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INTRODUCTION 

 

The excitation of an atom, particularly its inner shell electrons, can 

lead to various processes. Photoionization induces the ejection of an 

inner shell electron, creating a vacancy. This vacancy can be filled by 

another electron, producing L X-ray emission characterized by the L 

XRF yield. Alternatively, the released energy can be imparted to 

another electron, resulting in the emission of an Auger electron, 

characterized by the Auger yield. In addition, CK transitions between 

subshells of the same shell play a significant role in the rearrangement 

of atomic energy levels and influence both X-ray emission and Auger 
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processes. These parameters provide fundamental data for 

understanding atomic interactions and X-ray spectroscopy. Coster-

Kronig transitions are defined as non-radiating de-excitation processes 

occurring between subshells within the same main shell. Atomic inner 

shell processes play a fundamental role in understanding the excitation 

and de-excitation mechanisms of atoms. A vacancy in an atom's inner 

shell makes the atom energetically unstable, and the system transitions 

to a less energetic state through various radiative or non-radiative 

transition mechanisms to fill this void. In this context, C-K transitions, 

which hold an important place among non-radiative transitions, are 

considered a special subclass of Auger processes. Coster-Kronig 

transitions were first described by Dirk Coster and Ralph Kronig 

(1935). These transitions can be thought of as follows: For example, a 

void in the L₁ subshell can be replenished by an electron from the L₂ 

or L₃ subshell, and the released energy can cause another electron 

from the same main shell to be ejected from the atom. This property 

distinguishes Coster-Kronig transitions from classical Auger 

transitions that occur between main shells. Due to relatively small 

energy differences, Coster-Kronig transitions are energetically 

possible only within specific atomic number ranges and for specific 

subshell combinations. The probability of these transitions depends 

heavily on factors such as subshell binding energies, atomic number, 

and electron-electron interactions. The probability of Coster-Kronig 

processes increases significantly for L and M shells, especially in 

medium and heavy elements. The presence of Coster-Kronig 

transitions significantly influences atomic de-excitation processes and 
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plays a decisive role in fluorescence yields, Auger electron energies, 

and spectral line densities. Therefore, accurate accounting of C-K 

transitions is necessary in many experimental and theoretical studies 

such as XRF spectroscopy, Auger electron spectroscopy (AES), and 

atomic shell modeling. 

Estimating XRF cross-sections is challenging, especially for L₃ 

subshell lines, due to Coster–Kronig transitions. Transitions from the 

L₁ and L₂ subshells enhance the L₃ population, leading to increased Lα 

and related fluorescence cross-sections. 

 Consequently, C-K transitions are a fundamental process in atomic 

structure physics and are critical for understanding the de-excitation 

dynamics of inner shell vacancies. Detailed study of these transitions 

is indispensable for both fundamental atomic physics and applied 

spectroscopic techniques. 

Many researchers have been conducted on the photoionization 

cross sections, fluorescence yields, Auger effect, C-K transitions, and 

intensification factors of L X-rays that may occur in the L shell of 

various elements. Hubbell et al. (1994) comprehensively investigated 

the X-ray fluorescence yields of the K, L, and higher shells of 

elements, compiled the relevant literature, and presented the data in 

tabular form, providing a reference source for X-ray fluorescence 

analyses and atomic parameter calculations. Krause et al. (1978) 

reported K- and L-shell XRF cross sections for many elements, 

derived from fundamental atomic parameters including 

photoionization cross sections, W, and transition probabilities, and 
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presented the results in tabulated form. This report serves as a 

standard reference in XRF analyses and atomic parameter studies. 

Scofield (1972) calculated theoretical photoionization cross sections 

for photons at 1–1500 keV. The study determined photoionization 

probabilities for the inner shells of different elements using theoretical 

models, and the results were compiled for use in scientific calculations 

and X-ray analyses. This work is regarded as a fundamental reference 

for atomic interaction parameters and X-ray spectroscopy. Scofield 

(1976) calculated subshell photoionization cross sections of various 

elements at 1254 and 1487 eV using the Hartree-Slater model, 

providing essential theoretical photoionization data for electron 

spectroscopy and X-ray analyses. Ertuğrul (2002) experimentally 

measured the L-subshell production cross sections and C-K (f₁₂) 

transition probabilities for Hg (Mercury) and Au (Gold) at a photon 

energy of 59.5 keV. This work provides important data for L X-ray 

spectral analyses and understanding Coster–Kronig transitions. 

Miranda et al. (2004) studied the influence of multiple ionization on 

L-shell X-ray production cross sections induced by proton impact. The 

study experimentally investigated the effect of multiple ionization 

induced by proton collisions on L X-ray production cross sections and 

discussed the obtained results. Other significant studies in this field 

include: Ertuğrul, 2002; Kaya and Ertuğrul, 2003; Onho, 2001; Söğüt 

et al., 2002; Barrea et al., 2004; Unterumsberger et al.,2018; Bonziet 

al.,2006; Meddouh et al.,2023; Chauhanet al.,2008;Menesquenet 

al.,2020; nica et al, 2005; Raulo et al.,2007; Sahnoune et al., 

2020;Turhan et al.,2007) 
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 Öz et al. (2001) experimentally measured the L-shell Coster-

Kronig transition yields for several elements with atomic numbers 59 

≤ Z ≤ 90. The study provides important experimental data for 

understanding L-shell electron transitions and Coster–Kronig 

processes. Öz, et al., (2004) experimentally measured the Coster–

Kronig enhancement factors for several elements with atomic numbers 

74 ≤ Z ≤ 90. The work provides important data for the quantitative 

understanding of L-shell electron transitions and Coster–Kronig 

processes. New studies exist within the K-shell. In the study by Manoj 

and Sripathi Punchithaya (2025), the K-shell fluorescence parameters 

of low atomic number transition elements were experimentally 

determined using excitation with Au–Lα X-rays. Kα and Kβ X-ray 

cross-sections and fluorescence yields were calculated. 

In this study, the L-X-ray photoionization cross-sections and C-K 

transition intensification factors of the L-sublayers of Sm (Samarium), 

Eu (Europyum) and Bi (Bismuth) elements were theoretically 

calculated. Three cases were examined in study to investigate the role 

of C-K transitions on the increase in L-XRF cross-sections and L-X-

ray intensity. These conditions require the excitation energy to be 

higher than the binding energies of the L subshells, but not sufficient 

to excite another subshell. Therefore, three distinct cases arise due to 

the presence of three subshells. In these studies, both theoretical and 

experimental, the energy and element that correspond to the secondary 

source energy needed to excite each subshell are identified. 
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Fluorescence Yield, Coster-Kronig Transitions and Auger Process 

 

      The fluorescence yield defined for a specific shell or subshell of 

an atom represents the probability that a vacancy in that shell, 

resulting from any interaction, will be filled by characteristic X-ray 

emission. When an electron vacancy is created in an atom, the atom 

enters an excited state. If the average lifetime of this excited state is 

denoted by τ, then, according to the energy-time uncertainty principle, 

the total level width of this state is defined as Γ = ℏ/τ. The total level 

width Γ is expressed as the sum of the contributions ΓR 

(corresponding to radiative transitions), ΓA (corresponding to non-

radiative (Auger) transitions), and ΓCK (resulting from Coster–Kronig 

processes). The totol level width toplam seviye genişliği                      

( CKAR   ) (Jenkins,1986). Therefore, fluorescence 

efficiency, 

 

                  



 R                                                              (1) 

It is given with. 

 

The probability that a void created in the K shell of an atom is filled 

through the emission of characteristic X-rays is defined as the K-shell 

w  

                
K

K
K

n

I
                                                                         (2) 
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It is given by the relationship. Here, IK the number of X-rays emitted 

from the sample is K, where nK is the number of void created in the K 

layer. For higher atomic layers, the definition of fluorescence 

efficiency is more complex for two reasons: Alt tabakalara sahip 

tabakalarda C-K geçişleri söz konusudur. Bu geçişler, aynı baş 

kuantum sayısına sahip alt tabakalar arasında elektron veya boşluk 

kaymalarına neden olur. Different ionization models give rise to 

different vacancy distributions in atomic shells and subshells. 

Consequently, the average fluorescence yield depends strongly on the 

specific ionization mechanism by which these shells are excited. C-K 

transitions can occur in atomic shells that are divided into subshells. 

These transitions represent the redistribution of electrons or vacancies 

among subshells. The probability of a C-K transition is denoted by fij. 

In atoms, an electron vacancy can be occupied by electrons 

from higher energy levels. This filling process can occur through two 

distinct mechanisms: radiative or non-radiative. One of the non-

radiative processes, known as the Auger effect, occurs when an 

electron from an upper energy level fills the void, causing another 

electron to be emitted from the atom. As a result, the atom reaches a 

doubly excited state. The electron ejected during the Auger process is 

referred to as an Auger electron. Such processes are commonly termed 

non-radiative transitions or Auger transitions in the literature. 

Theoretical L XRF Cross-sections  

The L L, L and L    play a crucial role in establishing reliable 

theoretical models in fundamental nuclear and atomic physics studies, 
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which describe the emission of X-rays and Auger electrons. These 

parameters can be theoretically calculated using subshell 

photoionization cross sections, W, C-K transition probabilities, and 

transition rates. In this context, the following relationships proposed 

by Mann et al.(1994) form the basis of these calculations. 

Theoretically, in the absence of Coster-Kronig enhancement (fij=0), 

the characteristic L X-ray sections are expressed as follows. 

l333Ll F                                                                             (3) 

  333L F                                                                                   (4) 

 

  333222111L FFF                                               (5) 

 

  222111L FF                                                                  (6) 

But in reality, C-K exist, and in this case, the cross-sections. 

 

  l3332322312131Ll Ff)fff(                                        (7) 

 

    3332322312131L Ff)fff(                                    (8) 

 

  3323121312323222121111L F)]fff(f[F)f(F                     (9) 

 

  222121111L F)f(F                                          (10) 
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Here ,  are the fotoiyonizasyon cross-sections of the substrates and 

are calculated using the equation ln = k lnE with the help of 

Scofield's table (1973). f are the C-K transition probabilities. , are 

the W of the substrates and are taken from Krause's tables (1979). F 

are the transmission rate probabilities for L-X-rays and are obtained 

from Scofield's tables (1969). In this study, L L, L  was calculated 

theoretically. 

The C-K enhancement factors are obtained by dividing the 

relevant equations side by side, taking into account the same X-rays 

(Öz etal.,2004). This approach allows for the quantitative 

determination of these factors and makes them an important parameter 

in fluorescence calculations. 

3

32322312131

,l

f)fff(




 


                                           (11) 
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
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3323121312323222121111

FFF

F)]fff(f[F)f(F




      (12) 

 

They are calculated using equations. When a vacancy occurs in the L₁ 

subshell, f₁₂ and f₂₃ type Coster–Kronig transitions can take place. In 

the L₂ subshell, only the f₂₃ transition is possible. No Coster-Kronig 

transitions are observed in the L₃ subshell. The excitation energies of 

the elements are given in Table 1 (Elam, 2002).  
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Table 1. Absorption edge and excitation energies of Sm, Eu, and Bi 

elements 

Element Absorption edge energy 

(keV) 

Excitation energy (keV) 

 L1 L2 L3 L1 L2 L3 

Sm 7.754 7.281 6.721 11.372 7.649 7.057 

Eu 8.069 7.624 6.983 11.372 7.649 7.057 

Bi 16.393 15.716 13.424 16.896 15.859 13.596 

 

 

 

RESULTS AND DISCUSSION 

 

The XRF of the L sublayers of Sm, Eu, and Bi elements were 

calculated using Equations 7, 8, and 9. The obtained values are 

presented in Tables 2-4. 

An examination of Table 2-4 shows that the analysis of L-shell 

X-ray photoionization cross sections indicates that when elements are 

excited with energies below the L₁ subshell threshold, the 

photoionization cross sections associated with the excitation of the L₂ 

and L₃ subshells exhibit higher values. This trend can be explained by 

the dominance of the photoelectric effect at lower energies, which 

makes photoionization more probable for the L₂ and L₃ subshells 

within this energy range. 
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Table 2. σLα ,σLβ ,σLl (barns-atom) (for L3)) 

Elemennt E (keV) σLα σLβ σLl 

Sm 7.057 6904.225 2190.813 277.852 

Eu 7.057 7691.908 1371.207 309.930 

Bi 13.596 8802.232 2069.516 477.580 

 

Table 3. σLα ,σLβ ,σLl (barns-atom) (forL2) 

Elemennt E (keV) σLα σLβ σLl 

Sm 7.649 6104.328 4419.191 245.782 

Eu 7.649 6802.788 4913.734 274.105 

Bi 15.859 6206.639 5321.732 336.794 

 

Table 4. σLα ,σLβ ,σLl (barns-atom) (for L1 ) 

Elemennt E (keV) σLα σLβ σLl 

Sm 11.372 2304.938 2190.813 92.759 

Eu 11.372 2594.415 2461.757 104.536 

Bi 16.896 6335.181 5584.750 343.769 

 

As shown in Tables 2-4, the excitation energies for each 

element were selected by considering the absorption edge energies of 

the corresponding subshells. These energy choices were made to 

ensure consistency with the photoionization cross-sections calculated 

by Scofield. Since Sm and Eu have similar atomic numbers and the 

experimentally used excitation energies are within suitable ranges for 

both elements, the same excitation energies were adopted for these two 

elements. However, despite having the same excitation energies, it is 

clearly observed that the photoionization cross-sections of L X-rays 

increase with atomic number. In other words, as the atomic number 

increases, the photoionization cross-sections of X-rays also increase.   

--11--



  The findings obtained in this study clearly demonstrate that 

non-radiative transitions particularly C-K transitionshave a significant 

effect on the intensities of characteristic L-shell X-rays. C-K 

transitions cause vacancies created in the upper L subshells (L₁ and L₂) 

to be rapidly transferred to the L₃ subshell, thereby increasing the 

probability of characteristic X-ray emission originating from the L₃ 

subshell. This mechanism constitutes the fundamental physical reason 

for the observed increases in the measured X-ray intensities. 

