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CHAPTER 1

THEORETICAL STUDY OF X-RAYS AND COSTER—
KRONIG ENHANCEMENT FACTORS iN THE L-
SUBSHELL OF Sm, Eu, AND Bi ELEMENT

Rafet YILMAZ?
Abdullah OZKARTAL?

INTRODUCTION

The excitation of an atom, particularly its inner shell electrons, can
lead to various processes. Photoionization induces the ejection of an
inner shell electron, creating a vacancy. This vacancy can be filled by
another electron, producing L X-ray emission characterized by the L
XRF yield. Alternatively, the released energy can be imparted to
another electron, resulting in the emission of an Auger electron,
characterized by the Auger yield. In addition, CK transitions between
subshells of the same shell play a significant role in the rearrangement

of atomic energy levels and influence both X-ray emission and Auger
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processes. These parameters provide fundamental data for
understanding atomic interactions and X-ray spectroscopy. Coster-
Kronig transitions are defined as non-radiating de-excitation processes
occurring between subshells within the same main shell. Atomic inner
shell processes play a fundamental role in understanding the excitation
and de-excitation mechanisms of atoms. A vacancy in an atom's inner
shell makes the atom energetically unstable, and the system transitions
to a less energetic state through various radiative or non-radiative
transition mechanisms to fill this void. In this context, C-K transitions,
which hold an important place among non-radiative transitions, are
considered a special subclass of Auger processes. Coster-Kronig
transitions were first described by Dirk Coster and Ralph Kronig
(1935). These transitions can be thought of as follows: For example, a
void in the L; subshell can be replenished by an electron from the L.
or Ls; subshell, and the released energy can cause another electron
from the same main shell to be ejected from the atom. This property
distinguishes Coster-Kronig transitions from classical Auger
transitions that occur between main shells. Due to relatively small
energy differences, Coster-Kronig transitions are energetically
possible only within specific atomic number ranges and for specific
subshell combinations. The probability of these transitions depends
heavily on factors such as subshell binding energies, atomic number,
and electron-electron interactions. The probability of Coster-Kronig
processes increases significantly for L and M shells, especially in
medium and heavy elements. The presence of Coster-Kronig

transitions significantly influences atomic de-excitation processes and
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plays a decisive role in fluorescence yields, Auger electron energies,
and spectral line densities. Therefore, accurate accounting of C-K
transitions is necessary in many experimental and theoretical studies
such as XRF spectroscopy, Auger electron spectroscopy (AES), and

atomic shell modeling.

Estimating XRF cross-sections is challenging, especially for Ls
subshell lines, due to Coster—Kronig transitions. Transitions from the
L: and L: subshells enhance the Ls population, leading to increased La

and related fluorescence cross-sections.

Consequently, C-K transitions are a fundamental process in atomic
structure physics and are critical for understanding the de-excitation
dynamics of inner shell vacancies. Detailed study of these transitions
is indispensable for both fundamental atomic physics and applied

spectroscopic techniques.

Many researchers have been conducted on the photoionization
cross sections, fluorescence yields, Auger effect, C-K transitions, and
intensification factors of L X-rays that may occur in the L shell of
various elements. Hubbell et al. (1994) comprehensively investigated
the X-ray fluorescence yields of the K, L, and higher shells of
elements, compiled the relevant literature, and presented the data in
tabular form, providing a reference source for X-ray fluorescence
analyses and atomic parameter calculations. Krause et al. (1978)
reported K- and L-shell XRF cross sections for many elements,
derived  from  fundamental atomic  parameters including

photoionization cross sections, W, and transition probabilities, and
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presented the results in tabulated form. This report serves as a
standard reference in XRF analyses and atomic parameter studies.
Scofield (1972) calculated theoretical photoionization cross sections
for photons at 1-1500 keV. The study determined photoionization
probabilities for the inner shells of different elements using theoretical
models, and the results were compiled for use in scientific calculations
and X-ray analyses. This work is regarded as a fundamental reference
for atomic interaction parameters and X-ray spectroscopy. Scofield
(1976) calculated subshell photoionization cross sections of various
elements at 1254 and 1487 eV using the Hartree-Slater model,
providing essential theoretical photoionization data for electron
spectroscopy and X-ray analyses. Ertugrul (2002) experimentally
measured the L-subshell production cross sections and C-K (fiz)
transition probabilities for Hg (Mercury) and Au (Gold) at a photon
energy of 59.5 keV. This work provides important data for L X-ray
spectral analyses and understanding Coster—Kronig transitions.
Miranda et al. (2004) studied the influence of multiple ionization on
L-shell X-ray production cross sections induced by proton impact. The
study experimentally investigated the effect of multiple ionization
induced by proton collisions on L X-ray production cross sections and
discussed the obtained results. Other significant studies in this field
include: Ertugrul, 2002; Kaya and Ertugrul, 2003; Onho, 2001; Sogiit
et al., 2002; Barrea et al., 2004; Unterumsberger et al.,2018; Bonziet
al.,2006; Meddouh et al.,2023; Chauhanet al.,2008;Menesquenet
al.,2020; nica et al, 2005; Raulo et al.,2007; Sahnoune et al.,
2020;Turhan et al.,2007)



Oz et al. (2001) experimentally measured the L-shell Coster-
Kronig transition yields for several elements with atomic numbers 59
< Z < 90. The study provides important experimental data for
understanding L-shell electron transitions and Coster—Kronig
processes. Oz, et al., (2004) experimentally measured the Coster—
Kronig enhancement factors for several elements with atomic numbers
74 < Z < 90. The work provides important data for the quantitative
understanding of L-shell electron transitions and Coster—Kronig
processes. New studies exist within the K-shell. In the study by Manoj
and Sripathi Punchithaya (2025), the K-shell fluorescence parameters
of low atomic number transition elements were experimentally
determined using excitation with Au-Lo X-rays. K, and Kg X-ray

cross-sections and fluorescence yields were calculated.

In this study, the L-X-ray photoionization cross-sections and C-K
transition intensification factors of the L-sublayers of Sm (Samarium),
Eu (Europyum) and Bi (Bismuth) elements were theoretically
calculated. Three cases were examined in study to investigate the role
of C-K transitions on the increase in L-XRF cross-sections and L-X-
ray intensity. These conditions require the excitation energy to be
higher than the binding energies of the L subshells, but not sufficient
to excite another subshell. Therefore, three distinct cases arise due to
the presence of three subshells. In these studies, both theoretical and
experimental, the energy and element that correspond to the secondary

source energy needed to excite each subshell are identified.
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Fluorescence Yield, Coster-Kronig Transitions and Auger Process

The fluorescence yield defined for a specific shell or subshell of
an atom represents the probability that a vacancy in that shell,
resulting from any interaction, will be filled by characteristic X-ray
emission. When an electron vacancy is created in an atom, the atom
enters an excited state. If the average lifetime of this excited state is
denoted by T, then, according to the energy-time uncertainty principle,
the total level width of this state is defined as I = Z/t. The total level
width I' is expressed as the sum of the contributions I'g
(corresponding to radiative transitions), I'a (corresponding to non-
radiative (Auger) transitions), and I'ck (resulting from Coster—Kronig
processes). The totol level width toplam seviye genisligi
(I=Ix+7,+7Iy) (Jenkins,1986). Therefore, fluorescence

efficiency,

FR
a)=7 (1)

It is given with.

