu ele alalim. Bu durumda
Tz = 0 olur.

h(x) = E[hg(x)] = hp(x) (55)

Boylece x € B i¢in harmonik genisleme tanimi gosterimis
oldu. Diger taraftan x € B oldugu durumda rastgele yiirliyligiin
tanimi geregi asagidaki esitlik yazilabilir.

R = Blhs(Xr,)] = ) PyBlhs 1 =y] (56)
yi{x,y}€E

Ancak zincir Markov oldugundan ve dolayisiyla zamana
bagli homojen (yani hafizasiz) oldugundan:

Elhg | x; =y]=E[hg | xo =y]=h(y) (57)
elde edilir. Bu nedenle, harmonik 6zellik i¢in gerekli olan
R = Y Pyh() (58)

(y{x,y} €E)
--13--



saglanmis olur.

Dirichlet Problemi i¢in essizlik teoreminin ispatt maksimum
ilkesi teoremi ile de gosterilebilir.

Ispat 2: Fonksiyonumuzun benzersizligine dair sezgisel
bakis acisi, harmonik genislemeyi tiimevarimsal olarak
diisiinmekten gelir; burada B temel durumdur ve tiimevarimsal adim,
degeri bir koseden komsularina yayarak tek bir ¢oziime ulasir.

Matematik dili ile , iki harmonik genislememiz oldugunu
varsayalim: h ve u. Simdi, tim x € B i¢in h(x) = hg(x) = u(x)
‘dur, Dolayist ile

h(x) —u(x) =0 (59)

yazilabilir. Oyleyse, h(x) —u(x)'in maksimum oldugu x; & B
kosesini ele alinsin. Hem h hem de u harmonik oldugundan, h(x;) —
u(x;) degeri, her j|{i,j} € E ic¢in h(x;)—u(x;)'nin agurlikh
ortalamasidir.  h(x;) —u(x;) global maksimum oldugundan,
ortalamanin dogru sonug¢ vermesinin tek yolu h(xj) — u(x]) =v=
h(x;) — u(x;) olmasidir (eger biri daha yiiksek olsaydi, maksimum
olmazdi; eger biri daha diisiik olsaydi, agirlikli ortalama ise
yaramazdi). Bu argiimani, her j'nin tim komsularinin da v degerine
sahip olmas1 gerektigini sdylemek i¢in uygulamaya benzer sekilde
devam edebiliriz. Ancak x;'den bir b € B'ye giden bir yol
oldugundan, b'nin de v degerine sahip olmasi gerekir, ancak v =
h(b) —u(b) = 0 oldugunu bildigimiz i¢in, degerlerdeki maksimum
fark sifirdir.

Tamamlayict olmasi ag¢isindan, minimum degerin sifir
oldugunun da gosterilmesi gerekmektedir. h(x) — u(x)'in minimum
oldugu x; € B kosesini ele alalim. Hem h hem de u harmonik
oldugundan, h(x;) —u(x;) degeri, her j | {i,j} € E igin h(xj) -

u(xj)'nin agirlikl ortalamasidir. h(x;) — u(x;) kiiresel minimum
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oldugundan, ortalamanin dogru olmasi i¢in tek yol h(xj) - u(xj) =
v = h(x;) —u(x;) olmasidir. Bu argiimani, her j'min tim
komsularinin da v degerine sahip olmas1 gerektigini sdylemek icin
uygulamaya devam edebiliriz. Ancak x;'den bir b € B'ye giden bir
yol oldugundan, b'nin de v degerine sahip olmasi gerekir, ancak v =
h(b) —v(b) = 0 oldugunu bildigimiz i¢in, degerlerdeki minimum
fark sifirdir. Dolayisiyla, zincirimizdeki tiim diigtimler x i¢in g(x) =
u(x) oldugu sonucu ¢ikar. Bu nedenle, iki genisletme
fonksiyonumuz h ve u esit olmalidir ve bu nedenle herhangi bir B
kiimesi ve hp fonksiyonu i¢in yalnizca bir, benzersiz harmonik
genisletme olabilir (Vdcking, 2002).

Uygulama: Kumarbazin Yenilgisi

Boliime ait uygulamada yukarida anlatilan martingale ve
durdurma zamanlari ve farmonik fonksiyonlarin maksimum ve
essizlik Ozelliklerinin hepsinin harmanlayacak bir ornek olarak
kumarbazin yenilgisi (Gambler’s Ruin) 6rnegini simiile edecegiz.

Bir kumarbazin sermeyesini (X,),so ile gosterelim. Her
oyunda (adimda) kubarbaz p olasilig1 ile bir TL (burada baska bir
miktar ya da bagka bir para birimi de segilebilir) kazanmakta ve 1 —
p = q olasilig1 ile bir TL kaybetmektedir. Dolayis1 ile bu rasgele

ylriiytis slireci

_ (Xt 1, olasihk p
Xnv1 = {Xn — 1, olasilik q (60)
seklindedir. (X;,);,50 durum uzay1
S =1{0,1,2, ..., N} (61)

olan bir Markov zinciridir. Bu Markov zincirinde 0 (iflas) ve N
(hedeflenen ve kumarbazin ulastiginda oyunu sonlandiracagi
kazan¢) yutan elemanlardir. Dolayis1 ile sifir (iflas) mecburi
durdurma ve N istege bagli durdurma olmak iizere, durdurma

zamani asagidaki gibi tanimlanabilir.
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T =inf{n >0:X,, € {0,N}} (62)
Kumarbazin aklindaki o paraya (N) ulasma olasilig1
h(x) = Px(Xr = N) (63)
olarak tanimlansin. Markov 6zelliginden x € {1, ..., N — 1} igin
h(x) = ph(x + 1) + gh(x — 1) (64)

olur. Dolayisiyla h fonksiyonu, i¢ noktalarda harmonik bir
fonksiyondur ve siir kosullar

h(0) =0, h(N) =1
seklindedir. Bu, klasik bir Dirichlet problemidir. n = 0 i¢in
M, = h(Xy) (65)

olarak tanimlansin. h fonksiyonu harmonik oldugundan (M),
zinciri denklem (62)’deki T durdurma zamani dikkate alindiginda
ortalama degismezlik Ozelliginden bir smirlt bir martingale
olusturur.

Adil oyun varsayiminda p = q = 1/2°dir. Bu varsayin
altinda ¢6ziim dogrusal olup

x
h(x) = N (66)
olur. Eger p # q olursa (adil olmayan oyun) o zaman
1-(a/p)*
h(x) =——— 67
O =T am" ©7

olarak elde edilir. Harmonik fonksiyonlarin maksimum ilkesi ve
Dirichlet problemini c¢oziimiiniin essizlik teoremi geregince,
kumarbazin kazanma olasiligin1 tanimlayan fonksiyon tekdir.

Teorik olarak elde edilen ve harmonik fonksiyon olarak
tanimlanan kazanma olasiligi, baslangi¢ sermayesi x i¢in, 10 bin
bagimsiz rastgele yiirliylis adil bir oyun (p = 0,5) i¢in simiile
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edilmis ve kumarbazin aklinda kararlastirdigit ve ulastiginda
oyundan ¢ekilecegi deger olan N’e ulagma olasiligi hesaplanmistir.
Sekil 1, simiilasyon sonuglarinin teorik olarak elde edilen harmonik
h(x) = x/N fonksiyonu ile uyumlu oldugunu gostermektedir.

Sekil 1: Adil bir oyun i¢in kazanma olastliginin teorik ve
simiilasyon degerlerinin grafigi

1.0

*  Simulasyon e
|- Teorik et

N'e Ulasma Olasiligi

00 02 04 06 08
.

5 10 15

Baslangic Sermayesi x

Adil olmayan bir oyunda( p # 0,5) h(X,,) siirecinin zaman
grafigi asagidaki gibidir.

Sekil 2. h(X,,) 'in zaman grafigi

h(X_n)

0.000 0.002 0.004 0.006

0 500 1000 1500 2000

n

Sekil 2 incelendiginde Markov =zincirinin yutulma
durumlarina yaklagtiginda (0, N) martingale degerinin sifira
yakinsadig1 gézlenmektedir. Bu davranis, istege bagli durma teoremi

altinda teorik olarak beklenen sonucu desteklemektedir.
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Sonuc¢

Bu kitap boliimde, ayrik zamanli Markov zincirleri
ekseninde harmonik fonksiyonlar ve martingale yapilar1 birlikte
incelendi. Ozetle harmonik fonksiyonlarin degismezlik dzellikleri
bu fonksiyonlarin martingale 6zellikler gdstermesini saglamaktadir.
Boylece Markov zincirlerinin uzun dénem davranislart martingale
teorisi baglaminda incelenebilir.

Harmonik fonksiyonlar maksimum ilkesi ve dirichlet
probleminin ¢6ziimiinde teklik 6zelliklerine sahiptir. Bununla
birlikte martingale teorisinde yer alan durma zamanlar1 etkin bir
sekilde gercek hayatin modellenmesinde 6nemli argiimanlar sergiler.
Durma zamanlari, klasik sinir deger problemlerinde stokastik bir
vizyon saglar.

Kumarbazin yenilgisi problemi, martingale ve harmonik
fonksiyonlarin Markov zincirlerine uygulanmasi olarak sunulan
teorik ¢ercevenin bir uygulamasi olarak diisiiniildii; harmonik
fonksiyonlarin yardimiyla kazanma olasiliklar tiiretilmis ve elde
edilen sonuglar martingale temelli simiilasyonlarla desteklendi.
Simiilasyon sonuglarinin, teorik sonuglari dogruladig gézlemlendi.

Gelecekte, kitap boliimiinde yer alan ayrik zamanl (kesikli
zamanl) teorinin siirekli zamanli Markov siireclerine genisletilmesi
irdelenebilir.  Ayrica teorik ¢ercevenin enerji temelli maliyet
fonksiyonlar1 igeren durma problemlerine genisletilmesi literatiire
onemli katkilar saglayacaktir.
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BOLUM 0

HETEROJENLIK, TERCIH POLITIiKASI VE
DAGILIMSAL ASIMETRIi: HETEROJEN BiR
KUYRUK SISTEMINDE MUSTERI SAYISINA AIT
KITLESEL MOMENTLERIN INCELEMESI

Murat SAGIR!
Miijgan ZOBU?