Table 5. Kα1 and Kα2 C-K enhancement factors  

Elemennt E (keV) Kl1 E (keV) Kl2 

Sm 7.649 1.088 11.372 1.257 

Eu 7.649 1.085 11.372 1.250 

Bi 15.859 1.075 16.896 1.304 

 

Table 6. Kl1 and Kl2 C-K factors  

Elemennt E (keV) Kα1 E (keV) Kα2 

Sm 7.649 1.088 11.372 1.257 

Eu 7.649 1.085 11.372 1.250 

Bi 15.859 1.075 16.896 1.304 

 

Table 7. Kβ1 and Kβ2 C-K factors  

Elemennt E (keV) Kβ1 E (keV) Kβ2 

Sm 7.649 1.020 11.372 1.155 

Eu 7.649 1.016 11.372 1.131 

Bi 15.859 1.019 16.896 1.108 

 

Theoretical calculations reveal that when the direct ionizations of 

individual L subshells are considered separately, C-K transitions lead 

to a substantial enhancement in X-ray production. According to the 
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theoretical results presented in Tables 5 and 6, C-K (The theoretical 

Kα1 and Kl1)   factors result in an approximately 8.8% increase in L-

shell X-ray intensities, while other related factors                                       

(Kα2and  Kl2)contribute an additional 30% increase. 

The results given in Table 7 indicate that the CosterKronig factors 

have relatively smaller values. C-K (The Kβ1)   factors result in an 

approximately 1.6-2% increase in L-shell X-ray intensities, while other 

related factors (Kβ2 ) contribute an additional 10.8-15% increase. 

The obtained results further demonstrate that the influence of CK 

transitions strongly depends on both the atomic number and the 

excitation energy. At appropriate excitation energies, the efficient 

transfer of vacancies formed in the L₁ and L₂ subshells to the L₃ 

subshell leads to a pronounced enhancement of Lα X-ray intensities. In 

contrast, the more limited increase observed in Lβ lines can be 

explained by the weaker influence of CK transitions on these lines. 

In conclusion, it is evident that Coster–Kronig transitions enhance 

L-shell X-ray intensities, and neglecting this effect in quantitative XRF 

analyses may lead to systematic errors. Therefore, CK transitions must 

be explicitly taken into account in high-precision XRF measurements, 

particularly for elements with medium and high atomic numbers. 

 

CONCLUSION 

 

The obtained results demonstrate that the photoionization 

probability of L-subshell characteristic X-rays increases with 

increasing atomic number. This increase in atomic number reduces the 
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energy separations between the L subshells, thereby enhancing the 

probability of Coster–Kronig transitions and consequently increasing 

the number of vacancies created in the L₃ subshell. This mechanism 

constitutes the fundamental physical reason for the observed 

enhancement, particularly in the intensities of the Lα lines. According 

to the present findings, the presence of non-radiative (radiationless) 

transitions leads to significant variations in the measured X-ray 

intensities, and neglecting this effect in quantitative XRF analyzes 

may result in systematic errors. Therefore, in L-shell X-ray analyzes 

of elements, the influence of Coster–Kronig transitions must be taken 

into account together with the photoionization processes. 
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EVALUATION OF EXCHANGE BIAS STUDIES: 

CURRENT SITUATION ANALYSIS AND FUTURE 

TRENDS 

1. Taner KALAYCI 1 

2. Muhammet ARUCU 2 

1-Introduction 

In the context of spintronics, exchange bias—a phenomenon 

of basic and technological relevance in magnetic materials—plays a 

significant role. A method to ascertain and control a material's 

magnetism is by exchange bias, an effect that arises at the contact 

between two distinct magnetic materials. This phenomenon is used 

in many technological applications, such as magnetic random-access 

memory (MRAM), hard drives, and sensors.  
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When a cooling process is applied above the Neel 

temperature (TN) of the AFM material in hybrid systems with 

ferromagnetic (FM) and antiferromagnetic (AFM) layers, the FM 

layer experiences directional magnetic anisotropy [1-3]. The 

exchange bias interaction at the FM/AFM interface is the cause of 

this anisotropy. Meiklejohn and Bean first noticed exchange bias in 

1956 while studying Co particles coated with natural CoO [4]. This 

effect is also present in thin films [6], AFM single crystals [5], and 

other heterogeneous magnetic systems, according to later research.  

Additionally, the exchange bias effect is significant in applications 

like magnetic recording media [8], permanent magnets [7], and 

anisotropic magnetoresistance-based recording heads [9]. The 

exchange bias energy at the interface in the Meiklejohn and Bean 

model allows the AFM layer to stabilize the ferromagnetic layer's 

magnetic orientation [10]. However, this classical model has proven 

to be inadequate due to spin irregularities, grain boundaries, and 

roughness present in real systems. As a result, more sophisticated 

models also take into account ideas like spin glass-like structures, 

frozen spins, and field-cooled states [3]. 

Exchange bias is employed to maintain the magnetic 

orientation of the reference layer in devices such as magnetic tunnel 

junctions, spin valve topologies, and MRAMs [11]. This feature 

improves data dependability and ensures steady device operation. 

Furthermore, exchange bias has been seen not only in typical 

FM/AFM interfaces but also in ferrimagnetic, multilayer, and even 

single-phase nanostructures [6]. This suggests that the exchange bias 

phenomena may be related to more complex and general spin 

configurations. 

This study uses bibliometric analysis techniques to look at 

exchange bias research that has been published in the Web of Science 

(WoS) database. Prominent publications, authors, institutions, 
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nations, and co-authorship are assessed, along with the field's 

historical evolution and status. The basic issues and difficulties that 

arise in exchange bias research in magnetic applications are also 

discussed. The results contribute to the future of spintronic devices 

and show current trends in the field of exchange bias. 

 

2. Methods 

Using the search term "exchange bias," 6835 scholarly works 

were found in the WoS database. By examining each publication in 

this database, an attempt was made to shed light on the history, 

current state, and whether " exchange bias " has been extensively 

researched in the literature. This section addresses all research on " 

exchange bias" and offers a fresh perspective. 

 

3. Data Analysis, Document Collecting 

The main topic of this section is the examination of articles 

related to "exchange bias" in the WoS database. As of December 4, 

2025, a WoS database search using the terms "exchange bias" or 

"exchange-bias" yielded a total of 6835 results. The search was 

filtered by document type to include only english-language and only 

research articles. For bibliometric analysis, these articles were 

downloaded as tab-delimited files (Win format) containing full 

records. Subsequently, the VOSviewer program was used to perform 

analyses such as most frequently used keywords, abstracts, citation 

patterns, and co-authorship. 

 

4. Results and Discussion 
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Figure 1 shows that research articles on "exchange bias" are 

mostly found in fields such as Physics, Materials Science, 

Engineering, and Chemistry, while Figure 2 shows an increasing 

trend over the years. 

Figure 1. Number of “exchange bias” by research areas 

 

 

 
Figure 2. Number of "exchange bias" articles by year 

  

 

4.1. Co-authorship - Authors Analysis 
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Figure 3. The graph of "co-authorship - Author" analysis 

 

The co-authorship analysis reveals collaborations in 

"exchange bias" research, researcher profiles, and co-publication 

trends. This analysis shows that 18,881 authors have contributed to 

the field through journal publications. In the bibliometric analysis, 

when the threshold of at least 3 publications and at least 10 citations 

is applied, 3,212 authors meet these criteria. Table 1 lists the authors 

with the most publications in order. The top three are: Hu, Yong (52 

publications), Dieny, B. (44 publications), and Du Jun (42 

publications). Based on this data, the most prolific authors have been 

identified. Figure 3 shows the distribution of authors. In the figures, 

the bubble and font sizes represent the number of publications by the 

authors, and the bubble colors represent clusters formed by co-

authorship relationships. 

Table 1. Top ten authors with the greatest documents 

Author Documents 

Hu, Yong 52 

--23--



 

 

Dieny, B. 44 

Du Jun 42 

Van Lierop, J 39 

Majumbar S. 39 

O’grady, K. 38 

Giri S. 37 

Xu Qingyu 35 

Zhang Z.D. 33 

Nakatani Ryoichi 33 

 

4.2. Co-authorship - Affiliations Analysis 

Looking at the results of the co-authorship analysis at the 

institution level, it has been revealed that many institutions 

contribute to this field through journal publications. In this part of 

the study, when a threshold of at least 5 publications and at least 5 

citations was set, it was seen that 643 out of 3003 authors met this 

condition. According to the information presented in detail in Table 

2, Chinese Acad Sci stands out as the institution with the highest 

productivity with 337 publications. Chinese Acad Sci is followed by 

Nanjing University (177), Tohoku University (120), Indian Institute 

of Technology (115), National University of Singapore (110), and 

University of California Berkeley (106). These institutions are 

among the leading contributors to research on exchange bias. Figure 

4 illustrates the distribution among these institutions. The connecting 

lines between the institutions show the intensity of the collaboration 

and visually represent global research partnerships in the field of 

exchange bias. 
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Figure 4. The graph of "co-authorship - Affiliations" analysis 

 

Table 2. Top ten institutions with the highest documents, citations and total link 

strength 

Institutions Documents Citations 

Total 

Link 

Strength 

chinese acad sci 337 16 38 

cnrs 90 452 16 

csıc 96 136 13 

nanjing univ 177 76 36 

natl univ singapore 110 971 10 

northeastern univ 93 864 15 

polish acad sci 102 127 5 

russian acad sci 94 649 5 

tohoku univ 120 49 10 

univ calif berkeley 106 335 19 

univ calif san diego 100 52 11 
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univ york 102 79 14 

ındian ınst technol 115 53 6 

 

4.3. Co-authorship - Countries Analysis 

Looking at the results of the co-authorship analysis at the 

country level, it has been revealed that many countries contribute to 

this field through journal publications. In this part of the study, when 

a threshold of at least 3 publications and at least 10 citations was set, 

it was seen that 71 out of 91 authors met this condition. According 

to the information presented in detail in Table 3, China stands out as 

the institution with the highest productivity with 1542 publications. 

China is followed by USA (1267), India (826), Germany (741), 

France (493), and Japan (404). These countries are among the 

leading contributors to research on exchange bias. Figure 5 

illustrates the distribution among these countries. The connecting 

lines between the countries show the intensity of the collaboration 

and visually represent global research partnerships in the field of 

exchange bias. 
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Figure 5. The graph of "co-authorship - Countries" analysis 

  

 
Table 3. Top twenty countries with the highest documents, citations and total link 

strength 

Countries Documents Citations 
Total Link 

Strength 

Australia 124 50 152 

Brazil 233 1338 118 
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Canada 101 3324 138 

England 331 1120 310 

France 493 245 450 

Germany 741 123 590 

Japan 404 1394 222 

peoples r china 1542 4208 526 

Poland 176 1532 130 

Russia 247 1083 178 

Singapore 146 199 94 

South Korea 311 111 198 

Spain 386 2456 411 

Sweden 87 416 131 

Switzerland 92 265 137 

Taiwan 242 769 217 

Türkiye 80 9550 32 

USA 1267 504 859 

India 826 16162 267 

Italy 168 21963 172 

 

4.4. Co-occurences – Author Keywords 

The keyword co-occurrence map in VOSviewer examines 

the relationships between keywords, offering a valuable tool for 

researchers to identify key concepts and how these concepts 

interconnect to form sub-domains, which may represent emerging 
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research hotspots. The keyword "exchange bias," with 783 total 

occurrences, has the highest total link strength of 5321, indicating 

that it frequently co-occurs with other keywords. Figure 6 shows the 

keyword co-occurrence map for exchange bias publications, where 

"exchange bias" most often co-occurs with "exchange-bias" as 

evidenced by the widest bubble and the highest link strength of 3343. 

Figure 6. The Graph of “Co-occurences – Author Keywords” analysis 

 

4.5. Citation – Documents Analysis 

According to the citation analysis, 6335 sources contributed 

to the field of exchange bias; 1473 of these sources received at least 

25 citations. Berkowitz (1999) is the most cited document, as shown 

in the largest pistachio green in the document network map in Figure 

7. Furthermore, Berkowitz (1999) has the strongest linkage with 

other articles, as seen with the highest total linkage strength (254). 

--29--



 

 

The top three documents in terms of total linkage strength, number 

of citations, and document number are: 

Berkowitz (1999) – Total linkage strength: 254; Citations: 

1532, Koon (1997) – Total linkage strength: 152; Citations: 745, 

Nogues (1996b) - Total linkage: 126; Citations: 524 

 

Figure 7. The Graph of “Citation – Documents” Analysis 

 

 

4.6. Citation – Source Analysis 

According to the citation analysis of publication sources, 468 

sources contributed to the field of exchange bias; 174 of these 

sources published three articles with at least ten citations. As can be 

seen from the largest light blue bubble in the network map of source 

citations in Figure 8, the most cited journal is Physical Review B. In 
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addition, the Journal of Magnetism and Magnetic Materials has the 

highest overall linkage strength (5006), indicating its central role in 

the citation network and its significant connection with other 

publications. This strong linkage strength reflects how frequently 

exchange bias is mentioned in various journals, demonstrating its 

widespread impact within the scientific community. The top three 

sources by total linkage strength, number of citations, and number of 

documents are as follows: 

Journal of Applied Physics – Total linkage strength: 3750; 

Citations: 12828; Papers: 768, Journal of Magnetism and Magnetic 

Materials – Total linkage strength: 5006; Citations: 10770; 

Documents: 689, Physical Review B - Total linkage: 3576; Citations: 

22959; Documents: 617 

Figure 8. The Graph of “Citation – Source” Analysis 
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4.7. Citation – Affiliations Analysis 

Looking at the citation analysis of links on exchange bias 

results; 3003 institutions have contributed to the field of Exchange 

Bias; 362 of these have published at least 10 articles with at least 10 

citations. As shown in one of the blue bubbles in the link citation 

network map of cross-country citations in Figure 9, the most cited 

institution is the University of California, Berkeley. In addition, the 

University of California, San Diego has the highest total link 

strength (4523), demonstrating both its significant role in the citation 

network and its substantial linkage to other publications. This strong 

link strength reflects how frequently exchange bias is mentioned 

across various journals, showing its widespread impact within the 

scientific community. The top 3 institutions in terms of article count, 

citation count, and total link strength are as follows: 

Univ Calif San Diego – Total linkage strength: 4523; 

Citations: 7766; Documents: 100, Univ Calif Berkeley – Total 

linkage strength: 2426; Citations: 10046; Documents: 106, Chinese 

Acad Sci - Total linkage: 2756; Citations: 7022; Documents: 337 

Figure 9. The Graph of “Citation – Affiliations” Analysis 
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4.8. Citation – Countries Analysis 

Looking at the citation analysis results; 94 countries have 

contributed to the field of Exchange Bias; 71 of these have published 

at least 3 articles with at least 10 citations. As shown in the orange 

bubble on the network map of cross-country citations in Figure 10, 

the most cited country is the USA. China has the most articles 

(1542), demonstrating its close ties with other journals and its key 

position in the citation network. The top 3 countries in terms of 

article count, citation count, and total link strength are as follows: 

USA – Total linkage strength: 14323; Citations: 53845; 

Documents: 1267, China – Total linkage strength: 9293; Citations: 

25710; Documents: 1542, Germany - Total linkage: 6755; Citations: 

21963; Documents: 741 

Figure 10. The Graph of “Citation – Countries” Analysis 

 

4.9. Co-citation analysis of cited references 
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In the co-citation analysis of cited references, the minimum 

number of citations for a cited reference was entered as 20. Of the 

total 80780 cited references, 1224 meet this condition. As shown in 

Figure 11, it consists of a total of 5 clusters. Cluster 1 consists of 

355, cluster 2 of 278, cluster 3 of 210, cluster 4 of 131, and cluster 5 

of 26 cited reference, and these clusters are colored red, green, blue, 

yellow, and purple, respectively. 