The probability that a void created in the K shell of an atom is filled
through the emission of characteristic X-rays is defined as the K-shell
w

/

= )
nK

a)K:



It is given by the relationship. Here, Ik the number of X-rays emitted
from the sample is K, where ng is the number of void created in the K
layer. For higher atomic layers, the definition of fluorescence
efficiency is more complex for two reasons: Alt tabakalara sahip
tabakalarda C-K gecisleri so6z konusudur. Bu gegisler, ayn1 bas
kuantum sayisina sahip alt tabakalar arasinda elektron veya bosluk
kaymalarina neden olur. Different ionization models give rise to
different vacancy distributions in atomic shells and subshells.
Consequently, the average fluorescence yield depends strongly on the
specific ionization mechanism by which these shells are excited. C-K
transitions can occur in atomic shells that are divided into subshells.
These transitions represent the redistribution of electrons or vacancies

among subshells. The probability of a C-K transition is denoted by fj;,

In atoms, an electron vacancy can be occupied by electrons
from higher energy levels. This filling process can occur through two
distinct mechanisms: radiative or non-radiative. One of the non-
radiative processes, known as the Auger effect, occurs when an
electron from an upper energy level fills the void, causing another
electron to be emitted from the atom. As a result, the atom reaches a
doubly excited state. The electron ejected during the Auger process is
referred to as an Auger electron. Such processes are commonly termed

non-radiative transitions or Auger transitions in the literature.
Theoretical L XRF Cross-sections

The L, Lo, Lgand Ly  play a crucial role in establishing reliable

theoretical models in fundamental nuclear and atomic physics studies,
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which describe the emission of X-rays and Auger electrons. These
parameters can be theoretically calculated using subshell
photoionization cross sections, W, C-K transition probabilities, and
transition rates. In this context, the following relationships proposed
by Mann et al.(1994) form the basis of these calculations.
Theoretically, in the absence of Coster-Kronig enhancement (fij=0),

the characteristic L X-ray sections are expressed as follows.

oy =030, (3)
O, =0305F, 4)
o =0,0,F, +0,0,F,; + o,0,F;, 5)
o, =0,0,F, +o,0,F,, (6)

But in reality, C-K exist, and in this case, the cross-sections.

oy =0 (fia+ iy )+ 0, frp + 05 Jws Fy ©)
oL, =01 (fia+ fiofr)+0,Th + 05 k0, o, (8)
0 =0,0,F; +(0,f,+0,)0,F, +[os+0, f s +o,(f+F, T )losFy, 9
oL, =o10.Fy, +(oyf1, +0, ), Fy, (10)



Here , O are the fotoiyonizasyon cross-sections of the substrates and

are calculated using the equation Ino=kInE with the help of
Scofield's table (1973). f are the C-K transition probabilities. @, are
the W of the substrates and are taken from Krause's tables (1979). F
are the transmission rate probabilities for L-X-rays and are obtained

from Scofield's tables (1969). In this study, L, L, Lz was calculated

theoretically.

The C-K enhancement factors are obtained by dividing the
relevant equations side by side, taking into account the same X-rays
(Oz etal.,2004). This approach allows for the quantitative
determination of these factors and makes them an important parameter

in fluorescence calculations.

:O_l( fla+f,f5)+0,f,+0;

(11)

|«

O3

_ 0,0,F, +(o,f, +0, )wZFZ/} +log+o,t+o (s +f,f5 )]wSFS/} (12)

K

p
lele +0,0, Fzﬂ +0,0, Fsﬁ

They are calculated using equations. When a vacancy occurs in the Li
subshell, ;> and fz; type Coster—Kronig transitions can take place. In
the L, subshell, only the f2; transition is possible. No Coster-Kronig
transitions are observed in the Ls subshell. The excitation energies of

the elements are given in Table 1 (Elam, 2002).



Table 1. Absorption edge and excitation energies of Sm, Eu, and Bi

elements
Element Absorption edge energy Excitation energy (keV)
(keV)
L, L; L; L, L; L;
Sm 7.754 7.281 6.721 11.372 | 7.649 7.057
Eu 8.069 7.624 6.983 | 11.372 | 7.649 7.057
Bi 16.393 | 15.716 | 13.424 | 16.896 | 15.859 | 13.596

RESULTS AND DISCUSSION

The XRF of the L sublayers of Sm, Eu, and Bi elements were
calculated using Equations 7, 8, and 9. The obtained values are
presented in Tables 2-4.

An examination of Table 2-4 shows that the analysis of L-shell
X-ray photoionization cross sections indicates that when elements are
excited with energies below the L, subshell threshold, the
photoionization cross sections associated with the excitation of the L.
and Ls subshells exhibit higher values. This trend can be explained by
the dominance of the photoelectric effect at lower energies, which
makes photoionization more probable for the L. and Ls subshells

within this energy range.
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Table 2. 61, 614,011 (barns-atom) (for L3))

Elemennt E (keV) OLq OLg oLl
Sm 7.057 6904.225 2190.813 277.852
Eu 7.057 7691.908 1371.207 309.930
Bi 13.596 8802.232 2069.516 477.580
Table 3. 61, 614,011 (barns-atom) (forL,)
Elemennt E (keV) OLq OLg oLl
Sm 7.649 6104.328 4419.191 245.782
Eu 7.649 6802.788 4913.734 274.105
Bi 15.859 6206.639 5321.732 336.794
Table 4. 614,614,611 (barns-atom) (for L; )
Elemennt E (keV) OLq OLg oLl
Sm 11.372 2304.938 2190.813 92.759
Eu 11.372 2594.415 2461.757 104.536
Bi 16.896 6335.181 5584.750 343.769

As shown in Tables 2-4, the excitation energies for each
element were selected by considering the absorption edge energies of
the corresponding subshells. These energy choices were made to
ensure consistency with the photoionization cross-sections calculated
by Scofield. Since Sm and Eu have similar atomic numbers and the
experimentally used excitation energies are within suitable ranges for
both elements, the same excitation energies were adopted for these two
elements. However, despite having the same excitation energies, it is
clearly observed that the photoionization cross-sections of L X-rays

increase with atomic number. In other words, as the atomic number

increases, the photoionization cross-sections of X-rays also increase.
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The findings obtained in this study clearly demonstrate that
non-radiative transitions particularly C-K transitionshave a significant
effect on the intensities of characteristic L-shell X-rays. C-K
transitions cause vacancies created in the upper L subshells (Z; and L:)
to be rapidly transferred to the Ls; subshell, thereby increasing the
probability of characteristic X-ray emission originating from the L;
subshell. This mechanism constitutes the fundamental physical reason
for the observed increases in the measured X-ray intensities.