Vedat SAGLAM®

Giris
Kuyruk modelleri, telekomiinikasyon, saglik hizmetleri,
iiretim sistemleri, bilgisayar aglar1 ve ulasim gibi bir¢cok alanda,
sistem  kapasitesinin  etkin  bigimde  planlanabilmesinde
kullanilmaktadir. (Gross ve Harris, 1998). Bu modeller arasinda
bekleme alan1 olmayan kuyruk sistemleri, ger¢ek hayattaki bir¢cok

durumu oldukga gercekei bicimde temsil etmeleri nedeniyle 6zel bir
Oneme sahiptir.

Bu kitapta ele alinan farkli tercih olasilikli heterojen kuyruk
sistemi, Poisson siireci ile gelen miisterilerin, hizmet stireleri tistel
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dagilima sahip iki heterojen paralel sunucu tarafindan hizmet
gordiigii ve bekleme alanmin bulunmadigi bir sistemdir. Sisteme
gelen bir misteri, her iki sunucunun da dolu olmasi durumunda
hizmet alamadan sistemi terk eder. Bu o6zellik, modeli “kayip
sistemleri” smifina dahil etmektedir (Ross, 2014).

Heterojen kuyruk modeli, o6zellikle kapasitenin sinirli,
beklemenin miimkiin olmadig1 ve sunucularin hizmet hizlarinin
farkli oldugu durumlarin modellenmesinde kullanilmaktadir.
Sunucular arasindaki heterojenlik, pratikte siklikla karsilagilan bir
durumdur; ¢linkii ¢calisanlarin deneyim diizeyleri, makinelerin teknik
kapasiteleri veya hizmet kanallarinin fiziksel 6zellikleri cogu zaman
birbirinden farkhidir (Kleinrock, 1975). Heterojen kuyruk
sistemlerinin en yaygin modelleme araci olarak kullanildig: alanlar
arasinda saglik hizmetleri gelmektedir. Ciinkii acil servisler, yogun
bakim {initeleri, ameliyathaneler gibi ortamlarda, hasta kabul
kapasitesi kisithdir ve acil durumlarda beklemek genellikle
imkansizdir. Ozellikle farkli uzmanlik alanlarina sahip iki doktorun
ya da farkli donanimlara sahip iki ameliyathanenin oldugu durumlar
icin, heterojen kuyruk modeli hasta kayip olasiligim1 ve sistem
doluluk oranmi analiz etmek i¢in yeterli matematiksel donanimi
saglamaktadir. (Green, 2006).

Benzer sekilde, telekomiinikasyon sistemlerinde sinirh
sayida kanalin bulundugu ve cagrilarin bekletilmeden reddedildigi
durumlar klasik kayip sistemleriyle modellenmektedir. Farkli bant
genisligine veya islem hizina sahip iki sunucunun yer aldig1 hiicresel
aglar ya da anahtarlama sistemleri, heterojen sunuculu kayip
kuyruklarinin 6nemli uygulama alanlar1 arasindadr (Kelly, 2011).
Benzer sekilde iiretim ve imalat sistemlerindeki farkli makine
kullanim1 da heterojen kuyruk modelleri ile modellenebilir
(Buzacott ve Shanthikumar, 1993). Buna ek olarak, bilgisayar ve
bilisim sistemlerinde, islemci cekirdekleri veya sunucular farkl
hizlara sahip olmasi1 ve tampon bellegin bulunmamasi da heterojen
kuyruk modelleri ile modellenebilmektedir (Trivedi, 2002).

Bu kitapta bir heterojen kuyruk modeli ayrintili bicimde ele
alinacak; denge durum denklemleri ve sistemdeki kisi sayisinin
dagilimi elde edilecektir. Ayrica sistemdeki kisi sayisina ait
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momentler kapali formda elde edilecektir. Elde edilen momentler ile
kitlesel konum, dagilim ve yayilim 6lgiileri elde edilecektir. Ayrica
sistemi olusturan parametrelerden tercih olasiliginin (tercih
politikasinin) ve hizmet oranlarinin (¢4, i) heterojenliginin (Gini
indeks ile elde edilmektedir) kitlesel konum, dagilim ve yayilim
Olciileri iizerindeki etkisi sayisal analizler ile sezgisel olarak
incelenecektir.

Farkh Tercih Olasihkh Heterojen Kuyruk Sistemi

Miisteriler sisteme A parametreli Poisson akimi gelir. Her bir
miisterinin k. kanalda hizmet stiresi 1/, (k = 1,2) ortalamasi {istel
dagilima sahiptir. Gelis aninda miisteri kanallarm her ikisi bos ise p
ve q(1 — p) olasiligi ile sirayla birinci ve ikinci kanalda hizmet alir.
Yalniz bir kanal bos ise hizmetini bu kanalda alir. Sisteme gelen
miisteri kanallarm her ikisini de dolu bulursa hizmet almadan
miisteri sistemi terk eder. Bu modele ait gecis diyagrami asagidaki
gibidir.

(1,0
w W
p \\\\\ A
. -
™
Ky b \\\\
Ha .
_.- S A
(0,0) . ©(1,1) ——» Kayp
a -
L A~ .
SO
\\\.lq A
\\\\
\\\\ Ky
Ha RN
e (0,1)

Sekil 1: Modele ait gegis diyagrami
Limit Olasihklar:

{¢é,=i,n.=j;t =0} iki boyutlu sirekli parametreli
Markov zinciri dikkate almiyor. Burada i =j =0,1,2 dir. Bu
baglamda P(&; =i,n, = j) = P;;(t) olasiliklarmm bulunmasi
gerekiyor. P;;(t) t siiresinde birinci kanalda i tane , ikinci kanalda
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j tane miisterinin olmas1 olasihigin1 gosterelim. h — 0 igin P;;(t)

olasiliklarinin Kolmogorov diferansiyel denklemler soyledir.

Poo(t) = —APgo () + 11 P1o(t) + pizPoq (t) (1)
Pio(t) = —(A 4 ) P1o(t) + pAPyo(t) + 1z P14 (2) (2)
Py1(t) = —(A+ 1) P1o(t) + qAPoo(t) + py P11 (2) 3)
P11 () = =(p1 + p2) P11 (8) + A(Por (8) + Py () 4)

Bu diferansiyel denklemlere ait sabit durum (steady-state)
olasiliklar1 asagidaki gibidir.

0 = —2APyo + 1 P1o + 12 Pos )
0 = —(A+ p1)Pyo + PAPyo + ph2 Py (0)
0 = —(A+ p)Poy + qAPy + 1 Py (7)
0 = —(uy + p2)P11 + A(Poy + Pyo) (8)

X sistemdeki miisteri sayisin1 gosteren bir tesadiifi degisken
olmak tizere olasilik fonksiyonu p, = P(X = k) olsun. Ayrica:

Po = Poo, p1 = Po1 + P1g, P2 = P1q )

olarak alinityor. Burada p, sistemin bos olmasi, p; kanallardan
birisinin bos olmas1 ve p,’de her iki kanalin dolu olmasi1 olasiligidir.
p, ayni zamanda sisteme gelen miisterinin hizmet almadan ayrilmasi
(kaybolmasi) olasiligmi da ifade eder. Boylece P(X = k) asagidaki
gibi tanimlanir.

( a

at+b+c’ =0
b k=1
P(X=k)={a+b+c’ B (10)
C
at+b+c’ k=2
\ 0o , dd

Burada a = pup, 24+ py + 1), b= A(py +u)(A+
ply + quy), ¢ =A*(A+pu, +qu,) olarak tanimlanmaktadir
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(Saglam ve Torun, 2005) Dolayisi ile sisteme etkin gelis orani
asagidaki gibidir.

Aerr = A1 — p2) (1)

Bu kitapta tanitilan heterojen kuyruk sisteminde tercih
olasiligi p = 1/2 alindiginda sistem M /M;/2 /0 ‘a doniismektedir.

Momentler

Bu alt bashkta miisteri sayisina ait sifir etrafindaki
momentler elde edilecektir. Momentleri bulmadan 6nce olasilik
ireten fonksiyonu elde edelim. Sistemdeki miisteri sayisina ait
olasilik tireten fonksiyon asagidaki gibidir.

2
m(s) = EGs¥) = ) s*P(X = k)
k=0 (12)

- - 2
a_I_b_l_c(a+bs+cs)

olarak elde edilir. Olasilik tireten fonksiyon yardimi ile sifir
etrafindaki ilk dort moment asagidaki gibi elde edilir.

d b+ 2c
X)) =m; = &UX(S) T Gtbro (13)

d? 2¢
BXX-D)=gzml)|  =Grveo (9

Dolayis1 ile
2c
b+ 4c
E(X?) =m, =m (16)
n = 3 i¢in

d" 17
Zonx()| =0 {17

s=1
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olur. Bunun sebebi sistemde en fazla iki kisinin olabilecegi
gercegidir. Dolayist ile

EXX-1DX-3))=0 (18)
ve

EXX-DX-3)(x—4))=0 (19)

esitlikleri gecerlidir. Bu esitliklerden ve 1. ve 2. sifir etrafindaki
momentlerden yararlanarak sifir etrafindaki 3. ve 4. momentler
asagidaki gibi elde edilir.

b+ 8¢

E(X3) =m, =m (20)
b+ 16
E(X*) =m, =ﬁ (21)

Bu dagilimm momentleri kullanilarak sirasiyla Beklenen
deger, Varyans, Degisim Katsayisi, Carpiklik ve Basiklik katsayis1
hesaplanabilir (Saglam vd., 2018; Stewart, 2009)