Figure 11.The Graph of “ Co-citation - cited references” analysis 

 

 

4. Conclusion 

The results of the bibliometric analysis reveal that some 

researchers are leading the way in this field. Citation numbers and 

co-authorship networks show that researchers like Hu Yong have 

made significant contributions to the Exchange Bias literature, 

contributing to both the development of theoretical models and the 

advancement of empirical validations.  

--34--



 

 

Institutional analyses show that exchange bias studies are 

conducted at universities and research centers. Organizations such as 

the Chinese Academy of Sciences and CNRS are considered 

pioneers in this field due to their high number of publications and 

citations. When viewed on a country basis, exchange bias research 

has become widespread worldwide. While India, China, and the US 

stand out in terms of publication numbers and international 

collaborations, developing countries have shown progress toward a 

more balanced and multifaceted structure in recent years. 

Bibliometric analysis results show that, despite the exchange 

bias field not being very old, it is a well-established and dynamic 

area of research. The increase in the number of publications, the 

diversity of topics, and the rise in international collaborations 

indicate that scientific output will continue to grow in the coming 

years. It is predicted that the exchange bias phenomenon will 

maintain its importance in both fundamental science and advanced 

technological applications, particularly in conjunction with 

developments in spintronics, magnetic data storage, and quantum 

technologies. 
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EFFECTS OF ARTIFICIAL INTELLIGENCE ON 

ANTENNA DESIGN, SIMULATION, AND 

MANUFACTURING PROCESSES 

ERKAN TETİK1 

Introduction 

Antennas, as a cornerstone of wireless communication, play 

a pivotal role in our modern world. Their remarkable ability to 

convert radio waves into electrical signals and vice versa has 

rendered them indispensable components across a vast spectrum of 

applications, ranging from mobile telephony and satellite 

communication to radar systems and the Internet of Things (IoT) [1–

7]. The history of antenna technology commenced with Guglielmo 

Marconi's invention of wireless telegraphy in the late 19th century 

and has since undergone continuous evolution. This developmental 

trajectory, spanning from rudimentary dipole antennas to advanced 

microstrip, patch, array, and smart antennas, has been shaped by 

persistent demands for increased bandwidth, higher efficiency, 

reduced form factors, and enhanced functionality [8–13]. Presently, 

emerging domains such as 5G and beyond communication systems, 
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autonomous vehicles, sophisticated healthcare technologies, and 

space exploration necessitate further advancements in antenna 

performance and adaptability [14–17]. While traditional antenna 

design, simulation, and manufacturing processes have witnessed 

significant progress over the years, they inherently remain time-

consuming, iterative, and computationally intensive. During the 

design phase, engineers typically leverage analytical equations and 

numerical optimization techniques. The simulation process aims to 

predict antenna performance through powerful electromagnetic 

(EM) solvers, including the finite element method (FEM), finite-

difference time-domain (FDTD), and method of moments (MoM). 

These simulations are critically important for design verification 

prior to physical prototyping. However, modern requirements such 

as complex antenna structures, multiple frequency bands, and 

stringent spatial constraints increasingly challenge the limits of 

conventional methodologies. Furthermore, manufacturing processes 

often entail engineering complexities related to precise material 

selection, production tolerances, and assembly stages, which can 

incur substantial costs and lead times [18–22]. 

The rapid proliferation of artificial intelligence (AI) and 

machine learning (ML) has triggered a paradigm shift, 

fundamentally transforming engineering and telecommunications 

landscapes. In contrast to traditional physics-based or empirical 

models reliant on closed-form equations, ML algorithms distinguish 

themselves by their ability to autonomously extract patterns and 

statistical correlations from large datasets. This data-driven 

capability enables the resolution of high-dimensional problems that 

are often computationally intractable for conventional methods [23]. 

Consequently, these techniques are redefining the lifecycle of 

complex systems through robust prediction, automated decision-

making, and sophisticated optimization. Within the 

telecommunications sector, this impact is evident in the deployment 
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of self-organizing networks (SONs), predictive channel estimation, 

and intelligent signal classification [24,25]. Broader engineering 

disciplines are similarly leveraging AI to accelerate innovation, 

ranging from generative design in mechanical engineering to 

predictive maintenance and process control in smart manufacturing 

[26,27]. Collectively, these capabilities have paved the way for AI’s 

integration into antenna engineering, offering novel solutions to the 

limitations of traditional design, simulation, and manufacturing 

paradigms [28,29]. 

The primary objective of this chapter is to investigate the 

paradigm shift brought by artificial intelligence in antenna design, 

simulation, and manufacturing. Specifically, it addresses AI's 

capability to optimize antenna performance, solve high-complexity 

EM problems, and enhance efficiency within manufacturing 

workflows. The text thoroughly discusses both the promising 

opportunities and the significant challenges associated with this 

technological integration. In terms of scope, the chapter bridges the 

gap between machine learning theories (supervised, unsupervised, 

RL, and DL) and their practical applications, such as parametric 

optimization, surrogate modeling, and fault diagnosis. Concluding 

with a visionary outlook, the chapter underscores the central role AI 

is poised to play in the next generation of antenna technologies. 

2. The Role of Artificial Intelligence in Antenna Design 

Although firmly rooted in established EM theory, the 

traditional antenna design workflow remains a fundamentally 

iterative and heuristic process. Typically, the design phase initiates 

with an analytical model or a canonical topology, followed by a 

rigorous cycle of parametric tuning, high-fidelity full-wave 

simulation, and performance assessment. However, this 

methodology encounters severe scalability and efficiency 

bottlenecks when addressing the stringent requirements of modern 
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wireless ecosystems. Demands for multi-band operation, wide 

bandwidth, miniaturization, and reconfigurability have expanded the 

design space into high-dimensional, complex territories [30]. 

Navigating this complexity via conventional trial-and-error 

approaches is not only computationally prohibitive but also restricts 

the discovery of non-intuitive, unconventional geometries [31]. The 

advent of AI, and specifically Machine Learning (ML), heralds a 

paradigm shift, transitioning the field from laborious iteration to 

data-driven automation. By exploiting statistical patterns, AI 

facilitates rapid surrogate modeling and inverse design capabilities 

[32]. Consequently, rather than relying on exhaustive brute-force 

simulations, AI-driven frameworks enhance design efficiency, 

offering real-time performance prediction and the generative 

creation of novel antenna structures based on specific performance 

criteria [33]. 

Figure 1 AI-Driven Antenna Design Workflow 
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Fig. 1 illustrates the transformative impact of AI on the 

antenna design process, contrasting the conventional, iterative 

workflow with an AI-enhanced, data-driven approach. The 

Traditional Workflow (left panel) depicts a linear and often time-

consuming sequence involving initial design, parameter scans, and 

extensive, high-fidelity EM simulations. The AI-enhanced workflow 

(right panel) begins with defining requirements. This is followed by 

an automated design and optimization phase driven by an AI core, 

the Intelligent Design Engine. This core uses various AI techniques, 

such as generative modeling and topology optimization, to create 

novel structures. It also uses physics-informed neural networks 

(PINNs) to rapidly and accurately model. The evolutionary and AI-

based optimization module, often assisted by surrogate models, 

significantly speeds up the exploration of design parameters. The AI 

system provides a set of candidate designs that facilitate informed 

decision making. Ultimately, this process shift enables rapid 

optimization, accelerated simulation, high-accuracy modeling of 

complex structures, and a largely automated design exploration, 

thereby significantly reducing design cycles and fostering the 

discovery of advanced antenna solutions. 

2.1. Rapid Optimization of Antenna Parameters 

One of the most laborious phases in antenna engineering is 

the optimization of geometric and material parameters to satisfy 

stringent performance targets, such as resonant frequency, 

impedance matching (S11 < -10 dB), gain, bandwidth, and radiation 

pattern characteristics. Traditional, gradient-based methods are at 

risk of becoming trapped in local minima within the complex, 

multimodal landscapes of antenna performance metrics. Conversely, 

simple parameter sweeps suffer from the "curse of dimensionality," 

rendering them computationally prohibitive as the number of design 

variables increases. Artificial Intelligence offers a robust suite of 
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alternatives to these limitations, primarily through Evolutionary 

Algorithms (EAs) and Surrogate-Model-Assisted Optimization [34]. 

EAs, techniques like Genetic Algorithms (GAs) and Particle 

Swarm Optimization (PSO) are inspired by natural processes. A GA, 

for instance, maintains a "population" of potential antenna designs 

(individuals), each defined by a set of parameters (genes). The 

performance of each design is evaluated using a "fitness function," 

which is typically derived from EM simulation results. Through 

processes mimicking natural selection, such as crossover (combining 

parameters from successful designs) and mutation (randomly 

altering parameters), the population evolves over generations toward 

optimal solutions [35,36]. 

While EAs are effective global optimizers, they inherently 

require a vast number of fitness evaluations, each potentially 

triggering a time-consuming EM simulation. To mitigate this 

computational burden, AI-driven surrogate modeling (also referred 

to as metamodeling) is employed. This approach involves training a 

Machine Learning model, such as a Deep Neural Network (DNN), 

Support Vector Machine (SVM), or Gaussian Process (Kriging), 

using a sparse dataset of antenna parameters and their corresponding 

EM responses. Once trained, the surrogate acts as a computationally 

efficient proxy for the full-wave solver. Optimization algorithms can 

then query this proxy thousands of times to rapidly explore the 

design space, drastically reducing the dependency on the physics-

based simulator within the optimization loop [37,38]. 

2.2 Reduction of Simulation Times 

High-fidelity full-wave EM simulation, utilizing numerical 

techniques such as FEM, Finite-Difference Time-Domain (FDTD), 

and Method of Moments (MoM), constitutes the standard 

verification protocol in modern antenna design [39]. However, this 

accuracy comes at a steep computational cost. A single simulation 
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for an electrically large or complex structure can necessitate hours—

or even days—on high-performance computing clusters. This 

latency imposes severe constraints on the number of feasible design 

iterations, rendering large-scale global optimization practically 

unachievable. To circumvent this, AI-driven surrogate modeling has 

emerged as a primary solution. The fundamental strategy involves 

decoupling the expansive design exploration phase from the 

computationally intensive physics solver [40]. The process generally 

follows a three-stage workflow: 

A Design of Experiments (DoE) methodology is employed to 

systematically sample the design space. A limited set of diverse 

antenna configurations (typically ranging from a few hundred to a 

few thousand) is simulated using the high-fidelity EM solver. This 

phase constructs a foundational dataset that maps specific design 

inputs (e.g., patch length, substrate height, feed coordinates) to their 

corresponding performance outputs. Subsequently, a Machine 

Learning model, most commonly a DNN, is trained on this generated 

dataset. The network learns to approximate the intricate, non-linear 

mapping functions between the antenna's physical geometry and its 

EM behavior. In cases involving image-like inputs, such as pixelated 

patch antenna layouts, Convolutional Neural Networks (CNNs) are 

particularly effective due to their ability to capture spatial feature 

dependencies. Once fully trained, the surrogate model functions as a 

real-time inference engine. It can predict the full performance 

spectrum, such as the complete curve across a frequency band or 3D 

radiation patterns, for any new set of design parameters within its 

training domain almost instantaneously. This approach effectively 

replaces the time-consuming physics simulation with a rapid 

prediction model, significantly accelerating the iterative design 

cycle. 

2.3 High-Accuracy Modeling of Complex Antenna Structures 
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Contemporary antenna engineering deals with increasingly 

sophisticated structures that defy simple analytical characterization. 

These include metamaterial-inspired radiators, frequency-selective 

surfaces (FSS), densely packed phased arrays exhibiting significant 

mutual coupling, and reconfigurable antennas integrated with active 

components like PIN diodes or MEMS switches [41]. Modeling such 

architectures presents multifaceted challenges. In this context, AI 

provides robust tools that go beyond simple parameter estimation. 

These tools can solve complex physics problems and generate new 

topologies. 

PINNs, a cutting-edge advancement involves embedding the 

governing physical laws directly into the machine learning 

architecture. PINNs are neural networks where the loss function 

incorporates not only the error between the model’s prediction and 

the training data (data-driven loss) but also a residual term enforcing 

compliance with the underlying differential equations, such as 

Maxwell’s equations. This "physics-informed" constraint ensures 

that the model's predictions remain physically consistent, even in 

regimes where training data is sparse or unavailable. For complex 

electromagnetic problems, PINNs can yield highly accurate 

surrogate models with significantly less training data compared to 

purely data-driven "black-box" approaches [42]. 

One revolutionary application of AI is inverse design. Rather 

than starting with geometry and working toward performance, 

inverse design begins with the desired performance (e.g., a specific 

radiation pattern or multiple frequency bands) and uses AI to 

generate a corresponding physical structure. Generative models like 

Generative Adversarial Networks (GANs) and Variational 

Autoencoders (VAEs) are exceptionally well-suited for this task. A 

GAN, for example, can be trained on a large dataset of antenna 

geometries and their performance characteristics. The "generator" 

network then learns to propose new, valid antenna layouts, while a 
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"discriminator" network assesses their quality. Through this 

adversarial process, the generator becomes adept at creating novel 

designs that meet specified high-level performance constraints [43]. 

3. AI Methodologies and Antenna Applications 

While the preceding chapter established the transformative 

impact of AI on the antenna design paradigm, this chapter 

investigates the specific methodologies underpinning these 

advancements. It synthesizes ML, DL, and EAs under a unified 

computational framework. Although these categories possess 

distinct theoretical characteristics, their synergistic application has 

become increasingly prevalent in resolving complex engineering 

challenges. This section elucidates the fundamental mechanics of 

each technique and demonstrates their practical utility through 

relevant case studies. Special emphasis is placed on their capabilities 

in parameter estimation, performance prediction, global 

optimization, and generative design [44]. 

3.1. ML Based Methods 

ML encompasses a diverse spectrum of algorithms capable 

of extracting patterns from data without explicit programming 

instructions. In the context of electromagnetics, these methods are 

particularly valuable for modeling the complex, non-linear mappings 

between antenna design parameters (geometry/materials) and their 

EM performance. They serve as robust engines for both parameter 

estimation and computationally efficient surrogate modeling. 