Table 5. K,; and K, C-K enhancement factors

Elemennt E (keV) Ky E (keV) Kp
Sm 7.649 1.088 11.372 1.257
Eu 7.649 1.085 11.372 1.250
Bi 15.859 1.075 16.896 1.304
Table 6. K;; and K, C-K factors

Elemennt E (keV) Kai E (keV) Ka2
Sm 7.649 1.088 11.372 1.257
Eu 7.649 1.085 11.372 1.250
Bi 15.859 1.075 16.896 1.304
Table 7. Kg; and Kp> C-K factors

Elemennt E (keV) Kg; E (keV) Kp,
Sm 7.649 1.020 11.372 1.155
Eu 7.649 1.016 11.372 1.131
Bi 15.859 1.019 16.896 1.108

Theoretical calculations reveal that when the direct ionizations of
individual L subshells are considered separately, C-K transitions lead

to a substantial enhancement in X-ray production. According to the
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theoretical results presented in Tables 5 and 6, C-K (The theoretical
K,; and Kj;) factors result in an approximately 8.8% increase in L-
shell ~ X-ray intensities,  while  other  related  factors
(K,2and Kjp)contribute an additional 30% increase.

The results given in Table 7 indicate that the CosterKronig factors
have relatively smaller values. C-K (The Kg;)  factors result in an
approximately 1.6-2% increase in L-shell X-ray intensities, while other
related factors (Ks, ) contribute an additional 10.8-15% increase.

The obtained results further demonstrate that the influence of CK
transitions strongly depends on both the atomic number and the
excitation energy. At appropriate excitation energies, the efficient
transfer of vacancies formed in the L: and L. subshells to the Ls
subshell leads to a pronounced enhancement of Lo X-ray intensities. In
contrast, the more limited increase observed in Lg lines can be
explained by the weaker influence of CK transitions on these lines.

In conclusion, it is evident that Coster—Kronig transitions enhance
L-shell X-ray intensities, and neglecting this effect in quantitative XRF
analyses may lead to systematic errors. Therefore, CK transitions must
be explicitly taken into account in high-precision XRF measurements,

particularly for elements with medium and high atomic numbers.

CONCLUSION

The obtained results demonstrate that the photoionization
probability of L-subshell characteristic X-rays increases with

increasing atomic number. This increase in atomic number reduces the
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energy separations between the L subshells, thereby enhancing the
probability of Coster—Kronig transitions and consequently increasing
the number of vacancies created in the Ls subshell. This mechanism
constitutes the fundamental physical reason for the observed
enhancement, particularly in the intensities of the La lines. According
to the present findings, the presence of non-radiative (radiationless)
transitions leads to significant variations in the measured X-ray
intensities, and neglecting this effect in quantitative XRF analyzes
may result in systematic errors. Therefore, in L-shell X-ray analyzes
of elements, the influence of Coster—Kronig transitions must be taken

into account together with the photoionization processes.
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CHAPTER 2

EVALUATION OF EXCHANGE BIAS STUDIES:
CURRENT SITUATION ANALYSIS AND FUTURE
TRENDS

1. Taner KALAYCI !
2. Muhammet ARUCU 2

1-Introduction

In the context of spintronics, exchange bias—a phenomenon
of basic and technological relevance in magnetic materials—plays a
significant role. A method to ascertain and control a material's
magnetism is by exchange bias, an effect that arises at the contact
between two distinct magnetic materials. This phenomenon is used
in many technological applications, such as magnetic random-access
memory (MRAM), hard drives, and sensors.

! Assoc. Prof. Dr., Department of Medical Services and Techniques, Bandirma
Onyedi Eyliil University, Bandirma, 10200, Balikesir, Tiirkiye Unvan,
Kurum,B6liim, Orcid: 0000-0002-6374-2373

2Assist. Prof. Dr., Department of Computer Technologies, Bandirma Onyedi
Eyliil University, Gonen, 10900, Balikesir, Tiirkiye, Orcid: 0000-0001-7620-
9044
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When a cooling process is applied above the Neel
temperature (Tn) of the AFM material in hybrid systems with
ferromagnetic (FM) and antiferromagnetic (AFM) layers, the FM
layer experiences directional magnetic anisotropy [1-3]. The
exchange bias interaction at the FM/AFM interface is the cause of
this anisotropy. Meiklejohn and Bean first noticed exchange bias in
1956 while studying Co particles coated with natural CoO [4]. This
effect is also present in thin films [6], AFM single crystals [5], and
other heterogeneous magnetic systems, according to later research.
Additionally, the exchange bias effect is significant in applications
like magnetic recording media [8], permanent magnets [7], and
anisotropic magnetoresistance-based recording heads [9]. The
exchange bias energy at the interface in the Meiklejohn and Bean
model allows the AFM layer to stabilize the ferromagnetic layer's
magnetic orientation [10]. However, this classical model has proven
to be inadequate due to spin irregularities, grain boundaries, and
roughness present in real systems. As a result, more sophisticated
models also take into account ideas like spin glass-like structures,
frozen spins, and field-cooled states [3].

Exchange bias is employed to maintain the magnetic
orientation of the reference layer in devices such as magnetic tunnel
junctions, spin valve topologies, and MRAMSs [11]. This feature
improves data dependability and ensures steady device operation.
Furthermore, exchange bias has been seen not only in typical
FM/AFM interfaces but also in ferrimagnetic, multilayer, and even
single-phase nanostructures [6]. This suggests that the exchange bias
phenomena may be related to more complex and general spin
configurations.

This study uses bibliometric analysis techniques to look at
exchange bias research that has been published in the Web of Science
(WoS) database. Prominent publications, authors, institutions,
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nations, and co-authorship are assessed, along with the field's
historical evolution and status. The basic issues and difficulties that
arise in exchange bias research in magnetic applications are also
discussed. The results contribute to the future of spintronic devices
and show current trends in the field of exchange bias.

2. Methods

Using the search term "exchange bias," 6835 scholarly works
were found in the WoS database. By examining each publication in
this database, an attempt was made to shed light on the history,
current state, and whether " exchange bias " has been extensively
researched in the literature. This section addresses all research on "

exchange bias" and offers a fresh perspective.

3. Data Analysis, Document Collecting

The main topic of this section is the examination of articles
related to "exchange bias" in the WoS database. As of December 4,
2025, a WoS database search using the terms "exchange bias" or
"exchange-bias" yielded a total of 6835 results. The search was
filtered by document type to include only english-language and only
research articles. For bibliometric analysis, these articles were
downloaded as tab-delimited files (Win format) containing full
records. Subsequently, the VOSviewer program was used to perform
analyses such as most frequently used keywords, abstracts, citation
patterns, and co-authorship.

4. Results and Discussion
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Figure 1 shows that research articles on "exchange bias" are
mostly found in fields such as Physics, Materials Science,
Engineering, and Chemistry, while Figure 2 shows an increasing
trend over the years.

Figure 1. Number of “exchange bias” by research areas

4,868
Science Technology Other Topics.