E(X) = m, 22)
Var(X) = 02 = m, — m? (23)
3
E(X —EX
CK =a3 = ( 03( ))
3 (24)
_mg —3mym,; +2my
B (m, — m%)g/z
4
BS = a, = E(X - b;(X))
o (25)

m4 - 4m1m3 + 6m12m2 - 3m14

(my —m7)?
Uygulama

Bu béliimde yukarida tanitilan heterojen kuyruk modelinin

niimerik Ornekleri verilecektir. Ozellikle kanallar arasmdaki
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heterojenligin biiyiik oldugu durumlarda sistemdeki kisi sayisinin
dagilimli hakkinda konum ve dagilim 6l¢iilerinin nasil etkilendigi ve
bunun yaninda carpiklik ve basiklik katsayismin nasil etkilendigi
aragtirtlacaktir. Modeldeki kisi sayilarina ait varyansin tercih
olasilig1 sayesinde azaltilabilir olup olmadig1 arastirilacaktir. Ozel
olarak sistemdeki kisi sayismin az olmasi atil zaman olusumu ile
verimliligi diistiriirken, sistemim dolu olmas1 (bu modelde sistemde
iki kisinin olmas1) yeni gelen miisterilerin kaybolmasi maliyetini
doguracaktir. Bu durumda heterojen ortalamalara sahip kanallardan
hizl1 olanm secilmesi politikas1 benimsenebilir. Bu tercih olasiligi
yiik dengeleme parametresi olarak kullanilabilir. Bu tercih
olasiligmin yar1 yartya durumundan (%350 olasiligindan) fazla olmali
gerekir. Fakat optimal tercih olasiliginin %50 ile %100 arasindan
nasil belirlenebilir oldugu sadece sistemdeki kisi sayisinin
ortalamasi ile list mertebeden momentleri ile elde edilen kitlesel
gostergeler ile karar verilmelidir. Aslinda heterojenlik ve
yonlendirme olasilig1, yalnizca ortalamayi degil dagilimin seklini de
belirgin bigimde etkilemektedir. ilk olarak heterojenligin bir dlciisii
olarak gini indeks degerleri hesaplanmaktadir.

Bu kitap boliimiinde ele alinan modelde, paralel kanallarin
heterojenligi Gini indeks ile Olgtilebilir. Modelde yer alan paralel
kanallar i¢in hizmet Kkapasitesinin sabit ve smnirli oldugu
disiiniildiigiinde bu kapasitenin kanallar arasinda nasil dagildigini
gini indeks ile Olgebiliriz (Yitzhaki, 1979). Gini indeks 0 (kanallar
homojen) ile 1 (kanallar tamamen heterojen) arasinda degerler alir
(Alves vd, 2011). Gini indeksi, siirekli rassal degiskenler icin
asagidaki bicimde tanimlanabilir (Cowell, 2011):

1 (b b 26
6=, f f Ix — yIf () f()dxdy 2

Bizim modelimizde oldugu gibi iki noktali ayrik dagilimlar
icin bu yukaridaki formiil daha basit bir hal alir. Ozetle bu ¢alismada
ele alman iki sunuculu sistem i¢in Gini indeksi,

1
_7'“1_“2| _ |1 — pa

= = 27
2.—“1-;“2 My + Uy @)
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ile hesaplanir. Modelde genelligi bozmaksmniz p; = u,
varsayildiginda gini indeks

G=H1_H2
p1 + po

olarak belirlenir. Gini indeks degerleri géz oniine alinarak se¢ili baz1
durumlar i¢in niimerik sonuglar asagidaki gibi elde edildi.

(28)

Tablo 1: A = 4,2 mis/dk ve u + u, = 6 mis/dk olmak farkl
gini indeks ve tercih olasiliklari i¢in konum ve yayilim 6l¢iileri

| u | G p |E(X)| Varyans CK BK
3,00(3,00 |{0,00{0,50 {0,994 0,586 0,010 1,707
0,50 10,995 |0,585 0,008 1,709
0,60 0,994 0,586 0,011 1,707
0,70 10,992 10,587 0,013 1,705
3,20(2,80 |0,07
0,80 10,990 | 0,587 0,016 1,703
0,90 10,989 10,588 0,019 1,701
1,00 |0,987 (0,589 0,022 1,699
0,50 1,028 10,571 -0,046 |1,753
0,60 |1,020 (0,575 -0,033 1,741
0,70 1,012 10,578 -0,020 |1,729
4,0012,00 |0,33
0,80 |1,003|0,582 -0,005 1,718
0,90 (0,994 (0,586 0,010 1,707
1,00 10,985 (0,589 0,026 1,697
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0,50 |1,113 0,524 -0,173 1,918
0,60 |1,100 {0,531 -0,156 |1,889
0,70 |1,087 |0,540 -0,137 |1,860
4,8011,20 |0,60
0,80 |1,072 0,548 -0,116  |1,831
0,90 |1,0570,557 -0,092  |1,800
1,00 |1,039 0,565 -0,064 |1,770
0,50 |1,182 0,474 -0,254 2,101
0,60 |1,1700,484 -0,242 2,066
0,70 1,156 {0,494 -0,227 12,028
5,2010,80 0,73
0,80 |1,14110,505 -0,209 | 1,987
0,90 |1,123]0,517 -0,187 11,943
1,00 |1,103 0,530 -0,161 1,896
0,50 |1,3390,327 -0,174 12,312
0,60 |1,3330,333 -0,192 12,333
0,70 1,327 {0,340 -0,211 12,351
5,8010,20 0,93
0,80 1,319]0,349 -0,230 2,364
0,90 1,309 0,359 -0,248 12,371
1,00 |1,297 10,372 -0,266 2,368

Yukaridaki tablo incelendiginde gini indeksinin sifir oldugu
satir kanallarmn homojen oldugu durumu gosteriyor. Homojen
duruma gore sistemdeki ortalama kisi sayis1 yaklasik bire esit ve
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carpiklik katsayisi neredeyse sifir oldugu i¢in simetrik bir durum s6z
konusudur. Bu durum heterojen durumlar i¢in bir referans noktasi
saglamaktadir. Diislik heterojenlik durumunda (G = 0,07) olmasi
durumunda yonlendirme olasiligmin etkisi zayif kalmaktadir.
Yonlendirme olasilig1 hizli kanala dogru biiyiidiik¢e ortalama ¢ok az
azaliyor, varyans ¢ok az artiyor, carpiklik simetriden saga dogru
artiyor, basiklik ise ¢cok az diisiiyor. Orta heterojenlikte (G = 0,33)
ise yonlendirme olasilig1 ile ortalama diisiiyor (aslinda birin
yukarisindan bire dogru toparlaniyor), fakat varyans diisiik
heterojenlikte oldugu gibi yine artiyor. Carpiklik negatif degerlerden
(sola ¢arpik durumdan) artarak once sifira (simetrik durumu) daha
sonra pozitife dogru (saga carpik durum) artiyor. Dolayis1 ile orta
heterojenlikte yonlendirme politikas1 sistemdeki kisi sayisinin
dagilimmi  ve  carpikhigini  etkiledigi  nlimerik  olarak
gozlemlenmektedir. Yani rastgele yonlendirme (esit olasilikli se¢im)
altinda dagilim sola carpik iken, hizli kanala yonlendirme olasilig1
(p) biiyiidiikee dagilim saga carpik bir yapiya doniisiiyor. Yiiksek
heterojenlik durumunda (G > 0,6) ortalama gini indeksi artikga
artrtyor. Bu durum sistemin dolu olmasi anlamina geliyor ve atil
zamanin azaldig1 ve sistemin verimli ¢alistig1 durumu ifade ediyor.
Fakat dolu bir sistemde kayiplarin olmasinin kaginilmaz oldugu da
asikar. Varyans kademeli bir azalig gosteriyor. Carpiklik bu durumda
daima sola c¢arpik olarak heterojenlige bagl olarak artiyor. Tercih
politikas1 bu sola ¢arpikligm etkisini azaltsa da dagilimin simetrik
duruma gelmesi i¢in yeterli olmuyor. Basiklik katsayisi ise
heterojenligin artmasi ile diizglin dagilim basikligindan kalin
kuyruklu normal dagilim basikligina dogru bir yaklasim sergiliyor.
Bu durum, dagilimin basikliginin artmasma ve u¢ degerlerin daha
baskin hale gelmesine yol agmaktadir. Heterojenlik diizeyi arttikca
sistemdeki kisi sayisinin dagilimi simetrik yapisini kaybetmekte ve
belirgin bicimde asimetrik (sola c¢arpik) hale gelmektedir.
Yonlendirme politikast ile carpikligin isaret degistirmesi,
heterojenligin yalnizca yayilimi degil, dagilimin yoniinii de
etkiledigini gostermektedir. Yonlendirme politikasi, heterojenligin
neden oldugu dagilimsal etkileri tamamen ortadan kaldirmamakta;
ancak dagilimin seklini kismen dengeleyici bir rol listlenmektedir.
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Sayisal sonuglar, sunucularin heterojenlik diizeyinin sisteme
ait Olglimlerde yalnizca ortalamalar icin degil, dagilimmn sekli
(simetri ya da carpik dagilim) i¢inde Onemli etkileri oldugunu
gostermektedir. Gini indeksi ile Olgiilen heterojenlik arttikca,
sistemdeki kisi sayisinin dagilimi daha asimetrik (sola carpik) ve
kalin kuyruklu bir basiklik yapisina doniismektedir. Ydnlendirme
politikas1 bu etkiyi nispeten azaltsa da, yiiksek heterojenlik
durumlarinda dagilimin kuyruk davranisi daha agir basmaktadir. Bu
bulgular, heterojen servis sistemlerinde yalnizca ortalama
performans Olgiitlerine odaklanmanin yetersiz olabilecegini ortaya
koymaktadir.

Sonuclar ve Gelecek Calismalar

Bu boliimde, oniinde beklemeye miisaade edilmeyen iki
kanalli heterojen bir servis sisteminde sunucu heterojenliginin
sistemdeki kisi sayisinin dagilimi iizerindeki etkileri incelenmistir.
Sisteme ait kanallardaki hizmet oranlarmin ortalamalar1 arasindaki
farklilik, Gini indeksi yardimiyla nicel olarak Olciilmiis ve Ti¢
diizeyde smiflandirilmistir (diisiik, orta ve yiliksek). Ayrica
sistemdeki kisi sayismin dagilimindan yararlanarak sistemdeki kisi
sayisinin olasilik iireten fonksiyon u elde edilmistir. Daha sonra
tiirev gegigleri ile sifir etrafinda ilk dort moment kapali formda elde
edilmistir. Daha sonra bu momentler yardimi ile sistemdeki kisi
sayisina ait kitlesel konum, yayilim ve dagilim olgiileri elde
edilmistir.