Decision Trees (DTs) learn a sequence of simple decision 

rules inferred from the data features. While interpretable, individual 

DTs can be prone to overfitting. Support Vector Machines are 

powerful algorithms for classification and regression, particularly 

effective in high-dimensional spaces [45,46]. SVMs work by finding 

an optimal hyperplane that best separates different classes or fits data 

points with maximum margin. They are robust against overfitting 
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and can handle complex, non-linear relationships using kernel 

functions. RFs overcome the limitations of individual DTs by 

constructing an ensemble of many DTs during training. Each tree is 

trained on a random subset of the data and features, and the final 

prediction is an aggregation (e.g., majority vote for classification, 

average for regression) of individual tree predictions. This ensemble 

approach significantly improves accuracy, robustness, and reduces 

overfitting, making RFs highly effective for predicting antenna 

performance metrics. 

Figure 2 Schematic representation of RF architecture. The model 

trains an ensemble of DTs on random subsets of data and 

aggregates their individual predictions (via majority voting for 

classification or averaging for regression) to produce a robust final 

output. 

 

The architectural framework of RF algorithm is illustrated in 

Fig. 2. As depicted, the ensemble method aggregates the outputs of 

multiple independent DTs to derive a final prediction, thereby 

reducing the variance associated with individual estimators. 

ML models excel in constructing high-speed surrogate 

models that map geometric parameters to performance 

characteristics (Forward Modeling) or, conversely, estimate required 

dimensions for a desired output (Inverse Modeling). For instance, 

algorithms can be trained to predict the resonant frequency of a 

microstrip patch given its substrate properties and dimensions with 

high fidelity. This predictive capability is critical for rapid design 

space exploration, enabling real-time feedback that traditional 

solvers cannot provide. 
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Consider the optimization of a patch antenna for maximum 

gain within specific form factor constraints. A dataset consisting of 

various patch dimensions (length, width, feed position, substrate 

height, dielectric constant) and their corresponding simulated gain 

values can be generated. An ML model, such as an RF Regressor, 

can then be trained on this dataset. Once the model learns the 

relationship, it can rapidly predict the gain for new, untested 

combinations of parameters. This surrogate model can be coupled 

with an external optimization algorithm, such as a simple gradient 

descent or an EA, to efficiently search the parameter space for 

configurations that yield the highest gain. This drastically reduces 

the number of computationally expensive full-wave EM simulations 

required [47]. 

3.2. DL for Antenna Design 

DL, a specialized and sophisticated subset of ML, employs 

artificial neural networks with multiple processing layers (deep 

architectures) to learn hierarchical representations of data. Unlike 

traditional "shallow" learning methods that often require manual 

feature extraction, DL models are adept at processing high-

dimensional raw data, such as antenna geometries represented as 

images or broadband frequency responses, and autonomously 

extracting salient features. This capability allows them to model 

complex electromagnetic phenomena with unprecedented accuracy 

[48]. 

CNNs are exceptionally powerful for processing grid-like 

data, making them ideal for analyzing antenna geometries 

represented as images or pixel maps. A CNN can be trained to 

directly predict the full 3D radiation pattern of an antenna simply by 

taking its 2D structural layout image as input. The convolutional 

layers automatically learn to detect relevant geometric features (e.g., 

slot shapes, trace widths, gaps) that influence the antenna's far-field 
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characteristics. This eliminates the need for explicit parameterization 

of the antenna and provides an ultra-fast alternative to full-wave 

simulations for pattern synthesis and analysis [49]. 

DNNs, with their multi-layered architecture, can capture 

highly complex, non-linear relationships between a multitude of 

antenna parameters and desired performance metrics. For bandwidth 

optimization, a DNN can be trained on a dataset comprising various 

antenna geometries (e.g., feed line width, ground plane dimensions, 

parasitic element placements) and their corresponding fractional 

bandwidths. The network learns how subtle changes in geometry 

impact the impedance matching over a frequency range. After 

training, the DNN can serve as a rapid predictor, allowing engineers 

to quickly iterate and identify configurations that yield wider 

bandwidths, a critical factor for modern wireless communication 

systems [50]. 

Transfer Learning is a powerful DL technique where a model 

pre-trained on a large dataset for a general task (e.g., a CNN trained 

on image recognition) is adapted for a new, specific task (e.g., 

antenna performance prediction) with a smaller dataset. In antenna 

design, this means a DL model trained on a vast repository of 

existing antenna simulations can be fine-tuned with a relatively 

small set of new simulation data for a slightly different antenna type 

or operating environment. This significantly reduces the training 

data requirement and accelerates the development of new predictive 

models, enabling faster prototyping and exploration of novel designs 

without the need to build a comprehensive dataset from scratch for 

every new antenna concept [51]. 

3.3. Evolutionary and Natural Computing Algorithms 

EAs and broader natural computing paradigms constitute a 

robust class of metaheuristic optimization techniques inspired by 

biological evolution and swarm intelligence. Unlike deterministic 
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gradient-based methods, which are prone to entrapment in local 

minima, these stochastic algorithms do not require derivative 

information. Consequently, they are exceptionally well-suited for the 

complex, discontinuous, and multimodal objective functions 

frequently encountered in high-dimensional antenna design spaces. 

GAs operate on a population of potential solutions (antennas 

represented by a set of parameters or a binary string encoding 

geometry). Through iterative application of genetic operators 

(selection, crossover, mutation), the population "evolves" over 

generations. Designs with better performance (higher fitness) are 

more likely to survive and pass on their "genes," leading to a gradual 

improvement towards optimal solutions. GAs are highly effective for 

global optimization and exploring vast, irregular design spaces. PSO 

is another population-based metaheuristic inspired by the social 

behavior of bird flocking or fish schooling. Each "particle" in the 

swarm represents a potential solution in the search space. Particles 

move through the search space, adjusting their trajectories based on 

their own best-found position (personal best) and the best-found 

position of the entire swarm (global best). This collective 

intelligence allows the swarm to efficiently converge towards 

optimal regions. PSO is often simpler to implement than GAs and 

can be very effective for continuous optimization problems in 

antenna design [52]. 

Figure 3 Flowchart of the Particle Swarm Optimization (PSO) 

algorithm. The process highlights the iterative mechanism where 

particles adjust their trajectories in the search space guided by 

personal best (Pbest) and global best (Gbest) values to converge 

toward the global optimum. 
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The iterative operational workflow of the PSO algorithm is 

detailed in the flowchart presented in Fig. 3. In each iteration, the 

particles update their velocities and positions based on the best 

solutions they and the swarm have found historically. This cycle 

continues until a termination criterion is met. The synergistic 

integration of EAs with Machine Learning forms powerful "Hybrid 

AI" architectures, often referred to in literature as Surrogate-Assisted 

Evolutionary Algorithms (SAEAs). In this framework, an EA serves 

as the primary global optimizer; however, instead of evaluating 

every candidate design via a computationally expensive full-wave 

EM simulator, the algorithm queries a high-speed ML/DL surrogate 

model. This strategy dramatically accelerates the optimization 

process, enabling the exploration of massive design spaces within 

practical timeframes. Furthermore, advanced hybrid strategies 

employ ML to intelligently guide the evolutionary operators (e.g., 

adaptive mutation), making the search process significantly more 

directed and efficient. 

Designing Multiple-Input Multiple-Output (MIMO) 

antennas for 5G and emerging 6G systems poses significant 

challenges. These challenges stem from the necessity of having 

multiple radiating elements in close proximity. This requires careful 

management of mutual coupling, ensuring high isolation, and 

maintaining radiation efficiency and compact form factors. PSO is a 

highly effective algorithm for optimizing such complex, multi-

objective problems. For instance, PSO can simultaneously optimize 

the placement, orientation, and geometric parameters of multiple 

antenna elements within an array. The fitness function for each 

"particle" (a specific MIMO antenna configuration) would typically 

include objectives like minimizing correlation coefficients, 

maximizing channel capacity, achieving desired radiation patterns 

for beamforming, and maintaining acceptable impedance matching 

across multiple ports. By leveraging PSO, engineers can efficiently 
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explore the vast design landscape of MIMO arrays, leading to 

compact, high-performance solutions crucial for the next generation 

of wireless communication [53,54]. 

4. Artificial Intelligence in Antenna Manufacturing Processes 

While the previous chapters focused on the design and 

simulation phases, the physical realization of antennas involves 

distinct challenges related to precision, material properties, and 

production consistency. The integration of AI into manufacturing, 

often referred to as Industry 4.0, is revolutionizing how antennas are 

fabricated. This chapter explores the application of AI in antenna 

manufacturing, specifically focusing on additive manufacturing 

optimization, material selection, defect prediction, and automated 

quality control [55]. 

Additive manufacturing (3D printing) has gained significant 

traction in antenna engineering due to its ability to fabricate 

complex, non-planar geometries that are difficult to achieve with 

subtractive methods. However, deviations during the printing 

process can severely impact EM performance. AI algorithms are 

increasingly employed to enhance the fidelity of 3D-printed 

antennas. ML models can be trained to optimize slicing parameters 

(e.g., layer height, infill density, and print speed) based on the 

specific EM requirements of the antenna. Furthermore, AI-driven 

geometric compensation techniques are used to predict and 

counteract thermal deformations or shrinkage that occur during the 

printing process. By pre-distorting the digital model (CAD), the AI 

ensures that the final physical prototype matches the intended design 

with high precision, thereby maintaining the desired resonant 

frequency and radiation patterns [56]. 

The performance of an antenna is intrinsically linked to the 

EM properties of the materials used, particularly the substrate's 

permittivity and loss tangent. In traditional manufacturing, material 
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selection is often limited to commercially available standard 

substrates. AI facilitates a more nuanced approach through the 

optimization of composite materials and metamaterials. Data-driven 

approaches allow engineers to predict the effective EM properties of 

composite mixtures before fabrication. For instance, DL models can 

analyze the micro-structure of a proposed material mixture and 

accurately predict its dielectric constant. This capability enables the 

"inverse design" of materials, where the AI recommends a specific 

material composition and fabrication parameter set to achieve a 

target permittivity required for a specific antenna application, 

significantly reducing the trial-and-error phase in material 

engineering [57]. 

In mass production scenarios, equipment failure or process 

drift can lead to defective antenna batches, resulting in substantial 

financial loss. AI-powered predictive maintenance and defect 

prediction systems are critical in mitigating these risks. By 

leveraging data from sensors embedded in manufacturing equipment 

(e.g., temperature sensors on extruders, vibration sensors on CNC 

milling machines), ML algorithms can detect subtle anomalies that 

precede a failure. Time-series analysis techniques, such as Long 

Short-Term Memory (LSTM) networks, process this sensor data to 

forecast potential manufacturing deviations. If the system predicts 

that a machine's calibration is drifting beyond an acceptable 

tolerance, which could lead to etching errors in PCBs or structural 

flaws in 3D prints, it can alert operators or automatically adjust 

process parameters in real-time to prevent the defect, ensuring 

consistent production quality [58]. 

Post-manufacturing inspection is the final gatekeeper of 

quality. Traditional manual inspection is slow and prone to human 

error, while rule-based automated optical inspection (AOI) systems 

often struggle with complex antenna geometries. AI, particularly 

Computer Vision powered by CNNs, has transformed quality 
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control. AI-based inspection systems can analyze high-resolution 

images or X-ray scans of manufactured antennas to detect 

microscopic defects such as micro-cracks in solder joints, 

discontinuities in conductive traces, or surface roughness on 

waveguide components. Unlike traditional methods, these deep 

learning models can generalize to identify novel defect types they 

were not explicitly programmed to find. This automated, high-speed 

verification ensures that only antennas meeting stringent 

performance standards proceed to the assembly stage, thereby 

enhancing the overall reliability of wireless communication systems 

[59]. 

5. Challenges and Future Perspectives 

The integration of AI into antenna engineering has 

undeniably precipitated a paradigm shift, unlocking unprecedented 

capabilities in design optimization, simulation acceleration, and 

manufacturing precision. However, notwithstanding the promising 

results detailed in preceding chapters, significant hurdles remain that 

impede the ubiquitous industrial adoption of these technologies. 

Furthermore, as wireless communication standards evolve toward 

6G and Terahertz (THz) frequencies, the role of AI is projected to 

expand from offline design optimization to real-time, adaptive 

antenna control. This section critically examines existing bottlenecks 

and delineates the trends poised to shape the future of intelligent 

antenna systems. 

5.1. Current Challenges in AI-Driven Antenna Engineering 

While AI models have demonstrated superior efficacy in 

specific case studies, their robust deployment in general-purpose 

antenna engineering confronts obstacles regarding data availability, 

computational overhead, and model interpretability. 

One of the most pervasive challenges in applying AI to EM s 

is the lack of large-scale, open-source, and standardized datasets. 
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Unlike fields such as Computer Vision or Natural Language 

Processing, which benefit from massive repositories like ImageNet, 

the antenna community relies heavily on synthetic data generated via 

simulations. Generating "ground truth" data using high-fidelity full-

wave EM solvers is computationally expensive and time-consuming. 

Consequently, many studies rely on small, problem-specific datasets. 

This limits the reproducibility of results and hinders the development 

of foundation models capable of understanding generalized 

electromagnetic (EM) phenomena. Without a unified benchmark 

dataset, researchers must regenerate data for every new design 

problem, creating a significant barrier to entry and slowing the field's 

collective progress [60,61]. 

Although trained AI models (surrogates) offer rapid 

inference times, the upfront computational cost of training these 

models can be substantial. Creating a robust surrogate model often 

requires thousands of full-wave simulations to populate the design 

space adequately. For electrically large structures or massive arrays 

intended for 5G/6G applications, a single data point can take hours 

to simulate. When combined with the hardware requirements for 

training DNNs or GANs, which necessitate high-performance 

GPUs, the total energy and time investment can sometimes approach 

or exceed that of traditional optimization methods for simpler 

problems. The "curse of dimensionality" remains a critical issue; as 

the number of design variables increases, the amount of data required 

to train an accurate model grows exponentially, challenging the 

feasibility of AI for highly complex antenna topologies [62,63]. 

A critical limitation of current data-driven models is their 

poor generalization capability. A neural network trained to optimize 

a microstrip patch antenna typically fails completely if applied to a 

horn antenna or a dielectric resonator antenna. Most AI models in 

literature are "topology-specific," meaning they learn the statistical 

correlations of a fixed geometry but do not grasp the underlying 
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Maxwell’s equations. This lack of physical intuition often leads to 

the "black box" problem, where the model might predict physically 

impossible results (e.g., efficiencies greater than 100% or negative 

resistance) when queried outside its training domain. Ensuring the 

trustworthiness of AI predictions is paramount; without rigorous 

validation or physics-informed constraints (such as PINNs), 

engineers may hesitate to rely on AI for mission-critical aerospace 

or defense applications. 