Figure 2. Number of "exchange bias" articles by year

I R e T T R e T T T e T

4.1. Co-authorship - Authors Analysis
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Figure 3. The graph of "co-authorship - Author" analysis
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The co-authorship analysis reveals collaborations

"exchange bias" research, researcher profiles, and co-publication
trends. This analysis shows that 18,881 authors have contributed to
the field through journal publications. In the bibliometric analysis,
when the threshold of at least 3 publications and at least 10 citations
is applied, 3,212 authors meet these criteria. Table 1 lists the authors
with the most publications in order. The top three are: Hu, Yong (52
publications), Dieny, B. (44 publications), and Du Jun (42
publications). Based on this data, the most prolific authors have been
identified. Figure 3 shows the distribution of authors. In the figures,
the bubble and font sizes represent the number of publications by the
authors, and the bubble colors represent clusters formed by co-

authorship relationships.

Table 1. Top ten authors with the greatest documents

Author Documents

Hu, Yong 52
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Dieny, B. 44

Du Jun 42

Van Lierop, J 39
Majumbar S. 39
O’grady, K. 38
Giri S. 37

Xu Qingyu 35
Zhang Z.D. 33
Nakatani Ryoichi 33

4.2. Co-authorship - Affiliations Analysis

Looking at the results of the co-authorship analysis at the
institution level, it has been revealed that many institutions
contribute to this field through journal publications. In this part of
the study, when a threshold of at least 5 publications and at least 5
citations was set, it was seen that 643 out of 3003 authors met this
condition. According to the information presented in detail in Table
2, Chinese Acad Sci stands out as the institution with the highest
productivity with 337 publications. Chinese Acad Sci is followed by
Nanjing University (177), Tohoku University (120), Indian Institute
of Technology (115), National University of Singapore (110), and
University of California Berkeley (106). These institutions are
among the leading contributors to research on exchange bias. Figure
4 illustrates the distribution among these institutions. The connecting
lines between the institutions show the intensity of the collaboration
and visually represent global research partnerships in the field of
exchange bias.
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Figure 4. The graph of "co-authorship - Affiliations" analysis
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Table 2. Top ten institutions with the highest documents, citations and total link

strength
Total
Institutions Documents Citations Link
Strength
chinese acad sci 337 16 38
cnrs 90 452 16
csic 96 136 13
nanjing univ 177 76 36
natl univ singapore 110 971 10
northeastern univ 93 864 15
polish acad sci 102 127 5
russian acad sci 94 649 5
tohoku univ 120 49 10
univ calif berkeley 106 335 19
univ calif san diego 100 52 11
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univ york 102 79 14
indian st technol 115 53 6

4.3. Co-authorship - Countries Analysis

Looking at the results of the co-authorship analysis at the
country level, it has been revealed that many countries contribute to
this field through journal publications. In this part of the study, when
a threshold of at least 3 publications and at least 10 citations was set,
it was seen that 71 out of 91 authors met this condition. According
to the information presented in detail in Table 3, China stands out as
the institution with the highest productivity with 1542 publications.
China is followed by USA (1267), India (826), Germany (741),
France (493), and Japan (404). These countries are among the
leading contributors to research on exchange bias. Figure 5
illustrates the distribution among these countries. The connecting
lines between the countries show the intensity of the collaboration
and visually represent global research partnerships in the field of
exchange bias.
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Figure 5. The graph of "co-authorship - Countries" analysis
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Table 3. Top twenty countries with the highest documents, citations and total link

strength
Total Link
Countries Documents Citations
Strength
Australia 124 50 152
Brazil 233 1338 118
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Canada 101 3324 138

England 331 1120 310
France 493 245 450
Germany 741 123 590
Japan 404 1394 222
peoples r china 1542 4208 526
Poland 176 1532 130
Russia 247 1083 178
Singapore 146 199 94
South Korea 311 111 198
Spain 386 2456 411
Sweden 87 416 131
Switzerland 92 265 137
Taiwan 242 769 217
Tiirkiye 80 9550 32
USA 1267 504 859
India 826 16162 267
Italy 168 21963 172

4.4. Co-occurences — Author Keywords

The keyword co-occurrence map in VOSviewer examines
the relationships between keywords, offering a valuable tool for
researchers to identify key concepts and how these concepts
interconnect to form sub-domains, which may represent emerging
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research hotspots. The keyword "exchange bias," with 783 total
occurrences, has the highest total link strength of 5321, indicating
that it frequently co-occurs with other keywords. Figure 6 shows the
keyword co-occurrence map for exchange bias publications, where
"exchange bias" most often co-occurs with "exchange-bias" as
evidenced by the widest bubble and the highest link strength of 3343.
Figure 6. The Graph of “Co-occurences — Author Keywords ™ analysis
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4.5. Citation — Documents Analysis

According to the citation analysis, 6335 sources contributed
to the field of exchange bias; 1473 of these sources received at least
25 citations. Berkowitz (1999) is the most cited document, as shown
in the largest pistachio green in the document network map in Figure
7. Furthermore, Berkowitz (1999) has the strongest linkage with
other articles, as seen with the highest total linkage strength (254).
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The top three documents in terms of total linkage strength, number
of citations, and document number are:

Berkowitz (1999) — Total linkage strength: 254; Citations:
1532, Koon (1997) — Total linkage strength: 152; Citations: 745,
Nogues (1996b) - Total linkage: 126; Citations: 524

Figure 7. The Graph of “Citation — Documents” Analysis
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4.6. Citation — Source Analysis

According to the citation analysis of publication sources, 468
sources contributed to the field of exchange bias; 174 of these
sources published three articles with at least ten citations. As can be
seen from the largest light blue bubble in the network map of source
citations in Figure 8, the most cited journal is Physical Review B. In
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addition, the Journal of Magnetism and Magnetic Materials has the
highest overall linkage strength (5006), indicating its central role in
the citation network and its significant connection with other
publications. This strong linkage strength reflects how frequently
exchange bias is mentioned in various journals, demonstrating its
widespread impact within the scientific community. The top three
sources by total linkage strength, number of citations, and number of
documents are as follows:

Journal of Applied Physics — Total linkage strength: 3750;
Citations: 12828; Papers: 768, Journal of Magnetism and Magnetic
Materials — Total linkage strength: 5006; Citations: 10770;
Documents: 689, Physical Review B - Total linkage: 3576; Citations:
22959; Documents: 617

Figure 8. The Graph of “Citation — Source” Analysis
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4.7. Citation — Affiliations Analysis

Looking at the citation analysis of links on exchange bias
results; 3003 institutions have contributed to the field of Exchange
Bias; 362 of these have published at least 10 articles with at least 10
citations. As shown in one of the blue bubbles in the link citation
network map of cross-country citations in Figure 9, the most cited
institution is the University of California, Berkeley. In addition, the
University of California, San Diego has the highest total link
strength (4523), demonstrating both its significant role in the citation
network and its substantial linkage to other publications. This strong
link strength reflects how frequently exchange bias is mentioned
across various journals, showing its widespread impact within the
scientific community. The top 3 institutions in terms of article count,
citation count, and total link strength are as follows:

Univ Calif San Diego — Total linkage strength: 4523;
Citations: 7766; Documents: 100, Univ Calif Berkeley — Total
linkage strength: 2426; Citations: 10046; Documents: 106, Chinese
Acad Sci - Total linkage: 2756; Citations: 7022; Documents: 337