Kapali formda elde edilen kitlesel konum ve dagilim 6l¢iileri
sistemin heterojenligi ile niimerik olarak incelenmistir. Sonuglar
sunucularin  heterojenliginin yalnizca ortalama olarak degil,
dagilimin seklini de belirgin bicimde etkiledigini gostermektedir.
Heterojenlik arttikga sistemdeki kisi sayisinin dagilimi simetrik
yapisin1 kaybetmekte, daha asimetrik (sola c¢arpik) ve diizgiin
dagilim basikligindan kalin kuyruklu normal dagilim basikligina
dogru bir gecis sergilemektedir. Bu durum, sistemin ¢ogu zaman
diisiik doluluk seviyelerinde kalmasina ragmen, nadir gergeklesen
yiksek doluluk durumlarinin daha baskin hale gelmesine yol
acmaktadir. Yonlendirme politikast (hizli kanali tercih etme
olasiligl) bu etkileri kismen dengeleyebilmekte; ancak yiiksek
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heterojenlik diizeylerinde dagilimin kuyruk davranisi baskin
gelmekte ve yonlendirme olasiligi baskinlik altinda etkisiz
kalmaktadir.

Gelecekte  maliyet yapisti  modele dahil edilerek
genisletilebilir. Hizmet kananlarmin ¢alistirilmasindan kaynaklanan
isletme maliyetleri, miisterileri kaybindan kaynaklanan maliyetler
bir maliyet fonksiyonu olarak tasarlanabilir. Ozellikle heterojenlik
diizeyinin zaman i¢inde degistigi dinamik kuyruk modellerinde,
diisiik ortalama doluluga ragmen artan kuyruk kalinligi, maliyet
minimizasyonu ag¢isindan Onemli c¢oziimler saglayabilir. Bu
baglamda, heterojenligin yalnizca yapisal bir 6zellik degil, dinamik
olarak yonetilebilen bir karar degiskeni olarak degerlendirilmesi
hem teorik hem de uygulamali ¢alisan arastirmacilar i¢in ilgi ¢ekici
olabilir.

Sonug olarak, bu calisma heterojen servis sistemlerinde
dagilim temelli performans analizinin 6nemini vurgulamakta ve
maliyet temelli, dinamik optimizasyon yaklasimlarma yonelik bir
orijin noktasi olmaktadir.
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BOLUM 0

BiYOISTATISTIKTE SIMULASYON
YAKLASIMLARI VE UYGULAMALARI

HAKAN OZTURK!

Giris
Simiilasyon, istatistiksel  yontemlerin  performansini
degerlendirmek amaciyla yapay veri iiretimi ve bu veriler iizerinde
sistematik analizler gerceklestirmeyi saglayan giiglii bir aractir.
Gergek diinyadan elde edilen veriler; 6rneklem biiyiikligii, gozlem
stiresi, eksik veri oran1 veya etki biiyiikliigii gibi acilardan yetersiz
veya ideal olmayan kosullara sahip olabilir. Bu durumda,
arastirmacilar gercekci fakat kontrol edilebilir senaryolar altinda

yontemlerin nasil davrandigin1i  gérmek i¢in simiilasyonlara
bagvururlar (Burton, Altman, Royston & Holder, 2006).

Biyoistatistik  alaninda, 06zellikle yeni  gelistirilmis
istatistiksel modellerin uygulanabilirligi, gli¢ analizi, 6rneklem
biiytikliigii hesaplamasi, ¢coklu test diizeltmeleri ve eksik veri atama
yontemlerinin ~ karsilagtirnllmas1  gibi  konularda  simiilasyon
caligmalar1  kritik Oneme sahiptir. Simiilasyonlar sayesinde
“gergeklik” olarak tanimlanabilecek veri iiretim mekanizmasi
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bilinmekte ve buna gore test edilen yontemin sapma, tutarlilik, girdi
degiskenlerine duyarhilik gibi 6zellikleri incelenebilmektedir
(Morris, White & Crowther, 2019).

Bu kitap boliimiinde amag, biyoistatistik baglaminda
simiilasyon yaklagimlarinin kuramsal temellerini, tiirlerini,
uygulama alanlarini, yazilim altyapilarimi ve giincel egilimlerini
sistematik sekilde ele almaktir. Ozellikle saglik ve tip alaninda,
yontem gelistirme siirecinde veya gozlemsel verilerin dogas1 geregi
sinirlt oldugu durumlarda simiilasyonun nasil etkin kullanilabilecegi
tizerinde durulacaktir. Boylece hem arastirmacilar hem de
uygulayicilar i¢in rehber niteliginde bir kaynak sunulmasi
hedeflenmektedir.

SIMULASYONUN KURAMSAL TEMELLERI

Istatistiksel agidan simiilasyon, olasiliksal siireglerin
bilgisayar ortaminda defalarca {iiretilmesi ve bu siireclerden elde
edilen sonuglarin dagilim O&zelliklerinin incelenmesine dayanir.
Temelinde, biiyiik sayilar yasast ve olasilik kurammin rastgelelik
ilkesine dayalidir. Bu yoniiyle simiilasyon, karmagsik veya analitik
¢Oziimili olmayan olasilik modellerini yaklasik yontemlerle analiz
etmeye olanak saglar (Law, 2015).

Biyoistatistikte kullanilan simiilasyonlarin dayandigi en
onemli kuramsal yapit Monte Carlo yontemidir. Monte Carlo
simiilasyonlari, rastgele sayilar kullanarak belirli bir istatistigin
(6rnegin ortalama, varyans, p-degeri) dagilimini tahmin eder. Bu
yaklagim, oOzellikle karmasik modellerin  teorik  olarak
coziilemeyecegi durumlarda kullanilabilir bir alternatif sunar
(Rubinstein & Kroese, 2017). Ornegin, klinik arastirmalarda bir
testin Tip I hata orani, 6rneklem biiyiikliigii veya etki biiytikligi
degistikce nasil degisir sorusu, binlerce rastgele veri kiimesi
iiretilerek incelenebilir.
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Simiilasyon siirecinde tekrarlama kavrami kritik bir neme
sahiptir. Ayni senaryonun binlerce kez tekrar edilmesi, bir istatistigin
beklenen degerine yakinsama olanagi saglar. Bu 6zellik, olasilik
kuraminin temel ilkelerinden biri olan yakinsama teoremi ile de
uyumludur: 6rneklem sayisi arttikca simiilasyon ortalamasi, teorik
beklentiye yaklasir (Morris et al., 2019). Bu nedenle simiilasyon
sayisinin yeterince yiiksek se¢ilmesi (genellikle > 1000) elde edilen
sonuglarin giivenilirligi agisindan 6nemlidir.

Simiilasyon ¢alismalarinda rastgelelik kontrolii icin seed
(tohum) degeri kullanimi zorunludur. Seed degeri, kullanilan
rastgele say1 iireteglerinin ayni kosullarda tekrar calistirildiginda
ayni sonuclart vermesini saglar. Bu da bilimsel arastirmalarda
“yeniden iiretilebilirlik” ilkesinin temelini olusturur (Burton et al.,
2006). Ogzellikle metodolojik c¢alismalarda, kullamlan seed
degerinin, algoritma parametrelerinin ve yazilim siirtimlerinin agik
bi¢imde raporlanmasi gereklidir.

Simiilasyonlar genellikle parametrik ve parametrik olmayan
bicimlerde siniflandirilir. Parametrik simiilasyonlarda veri belirli
dagilimlardan (O0rnegin normal, binom, Poisson) iiretilirken,
parametrik olmayan yaklasimlarda goézlenen veriden dogrudan
ornekleme yapilir. Bootstrap yontemi bunun en bilinen &rnegidir;
gercek veri kiimesinden tekrar Ornekleme yapilarak istatistiksel
belirsizlik hesaplanir (Efron & Tibshirani, 1993).

Son yillarda biyoistatistikte, klasik Monte Carlo
simiilasyonlarinin 6tesinde Bayesyen simiilasyon teknikleri (6rnegin
Markov Chain Monte Carlo — MCMC) yaygimlasmistir. Bu
yontemlerde amag, posterior olasilik dagilimlarindan rastgele
ornekler ¢ekerek karmasik modellerde parametre tahminleri elde
etmektir (Gelman et al., 2014). Bu yaklasim 6zellikle hiyerarsik
modeller, cok diizeyli veriler ve eksik veri analizlerinde giiglii bir
alternatif sunar.
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Ozetle, simiilasyonun kuramsal temelleri olasilik teorisi,
rastgelelik ve tekrar kavramlari lizerine inga edilmistir. Bu temeller,
biyoistatistikteki istatistiksel dogruluk,

genellenebilirlik ve yontem karsilastirmalart agisindan giivenilir

uygulamalarin

bigimde yiiriitiilmesine olanak tanir.

SIMULASYON TURLERI

Biyoistatistikte simiilasyonlar, amaglarina ve veri iretim
mekanizmalarina gore farkli bicimlerde siniflandirilir.  Her
simiilasyon tiirli, belirli istatistiksel problemlere odaklanir ve
yontemlerin farkli kosullar altindaki davraniglarini incelemeyi
amaclar. En yaygin kullanilan bes temel simiilasyon yaklagimi Tablo
1’de 6zetlenmistir.