5.2. Future Trends: The Road to 6G and Beyond 

Looking forward, the convergence of EMs and artificial 

intelligence is poised to deepen. The focus is shifting from using AI 

merely as a design tool to embedding it as the "brain" of the 

communication hardware itself. 

The transition to 6G networks will utilize the sub-THz and 

THz spectrums to achieve data rates exceeding 1 Tbps. At these 

frequencies, propagation losses are severe, requiring ultra-massive 

MIMO (um-MIMO) arrays with hundreds or thousands of elements 

to maintain connectivity via high-gain beamforming. Traditional 

channel estimation and beam management techniques are too slow 

to handle the high mobility and dynamic blockage characteristic of 

these frequencies. Future antenna systems will employ AI-native 

architectures where deep learning algorithms predict channel state 

information (CSI) and optimize beamforming weights in real-time 

[64]. These "cognitive antennas" can sense their environment, 

predict user movement, and proactively adjust their radiation 

patterns to ensure uninterrupted connectivity. This effectively 

realizes the concept of smart radio environments [65]. 

The future of antenna engineering lies in "Generative 

Design" and autonomous synthesis. Moving beyond simple 

parameter optimization, future AI systems will function as end-to-

end designers. An engineer will simply input high-level 
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specifications (e.g., "design a dual-band antenna for a wearable 

device with X gain and Y size constraints"), and the AI, leveraging 

GANs or RL, will autonomously evolve novel topologies that no 

human engineer would intuitively conceive. These systems will 

likely integrate multi-physics simulations to optimize EM 

performance, thermal dissipation, and mechanical structural 

integrity simultaneously, thereby streamlining the entire R&D 

lifecycle from concept to fabrication. 

To meet the ultra-low latency requirements (<1 ms) of future 

applications like autonomous driving and remote surgery, antenna 

control intelligence must move from the cloud to the extreme edge. 

This involves implementing lightweight AI models directly on the 

Field Programmable Gate Arrays (FPGAs) or Application-Specific 

Integrated Circuits (ASICs) embedded behind the antenna array. 

"Edge AI" will enable reconfigurable intelligent surfaces (RIS) and 

phased arrays to adapt to changing interference environments in 

microseconds. By processing data locally, these smart antennas will 

reduce the signaling overhead on the network and enable 

instantaneous self-calibration and fault correction, ensuring the 

resilience required for next-generation wireless infrastructure [66]. 

Conclusion 

This chapter has provided a comprehensive exploration of the 

transformative impact of AI on the entire lifecycle of antenna 

engineering, ranging from initial conceptualization and simulation to 

physical manufacturing and quality control. The integration of AI is 

not merely an incremental improvement but represents a 

fundamental paradigm shift, moving the field from heuristic, trial-

and-error methodologies toward data-driven, automated, and 

intelligent workflows. Summary of Approaches Discussed 

Throughout the chapter, we have examined a diverse array of AI 

methodologies tailored for EM problems. We highlighted how ML 
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algorithms, such as SVMs and Random Forests, serve as powerful 

tools for parameter estimation and regression. We explored the 

capabilities of DL, particularly CNNs for predicting radiation 

patterns from geometric images, and GANs for the inverse design of 

novel antenna topologies. Furthermore, the role of EAs like GAs and 

PSO in navigating complex, multi-objective design spaces was 

detailed. Finally, the extension of AI into the manufacturing domain 

was discussed, demonstrating its utility in optimizing 3D printing 

parameters, designing metamaterials, and automating defect 

detection via computer vision. Contributions of AI to Antenna 

Engineering The contributions of AI to antenna engineering, as 

detailed in this work, can be categorized into three primary pillars: 

Efficiency and Speed: The most immediate impact is the 

drastic reduction in computational time. Surrogate model-assisted 

optimization has proven capable of replacing computationally 

expensive full-wave EM simulations with rapid inferences, 

accelerating design cycles from weeks to hours. 

Handling Complexity: AI empowers engineers to address 

problems of high dimensionality and non-linearity that are 

intractable for traditional analytical methods. This includes the 

design of complex metasurfaces, large-scale phased arrays, and 

multi-band antennas where mutual coupling effects are significant. 

Precision and Reliability: In the manufacturing phase, AI-

driven process control ensures that the physical realization of the 

antenna matches the simulated design with high fidelity, minimizing 

waste and ensuring consistent performance in mass production. 

Recommendations for Future Research To fully realize the 

potential of AI in EMs and overcome the remaining challenges, 

future research efforts can focus on the following key areas: 

Development of Standardized Open Datasets: The 

community must collaborate to establish large-scale, open-access 
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benchmark datasets for various antenna types. This will facilitate fair 

comparison of AI models and accelerate the development of 

"foundation models" for EMs. 

Physics-Informed AI Architectures: Future work should 

prioritize "Physics-Informed Neural Networks" (PINNs) over purely 

data-driven "black box" models. Incorporating Maxwell’s equations 

directly into the loss functions of neural networks will improve 

model generalization and ensure physical consistency, even with 

limited training data. 

Real-Time Adaptive Systems for 6G: Research should 

expand beyond static design optimization to dynamic, real-time 

control. Developing lightweight AI algorithms capable of running on 

edge devices is crucial for enabling the cognitive, self-adaptive 

antenna systems required for 6G and THz communications. 

Interdisciplinary Collaboration: Finally, fostering closer 

collaboration between EM engineers, computer scientists, and 

material scientists will be essential to solve the multi-physics 

challenges of future intelligent wireless systems. 

Ultimately, the convergence of artificial intelligence and 

EMs heralds a new era of innovation where the boundaries of 

physical design are continually expanded. As these intelligent 

technologies mature, they will not replace but rather augment human 

engineers, serving as indispensable tools to conceptualize and realize 

the complex wireless systems of tomorrow. Embracing this data-

driven evolution is, therefore, not merely an option but a strategic 

necessity for unlocking the full potential of future global 

connectivity. 
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COMPARATIVE EVALUATION OF GAMMA-RAY 

SHIELDING PROPERTIES OF IRON-BASED 

MINERALS USING ATTENUATION AND 

THICKNESS PARAMETERS 
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 1 

1. Introduction 

With the rapid advancement of modern technology, 

applications involving high-energy photons have expanded across a 

broad spectrum, ranging from medical technologies and energy 

systems to industrial quality control processes and advanced 

research infrastructures. Ensuring safe working conditions in such 

applications, controlling radiation exposure, and maintaining 

structural integrity have made the development of effective radiation 

shielding materials a critical requirement. In this context, growing 

attention has been directed toward materials that not only exhibit 

high attenuation capability but are also environmentally benign, 

economically viable, and structurally sustainable (Mann, et al., 2016; 

Singh, et al., 2018) 
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Conventional shielding materials such as lead and concrete 

provide effective protection due to their high densities; however, 

they suffer from several significant drawbacks, including toxicity, 

excessive weight, limited workability, and long-term environmental 

concerns. These limitations necessitate the exploration of alternative 

materials, particularly for next-generation lightweight, modular, and 

multifunctional shielding systems. Accordingly, natural minerals 

and metal oxides have emerged as promising candidates owing to 

their low cost, wide availability, and chemical stability (Azeez, 2019; 

Abouhaswa, 2020; Gunoglu, 2024). 

Iron-based minerals possess considerable potential for radiation 

shielding applications due to their relatively high atomic numbers 

and the presence of elements that actively participate in photon–

matter interactions. Iron oxides and iron-containing minerals such as 

magnetite (Fe₃O₄), hematite (Fe₂O₃), limonite (FeO(OH)·nH₂O), 

siderite (FeCO₃), and goethite (α-FeO(OH)) exhibit distinct 

oxidation states, crystal structures, and bonding characteristics. 

These structural and chemical differences are expected to directly 

influence their photon energy–dependent attenuation behavior 

(Kavaz, E., 2019; Gunoglu and Akkurt, I., 2021; Oto, 2025) . 

The quantitative assessment of radiation shielding 

performance is commonly based on key parameters, including the 

mass attenuation coefficient (MAC), linear attenuation coefficient 

(LAC), half-value layer (HVL), tenth-value layer (TVL), and mean 

free path (MFP). While MAC and LAC describe the probability of 

photon interactions within a material, HVL, TVL, and MFP provide 

practical guidance for determining the required shielding thickness 

in engineering applications. Photoelectric absorption at low 

energies, Compton scattering at intermediate energies, and pair 

formation at high energies are the primary interaction processes 

linked to the substantial dependency of these characteristics on 

photon energy. 
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Although experimental methods offer high accuracy, 

comprehensive experimental investigations for every material are 

not always feasible due to radiation safety requirements, cost, and 

time constraints. Consequently, theoretical and computational 

approaches have become effective tools for the preliminary 

evaluation of potential shielding materials. The PhyX-PSD software 

is a widely used platform that enables reliable calculation of 

radiation shielding parameters over a broad photon energy range 

based on the chemical composition and density of materials (Şakar 

et al., 2020). 

Despite the extensive literature on iron-based synthetic 

composites, studies that systematically and comparatively examine 

the radiation shielding properties of natural iron oxide minerals 

remain limited. In particular, evaluating magnetite, hematite, 

limonite, siderite, and goethite using a unified theoretical framework 

is crucial for elucidating the relationship between mineralogical 

structure and shielding performance. 

In this study, the gamma-ray shielding characteristics of 

magnetite, hematite, limonite, siderite, and goethite minerals were 

theoretically investigated using the PhyX-PSD program. MAC, 

LAC, HVL, TVL and MFP parameters were computed over a broad 

range of photon energies, and the outcomes were compared using 

dominant photon interaction mechanisms and mineral composition. 

It is anticipated that the results of this study will further knowledge 

about the potential of naturally occurring iron oxide minerals for 

radiation shielding applications. 

2. MATERIALS AND METHODS 

The decrease in the intensity of ionizing photon radiation, 

including gamma rays and X-rays, during transmission through a 

shielding medium is governed by the fundamental mechanisms of 

photon–matter interaction. These mechanisms primarily involve 
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photoelectric absorption, Compton scattering, and, at sufficiently 

high photon energies, pair production. Owing to the probabilistic 

nature of these interactions, the attenuation of photons follows a 

statistical behavior and is conventionally modeled using the Beer–

Lambert formalism (Bashter, 1997). Within this framework, the 

relationship between the incident photon intensity I0 and the 

emerging intensity I after traversing a homogeneous material of 

thickness x can be described as follows: 

𝐼 = 𝐼0𝑒−𝜇𝑥     (1) 

where μ denotes the LAC. 

The LAC, expressed in units of cm⁻¹, represents the 

probability of photon attenuation per unit path length within a 

material. This parameter directly characterizes the rate at which 

photon interactions occur inside the shielding medium. The 

magnitude of the LAC is influenced by several factors, including 

material density, elemental composition, atomic number, and the 

energy of the incident photons. Larger LAC values correspond to 

enhanced shielding performance, indicating that photons are 

attenuated over shorter distances as they traverse the material. 

Since MAC characterizes the probability of photon–matter 

interactions per unit mass, it is considered independent of density 

and is therefore widely used as a comparative parameter for 

evaluating the shielding performance of materials with different 

densities. For composite or multi-component materials, the MAC 

can be calculated using the weight fractions of the constituent 

elements based on the additive nature of photon interactions, as 

follows (Gunoglu et al., 2021): 

(𝜇 𝜌⁄ )𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = ∑ 𝑤𝑖𝑖 (𝜇 𝜌⁄ )𝑖   (2) 

where wi is the weight fraction of the ith component. 
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The minimal thickness of a shielding material needed to lower the 

incident photon intensity to 50% of its initial value is known as the 

HVL. An engineering-friendly and useful metric of shielding 

performance is HVL. It can be represented quantitatively as follows 

and is inversely proportional to the linear attenuation coefficient 

(Gunoglu, 2024): 

𝐻𝑉𝐿 (𝑋1

2

, 𝑐𝑚) =
𝐿𝑛(2)

𝜇
    (3) 

Lower HVL values indicate that effective radiation shielding 

can be achieved with thinner material layers. 

The TVL represents the thickness of a material needed to 

attenuate the incident photon intensity to 10% of its initial value. 

TVL is particularly relevant in applications demanding high levels 

of radiation protection, such as nuclear facilities and medical 

radiation environments (Gunoglu, 2024). It is larger than the HVL 

and is defined as 

𝑇𝑉𝐿 (𝑋 1

10

, 𝑐𝑚) =
𝐿𝑛(10)

𝜇
    (4) 

The MFP, which characterizes the average distance a photon 

travels between subsequent contacts within the material, is another 

crucial shielding characteristic (Gunoglu, 2024). This value, which 

is equal to the inverse of the linear attenuation coefficient, represents 

the stochastic character of photon-matter interactions: 

𝑀𝐹𝑃 (𝜆, 𝑐𝑚) =
1

𝜇
     (5) 

Smaller MFP values indicate more frequent photon 

interactions and, consequently, superior shielding performance. 

When considered together, these parameters offer a robust 

and comprehensive evaluation of a material’s effectiveness in 

attenuating gamma radiation. It is widely recognized that increases 
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in material density and atomic number result in enhanced LAC and 

MAC values, while concurrently leading to decreases in HVL, TVL, 

and MFP. This trend underscores the strong potential of composite 

materials that incorporate high-density and high–atomic-number 

reinforcing phases for use in advanced radiation shielding systems. 

3. RESULTS AND DISCUSSION 

In this work, the PhyX-PSD software was used to 

theoretically predict the fundamental radiation shielding properties 

of iron oxide minerals, such as magnetite, hematite, limonite, 

siderite, and goethite. Based on the density and chemical makeup of 

the materials, this tool determines shielding values for gamma-ray 

energy between 0.01 and 0.05 MeV. Table 1 summarizes the 

densities and chemical compositions of the iron oxide minerals 

under investigation. 

Table 1. Chemical formula and density of iron minerals 

Minerals Chemical Formula Density (g/cm3) 

Magnetite Fe3O4 5,18 

Hematite Fe2O3 5,3 

Limonite FeO3H3 3,4 

Siderite FeCO3 4,0 

Goethite FeO2H 4,26 

The MAC and LAC values of different iron-based minerals 

such as magnetite, hematite, limonite, siderite, and goetite, and their 

variation with photon energy, are given in Figure 1 and Figure 2. 