Figure 9. The Graph of “Citation — Affiliations” Analysis
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4.8. Citation — Countries Analysis

Looking at the citation analysis results; 94 countries have
contributed to the field of Exchange Bias; 71 of these have published
at least 3 articles with at least 10 citations. As shown in the orange
bubble on the network map of cross-country citations in Figure 10,
the most cited country is the USA. China has the most articles
(1542), demonstrating its close ties with other journals and its key
position in the citation network. The top 3 countries in terms of
article count, citation count, and total link strength are as follows:

USA — Total linkage strength: 14323; Citations: 53845;
Documents: 1267, China — Total linkage strength: 9293; Citations:
25710; Documents: 1542, Germany - Total linkage: 6755; Citations:
21963; Documents: 741

Figure 10. The Graph of “Citation — Countries” Analysis
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4.9. Co-citation analysis of cited references
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In the co-citation analysis of cited references, the minimum
number of citations for a cited reference was entered as 20. Of the
total 80780 cited references, 1224 meet this condition. As shown in
Figure 11, it consists of a total of 5 clusters. Cluster 1 consists of
355, cluster 2 of 278, cluster 3 of 210, cluster 4 of 131, and cluster 5
of 26 cited reference, and these clusters are colored red, green, blue,
yellow, and purple, respectively.

Figure 11.The Graph of * Co-citation - cited references” analysis
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4. Conclusion

The results of the bibliometric analysis reveal that some
researchers are leading the way in this field. Citation numbers and
co-authorship networks show that researchers like Hu Yong have
made significant contributions to the Exchange Bias literature,
contributing to both the development of theoretical models and the
advancement of empirical validations.
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Institutional analyses show that exchange bias studies are
conducted at universities and research centers. Organizations such as
the Chinese Academy of Sciences and CNRS are considered
pioneers in this field due to their high number of publications and
citations. When viewed on a country basis, exchange bias research
has become widespread worldwide. While India, China, and the US
stand out in terms of publication numbers and international
collaborations, developing countries have shown progress toward a
more balanced and multifaceted structure in recent years.

Bibliometric analysis results show that, despite the exchange
bias field not being very old, it is a well-established and dynamic
area of research. The increase in the number of publications, the
diversity of topics, and the rise in international collaborations
indicate that scientific output will continue to grow in the coming
years. It is predicted that the exchange bias phenomenon will
maintain its importance in both fundamental science and advanced
technological applications, particularly in conjunction with
developments in spintronics, magnetic data storage, and quantum
technologies.
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CHAPTER 3

EFFECTS OF ARTIFICIAL INTELLIGENCE ON
ANTENNA DESIGN, SIMULATION, AND
MANUFACTURING PROCESSES

ERKAN TETIK!

Introduction

Antennas, as a cornerstone of wireless communication, play
a pivotal role in our modern world. Their remarkable ability to
convert radio waves into electrical signals and vice versa has
rendered them indispensable components across a vast spectrum of
applications, ranging from mobile telephony and satellite
communication to radar systems and the Internet of Things (IoT) [1—
7]. The history of antenna technology commenced with Guglielmo
Marconi's invention of wireless telegraphy in the late 19th century
and has since undergone continuous evolution. This developmental
trajectory, spanning from rudimentary dipole antennas to advanced
microstrip, patch, array, and smart antennas, has been shaped by
persistent demands for increased bandwidth, higher efficiency,
reduced form factors, and enhanced functionality [8—13]. Presently,
emerging domains such as 5G and beyond communication systems,
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autonomous vehicles, sophisticated healthcare technologies, and
space exploration necessitate further advancements in antenna
performance and adaptability [14—-17]. While traditional antenna
design, simulation, and manufacturing processes have witnessed
significant progress over the years, they inherently remain time-
consuming, iterative, and computationally intensive. During the
design phase, engineers typically leverage analytical equations and
numerical optimization techniques. The simulation process aims to
predict antenna performance through powerful electromagnetic
(EM) solvers, including the finite element method (FEM), finite-
difference time-domain (FDTD), and method of moments (MoM).
These simulations are critically important for design verification
prior to physical prototyping. However, modern requirements such
as complex antenna structures, multiple frequency bands, and
stringent spatial constraints increasingly challenge the limits of
conventional methodologies. Furthermore, manufacturing processes
often entail engineering complexities related to precise material
selection, production tolerances, and assembly stages, which can
incur substantial costs and lead times [18-22].

The rapid proliferation of artificial intelligence (AI) and
machine learning (ML) has triggered a paradigm shift,
fundamentally transforming engineering and telecommunications
landscapes. In contrast to traditional physics-based or empirical
models reliant on closed-form equations, ML algorithms distinguish
themselves by their ability to autonomously extract patterns and
statistical correlations from large datasets. This data-driven
capability enables the resolution of high-dimensional problems that
are often computationally intractable for conventional methods [23].
Consequently, these techniques are redefining the lifecycle of
complex systems through robust prediction, automated decision-
making, and  sophisticated  optimization. @ Within  the
telecommunications sector, this impact is evident in the deployment
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of self-organizing networks (SONs), predictive channel estimation,
and intelligent signal classification [24,25]. Broader engineering
disciplines are similarly leveraging Al to accelerate innovation,
ranging from generative design in mechanical engineering to
predictive maintenance and process control in smart manufacturing
[26,27]. Collectively, these capabilities have paved the way for Al’s
integration into antenna engineering, offering novel solutions to the
limitations of traditional design, simulation, and manufacturing
paradigms [28,29].

The primary objective of this chapter is to investigate the
paradigm shift brought by artificial intelligence in antenna design,
simulation, and manufacturing. Specifically, it addresses Al's
capability to optimize antenna performance, solve high-complexity
EM problems, and enhance efficiency within manufacturing
workflows. The text thoroughly discusses both the promising
opportunities and the significant challenges associated with this
technological integration. In terms of scope, the chapter bridges the
gap between machine learning theories (supervised, unsupervised,
RL, and DL) and their practical applications, such as parametric
optimization, surrogate modeling, and fault diagnosis. Concluding
with a visionary outlook, the chapter underscores the central role Al
is poised to play in the next generation of antenna technologies.

2. The Role of Artificial Intelligence in Antenna Design

Although firmly rooted in established EM theory, the
traditional antenna design workflow remains a fundamentally
iterative and heuristic process. Typically, the design phase initiates
with an analytical model or a canonical topology, followed by a
rigorous cycle of parametric tuning, high-fidelity full-wave
simulation, and performance assessment. However, this
methodology encounters severe scalability and efficiency
bottlenecks when addressing the stringent requirements of modern
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wireless ecosystems. Demands for multi-band operation, wide
bandwidth, miniaturization, and reconfigurability have expanded the
design space into high-dimensional, complex territories [30].
Navigating this complexity via conventional trial-and-error
approaches is not only computationally prohibitive but also restricts
the discovery of non-intuitive, unconventional geometries [31]. The
advent of Al, and specifically Machine Learning (ML), heralds a
paradigm shift, transitioning the field from laborious iteration to
data-driven automation. By exploiting statistical patterns, Al
facilitates rapid surrogate modeling and inverse design capabilities
[32]. Consequently, rather than relying on exhaustive brute-force
simulations, Al-driven frameworks enhance design efficiency,
offering real-time performance prediction and the generative
creation of novel antenna structures based on specific performance
criteria [33].