Tablo 1 Biyoistatistikte Temel Simiilasyon Tiirleri ve Kullanim
Alanlar

Simiilasyon Tiirii

Temel Ozellik

Biyoistatistikte Kullanim
Alam

modelleme

Monte Carlo Rastgele veri tiretimi, Gig, Tip I hata, model
ortalama davranigin dogrulugu
incelenmesi

Bootstrap Gergek veriden tekrar Gtiven aralig1, yanlilik
ornekleme diizeltmesi

Bayesyen Posterior dagilimlardan Hiyerarsik modeller, eksik
ornekleme veri

Mikrosimiilasyon Birey diizeyinde siire¢ Epidemiyoloji, saglik

ekonomisi

Agent-Based Model

Etkilesimli ajan temsili

Bulasic1 hastalik yayilima,
davranis modelleri

Monte Carlo Simiilasyonu

Monte Carlo simiilasyonlari, rastgele say1 iiretimi yoluyla
olasilik dagilimlarindan tekrar tekrar 6rneklem alarak bir istatistigin
dagilimim1 tahmin etmeyi amacglar. Bu yontem, karmagik veya
analitik ¢Oziimii bulunmayan modellerin davranisin1 anlamaya
olanak saglar (Rubinstein & Kroese, 2017).
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Biyoistatistikte, 6zellikle testlerin gii¢ ve Tip I hata oranlarin
incelemek, c¢oklu karsilagtirma diizeltmelerinin performansini
degerlendirmek ve o©rneklem biytikligliniin belirlenmesi igin
siklikla kullanilir. Ornegin, iki grup arasindaki ortalama farkini test
eden bagimsiz  Orneklemeler t-testinin  farkli  6rneklem
biiyiikliiklerinde giicii Monte Carlo yaklasimiyla kolayca simiile
edilebilir (Burton et al., 2006).

Bootstrap Simiilasyonu

Bootstrap yontemi, parametrik bir dagilim varsayimi
yapmadan, mevcut veri kiimesinden tekrar Ornekleme yoluyla
istatistiksel belirsizligin tahmin edilmesini saglar (Efron &
Tibshirani, 1993).

Biyoistatistiksel uygulamalarda bootstrap simiilasyonlar;
gliven araliklarinin  olusturulmasi, parametre tahminlerindeki
yanliligin (bias) diizeltilmesi ve kiigiik 6rneklemlerde yontemlerin
kararliligimin degerlendirilmesinde 6nemli bir rol oynar. Ayrica,
medyan ya da oran gibi istatistikler s6z konusu oldugunda,
parametrik varsayimlarin saglanmadigi durumlarda bootstrap
yaklagimi siklikla tercih edilir.

Bayesyen Simiilasyon

Bayesyen simiilasyonlar, olasilik dagilimlarinin dogrudan
hesaplanamadig1 durumlarda Markov Chain Monte Carlo (MCMC)
algoritmalarini kullanarak posterior dagilimlardan ornekler iiretir
(Gelman et al., 2014).

Giiniimiizde hiyerarsik modeller, cok diizeyli veri yapilar1 ve
eksik veri problemlerinin ¢6ziimiinde en gii¢lii yontemlerden biridir.
Ornegin, bir klinik ¢calismada hasta gruplar1 arasindaki varyasyonun
hem grup i¢i hem de gruplar arasi belirsizliklerle birlikte
modellenmesi MCMC simiilasyonlariyla gerceklestirilebilir.
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Mikrosimiilasyon

Mikrosimiilasyon veya birey temelli simiilasyon, birey
diizeyinde 6zelliklerin zaman i¢inde nasil degistigini izler. Her bir
bireyin belirli bir olasilikla hastalanmasi, tedavi almasi veya dlmesi
gibi siiregler, rassal gegis olasiliklariyla modellenir (Karnon, 2003).

Bu yaklasim o6zellikle epidemiyoloji, saglik ekonomisi ve
politika analizlerinde kullanilir. Ornegin, bir as1 programinin toplum
diizeyinde etkisi, bireylerin enfeksiyon gegirme olasiliklarina dayali
mikrosimiilasyonlarla tahmin edilebilir.

Sistem ve Agent-Based Simiilasyonlar

Sistem dinamigi ve agent-based modeller, makro diizeyde
karmasik saglik sistemlerini veya bireyler arasi etkilesimleri analiz
etmek icin kullanilir. Agent-based modeller, her bir bireyin “ajan”
olarak davramisg kurallarina sahip oldugu ve bu etkilesimlerin
popiilasyon diizeyinde sonuglar iirettigi simiilasyonlardir (Macal &
North, 2010).

Biyoistatistikte bu yontemler, bulasict hastalik yayilim
modelleri, davranigsal miidahalelerin etkisi ve saglik hizmeti
kullanim dinamikleri gibi konularda kullanilmaktadir.

SIMULASYON SURECI

Simiilasyon caligsmalari, yalnizca rastgele veri liretiminden
ibaret olmayip dikkatli bir planlama, agik senaryo tanimi ve
sistematik raporlama gerektirir. Biyoistatistikte yiiriitiilen bir
simiilasyon arastirmasinin gecerliligi, siirecin her adiminda yapilan
tercihlerle dogrudan iliskilidir (Morris, White & Crowther, 2019).
Bu nedenle, tasarim ve yiirlitme asamalarmin belirli standartlara
uygun bi¢imde gergeklestirilmesi onerilir (Burton et al., 2006).

Asagida, simiilasyon siireci alt1 temel adimda 6zetlenmistir.
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Amag ve Tasarimin Belirlenmesi

Bir simiilasyon ¢alismasinin ilk adimi, arastirma sorusunun
ve amacin net bigcimde tanimlanmasidir. Arastirmaci hangi yontemi,
hangi kosullar altinda test ettigini ve hangi Ol¢iitlerle performans
degerlendirmesi yapacagini onceden belirtmelidir (White et al.,
2011).

Ornegin, “farkli érneklem biiyiikliiklerinde t-testinin Tip I
hata orani degisir mi?” veya “Benjamini-Hochberg ve Holm
yontemleri arasinda FDR (False Discovery Rate) kontrol
performansit agisindan fark var mi?” gibi agik sorular
tanimlanmalidir.

Bu asamada ayrica agagidaki tasarim bilesenleri belirlenir:

e Senaryolarin sayist ve kombinasyonlar1 (6r. orneklem
blyiikliigli, varyans, etki biiytikligii)

e Tekrarlama sayis1 — genellikle 1000 veya daha fazla
Onerilir
e Korelasyon yapisi ve dagilim varsayimlari

e Modelin tiirii (6r. parametrik, parametrik olmayan,
Bayesyen)

Senaryo ve Veri Uretim Mekanizmasi

Simiilasyonun ikinci adimi, veri iiretim mekanizmasinin
tanimlanmasidir. Bu agsamada arastirmaci hangi degiskenlerin hangi
dagilimlardan {iretilecegini, aralarindaki iliskileri ve olas1 hata
yapisini agik bi¢imde belirtmelidir (Law, 2015).
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Ornegin:
e Siirekli degiskenler igin normal (N(u,0?)) veya log-
normal dagilimlar,

e Kategorik degiskenler i¢in Bernoulli veya multinomiyal
dagilimlar,

e Korelasyonlu yapilar icin c¢ok degiskenli normal
dagilimlar tercih edilebilir.

Ayrica, eksik veri veya Ol¢lim hatasit gibi durumlar
incelenmek isteniyorsa, bunlar da veri {iretim asamasina dahil
edilmelidir. Bu baglamda, veri liretim modeli ile analiz modelinin
birbirinden ayrilmasi, yontemlerin yanlilik ve varyans agisindan
performanslarinin daha saglikli bigimde degerlendirilmesine olanak
saglar (Morris et al., 2019).

Modelleme ve Analiz Asamasi

Uretilen her simiilasyon tekrarinda ilgili istatistiksel ydntem
uygulanir. Bu adimda amag, her senaryoda yontemin ne Olciide
dogru sonug verdigini test etmektir.

Kullanilabilecek yontemler arasinda klasik parametrik testler
(6r. t-testi, ANOVA), regresyon modelleri (6r. dogrusal, lojistik,
Poisson) veya c¢oklu karsilastirma diizeltmeleri (6r. BH, BY, Holm)
bulunabilir.

Her bir yinelemede elde edilen sonuglar (6rnegin p-degeri,
katsay1 tahmini, model uyum &lgiitli) kaydedilir. Boylece binlerce
tekrar sonunda yontemin genel performansina iliskin istatistiksel
Ozetler hesaplanabilir.

Performans Olgiitlerinin Hesaplanmasi

Simiilasyonun basarisi, tanimlanmis performans OJlgiitleri
tizerinden degerlendirilir. Bu dlgiitler, simiilasyonun amacina gore

—-4]--



degismekle birlikte, genellikle asagidakileri kapsar (Burton et al.,
2006; Morris et al., 2019):

e Tip I hata orani: Yanlis pozitif sonuglarin orani

e @ig¢: Gergek bir etkinin tespit edilme olasilig

e Sapma: Tahminin ger¢ek degerden ortalama farki

e Varyans veya RMSE: Tahminlerin yayilim1

e FDR /FWER: Coklu karsilastirmalarda hata kontrolii

e Kapsama olasiligi: Giliven araliginin gergcek degeri
kapsama orani

Performans Olgiitleri sadece tek bir senaryo icin degil, farkl
parametre kombinasyonlar1 altinda da karsilastirilmali; sonuglar
tablo veya grafik bi¢iminde 6zetlenmelidir.

Sonuclarin Ozetlenmesi ve Yorumlanmasi

Her similasyon senaryosundan elde edilen sonuglar
birlestirilerek genel egilimler belirlenir. Ortalama degerler, standart
sapmalar, yiizdelikler veya oranlar kullanilabilir. Bulgular
yorumlanirken;

e Simiilasyon parametrelerindeki degisimlerin performans
Olgiitleri tizerindeki etkisi,

e Orneklem biiyiikliigii veya varyans gibi faktdrlerin giice
etkisi,
e Modeller aras1 karsilastirmalar ag¢ik  bigimde

sunulmalidir.

Bu asamada, gorsel sunumlar (6r. boxplot, 1s1 haritalari, egri
grafikleri) okuyucunun senaryolar arasindaki farkliliklar1 kolayca
gormesini saglar.
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Tekrarlanabilirlik ve Raporlama ilkeleri

Son adim, simiilasyonun yeniden iiretilebilir bigimde
raporlanmasidir. Morris ve ark. (2019), simiilasyon ¢aligmalarinda
asagidaki bilgilerin mutlaka raporlanmasin1 6nermektedir:

e Amag ve senaryolarin agik tanimi

e Veri iiretim mekanizmasi ve dagilimlar

e Analiz yontemi ve kullanilan yazilim

e Performans Olgiitleri ve hesaplama bi¢imleri
e Tekrarlama sayis1 ve seed degeri

e Sonuglarin 6zetlenme bigimi

Bu ilkeler, “yeniden iiretilebilir arastirma” yaklagiminin
temelini olugturur. Ayrica, kullanilan kodlarin, parametrik degerlerin
ve yazilim silirimlerinin agik erisimle paylasilmasi, bilimsel
seffaflig1 ve giivenilirligi artirir (Peng, 2011).