These graphs clearly demonstrate both the energy-dependent 

interaction mechanisms and the effect of mineral type and chemical 

content differences on shielding behavior. 
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Figure 1. MAC values for the iron minerals 

 

Figure 2. LAC values for the iron minerals 

 

In the low-energy region (approximately 0.01–0.05 MeV), all 

investigated minerals exhibit relatively high MAC and LAC values. 

--75--



In this energy range, the photoelectric absorption mechanism is 

dominant, and its probability strongly depends on the atomic number 

(Z) of the constituent elements. Minerals with higher iron content 

and denser phases—particularly siderite and magnetite—display 

higher attenuation coefficients compared to limonite and goethite. 

The comparatively elevated MAC and LAC values of siderite can be 

attributed not only to its iron content but also to its crystal structure 

and the presence of carbon and oxygen in its composition, which 

enhance the probability of photon absorption. In contrast, hydrated 

iron oxide/hydroxide minerals such as limonite and goethite show 

relatively lower attenuation coefficients in this region due to their 

bonded water content and lower atomic numbers. 

As the photon energy increases into the intermediate-energy 

region (approximately 0.05–1 MeV), a pronounced decrease in both 

MAC and LAC values is observed. Within this range, Compton 

scattering becomes the predominant interaction mechanism, and the 

interaction probability is governed mainly by electron density rather 

than atomic number. Consequently, the differences among the 

various mineral types diminish significantly. The convergence of the 

attenuation curves reflects the similar electron densities of iron oxide 

minerals. In this region, magnetite and hematite generally exhibit 

nearly identical behavior, while limonite and goethite remain at the 

lower end due to their reduced densities. 

In the high-energy region (≈1–15 MeV), MAC values 

decrease to very low levels and show a more gradual variation with 

increasing photon energy. Although pair production begins to 

contribute in this range, its effect remains limited due to the 

intermediate atomic number characteristics of iron-based minerals. 

The inset plots corresponding to 15 MeV indicate that the differences 

among mineral types are minimal; nevertheless, siderite and 

magnetite retain a slightly superior attenuation capability. For LAC 

values, the influence of material density becomes more pronounced, 
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with higher-density minerals—particularly magnetite and 

hematite—achieving larger LAC values at identical photon energies. 

Overall, MAC values are primarily governed by chemical 

composition and atomic number, whereas LAC values are influenced 

by these factors in conjunction with material density. Hydrated and 

relatively porous minerals such as limonite and goethite exhibit 

lower shielding performance in terms of both parameters. In 

contrast, dense, iron-rich minerals—including magnetite, hematite, 

and especially siderite—demonstrate more effective gamma-ray 

shielding behavior over a wide energy range. These findings clearly 

indicate that, in the selection of iron oxide–based minerals for 

radiation shielding applications, not only iron content but also 

mineral phase, crystal structure, and density must be considered 

simultaneously. 

All three metrics clearly and consistently rise with increasing 

photon energy for magnetite, hematite, limonite, siderite and 

goethite when the HVL (Figure 3), TVL (Figure 4), and MFP (Figure 

5) graphs are examined. 

Figure 3. HVLvalues for the iron minerals 
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Fikgure 4. TVL values for the iron minerals 

 

Figure 5. MFP values for the iron minerals 

 

In the low-energy region (≈0.01–0.05 MeV), the HVL, TVL, 

and MFP values of all investigated minerals are extremely small and 

approach zero. This behavior is primarily attributed to the 

dominance of the photoelectric absorption mechanism, which causes 

photons to be absorbed over very short penetration distances. Within 

this energy range, magnetite and hematite—characterized by higher 
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density and atomic number—exhibit the lowest HVL, TVL, and 

MFP values, indicating superior shielding efficiency. In contrast, 

limonite and goethite, which possess hydrated structures and 

comparatively lower densities, require greater shielding thicknesses 

at the same photon energies. 

As the photon energy increases into the intermediate-energy 

region (≈0.05–1 MeV), a systematic and pronounced rise in HVL, 

TVL, and MFP values is observed for all minerals. In this range, 

Compton scattering becomes the dominant interaction mechanism, 

and the attenuation probability is largely governed by electron 

density. As a result, although the differences among mineral types 

diminish, they do not disappear entirely. The plots indicate that 

limonite reaches the highest HVL, TVL, and MFP values in this 

region, which can be attributed to its lower density and higher 

content of structurally bound water. Conversely, siderite and 

magnetite remain more advantageous by requiring relatively smaller 

shielding thicknesses. 

In the high-energy region (≈1–15 MeV), the increasing trend 

of HVL, TVL, and MFP values persists; however, the slope of the 

curves decreases, and the parameters exhibit a more gradual 

variation with energy. At these energies, photon penetration 

capability is significantly enhanced, while the contribution of pair 

production remains limited for iron-based minerals. Notably, the 

TVL and MFP plots show that limonite attains the highest values, 

indicating that substantially thicker shielding is necessary to 

attenuate high-energy gamma rays. Magnetite and hematite, on the 

other hand, maintain comparatively lower HVL and TVL values 

even at elevated energies, demonstrating more effective shielding 

performance. 

From a general comparative perspective, the ordering of 

HVL, TVL, and MFP values closely follows an inverse trend relative 

to the LAC values. Minerals with higher density and iron content, 
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such as magnetite and hematite, consistently exhibit smaller HVL, 

TVL, and MFP values over a wide energy range, whereas limonite 

and goethite show inferior shielding performance. Siderite 

demonstrates a balanced behavior, particularly in the intermediate- 

and high-energy regions, with values comparable to those of 

magnetite and hematite, suggesting its potential as an alternative 

shielding material. These results clearly indicate that, when selecting 

iron oxide–based minerals for gamma-ray shielding applications, 

energy-dependent performance as well as density–composition 

relationships must be evaluated simultaneously. 

4. CONCLUSION 

In this study, the gamma-ray shielding performances of 

magnetite, hematite, limonite, siderite, and goethite were 

systematically evaluated over a wide photon energy range by means 

of mass attenuation coefficient (MAC), linear attenuation coefficient 

(LAC), half value layer (HVL), tenth value layer (TVL), and mean 

free path (MFP) parameters. The results clearly demonstrate that 

photon energy and mineralogical characteristics play a decisive role 

in determining the attenuation behavior of iron-based minerals. 

At low photon energies, where photoelectric absorption 

dominates, all investigated minerals exhibit high MAC and LAC 

values and correspondingly low HVL, TVL, and MFP values. In this 

region, minerals with higher atomic number and compact crystal 

structures, particularly magnetite and siderite, provide superior 

shielding efficiency. The relatively lower performance of limonite 

and goethite is mainly attributed to their hydrated structures and 

lower effective densities, which reduce the probability of photon 

interaction. 

In the intermediate energy region governed by Compton 

scattering, attenuation coefficients decrease markedly and the 

differences between minerals become less pronounced. 

--80--



Nevertheless, density-dependent parameters such as LAC, HVL, 

TVL, and MFP still reveal discernible distinctions among the 

samples. Magnetite and hematite consistently require smaller 

shielding thicknesses, whereas limonite exhibits the highest HVL, 

TVL, and MFP values, indicating a weaker shielding capability in 

this energy range. 

At high photon energies, where pair production begins to 

contribute, the attenuation parameters show a more gradual variation 

with energy. Although the overall shielding effectiveness of all 

minerals decreases, magnetite and hematite maintain comparatively 

lower HVL and TVL values, while limonite remains the least 

effective material due to its low density and mineralogical 

composition. Siderite displays an intermediate but stable behavior 

across medium-to-high energies, suggesting its potential as an 

alternative shielding material when balanced performance is 

required. 

Overall, the comparative analysis reveals that the gamma-ray 

shielding efficiency of iron-based minerals is governed not only by 

iron content but also by mineral phase, density, and structural 

characteristics. Among the investigated materials, magnetite and 

hematite emerge as the most effective natural shielding candidates 

over a broad energy range, whereas limonite and goethite are less 

favorable, particularly at higher photon energies. These findings 

provide valuable insight for the selection and optimization of iron-

based minerals in radiation shielding applications and can serve as a 

reference for the development of mineral-reinforced composite 

shielding materials. 
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INTRODUCTION 
 

Today, radiation is considered one of the most significant physical factors 

that directly affect human health and environmental safety. In particular, the 

widespread use of nuclear energy systems and the rapid increase in the 

number of technological devices used in daily life have led to a rise in 

radiation exposure, creating a serious area of concern. Long-term or high-
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dose exposure to ionizing radiation can cause cellular damage, genetic 

disorders, and severe health problems such as cancer. 

In this context, radiation shielding is defined as a set of protective measures 

developed to prevent or reduce the exposure of humans and the environment 

to harmful types of radiation, such as gamma rays, X-rays, and neutrons. 

Radiation shielding applications play a vital role in many fields, including 

medical applications (radiology and radiotherapy units), nuclear power 

plants, industrial facilities, and military operations. The effectiveness of 

shielding materials varies depending on the type of radiation, its energy, and 

the duration of exposure. 

Ceramics constitute an important class of materials for radiation shielding 

applications due to their combination of high density, thermal and chemical 

stability, and mechanical strength. Ceramics doped with heavy metal oxides 

or rare earth elements, in particular, exhibit high attenuation capacity against 

gamma and neutron radiation. 

In recent years, scientific studies aimed at eliminating or minimizing the 

harmful effects of radiation have increased significantly. This has led 

researchers to move beyond traditional shielding materials and focus on 

developing a new generation of shielding materials that are lighter, more 

economical, environmentally friendly, and have high radiation absorption 

capacity. Significant research exists on glass concrete, ceramics, alloys, and 

high-entropy alloys among these materials. 

 Glass-based materials have gained significant importance in radiation 

shielding applications due to their structural homogeneity and high 

formability in production processes. The study conducted by Kavgacı et al. 

(2024) comprehensively investigated strontium borate glasses reinforced 

with ZnO nanoparticles, focusing on their structural, optical, and mechanical 
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properties, as well as evaluating their radiation shielding effectiveness. The 

authors reported that oxide doping significantly enhances the radiation 

shielding performance of the glass system. Rasul et al. (2025) investigated 

the effect of HfO₂ addition on the structural, thermal, gamma-ray, and 

neutron shielding properties of boro-tellurite glasses and reported that 

increasing HfO₂ content significantly enhances radiation shielding 

performance. Saudi and Gomaa (2019) investigated the effect of Nb₂O₅ 

addition on the structural and optical properties as well as the fast neutron 

removal cross section of calcium borate glasses containing Bi³⁺ ions, and 

reported that Nb₂O₅ incorporation improves the neutron shielding 

performance of the glasses. Yalcin, Aktas, and Yilmaz (2019) investigated 

the gamma-ray shielding properties of obsidian glasses doped with cerium 

oxide (CeO₂) and erbium oxide (Er₂O₃), and reported that oxide doping 

significantly enhances the radiation attenuation capability of the glass 

samples.  

Concrete is widely used as a radiation shielding material due to its high 

density, cost-effectiveness, and workability. Onaizi et al. (2024) presented a 

comprehensive review on radiation-shielding concrete, systematically 

examining the materials used, their shielding performance, and the effects of 

radiation on the mechanical and physical properties of concrete. Zorla et al. 

(2017) investigated the radiation shielding properties of high-performance 

concrete reinforced with basalt fibers infused with natural and enriched 

boron, and reported significant improvements in gamma-ray and neutron 

shielding performance due to boron incorporation. 

Ceramics constitute an important class of materials for radiation 

shielding applications due to their combination of high density, thermal and 

chemical stability, and mechanical strength. Ceramics doped with heavy 
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metal oxides or rare earth elements, in particular, exhibit high attenuation 

capacity against gamma and neutron radiation.Madak et al., (2025) 

investigated the gamma-ray and neutron shielding performance of 

Al₂Si₂O₅(OH)₄–KAlSi₃O₈–SiO₂ ceramics doped with CeO₂ and Er₂O₃, and 

reported that oxide doping significantly enhances the radiation attenuation 

capabilities of the ceramic materials. 

Alloys are studied as radiation shielding materials due to their superior 

properties, including mechanical strength, corrosion resistance, and thermal 

stability. In particular, high-entropy alloys (HEAs), which consist of multiple 

principal elements in near-equiatomic proportions, exhibit unique 

microstructural features and enhanced mechanical and thermal performance. 

These characteristics make HEAs potentially effective materials for gamma 

and neutron radiation shielding. The composition, density, and phase 

structure of an alloy are critical parameters that directly influence its 

radiation attenuation capacity. Sakar (2020) investigated the photon-

shielding characteristics and build-up factors of nickel–silver alloys, 

providing a detailed evaluation of their gamma-ray attenuation performance 

and highlighting the influence of alloy composition on shielding 

effectiveness.Wang et al. (2021) developed flexible, low-melting-point 

radiation shielding materials by incorporating GaInSnPbBi high-entropy 

alloy inclusions into soft elastomer matrices, and demonstrated that these 

composites exhibit enhanced gamma-ray shielding performance while 

maintaining mechanical flexibility.Adamson, Coleman, and Griffiths (2019) 

critically reviewed irradiation creep and irradiation-induced dimensional 

changes (growth) in zirconium alloys, evaluating the underlying physical 

mechanisms, experimental findings, and their implications under nuclear 

reactor conditions. Alım (2020) conducted a comprehensive study on the 

radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B, 
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Hastelloy-X, and Dilver-P alloys, systematically evaluating their gamma-ray 

attenuation capabilities and identifying alloys with superior shielding 

performance. 

In this study, the gamma radiation shielding properties of Cr–Mo–Nb–

Ta–V-based high-entropy alloys reinforced with oxide (Ta₂O₅), carbide 

(HfC), and nitride (TiN) phases were theoretically investigated using 

WinXCOM(Gerward et al.,2004), EpiXS(Hila et al.,2021), Phy-

X/PSD(sakar etal., 2020), and Py-MLBUF software. Calculations were 

performed in the energy range of 0.015–15 MeV, and the fundamental 

shielding parameters describing the interaction of gamma photons with 

matter—mass attenuation coefficient (MAC), linear attenuation coefficient 

(LAC), half-value thickness (HVL), mean free path (MFP), effective atomic 

number (Zeff), electron density (Nel), energy absorption concentration factor 

(EABF), and exposure concentration factor (EBF) were calculated. 

 

METHOD 

The theoretical calculations were carried out using the EpiXS [41], 

WinXCOM [42], and Phy-X/PSD [43] software packages, which are based 

on internationally recognized databases and physical models for determining 

photon–matter interaction parameters. The WinXCOM program calculates 

mass attenuation coefficients for elements and compounds using the XCOM 

database developed by NIST. EpiXS provides high-accuracy results by 

integrating up-to-date cross-section data with advanced theoretical models. 