Figure 1 AI-Driven Antenna Design Workflow
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Fig. 1 illustrates the transformative impact of Al on the
antenna design process, contrasting the conventional, iterative
workflow with an Al-enhanced, data-driven approach. The
Traditional Workflow (left panel) depicts a linear and often time-
consuming sequence involving initial design, parameter scans, and
extensive, high-fidelity EM simulations. The Al-enhanced workflow
(right panel) begins with defining requirements. This is followed by
an automated design and optimization phase driven by an Al core,
the Intelligent Design Engine. This core uses various Al techniques,
such as generative modeling and topology optimization, to create
novel structures. It also uses physics-informed neural networks
(PINNS) to rapidly and accurately model. The evolutionary and Al-
based optimization module, often assisted by surrogate models,
significantly speeds up the exploration of design parameters. The Al
system provides a set of candidate designs that facilitate informed
decision making. Ultimately, this process shift enables rapid
optimization, accelerated simulation, high-accuracy modeling of
complex structures, and a largely automated design exploration,
thereby significantly reducing design cycles and fostering the
discovery of advanced antenna solutions.

2.1. Rapid Optimization of Antenna Parameters

One of the most laborious phases in antenna engineering is
the optimization of geometric and material parameters to satisfy
stringent performance targets, such as resonant frequency,
impedance matching (S11 < -10 dB), gain, bandwidth, and radiation
pattern characteristics. Traditional, gradient-based methods are at
risk of becoming trapped in local minima within the complex,
multimodal landscapes of antenna performance metrics. Conversely,
simple parameter sweeps suffer from the "curse of dimensionality,"
rendering them computationally prohibitive as the number of design
variables increases. Artificial Intelligence offers a robust suite of
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alternatives to these limitations, primarily through Evolutionary
Algorithms (EAs) and Surrogate-Model-Assisted Optimization [34].

EAs, techniques like Genetic Algorithms (GAs) and Particle
Swarm Optimization (PSO) are inspired by natural processes. A GA,
for instance, maintains a "population" of potential antenna designs
(individuals), each defined by a set of parameters (genes). The
performance of each design is evaluated using a "fitness function,"
which is typically derived from EM simulation results. Through
processes mimicking natural selection, such as crossover (combining
parameters from successful designs) and mutation (randomly
altering parameters), the population evolves over generations toward
optimal solutions [35,36].

While EAs are effective global optimizers, they inherently
require a vast number of fitness evaluations, each potentially
triggering a time-consuming EM simulation. To mitigate this
computational burden, Al-driven surrogate modeling (also referred
to as metamodeling) is employed. This approach involves training a
Machine Learning model, such as a Deep Neural Network (DNN),
Support Vector Machine (SVM), or Gaussian Process (Kriging),
using a sparse dataset of antenna parameters and their corresponding
EM responses. Once trained, the surrogate acts as a computationally
efficient proxy for the full-wave solver. Optimization algorithms can
then query this proxy thousands of times to rapidly explore the
design space, drastically reducing the dependency on the physics-
based simulator within the optimization loop [37,38].

2.2 Reduction of Simulation Times

High-fidelity full-wave EM simulation, utilizing numerical
techniques such as FEM, Finite-Difference Time-Domain (FDTD),
and Method of Moments (MoM), constitutes the standard
verification protocol in modern antenna design [39]. However, this
accuracy comes at a steep computational cost. A single simulation

--42--



for an electrically large or complex structure can necessitate hours—
or even days—on high-performance computing clusters. This
latency imposes severe constraints on the number of feasible design
iterations, rendering large-scale global optimization practically
unachievable. To circumvent this, Al-driven surrogate modeling has
emerged as a primary solution. The fundamental strategy involves
decoupling the expansive design exploration phase from the
computationally intensive physics solver [40]. The process generally
follows a three-stage workflow:

A Design of Experiments (DoE) methodology is employed to
systematically sample the design space. A limited set of diverse
antenna configurations (typically ranging from a few hundred to a
few thousand) is simulated using the high-fidelity EM solver. This
phase constructs a foundational dataset that maps specific design
inputs (e.g., patch length, substrate height, feed coordinates) to their
corresponding performance outputs. Subsequently, a Machine
Learning model, most commonly a DNN, is trained on this generated
dataset. The network learns to approximate the intricate, non-linear
mapping functions between the antenna's physical geometry and its
EM behavior. In cases involving image-like inputs, such as pixelated
patch antenna layouts, Convolutional Neural Networks (CNNs) are
particularly effective due to their ability to capture spatial feature
dependencies. Once fully trained, the surrogate model functions as a
real-time inference engine. It can predict the full performance
spectrum, such as the complete curve across a frequency band or 3D
radiation patterns, for any new set of design parameters within its
training domain almost instantaneously. This approach effectively
replaces the time-consuming physics simulation with a rapid
prediction model, significantly accelerating the iterative design
cycle.

2.3 High-Accuracy Modeling of Complex Antenna Structures



Contemporary antenna engineering deals with increasingly
sophisticated structures that defy simple analytical characterization.
These include metamaterial-inspired radiators, frequency-selective
surfaces (FSS), densely packed phased arrays exhibiting significant
mutual coupling, and reconfigurable antennas integrated with active
components like PIN diodes or MEMS switches [41]. Modeling such
architectures presents multifaceted challenges. In this context, Al
provides robust tools that go beyond simple parameter estimation.
These tools can solve complex physics problems and generate new
topologies.

PINNS, a cutting-edge advancement involves embedding the
governing physical laws directly into the machine learning
architecture. PINNs are neural networks where the loss function
incorporates not only the error between the model’s prediction and
the training data (data-driven loss) but also a residual term enforcing
compliance with the underlying differential equations, such as
Maxwell’s equations. This "physics-informed" constraint ensures
that the model's predictions remain physically consistent, even in
regimes where training data is sparse or unavailable. For complex
electromagnetic problems, PINNs can yield highly accurate
surrogate models with significantly less training data compared to
purely data-driven "black-box" approaches [42].

One revolutionary application of Al is inverse design. Rather
than starting with geometry and working toward performance,
inverse design begins with the desired performance (e.g., a specific
radiation pattern or multiple frequency bands) and uses Al to
generate a corresponding physical structure. Generative models like
Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) are exceptionally well-suited for this task. A
GAN, for example, can be trained on a large dataset of antenna
geometries and their performance characteristics. The "generator"
network then learns to propose new, valid antenna layouts, while a
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"discriminator" network assesses their quality. Through this
adversarial process, the generator becomes adept at creating novel
designs that meet specified high-level performance constraints [43].

3. Al Methodologies and Antenna Applications

While the preceding chapter established the transformative
impact of Al on the antenna design paradigm, this chapter
investigates the specific methodologies underpinning these
advancements. It synthesizes ML, DL, and EAs under a unified
computational framework. Although these categories possess
distinct theoretical characteristics, their synergistic application has
become increasingly prevalent in resolving complex engineering
challenges. This section elucidates the fundamental mechanics of
each technique and demonstrates their practical utility through
relevant case studies. Special emphasis is placed on their capabilities
in  parameter estimation, performance prediction, global
optimization, and generative design [44].