SIMULASYONUN BiYOISTATISTIKTE UYGULAMA
ALANLARI

Simiilasyon yontemleri, biyoistatistikte hem metodolojik
hem de uygulamali arastirmalarin temel araglarindan biri héline
gelmistir. Gergek diinyadan elde edilen saglik verileri ¢ogu zaman
eksik, dengesiz veya karmasik yapida oldugundan, arastirmacilarin
bu tiir zorluklara kars1 yontemsel dayaniklilig: test etmeleri gerekir.
Simiilasyonlar, istatistiksel yontemlerin farkli kosullar altinda nasil
performans gosterdigini degerlendirmek icin kontrollii bir ortam
saglar (Burton et al., 2006; Morris, White & Crowther, 2019).

Asagida, biyoistatistikte yaygin olarak kullanilan baglica
uygulama alanlar1 6zetlenmistir.



Klinik Deneme Tasarimlari ve Gii¢c Analizleri

Klinik aragtirmalarda istatistiksel gii¢, 6rneklem biiyiikligi
ve hata orami1 arasindaki iliski c¢ogu zaman teorik olarak
belirlenemeyecek kadar karmagik olabilir. Bu  durumda,
simiilasyonlar farkli 6rneklem biiyiikliikleri, degiskenlik diizeyleri
ve etki bliyiikliikleri altinda testin performansini degerlendirmek i¢in
kullanilir (Vallat et al., 2021).

Ornegin, bir faz III klinik calismada iki tedavi grubunun
ortalama iyilesme siirelerinin  karsilagtirilacagi  varsayilsin.
Arastirmaci, etki biiyiikliigiinii (8) ve varyansi (¢?) degistirerek 1000
tekrarl1 simiilasyonlar araciligiyla testin giiciinii (1-f) tahmin
edebilir. Boylece 6rneklem biiyiikliigiiniin klinik olarak anlamli fark:
tespit etmek icin yeterli olup olmadig belirlenir.

Simiilasyonlar ayrica uyarlanabilir klinik denemelerin
planlanmasinda da kullanilir. Bu tiir caligmalarda, ara analizler
sonras1 randomizasyon orani veya oOrneklem biiyiikliigii yeniden
diizenlenebilir. Simiilasyonlar bu adaptif kararlarin Tip 1 hata
oranina ve giice etkisini 6nceden degerlendirmek icin kritik bir rol
oynar (Lee & Tsiatis, 2020).

Eksik Veri Analizleri

Eksik veri, biyoistatistikte en sik karsilasilan metodolojik
sorunlardan biridir. Eksik veri mekanizmasi; tamamen rastgele eksik
(MCAR), rastgele eksik (MAR) veya rastgele olmayan eksik
(MNAR) olabilir (Little & Rubin, 2019).

Simiilasyonlar bu mekanizmalarin yontem performansina
etkisini degerlendirmek icin kullanilir. Ornegin, ¢oklu atama
yontemleri (MICE, EM, veya missForest) farkli eksiklik oranlarinda
karsilagtirilabilir. Her senaryoda tahminlerin sapma, varyans ve
kapsama olasilig1 degerleri hesaplanarak hangi yontemin daha
saglam oldugu belirlenir (Morris et al., 2019).
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Bu yaklasim, 6zellikle klinik verilerin siklikla eksik oldugu
uzunlamasina ¢aligmalarda biiyiik 6nem tasir. Simiilasyon sonuglari,
uygun atama yonteminin se¢ilmesine yardimet olur.

Coklu Karsilastirma ve Hata Kontrolii

Coklu hipotez testleri, 6zellikle genomik, proteomik veya
saglik bilisimi g¢alismalarinda yaygindir. Ancak ¢ok sayida test
yapilmasi yanlis pozitif sonuglarin artmasina neden olur.

Simiilasyonlar, bu durumda kullanilan  diizeltme
yontemlerinin (6rnegin Bonferroni, Holm, Benjamini—Hochberg,
Benjamini—Yekutieli) FDR ve FWER (Family-Wise Error Rate)
kontrol performanslarini karsilagtirmak i¢in kullanilir (Chen et al.,
2017).

Ornegin, iliskili degiskenlerden tiiretilen 10000 testin yer
aldig1 bir senaryo altinda Benjamini—Hochberg (BH) ve Benjamini—
Yekutieli (BY) yontemleri simiile edilerek FDR kontrol diizeyi ve
istatistiksel giic acisindan farklar1 degerlendirilebilir. Bu tir
simiilasyonlar, 6zellikle yiiksek boyutlu verilerde hangi diizeltme
yonteminin tercih edilmesi gerektigine dair pratik dneriler sunar.

Risk Skoru ve Nomogram Gelistirme

Klinik risk tahmin modellerinde (6rnegin mortalite,
komplikasyon veya depresyon riski), modelin giivenilirligi hem
orneklem biiytikliigiine hem de degisken secimi stratejisine baglidir.

Simiilasyon ¢alismalari, farkli 6rneklem biiytikliikleri ve olay
sikliklar1 altinda bir modelin kalibrasyon (tahmin edilen ve gézlenen
olasiliklar arasindaki uyum) ve diskriminasyon (ayirma giicii, 6rn.
AUCQC) performanslarini test etmek i¢in kullanilir (Steyerberg, 2019).

Ornegin, lojistik regresyonla olusturulan bir risk skoru
modelinde, varyans biiylkligli veya bagimsiz degisken sayisi
degistirildiginde AUC’nin nasil etkilendigi simiilasyonlarla
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incelenebilir. Boylece, modelin Ornekleme duyarliligt  ve
genellenebilirligi degerlendirilir.

Yiiksek Boyutlu Veri ve Makine Ogrenmesi Uygulamalar

Simiilasyonlar, makine Ogrenmesi (ML) algoritmalarinin
performanslarini karsilastirmak i¢in siklikla kullanilir (Boulesteix et
al., 2020).

Gergek veriler genellikle sinirli veya dengesiz sinif yapisina
sahip oldugundan, simiilasyonlar belirli korelasyon, etki biiytikligi
veya Orneklem senaryolarinda ML yontemlerinin dogruluk, F1 skoru
veya ROC-AUC gibi metriklerini inceleme olanagi saglar.

Ayrica, yiiksek boyutlu veri ortamlarinda (p > n) degisken
se¢imi algoritmalarinin hata oranlari, yanlis kesif ve tahmin giicli
bakimindan karsilastirilmasinda simiilasyonlar 6nemli rol oynar. Bu
tir calismalar, Ozellikle genomik veya metabolomik veri
analizlerinde metodolojik giivenilirligin saglanmasi acisindan
degerlidir.

Saghk Politikas1 ve Ekonomik Degerlendirmeler

Saglik politikalarinin etkilerini dogrudan gergek verilerle
degerlendirmek her zaman mimkiin degildir. Bu nedenle
mikrosimiilasyon ve sistem dinamigi modelleri saglik ekonomisi
caligmalarinda sik¢a kullanilir (Karnon, 2003; Brennan et al., 2006).

Bu tiir simiilasyonlarda bireylerin yasam boyu maliyet,
tedavi, hastalik gecirme ve 6liim olasiliklart modellenir. Ornegin, bir
tarama programinin maliyet-etkililigi farkli katilim oranlar1 ve
hastalik insidanslar1 altinda simiile edilerek degerlendirilebilir.

Egitimsel ve Metodolojik Calismalar

Simiilasyon, ayn1 zamanda biyoistatistik egitiminde de giiglii
bir 6gretim aracidir. Ogrenciler, istatistiksel kavramlarm soyut
dogasin1 somutlagtirmak i¢in simiilasyonlar1 kullanabilir; 6rnegin,
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merkezi limit teoreminin veya Orneklem dagilimlarinin davranis
binlerce tekrarli simiilasyonla gosterilebilir (Kaplan & Haile, 2019).

Metodolojik agidan ise simiilasyonlar, yeni istatistiksel
yontemlerin performansini degerlendirmede yaygin ve giiclii bir
aractir.

YAZILIM VE KODLAMAALTYAPISI

Biyoistatistikte simiilasyon caligsmalari, giiniimiizde yogun
bicimde  bilgisayar destekli ortamlarda yiritiilmektedir.
Simiilasyonun temelinde rastgele veri iretimi, tekrarlamali
hesaplama ve sonuclarin 6zetlenmesi bulundugundan, kullanilan
yazilim altyapisinin esnek, tekrarlanabilir ve paralel islemeye uygun
olmas1 biliyiikk onem tasir (Burton et al., 2006; Morris, White &
Crowther, 2019).

Simiilasyonun basarili yiiriitiilebilmesi i¢in yazilimin su
ozellikleri saglamasi gerekir:

e Rastgele say1 iireteglerinin giivenilirligi (deterministik
fakat tekrarlanabilir)

o Yiiksek performansli dongii ve vektorlestirilmis
hesaplama

e Paralel islem destegi (¢ok ¢ekirdekli CPU veya bulut
tabanli iglem)

e Sonuglarin kolayca 6zetlenip gorsellestirilebilmesi
e Reprodiiksiyon ve agik kod paylasimi olanaklari

Bu ¢ercevede, biyoistatistikte en yaygin kullanilan
yazilimlardan ikisi R ve Python’dur.
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R Ortaminda Simiilasyon Altyapisi

R programlama dili, istatistiksel hesaplama ve gorsellestirme
olanaklar1 agisindan en koklii altyapilardan biridir (R Core Team,
2024). Ozellikle simiilasyon temelli ¢aligsmalar icin gelistirilmis cok
sayida paket igerir (Tablo 2).

R ortami, 6zellikle akademik ve metodolojik aragtirmalarda
tercih edilir; ¢linkii istatistiksel modelleme, veri manipiilasyonu ve
sonug gorsellestirmeyi tek cati altinda birlestirir.