Phy-X/PSD is a web-based platform that enables the rapid, consistent, and 

user-friendly determination of XCOM-based radiation shielding parameters. 

These software tools yield mutually consistent and comparable results within 
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the energy range of 0.015–15 MeV, thereby supporting the reliability and 

validity of the theoretical evaluations performed in this study. 

CALCULATİONS 

This study examines attenuation processes resulting from the interaction of 

photons with matter, focusing on both absorption and scattering phenomena, 

based on Lambert's law. Attenuation due to absorption, in particular, is 

defined and evaluated within the framework of Beer-Lambert's 

Law,(Abouhaswa et al.,2025). 

   𝐼 = 𝐼0𝑒
−µ𝑡                                                                           (1) 

 

in this expression, the unit of linear absorption coefficient is μ (cm-1), I₀ 

represents the initial photon intensity, and I represents the photon intensity 

after passing through the material. The parameter t corresponds to the 

material thickness. The mass absorption coefficient (μ/ρ) of a material (or 

compound) is in cm²/g.(Mariyappan et al., 2018). 

iiC w= )/()/(                                                                             (2) 

In this context, ( iw ) and (  /  )i  denote the weight fraction and the mass 

absorption (attenuation) coefficient, respectively. For a given compound, the 

weight fraction is defined as follows . 

  


=
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An

An
w                                                                                   (3) 

In this expression, Ai represents the atomic weight of an element, while 

nin_ini denotes the number of atoms of that element. The total molecular 

cross section (σm ) is calculated using the following formulation defined in 

the literature (Gowda et al., 2005). 
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ii AnM =                                                     (5) 

 

Here, M denotes the molecular weight, while NA  represents Avogadro’s 

number. The atomic cross section (σa ) and the electronic cross section (σel ) 

are calculated using the equations given below (Gowda et al., 2005). 


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Here, fi_ denotes the fractional abundance of the element in the compound, 

while Zi represents the atomic number of the corresponding constituent 

element.  

i

i
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n
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
=                                                           (8) 

Here, nin_ini represents the number of atoms of the corresponding 

constituent element. The effective atomic number (Zeff) can be defined as the 

ratio of the total atomic cross section to the total electronic cross section. In 

terms of total interactions with photons, the Zeff  value can be calculated 

using the method proposed by Gowda et al. (2005). Additionally, Zeff can 

also be determined using Equation 10 (Manohara et al., 2008). 
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Here, μi represents the total absorption coefficient. Within the 

framework of Equation (10), the variation in the effective atomic number     

(Zeff) can be evaluated using the total μi coefficients (Gowda et al., 2005). 
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Additionally, the Nel value can be calculated using the method 

proposed by Manohara (2008). 

A

Z
NN

eff

Ale =                                                         (11) 

The average atomic mass is denoted by ⟨A⟩. Parameters such as the half-

value layer and the mean free path, which play a crucial role in the 

interaction of radiation with matter, are directly related to the absorption 

properties of the material. These quantities can be calculated using the 

following equations as reported in the relevant studies. 

 

HVL=ln 2/ µ                                                                                          (12) 

 

MFP (cm) = 1/µ                                                                                     (13)                                                                                                       
 

  

EABF (Energy Absorption Enhancement Factor) is a parameter that 

quantitatively expresses the contribution of secondary scattered photons 

generated by gamma photons passing through a material to the total energy 

absorbed in the environment. In contrast, the Exposure Buildup Factor 

(EBF) represents the contribution of scattered photons to the radiation dose 

in air after passing through the shielding material. These concepts and their 

differences have been discussed in detail in the literature (Oto et al., 2019). 

Within this theoretical framework, the EABF and EBF values of the alloys 

were calculated using the EpiXS software with the Geometric Progression 

(GP) fitting method, and photon buildup effects were quantitatively 

evaluated. 
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RESULTS AND DISCUSSION 

In this study, the gamma radiation shielding properties of Cr–Mo–Nb–

Ta–V–based high-entropy alloys reinforced with oxide (Ta₂O₅), carbide 

(HfC), and nitride (TiN) phases were analyzed by presenting the 

theoretically calculated parameters—obtained using the above-mentioned 

software programs—in tables and as graphs showing their variation with 

energy. The results obtained from the calculation programs used in the study 

showed very good agreement with each other. This consistency of the results 

supports the reliability and accuracy of the present work. The densities of the 

constituent elements in the Cr–Mo–Nb–Ta–V-based high-entropy alloys 

reinforced with oxide (Ta₂O₅), carbide (HfC), and nitride (TiN) phases are 

listed in Table 1. The mass attenuation coefficients (MAC, cm²/g) of the 

investigated composite materials were calculated using the WinXCOM, 

EpiXS, Phy-X/PSD, and Py-MLBUF software packages. These programs 

were employed not only to determine the mass attenuation coefficients but 

also to derive the corresponding photon–matter interaction parameters. The 

calculated mass attenuation coefficient values are presented in Tables 2 and 

Table 3. 

The mass attenuation coefficient (MAC) is a parameter that indicates 

how much radiation or light energy a material absorbs per unit mass. In other 

words, it measures how much radiation is absorbed by each kilogram of the 

material, independent of its density. This allows materials with different 

densities to be compared in terms of their energy absorption capabilities. An 

effective shielding material against gamma radiation is made from a material 

with a high mass attenuation coefficient; thus, the material absorbs more 

radiation and acts as a strong radiation-absorbing shield. 

Tables 2 and 3 show that the results of the calculations indicate that 

the mass attenuation coefficient (MAC) values reach their maximum in this 

energy range, particularly due to the dominance of the photoelectric effect 

(approximately 0.015-0.15). As is known, the probability of a photoelectric 

effect occurring is inversely proportional to the energy (E3) (Monohora, 

2008). This indicates that as the energy increases, the photoelectric 
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dominance decreases. In Figure 1,( according to EpiXS) an increase in MAC 

values is observed in the 60-80 energy range due to the fact that elements 

such as Hf and Ta in the alloys have absorption shore energies of 

approximately 65-67 keV, respectively. As seen in Figure 1, a significant 

decrease in MAC values is observed as the energy increases. In this study, it 

is observed that the HfC reinforced composite material has the highest mass 

attenuation coefficient. At 0.015 keV, the MAC attenuation coefficient of the 

undoped alloy material was found to be 71.413 cm²/g, while that of the HfC-

doped composite material was 83.691 cm²/g. This represents a 17.19% 

increase in radiation shielding efficiency. The second highest was the Ta2O5-

doped composite material, with a 14.8% increase, resulting in a mass 

attenuation coefficient of 80.982 cm²/g. In this study, the TiN-doped material 

showed the lowest mass attenuation coefficient. This indicates that density is 

a significant factor in absorption, as the addition of TiN to the pure alloy 

reduces the density of the composite material. Furthermore, at other 

energies, the HfC-doped composite material exhibits higher values. In the 

mid-energy range (0.15-1 MeV), Compton scattering becomes the dominant 

interaction mechanism, and as photon energy increases, a more gradual 

decrease in MAC values occurs across all composite materials. At higher 

photon energies (≥1 MeV), it has been observed that MAC values reach an 

almost constant level. This indicates that the effect of processes such as pair 

formation and high-energy scattering increases in the relevant energy range. 

The linear attenuation coefficient (LAC), a parameter that indicates 

how much radiation or light a material absorbs per unit thickness. Its unit is 

usually cm⁻¹ and it is calculated using Equation 1. The larger the coefficient, 

the more radiation the material absorbs at the same thickness, providing 

more effective shielding. In other words, materials with a high linear 

attenuation coefficient better block the passage of radiation. 

As shown in Table 4 and Figure 2, the linear attenuation coefficient 

(LAC) values as a function of photon energy for the materials in the study 

are graphically presented in Figure 2. In the low energy region (~0.01 MeV), 

the LAC values are high. As seen here, the results show that a significant 

decrease in LAC values is observed as the photon energy increases. This 

indicates that photons pass through the material more easily as the energy 
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increases. These data provide important information for material 

characterization and radiation protection applications. 

 

Table 1. Chemical compositions (wt%) and theoretical density 

(ρ, g/cm³) values of the Cr–Mo–Nb–Ta–V based high-entropy alloy 

and oxide/carbide/nitride-reinforced composites (HEA and HEAC1–

HEAC3). 

Sample 

code 

wt% 

Cr 

wt %  

Mo 

wt%  

Nb 

wt% 

Ta 

wt%  

V 

wt% 

Ta2O5 

wt% 

HfC 

wt% 

TiN 

Theoretical 

Density 

(𝜌) g/cm³ 

HEA 10.999 20.296 19.653 38.276 10.776 - - - 10.148 

 

HEAC1 8.249 15.222 14.74 28.707 8.082 25 - - 9.579 

HEAC2 8.249 15.222 14.74 28.707 8.082 - 25 - 10.685 

HEAC3 8.249 15.222 14.74 28.707 8.082 - - 25 8.210 
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Table 2. Mass attenuation coefficients (MAC, cm²/g) of HEA and HEAC1–HEAC3 high-entropy alloys 

calculated using different software packages (WinXCOM, EpiXS, Phy-X/PSD, and Py-MLBUF). 

Mass attenuation coefficient (cm2.g-1) 

Photon 
energy 
(MeV) 

HEA HEAC1 HEAC2 

EpiXS WinX 
com 

Phy-X/ 
PSD 

Py-
MLBUF 

EpiXS WinX 
com 

Phy-X/ 
PSD 

Py-
MLBUF 

EpiXS WinX 
com 

Phy-X/ 
PSD 

Py-
MLBUF 

0.015 71.413 71.66 71.66 71.653 80.982 81.268 81.268 81.258 83.691 83.963 83.964 83.971 

0.02 56.173 59.687 59.687 59.687 47.658 57.773 57.773 57.773 48.918 59.031 59.031 59.031 

0.03 20.644 20.62 20.62 20.619 19.98 19.961 19.961 19.959 20.402 20.384 20.384 20.383 

0.04 9.534 9.536 9.536 9.536 9.254 9.264 9.264 9.262 9.448 9.457 9.457 9.457 

0.05 5.225 5.239 5.239 5.239 5.088 5.11 5.11 5.11 5.191 5.215 5.215 5.216 

0.06 3.2 3.223 3.223 3.223 3.124 3.156 3.156 3.157 3.183 3.221 3.221 3.221 

0.08 3.775 3.767 3.767 3.767 4.395 4.387 4.387 4.386 4.556 4.55 4.55 4.55 

0.1 2.141 2.138 2.138 2.138 2.494 2.491 2.491 2.491 2.583 2.579 2.579 2.579 

0.15 0.79 0.788 0.788 0.788 0.913 0.911 0.911 0.911 0.941 0.939 0.939 0.939 

0.2 0.416 0.415 0.415 0.415 0.474 0.473 0.473 0.473 0.487 0.485 0.485 0.485 

0.3 0.198 0.198 0.198 0.198 0.218 0.218 0.218 0.218 0.222 0.222 0.222 0.222 

0.4 0.133 0.133 0.133 0.133 0.143 0.143 0.143 0.143 0.144 0.145 0.145 0.145 

0.5 0.105 0.105 0.105 0.105 0.11 0.11 0.11 0.11 0.111 0.111 0.111 0.111 

0.8 0.071 0.071 0.071 0.071 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073 

1 0.061 0.061 0.061 0.061 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 

1.5 0.048 0.048 0.048 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 

2 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 

3 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 

4 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 

5 0.036 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 

6 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 

8 0.037 0.037 0.037 0.037 0.038 0.038 0.038 0.038 0.039 0.039 0.039 0.039 

10 0.039 0.039 0.039 0.039 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

15 0.042 0.043 0.043 0.043 0.044 0.044 0.044 0.044 0.045 0.045 0.045 0.045 
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Table 3. Mass attenuation coefficients (MAC, cm²/g) of       HEAC4 

high-entropy alloys obtained from different software programs 

(WinXCOM, EpiXS, Phy-X/PSD, and Py-MLBUF). 

Mass attenuation coefficient (cm2.g-1) 

Photon 
energy 
(MeV) 

HEAC3 

EpiXS WinXcom Phy-X/ 
PSD 

Py-MLBUF 

0.015 60.581 60.754 60.746 60.746      

0.02 47.736 47.866 47.865 47.865      

0.03 16.465 16.444 16.443 16.443      

0.04 7.593 7.593 7.593 7.593      

0.05 4.166 4.175 4.175 4.176      

0.06 2.559 2.576 2.576 2.576      

0.08 2.919 2.913 2.913 2.913      

0.1 1.667 1.665 1.665 1.665      

0.15 0.632 0.631 0.631 0.631      

0.2 0.345 0.344 0.344 0.344      

0.3 0.175 0.175 0.175 0.175      

0.4 0.123 0.123 0.123 0.123      

0.5 0.099 0.099 0.099 0.099      

0.6 0.086 0.086 0.086 0.086      

1 0.061 0.061 0.061 0.061      

1.5 0.048 0.048 0.048 0.048      

2 0.043 0.043 0.043 0.043      

3 0.037 0.037 0.037 0.037      

4 0.035 0.035 0.035 0.035      

5 0.034 0.034 0.034 0.034      

6 0.034 0.034 0.034 0.034      

8 0.034 0.034 0.034 0.034      

10 0.035 0.035 0.035 0.035      

15 0.038 0.038 0.038 0.038 
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Figure 1. Variation of the mass attenuation coefficient (MAC) with 

photon energy for the high-entropy alloys. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Linear attenuation coefficient (LAC) values of the HEA 

samples calculated using the EpiXS software. 

Linear Attenuation Coefficient (LAC, cm⁻¹) 

Photon 

energy 

(MeV) 

 

HEA 

 

HEAC1 

 

HEAC2 

 

HEAC3 

0.015 724.683 775.724 894.211 497.384 

0.02 468.553 456.516 522.674 309.822 

0.03 209.493 191.388 217.984 135.177 

0.04 96.747 88.648 100.949 62.339 

0.05 53.027 48.739 55.467 34.203 

0.06 32.473 29.921 34.013 21.010 

0.08 38.309 42.099 48.676 23.967 

0.1 21.73 23.894 27.602 13.69 

0.15 8.017 8.744 10.059 5.190 

0.2 4.226 4.540 5.201 2.831 

0.3 2.012 2.089 2.372 1.436 

0.4 1.354 1.369 1.544 1.010 
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0.5 1.063 1.056 1.186 0.816 

0.6 0.901 0.883 0.99 0.704 

0.8 0.722 0.698 0.779 0.575 

1 0.620 0.595 0.663 0.499 

1.5 0.490 0.466 0.519 0.397 

2 0.432 0.411 0.458 0.349 

3 0.384 0.367 0.410 0.305 

4 0.368 0.352 0.395 0.288 

5 0.364 0.350 0.393 0.281 

6 0.366 0.352 0.397 0.279 

8 0.377 0.364 0.412 0.283 

10 0.392 0.379 0.430 0.291 

15 0.431 0.418 0.476 0.314 

 

 

Figure 2. Variation of the linear attenuation coefficient (LAC, 

cm⁻¹) with photon energy for the high-entropy alloys. 