3.1. ML Based Methods

ML encompasses a diverse spectrum of algorithms capable
of extracting patterns from data without explicit programming
instructions. In the context of electromagnetics, these methods are
particularly valuable for modeling the complex, non-linear mappings
between antenna design parameters (geometry/materials) and their
EM performance. They serve as robust engines for both parameter
estimation and computationally efficient surrogate modeling.

Decision Trees (DTs) learn a sequence of simple decision
rules inferred from the data features. While interpretable, individual
DTs can be prone to overfitting. Support Vector Machines are
powerful algorithms for classification and regression, particularly
effective in high-dimensional spaces [45,46]. SVMs work by finding
an optimal hyperplane that best separates different classes or fits data

points with maximum margin. They are robust against overfitting
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and can handle complex, non-linear relationships using kernel
functions. RFs overcome the limitations of individual DTs by
constructing an ensemble of many DTs during training. Each tree is
trained on a random subset of the data and features, and the final
prediction is an aggregation (e.g., majority vote for classification,
average for regression) of individual tree predictions. This ensemble
approach significantly improves accuracy, robustness, and reduces
overfitting, making RFs highly effective for predicting antenna
performance metrics.

Figure 2 Schematic representation of RF architecture. The model
trains an ensemble of DTs on random subsets of data and
aggregates their individual predictions (via majority voting for
classification or averaging for regression) to produce a robust final
output.
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The architectural framework of RF algorithm is illustrated in

Fig. 2. As depicted, the ensemble method aggregates the outputs of
multiple independent DTs to derive a final prediction, thereby

reducing the variance associated with individual estimators.

ML models excel in constructing high-speed surrogate
models that map geometric parameters to performance
characteristics (Forward Modeling) or, conversely, estimate required
dimensions for a desired output (Inverse Modeling). For instance,
algorithms can be trained to predict the resonant frequency of a
microstrip patch given its substrate properties and dimensions with
high fidelity. This predictive capability is critical for rapid design
space exploration, enabling real-time feedback that traditional

solvers cannot provide.
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Consider the optimization of a patch antenna for maximum
gain within specific form factor constraints. A dataset consisting of
various patch dimensions (length, width, feed position, substrate
height, dielectric constant) and their corresponding simulated gain
values can be generated. An ML model, such as an RF Regressor,
can then be trained on this dataset. Once the model learns the
relationship, it can rapidly predict the gain for new, untested
combinations of parameters. This surrogate model can be coupled
with an external optimization algorithm, such as a simple gradient
descent or an EA, to efficiently search the parameter space for
configurations that yield the highest gain. This drastically reduces
the number of computationally expensive full-wave EM simulations
required [47].

3.2. DL for Antenna Design

DL, a specialized and sophisticated subset of ML, employs
artificial neural networks with multiple processing layers (deep
architectures) to learn hierarchical representations of data. Unlike
traditional "shallow" learning methods that often require manual
feature extraction, DL models are adept at processing high-
dimensional raw data, such as antenna geometries represented as
images or broadband frequency responses, and autonomously
extracting salient features. This capability allows them to model
complex electromagnetic phenomena with unprecedented accuracy

[48].

CNNs are exceptionally powerful for processing grid-like
data, making them ideal for analyzing antenna geometries
represented as images or pixel maps. A CNN can be trained to
directly predict the full 3D radiation pattern of an antenna simply by
taking its 2D structural layout image as input. The convolutional
layers automatically learn to detect relevant geometric features (e.g.,
slot shapes, trace widths, gaps) that influence the antenna's far-field
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characteristics. This eliminates the need for explicit parameterization
of the antenna and provides an ultra-fast alternative to full-wave
simulations for pattern synthesis and analysis [49].

DNNs, with their multi-layered architecture, can capture
highly complex, non-linear relationships between a multitude of
antenna parameters and desired performance metrics. For bandwidth
optimization, a DNN can be trained on a dataset comprising various
antenna geometries (e.g., feed line width, ground plane dimensions,
parasitic element placements) and their corresponding fractional
bandwidths. The network learns how subtle changes in geometry
impact the impedance matching over a frequency range. After
training, the DNN can serve as a rapid predictor, allowing engineers
to quickly iterate and identify configurations that yield wider
bandwidths, a critical factor for modern wireless communication
systems [50].

Transfer Learning is a powerful DL technique where a model
pre-trained on a large dataset for a general task (e.g., a CNN trained
on image recognition) is adapted for a new, specific task (e.g.,
antenna performance prediction) with a smaller dataset. In antenna
design, this means a DL model trained on a vast repository of
existing antenna simulations can be fine-tuned with a relatively
small set of new simulation data for a slightly different antenna type
or operating environment. This significantly reduces the training
data requirement and accelerates the development of new predictive
models, enabling faster prototyping and exploration of novel designs
without the need to build a comprehensive dataset from scratch for
every new antenna concept [51].

3.3. Evolutionary and Natural Computing Algorithms

EAs and broader natural computing paradigms constitute a
robust class of metaheuristic optimization techniques inspired by
biological evolution and swarm intelligence. Unlike deterministic
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gradient-based methods, which are prone to entrapment in local
minima, these stochastic algorithms do not require derivative
information. Consequently, they are exceptionally well-suited for the
complex, discontinuous, and multimodal objective functions
frequently encountered in high-dimensional antenna design spaces.

GAs operate on a population of potential solutions (antennas
represented by a set of parameters or a binary string encoding
geometry). Through iterative application of genetic operators
(selection, crossover, mutation), the population "evolves" over
generations. Designs with better performance (higher fitness) are
more likely to survive and pass on their "genes," leading to a gradual
improvement towards optimal solutions. GAs are highly effective for
global optimization and exploring vast, irregular design spaces. PSO
is another population-based metaheuristic inspired by the social
behavior of bird flocking or fish schooling. Each "particle" in the
swarm represents a potential solution in the search space. Particles
move through the search space, adjusting their trajectories based on
their own best-found position (personal best) and the best-found
position of the entire swarm (global best). This collective
intelligence allows the swarm to efficiently converge towards
optimal regions. PSO is often simpler to implement than GAs and
can be very effective for continuous optimization problems in
antenna design [52].

Figure 3 Flowchart of the Particle Swarm Optimization (PSO)
algorithm. The process highlights the iterative mechanism where
particles adjust their trajectories in the search space guided by

personal best (Ppes;) and global best (Gresi) values to converge

toward the global optimum.
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The iterative operational workflow of the PSO algorithm is
detailed in the flowchart presented in Fig. 3. In each iteration, the
particles update their velocities and positions based on the best
solutions they and the swarm have found historically. This cycle
continues until a termination criterion is met. The synergistic
integration of EAs with Machine Learning forms powerful "Hybrid
AI" architectures, often referred to in literature as Surrogate-Assisted
Evolutionary Algorithms (SAEAs). In this framework, an EA serves
as the primary global optimizer; however, instead of evaluating
every candidate design via a computationally expensive full-wave
EM simulator, the algorithm queries a high-speed ML/DL surrogate
model. This strategy dramatically accelerates the optimization
process, enabling the exploration of massive design spaces within
practical timeframes. Furthermore, advanced hybrid strategies
employ ML to intelligently guide the evolutionary operators (e.g.,
adaptive mutation), making the search process significantly more
directed and efficient.