Ayrica, R Markdown ve Quarto altyapilar1 sayesinde
simiilasyon kodu, sonug¢ tablosu ve agiklama metinleri tek bir
yeniden {iretilebilir rapor héalinde sunulabilir. Bu tiir raporlamalarda
set.seed() fonksiyonunun kullanilmast da onemlidir; ¢iinkii bu
fonksiyon, tiim rastgele say1 liretim siireclerinin ayn1 kosullar altinda
tekrarlandiginda ayni sonuglar1 vermesini saglar ve bdylece
arastirmanin yeniden iiretilebilirligi giivence altina alinir (Xie,
Allaire & Grolemund, 2022; Peng, 2011).

Tablo 2. R Ortaminda Simiilasyon Calismalarinda Yaygin
Kullanilan Paketler

Paket Temel islev One Cikan Kullanim
Alam
simstudy Parametrik veri iiretimi ve Klinik deneme,
senaryo tanimi epidemiyolojik
simiilasyonlar
MonteCarlo Coklu senaryolu Monte Giig analizi, hata oran
Carlo deneylerinin yonetimi | ¢alismalari
mvtnorm Cok degiskenli normal Korelasyon yapili veri
dagilimlardan 6rnekleme iretimi
miceadds Eksik veri simiilasyonlari ve | MCAR-MAR
coklu atama senaryolari, yontem
karsilastirmalari
doParallel, foreach | Paralel simiilasyon ve dagitik | Biiyiik tekrarl
islem calismalar
ggplot2, reshape2 Sonuglarin gorsel 6zeti Boxplot, 1s1 haritasi,
dagilim grafikleri
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Python Ortaminda Simiilasyon Altyapisi

Python, veri bilimi ve makine 6grenmesi alanlarinda yaygin
olarak kullanilan ac¢ik kaynakli bir programlama dilidir.

Son yillarda NumPy, SciPy ve PyMC gibi kiitiiphaneler
sayesinde biyoistatistiksel simiilasyon caligmalarinda da gii¢lii bir
secenek haline gelmistir (Van Rossum & Drake, 2023). Python’un
simiilasyon ¢aligmalarinda en sik kullanilan kiitiiphaneleri Tablo 3’te
Ozetlenmistir.

Python’un 6nemli avantajlar1 arasinda hesaplama verimliligi,
genis ekosistemi ve makine Ogrenmesi kiitliiphaneleriyle kolay
entegrasyonu yer alir. rnegin, bir biyoistatistiksel modelden elde
edilen ciktilar dogrudan TensorFlow veya scikit-learn ortamlarinda
kullanilarak modelleme ve karsilastirma siireclerine aktarilabilir. Bu
ozellik, oOzellikle simiilasyon tabanli makine 6grenmesi
uygulamalarinda (6r. model performanst karsilastirmalari,
hiperparametre duyarliligi analizleri) Python’u 06ne ¢ikanr
(Boulesteix et al., 2020).

Tablo 3. Python Ortaminda Simiilasyon Calismalarinda Yaygin
Kullanilan Kiitiiphaneler

Paket Temel islev One Cikan Kullanim
Alam
numpy.random Rastgele say1 tiretimi Veri iiretimi ve temel
(normal, binom, Poisson vb.) | simiilasyonlar
scipy.stats Olasilik dagilimlart ve Parametrik—parametrik
istatistiksel testler olmayan testler
pandas Veri gergevesi yapisi, dzet Senaryo ¢iktilarinin
istatistikler saklanmasi
joblib, Paralel hesaplama Cok tekrarl
multiprocessing simiilasyonlar
PyMC Bayesyen MCMC Posterior tahmin,
simiilasyonlari hiyerarsik modeller
Matplotlib, Seaborn | Gorsellestirme Dagilim grafikleri,
korelasyon matrisleri
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Yazilim Secimi ve Entegrasyon ilkeleri

Her iki yazilm da giiglidiir; ancak tercih genellikle
arastirmanin niteligine baglhdir.

e R, istatistiksel modelleme ve metodolojik arastirmalar
icin uygundur.

e Python, biiyiikk veri, derin 6grenme veya yiiksek
performansli hesaplama gerektiren durumlarda avantaj
saglar.

Giincel egilim, bu iki ortamin entegrasyonuna yonelmistir. R
kullanicilar1 “reticulate” paketiyle Python kodlarmni dogrudan R
ortaminda calistirabilir; benzer sekilde Python kullanicilar1 “rpy2”
modiililyle R fonksiyonlarina erigebilir. Bu sayede simiilasyon
siirecinde istatistiksel analiz, gorsellestirme ve makine 6grenmesi
modiilleri tek bir caligma akisinda birlestirilebilir (Tippmann, 2015).
Ayrica, GitHub, Zenodo veya Open Science Framework (OSF) gibi
acik erisim platformlarinda simiilasyon kodlarinin paylasilmasi, hem
bilimsel seffafligi hem de metodolojik etkiyi artirir.

SIMULASYON TASARIMI VE RAPORLAMA iLKELERI

Simiilasyon c¢alismalari, yalnizca veri iiretimi ve analizinden
ibaret degildir, ayn1 zamanda sistematik bir arastirma tasarimi
stirecini de igerir. Simiilasyonun amaci, kapsami, veri liretim modeli
ve performans Ol¢iitleri net olarak tanimlanmadiginda elde edilen
sonuglar metodolojik olarak giivenilirligini yitirir (Morris, White &
Crowther, 2019). Bu nedenle, simiilasyon aragtirmalarinda tasarim,
yluriitme ve raporlama asamalar1 belirli standartlara uygun bigimde
planlanmalidir.
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Simiilasyon Tasariminda Temel ilkeler

Iyi tasarlanmis bir simiilasyon, hem istatistiksel hem de
sayisal acidan tutarli sonuglar firetir. Burton ve ark. (2006),
biyoistatistikte etkili bir simiilasyonun bes ana tasarim bilesenini su
sekilde tanimlamistir:

Amag: Simiilasyonun hangi istatistiksel problemi test
ettigi acikca belirtilmelidir. Ornegin, “Benjamini—
Hochberg ve Holm yontemleri arasinda FDR kontrol
diizeyinde fark var m1?” gibi dogrudan ol¢iilebilir bir
arastirma sorusu formiile edilmelidir.

Veri iiretim mekanizmasi: Degiskenlerin dagilim,
korelasyon  yapist ve  Orneklem  biiyiikliikleri
tanimlanmali; kullanilan rastgelelik kaynaklar1 ve
olasilik varsayimlari raporlanmalidir.

Analiz yontemi: Her simiilasyon dongiisiinde uygulanan
istatistiksel test veya model agik¢a belirtilmelidir.

Performans olgiitleri: Giig, Tip I hata, sapma, RMSE,
FDR veya kapsama orani gibi Olgiitlerin hesaplanma
bi¢imi agikc¢a tanimlanmalidir.

Tekrarlama yapisi: Simiilasyonun kag kez tekrarlanacagi
ve rastgele seed degerinin nasil kontrol edildigi
belirtilmelidir.

Bu unsurlarin agik bi¢cimde tanimlanmasi hem sonuglarin
karsilagtirilabilirligini hem de metodolojik gecerliligi artirir.

Simiilasyon Calismalarinda Raporlama Standartlar

Simiilasyon sonuglarinin bilimsel yayinlarda yer alabilmesi
icin seffaf ve yeniden iiretilebilir bi¢imde raporlanmasi gerekir.
Morris ve ark. (2019) ile White ve ark. (2011) tarafindan 6nerilen
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raporlama gercevesine gore bir simiilasyon calismast su basliklari
icermelidir:

e QGiris: Simiilasyonun amacu, ilgili literatiirdeki bosluk ve
arastirma gerekcesi.

e Yontem: Veri tretim modeli (0r. Y; = By + B1X; + €,
g~N(0,a?)).

— Uygulanan istatistiksel yontem(ler) ve parametre
degerleri.

— Simiilasyon sayisi, oOrneklem biiytkligi ve
dagilim varsayimlari.

— Kullanilan yazilim, paket ve siirtimler.
e Sonuclar:

— Performans Olciitlerinin tablo veya grafiklerle
Ozeti.

— Senaryolar arasindaki farklarin yorumu.
— Yontemlerin goreli iistiinliikleri ve sinirliliklart.

e Tartisma:

— Bulgularin genellenebilirligi, model
varsayimlarinin ~ kisitlart  ve olast  yanlilik
kaynaklari.

— Gelecekteki calismalar i¢in Oneriler.

Bu g¢erceve, simiilasyon c¢alismalarinda  seffaflik,
karsilastirilabilirlik ve yeniden tiretilebilirlik ilkelerinin korunmasini
saglar (Peng, 2011).
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Yeniden Uretilebilirlik ve Seffaflik

Simiilasyonlarin dogas1 geregi rastgelelik igerdiginden, her
caligmada kullanilan seed degerleri, paket siirlimleri ve kod akisi
mutlaka raporlanmalidir.

Aragtirmanin yeniden iiretilebilirligini giivence altina almak
icin asagidaki uygulamalar Onerilmektedir (Sandve et al., 2013;
Peng, 2011):

e Kodlarin GitHub, Zenodo veya Open Science
Framework (OSF) gibi acik erisim platformlarinda
paylasilmasi,

e Kullanilan yazilimlarin siiriimlerinin ve isletim ortaminin
(6r. R 4.5.2, Python 3.13) belirtilmesi,

e Tiim analizlerin R Markdown, Quarto veya Jupyter
Notebook bi¢iminde tek bir belge altinda sunulmasi,

e Simiilasyonlarin tamaminin belirli bir random seed ile
calistirilmast,

e Sonuglarin  elde  edilmesinde  kullanilan  tiim
fonksiyonlarin ve parametrelerin ek materyal olarak
sunulmasi.

Bu uygulamalar hem aragtirma seffafligini hem de
metodolojik giivenilirligi artirir. Ozellikle metodolojik biyoistatistik
caligmalarinda, kod paylasimi ve yeniden {iretilebilirlik raporlamasi
editoryal bir gereklilik haline gelmistir (Stodden et al., 2016).