--98--



Table 5. Mean free path (MFP, cm) values of the HEA samples 

calculated using the EpiXS software. 

Mean Free Path (cm) 

Photon 

energy 

(MeV) 

 

HEA 

 

HEAC1 

 

HEAC2 

 

HEAC3 

0.015 0.001 0.001 0.001 0.002 

0.02 0.002 0.002 0.002 0.003 

0.03 0.005 0.005 0.005 0.007 

0.04 0.010 0.011 0.010 0.016 

0.05 0.019 0.021 0.018 0.029 

0.06 0.031 0.033 0.029 0.048 

0.08 0.026 0.024 0.021 0.042 

0.1 0.046 0.042 0.036 0.073 

0.15 0.125 0.114 0.099 0.193 

0.2 0.237 0.220 0.192 0.353 

0.3 0.497 0.479 0.422 0.696 

0.4 0.739 0.731 0.648 0.990 

0.5 0.941 0.947 0.844 1.226 

0.6 1.110 1.132 1.010 1.421 

0.8 1.385 1.433 1.284 1.739 

1 1.612 1.680 1.509 2.002 

1.5 2.043 2.144 1.928 2.517 

2 2.316 2.431 2.184 2.866 

3 2.606 2.727 2.441 3.277 

4 2.720 2.838 2.531 3.477 

5 2.749 2.861 2.544 3.562 

6 2.735 2.842 2.521 3.585 

8 2.653 2.749 2.430 3.537 

10 2.550 2.638 2.326 3.442 

15 2.320 2.392 2.102 3.189 
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Figure 3. Variation of the mean free path (MFP) of the HEAs 

with photon energy. 

 

 

The mean free path (MFP) indicates that radiation is absorbed 

over a shorter distance within the material, thus exhibiting better 

shielding performance.As presented in Table 5 and Figure 4, the mean 

free path (MFP) values of all samples are lower at low photon 

energies and increase markedly with increasing photon energy. This 

trend indicates that higher-energy photons are able to travel longer 

distances within the material. Among the investigated alloys and 

composites, the HEAC2 sample exhibits the lowest MFP values, 

confirming its superior radiation shielding performance, whereas the 

HEAC3 sample demonstrates comparatively the weakest shielding 

effectiveness. 
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Table 6. Half value layer (HVL) values of the HEA samples 

calculated using the EpiXS software. 

Half Value Layer (HVL, cm) 

Photon 

energy 

(MeV) 

 

HEA 

 

HEAC1 

 

HEAC2 

 

HEAC3 

0.015 0.001 0.001 0.001 0.001 

0.02 0.001 0.002 0.001 0.002 

0.03 0.003 0.004 0.003 0.005 

0.04 0.007 0.008 0.007 0.011 

0.05 0.013 0.014 0.013 0.020 

0.06 0.021 0.023 0.02 0.033 

0.08 0.018 0.016 0.014 0.029 

0.1 0.032 0.029 0.025 0.051 

0.15 0.086 0.079 0.069 0.134 

0.2 0.164 0.153 0.133 0.245 

0.3 0.345 0.332 0.292 0.483 

0.4 0.512 0.506 0.449 0.686 

0.5 0.652 0.657 0.585 0.850 

0.6 0.769 0.785 0.700 0.985 

0.8 0.960 0.993 0.890 1.205 

1 1.117 1.165 1.046 1.388 

1.5 1.416 1.486 1.336 1.745 

2 1.605 1.685 1.514 1.987 

3 1.806 1.890 1.692 2.272 

4 1.885 1.967 1.754 2.410 

5 1.905 1.983 1.763 2.469 

6 1.896 1.970 1.747 2.485 

8 1.839 1.906 1.684 2.452 

10 1.768 1.829 1.612 2.386 

15 1.608 1.658 1.457 2.210 
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Figure 4. Variation of the half value layer (HVL, cm) with photon 

energy for the high-entropy alloys. 

 

 

The half-value layer (HVL) is one of the fundamental 

parameters used to evaluate the radiation shielding effectiveness of a 

material, where lower HVL values indicate more efficient shielding 

performance. In particular, reinforced composite materials exhibiting 

low HVL values provide effective radiation attenuation at smaller 

thicknesses, offering a significant advantage for radiation shielding 

applications. 

As presented in Table 6 and Figure 4, the half-value layer (HVL) 

values of all high-entropy alloy and composite materials (HEA, 

HEAC1, HEAC2, and HEAC3) exhibit a general increasing trend with 

rising photon energy. This behavior indicates that greater material 

thicknesses are required to attenuate higher-energy photons. Notably, 

HEAC3 shows the highest HVL values, implying the need for thicker 

shielding layers, whereas HEA, HEAC1, and HEAC2 demonstrate 
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comparatively lower HVL values, reflecting more effective 

attenuation capability at high photon energies. Among all investigated 

materials, the HfC-reinforced composite consistently presents the 

lowest HVL values across the entire energy range, highlighting its 

superior performance as a radiation shielding material. 

 

Table 7. Effective atomic number (Zeff) values of the HEA samples 

calculated using the EpiXS software 

Effective Atomic Number (Zeff) 

Photon 

energy 

(MeV) 

 

HEA 

 

HEAC1 

 

HEAC2 

 

HEAC3 

0.015 52.472 57.612 58.071 44.984 

0.02 49.106 53.666 54.07 44.404 

0.03 47.526 51.324 51.687 44.249 

0.04 47.734 51.436 51.853 44.358 

0.05 47.859 51.407 51.909 44.225 

0.06 47.881 51.209 51.824 43.855 

0.08 60.324 63.511 63.919 56.321 

0.1 60.02 62.817 63.478 54.861 

0.15 57.971 59.686 61.167 49.517 

0.2 55.204 55.794 58.11 44.142 

0.3 50.271 49.04 52.449 36.918 

0.4 47.118 44.764 48.643 33.306 

0.5 45.252 42.234 46.311 31.431 

0.6 44.096 40.67 44.842 30.357 

0.8 42.85 38.979 43.209 29.259 

1 42.22 38.126 42.38 28.729 

1.5 41.708 37.46 41.715 28.339 

2 41.834 37.73 41.95 28.545 

3 42.444 38.864 42.963 29.374 

4 43.068 40.053 44.005 30.274 

5 43.6 41.1 44.905 31.099 

6 44.033 41.984 45.65 31.819 

8 44.69 43.365 46.791 32.993 

10 45.159 44.373 47.609 33.886 

15 45.912 45.985 48.899 35.366 
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Figure 5. Variation of the effective atomic number (Zeff) with photon 

energy for the high-entropy alloys. 

 

  

The effective atomic number (Zeff) is a conceptual parameter 

used particularly in radiation–matter interactions, which represents the 

photon interaction behavior of a compound, alloy, or composite 

material by a single equivalent atomic number. In this study, Table 7 

and Figure 5 examine the effective atomic number (Zeff) values of 

HEA, HEAC1, HEAC2, and HEAC3 samples as a function of photon 

energy. The highest Zeff values are observed in the low energy range 

(0.015-0.2 MeV). The increases in the energy range between 0.07 

MeV and 0.2 MeV are due to the high atomic number elements in the 

materials, as their K absorption shore energy ranges are located in this 

region. In the mid-energy range (0.1–1.5 MeV), a decrease in MAC 

values is observed as Compton scattering becomes dominant, while 

Zeff values approach a minimum. This indicates that the effect of 

atomic structure on attenuation is reduced, and all samples exhibit 
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similar performance. In the high-energy regions (>1 MeV), Zeff tends 

to increase again. In this energy range, the shielding efficiency of the 

material remains at moderate levels due to the activation of the pair 

formation mechanism. Overall, the HEAC3 sample exhibits lower 

performance in terms of both MAC and Zeff. Furthermore, the study 

shows that HfC-doped high-entropy alloy provides more effective 

photon shielding in the low and medium energy range. 

Table 8. Electron density (Nel, electrons·g⁻¹) values of the HEA 

samples calculated using the EpiXS software. 

Electron Density (Nel, elektron·g⁻¹) 

Photon 
energy 
(MeV) 

 
HEA 

 
HEAC1 

 
HEAC2 

 
HEAC3 

0.015 3.342 4.126 3.692 4.338 

0.02 3.128 3.844 3.438 4.282 

0.03 3.027 3.676 3.286 4.267 

0.04 3.04 3.684 3.297 4.278 

0.05 3.048 3.682 3.3 4.265 

0.06 3.05 3.668 3.295 4.229 

0.08 3.842 4.549 4.064 5.431 

0.1 3.823 4.499 4.036 5.29 

0.15 3.692 4.275 3.889 4.775 

0.2 3.516 3.996 3.694 4.257 

0.3 3.202 3.512 3.335 3.56 

0.4 3.001 3.206 3.093 3.212 

0.5 2.882 3.025 2.944 3.031 

0.6 2.809 2.913 2.851 2.927 

0.8 2.729 2.792 2.747 2.822 

1 2.689 2.731 2.694 2.771 

1.5 2.657 2.683 2.652 2.733 

2 2.665 2.702 2.667 2.753 

3 2.703 2.783 2.731 2.833 

4 2.743 2.869 2.798 2.919 

5 2.777 2.944 2.855 2.999 

6 2.805 3.007 2.902 3.068 

8 2.846 3.106 2.975 3.182 

10 2.876 3.178 3.027 3.268 

15 2.924 3.293 3.109 3.411 
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Figure 6. Variation of the electron density (Nel) of the HEAs with 

photon energy. 

 

The electron density (Nₑl) refers to the total number of 

electrons per unit mass or volume of a material and is one of the 

fundamental parameters governing the probability of photon matter 

interactions. An increase in electron density indicates an enhancement 

in radiation shielding effectiveness, particularly in energy regions 

where Compton scattering is the dominant interaction mechanism. An 

examination of the data presented in Table 8 and Figure 6 reveals that 

the variation of electron density with photon energy closely follows 

the trend observed for the effective atomic number (Zeff). The Nel 

values attain their maximum levels in the low-energy region (0.015-

0.2 MeV), where photoelectric absorption is predominant. With 

increasing photon energy, a pronounced decrease in electron density is 

observed, reaching minimum values around 1 MeV. This behavior is 

attributed to the dominance of Compton scattering in this energy 
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range, which reduces the probability of photon–matter interactions. At 

higher photon energies (≥ 1 MeV), a gradual increase in Nel values is 

detected due to the growing contribution of the pair production 

mechanism. Among the investigated samples, the HEAC3 specimen 

exhibits the highest electron density over the entire energy range, 

which can be attributed to its lower average atomic mass, leading to a 

higher number of electrons per unit mass. In general, an increase in 

electron density enhances the likelihood of photon interactions, 

thereby indicating an improvement in the radiation shielding 

effectiveness of the material. 

Figure 7. Variation of the energy absorption buildup factors (EABF) 

with photon energy at different penetration depths (1–15 mfp) for the 

high-entropy alloy (HEA) samples. 
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The Energy Absorption Buildup Factor (EABF) is a parameter 

that quantifies the contribution of secondary photons generated by 

scattering processes within a shielding material to the total absorbed 

energy. As the EABF value increases, the effect of multiple scattering 

inside the material becomes more pronounced; therefore, higher 

EABF values indicate lower energy absorption efficiency, whereas 

lower EABF values correspond to improved radiation shielding 

performance.  

In Figure 7, the Energy Absorption Deposition Factor (EABF) 

values for all samples start at low levels at low photon energies and 

increase significantly as the energy increases, forming a distinct peak 

in the mid-energy region. This peak corresponds to the energy range 

where multiple scattering and absorption processes within the material 

are most intense. As the photon energy continues to increase, the 

EABF values decrease again and show a more stable trend at higher 

energy levels. At all energies, HEA, HEAC1, and HEAC2 have lower 

EABF values compared to other HEAC materials, indicating good 

radiation shielding performance. 
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Figure 8. Variation of the exposure buildup factors (EBF) with 

photon energy at different penetration depths (1–15 mfp) for the high-

entropy alloy (HEA) samples. 

 

 

 

The Exposure Buildup Factor (EBF) is a parameter that 

represents the contribution of secondary radiation generated by photon 

scattering within a shielding material to the total radiation exposure. 

Higher EBF values indicate increased exposure due to multiple 

scattering events and, consequently, reduced shielding effectiveness, 

whereas lower EBF values signify more effective radiation shielding 

performance. As shown in Figure 8, the significant increases and local 

fluctuations observed in the Exposure Deposition Factor (EBF) values 

in the low to medium energy range for all samples are due to the high 
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atomic number elements present in the alloy compositions. These are 

particularly attributed to the strong interactions near the absorption 

edges with high atomic number elements Hf and Ta. 

 

CONCLUSION 

 

The mass attenuation coefficient (MAC) and effective atomic number 

(Zeff) values obtained from the WinXCOM, EpiXS, and Phy-X/PSD software 

packages exhibit mutually consistent results within the numerical uncertainty 

limits of theoretical models across the entire energy range. For all 

investigated samples (HEA, HEAC1, HEAC2, and HEAC3), high MAC and 

Zeff  values were observed in the low-energy region, indicating that the 

materials effectively absorb photons in energy ranges where the 

photoelectric effect is dominant. In the intermediate energy region, as 

Compton scattering becomes the prevailing interaction mechanism, a 

noticeable decrease in both MAC and Zeff values was recorded. At higher 

photon energies, Zeff  values exhibit a tendency to increase again, whereas 

MAC values remain approximately constant. 

Comparative analyses reveal a high degree of agreement among the 

predictions of the four computational tools, thereby confirming the reliability 

of the theoretical estimations. The results further demonstrate that the 

HEAC2 sample (hafnium-reinforced high-entropy alloy) exhibits superior 

performance for photon shielding applications over a broad energy range. 

HEAC2 stands out among the investigated alloys by exhibiting higher MAC 

and Zeff values, along with lower half-value layer (HVL), energy absorption 

buildup factor (EABF), and exposure buildup factor (EBF) values. These 

findings highlight that incorporating heavy, high–atomic-number elements 

into alloy compositions represents a critical design strategy for enhancing 

photon shielding performance and provides an important pathway for the 

development of advanced radiation shielding materials. 
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