Gorsellestirme ve Bulgularin Sunumu

Simiilasyon sonuglarinin yalnizca tablo bi¢ciminde degil, ayn1
zamanda gorsel olarak da sunulmasi Onerilir. Boxplot’lar, gii¢
egrileri, FDR-FWER 1s1 haritalar1 ve hata-varyans dagilimlar
yontemlerin karsilastirilmasinda oldukga etkilidir (Burton et al.,

2006).
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Ayrica, sonug grafiklerinde kullanilan renk paletleri ve eksen
araliklar1 standartlagtirillmali; gorseller, senaryolar arasi farklari
sezgisel bicimde yansitmalidir.

Bu tiir grafikler, hem istatistiksel yorumlamay1 kolaylastirir
hem de okuyucunun farkli yontemlerin performansini hizla
karsilastirmasina olanak tanir.

Etik ilkeler ve Yayin Standartlan

Simiilasyon g¢aligmalar1 dogrudan insan verisi icermese de,
bilimsel diiriistliik ve seffaflik agisindan etik ilkelere tabidir.

e Kullanilan veri setleri (6rnegin acik erigimli klinik
veriler) etik izin gerektiriyorsa kaynak belirtilmelidir.

e Simiilasyon sonugclari, gercek veriyle birebir Ortiisecek
sekilde manipiile edilmemelidir.

e Model smirhliklart ve potansiyel yanliliklar darist
bi¢gimde raporlanmalidir.

Bu ilkeler, biyoistatistikte metodolojik arastirmalarin
giivenilirligini ve akademik biitiinliigiinii korur (Stodden et al.,
2016).

Sonug

Simiilasyon tasarimi ve raporlama ilkeleri, biyoistatistik
arastirmalarinin metodolojik kalitesini belirleyen kritik unsurlardir.

Acikca tanimlanmig senaryolar, seffaf veri {iretim siiregleri
ve yeniden iiretilebilir raporlama yaklagimlari, yalnizca bir
simiilasyonun dogrulugunu degil, ayn1 zamanda bilimsel topluluga
olan katki degerini de artirir.

Giiniimiizde bu ilkelerin sistematik bi¢imde uygulanmasi,
metodolojik dergilerde yayin olasiligimi artirmakta ve agik bilim
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standartlariyla uyumlu bir arastirma kiiltiiriiniin =~ gelisimini
desteklemektedir.

GUNCEL YONTEMLER VE ARASTIRMA EGIiLIMLERI

Biyoistatistikte simiilasyon yontemleri, klasik Monte Carlo
ve bootstrap yaklasimlarinin 6tesine gegerek giderek daha karmagik
modelleme teknikleriyle biitiinlesmektedir. Bilgisayar giiclindeki
artis, agik kaynak yazilimlarin gelisimi ve yiliksek boyutlu verinin
yayginlagmasi, simiilasyon tabanli yontemleri hem teorik hem de
uygulamal1 aragtirmalarda vazgecilmez hale getirmistir (Motris,
White & Crowther, 2019). Giincel egilimler, yalnizca dogruluk
Ol¢limiiyle sinirli olmayan, aynt zamanda saglamlik (robustluk),
nedensellik, yapay zeka destekli simiilasyon ve yiiksek boyutlu veri
modelleme alanlarinda yeni olanaklar sunmaktadir.

Robust ve Kantil Tabanh Simiilasyon Yaklasimlari

Klasik istatistiksel modeller genellikle normal dagilim
varsayimina dayanir; ancak saglik verilerinde siklikla agir kuyruklu,
asimetrik veya ug¢ deger iceren dagilimlar gozlenir. Bu durum,
geleneksel yontemlerin hatali sonuglar tiretmesine yol agabilir.

Son yillarda, bu tiir durumlara dayanikli robust ve kantil
tabanli simiilasyonlar gelistirilmistir (Koenker, 2022). Bu
yaklagimlar, sadece ortalama etkiyi degil, ayn1 zamanda dagilimin
farkli kantillerinde (6rnegin 0.25, 0.5, 0.75) parametre davranigini
analiz etmeyi miimkiin kilar.

Ornegin, klinik calismalarda tedavi etkisinin medyan veya
iist kantillerde daha belirgin olup olmadig1, kantil regresyon tabanl
simiilasyonlarla  degerlendirilebilir. Bu yontemler, 0&zellikle
heterojen popiilasyon yapisina sahip epidemiyolojik veya pediatrik
verilerde kullanildiginda yiiksek duyarlilik saglar.
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Bayesyen ve Yari-Parametrik Simiilasyon Yaklasimlari

Bayesyen yontemlerin popiilaritesi, bilgisayar tabanlh
MCMC algoritmalarmin erigilebilir hale gelmesiyle dnemli dlciide
artmistir (Gelman et al., 2014). Giincel egilimler, klasik Monte Carlo
simiilasyonlarinin 6tesine gecerek Bayesyen Monte Carlo (BMC) ve
Targeted Maximum Likelihood Estimation (TMLE) gibi yari-
parametrik modellerin simiilasyon tabanli degerlendirilmesine
odaklanmaktadir (van der Laan & Rose, 2018).

Bu tiir modellerde, 6nsel dagilimlar belirsiz veya zayif
bilgiye dayali olsa bile, simiilasyon yoluyla posterior dagilimin
tahmin edilmesi saglanir.

Ornegin, bir tedavinin klinik etkinligi hakkindaki &n
bilgilerin posterior dagilim {izerindeki etkisi, farklt prior
senaryolarinin simiile edilmesiyle test edilebilir.

Bu yaklagim, oOzellikle adaptif klinik denemelerde karar
verme siireglerinin optimizasyonunda kullanilmaktadir.

Yapay Zeka Destekli Simiilasyonlar

YZ ve ML yontemlerinin biyoistatistikle biitiinlesmesi,
simiilasyon temelli arastirmalarda yeni bir paradigma yaratmistir
(Boulesteix et al., 2020).

YZ destekli simiilasyonlarda amag, sadece Onceden
belirlenmis parametrelerle veri iiretmek degil, ayn1 zamanda verinin
yapisin1 dgrenebilen ve gergek veriye benzer sentetik veri setleri
iiretebilen modeller gelistirmektir.

Bu alandaki en yeni yoOntemlerden biri Generative
Adversarial Networks (GANs) temelli simiilasyonlardir. GAN’ler,
ozellikle nadir olaylarin modellenmesinde (6r. nadir gorilen
hastaliklar, komplikasyonlar) kullanilarak kiiciik 6rneklemlerden
gercekei veri liretmeyi saglar (Xu et al., 2019).
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Ayrica, simiilasyon tabanli  model degerlendirme
yaklasimiyla YZ modellerinin yanlhilik ve genellenebilirlik
performanslari test edilebilmektedir (Cranmer et al., 2020).

Yiiksek Boyutlu Veri Simiilasyonlari

Modern biyomedikal arastirmalarda veriler genellikle ¢ok
boyutludur; 6rnegin gen ekspresyonu, epigenetik, proteomik veya
metabolomik veri kiimelerinde degisken sayist (p) gozlem
sayisindan (n) fazladir. Bu durumda klasik yontemler performans
kaybina ugradigindan, yiiksek boyutlu simiilasyonlar 6zel dnem
tagir.

Giincel arastirmalar, Lasso, Elastic Net, Random Forest ve
XGBoost gibi regularization ve ensemble tabanli yontemlerin
yiiksek boyutlu senaryolardaki yanlilik, varyans ve FDR kontrol
performansini  simiilasyonlarla  degerlendirmektedir  (Hastie,
Tibshirani & Friedman, 2021).

Ormegin, p=5000 degisken ve n=300 gdzlem iceren bir
genomik veri simiilasyonunda, degisken se¢imi algoritmalarinin
duyarlilik ve ozgiilliik diizeyleri farkli korelasyon yapilar1 altinda
incelenebilir.

Bu alanda kullanilan bir diger yontem, veri bagimli (data-
driven) simiilasyon yaklasimidir. Burada gercek veri setinden elde
edilen Ozet istatistikler (6r. korelasyon matrisi, varyans yapisi)
kullanilarak sentetik veri iiretilir; boylece simiilasyon sonuglar1 daha
gercekei olur (Leek & Peng, 2015).

Nedensel Cikarim ve Simiilasyon Tabanh Degerlendirme

Son yillarda nedensellik analizleri, gozlemsel verilerden
giivenilir sonuclar elde etmede kritik bir yontem haline gelmistir.
Ancak bu modellerin performansini analitik olarak test etmek
genellikle zordur.
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Bu nedenle, nedensel simiilasyon c¢alismalari, farkl
karistirict  (confounder) yapilari veya Orneklem dengesizlikleri
altinda yontemin dogru c¢ikarim yapma olasiligmi 6lgmek igin
kullanilmaktadir (Hernan & Robins, 2020).

Ornegin, Propensity Score Matching (PSM), Inverse
Probability Weighting (IPW) veya Doubly Robust Estimation (DRE)
gibi nedensel yontemler, farkli karistirict yogunluklari altinda simiile
edilerek karsilastirilabilir. Bu tiir simiilasyonlar, ger¢ek diinyadaki
Klinik veya epidemiyolojik verilerin hangi kosullarda giivenilir
sonuglar verebilecegine dair 6nemli ¢ikarimlar saglar.

Gelecege Yonelik Arastirma Egilimleri

Biyoistatistikte simiilasyon tabanl arastirmalarin
ontimiizdeki yillarda asagidaki yonlerde evrilmesi beklenmektedir:

e Acik bilim ilkeleri dogrultusunda yeniden {iretilebilir
simiilasyon g¢erceveleri,

e Bulut tabanli paralel hesaplama (6r. Google Colab, AWS,
HPC kiimeleri) ile yiiksek hacimli senaryolarin verimli
calistirilmasi,

e Veri gizliligini koruyan simiilasyon teknikleri (0r.
farklilagtirilmis gizlilik — differential privacy),

e Karma (hibrit) yaklasimlar: Gergek ve sentetik verinin
birlestirildigi yari-empirik simiilasyonlar,

e Egitim amagh interaktif simiilasyon platformlari,
ozellikle tip ve saglik bilimleri lisansiistii egitiminde
kullanilabilecek dinamik ortamlar.

Bu egilimler, biyoistatistikte simiilasyonun hem metodolojik
hem de pedagojik islevinin Oniimiizdeki donemde daha da
gliclenecegine isaret etmektedir.
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