Designing  Multiple-Input ~ Multiple-Output  (MIMO)
antennas for 5G and emerging 6G systems poses significant
challenges. These challenges stem from the necessity of having
multiple radiating elements in close proximity. This requires careful
management of mutual coupling, ensuring high isolation, and
maintaining radiation efficiency and compact form factors. PSO is a
highly effective algorithm for optimizing such complex, multi-
objective problems. For instance, PSO can simultaneously optimize
the placement, orientation, and geometric parameters of multiple
antenna elements within an array. The fitness function for each
"particle" (a specific MIMO antenna configuration) would typically
include objectives like minimizing correlation coefficients,
maximizing channel capacity, achieving desired radiation patterns
for beamforming, and maintaining acceptable impedance matching
across multiple ports. By leveraging PSO, engineers can efficiently
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explore the vast design landscape of MIMO arrays, leading to
compact, high-performance solutions crucial for the next generation
of wireless communication [53,54].

4. Artificial Intelligence in Antenna Manufacturing Processes

While the previous chapters focused on the design and
simulation phases, the physical realization of antennas involves
distinct challenges related to precision, material properties, and
production consistency. The integration of Al into manufacturing,
often referred to as Industry 4.0, is revolutionizing how antennas are
fabricated. This chapter explores the application of Al in antenna
manufacturing, specifically focusing on additive manufacturing
optimization, material selection, defect prediction, and automated
quality control [55].

Additive manufacturing (3D printing) has gained significant
traction in antenna engineering due to its ability to fabricate
complex, non-planar geometries that are difficult to achieve with
subtractive methods. However, deviations during the printing
process can severely impact EM performance. Al algorithms are
increasingly employed to enhance the fidelity of 3D-printed
antennas. ML models can be trained to optimize slicing parameters
(e.g., layer height, infill density, and print speed) based on the
specific EM requirements of the antenna. Furthermore, Al-driven
geometric compensation techniques are used to predict and
counteract thermal deformations or shrinkage that occur during the
printing process. By pre-distorting the digital model (CAD), the Al
ensures that the final physical prototype matches the intended design
with high precision, thereby maintaining the desired resonant
frequency and radiation patterns [56].

The performance of an antenna is intrinsically linked to the
EM properties of the materials used, particularly the substrate's
permittivity and loss tangent. In traditional manufacturing, material
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selection is often limited to commercially available standard
substrates. Al facilitates a more nuanced approach through the
optimization of composite materials and metamaterials. Data-driven
approaches allow engineers to predict the effective EM properties of
composite mixtures before fabrication. For instance, DL models can
analyze the micro-structure of a proposed material mixture and
accurately predict its dielectric constant. This capability enables the
"inverse design" of materials, where the Al recommends a specific
material composition and fabrication parameter set to achieve a
target permittivity required for a specific antenna application,
significantly reducing the trial-and-error phase in material
engineering [57].

In mass production scenarios, equipment failure or process
drift can lead to defective antenna batches, resulting in substantial
financial loss. Al-powered predictive maintenance and defect
prediction systems are critical in mitigating these risks. By
leveraging data from sensors embedded in manufacturing equipment
(e.g., temperature sensors on extruders, vibration sensors on CNC
milling machines), ML algorithms can detect subtle anomalies that
precede a failure. Time-series analysis techniques, such as Long
Short-Term Memory (LSTM) networks, process this sensor data to
forecast potential manufacturing deviations. If the system predicts
that a machine's calibration is drifting beyond an acceptable
tolerance, which could lead to etching errors in PCBs or structural
flaws in 3D prints, it can alert operators or automatically adjust
process parameters in real-time to prevent the defect, ensuring
consistent production quality [58].

Post-manufacturing inspection is the final gatekeeper of
quality. Traditional manual inspection is slow and prone to human
error, while rule-based automated optical inspection (AOI) systems
often struggle with complex antenna geometries. Al, particularly
Computer Vision powered by CNNs, has transformed quality
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control. Al-based inspection systems can analyze high-resolution
images or X-ray scans of manufactured antennas to detect
microscopic defects such as micro-cracks in solder joints,
discontinuities in conductive traces, or surface roughness on
waveguide components. Unlike traditional methods, these deep
learning models can generalize to identify novel defect types they
were not explicitly programmed to find. This automated, high-speed
verification ensures that only antennas meeting stringent
performance standards proceed to the assembly stage, thereby
enhancing the overall reliability of wireless communication systems
[59].

5. Challenges and Future Perspectives

The integration of Al into antenna engineering has
undeniably precipitated a paradigm shift, unlocking unprecedented
capabilities in design optimization, simulation acceleration, and
manufacturing precision. However, notwithstanding the promising
results detailed in preceding chapters, significant hurdles remain that
impede the ubiquitous industrial adoption of these technologies.
Furthermore, as wireless communication standards evolve toward
6G and Terahertz (THz) frequencies, the role of Al is projected to
expand from offline design optimization to real-time, adaptive
antenna control. This section critically examines existing bottlenecks
and delineates the trends poised to shape the future of intelligent
antenna systems.

5.1. Current Challenges in AI-Driven Antenna Engineering

While AI models have demonstrated superior efficacy in
specific case studies, their robust deployment in general-purpose
antenna engineering confronts obstacles regarding data availability,
computational overhead, and model interpretability.

One of the most pervasive challenges in applying Al to EM s

is the lack of large-scale, open-source, and standardized datasets.
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Unlike fields such as Computer Vision or Natural Language
Processing, which benefit from massive repositories like ImageNet,
the antenna community relies heavily on synthetic data generated via
simulations. Generating "ground truth" data using high-fidelity full-
wave EM solvers is computationally expensive and time-consuming.
Consequently, many studies rely on small, problem-specific datasets.
This limits the reproducibility of results and hinders the development
of foundation models capable of understanding generalized
electromagnetic (EM) phenomena. Without a unified benchmark
dataset, researchers must regenerate data for every new design
problem, creating a significant barrier to entry and slowing the field's
collective progress [60,61].

Although trained Al models (surrogates) offer rapid
inference times, the upfront computational cost of training these
models can be substantial. Creating a robust surrogate model often
requires thousands of full-wave simulations to populate the design
space adequately. For electrically large structures or massive arrays
intended for 5G/6G applications, a single data point can take hours
to simulate. When combined with the hardware requirements for
training DNNs or GANs, which necessitate high-performance
GPUs, the total energy and time investment can sometimes approach
or exceed that of traditional optimization methods for simpler
problems. The "curse of dimensionality" remains a critical issue; as
the number of design variables increases, the amount of data required
to train an accurate model grows exponentially, challenging the
feasibility of Al for highly complex antenna topologies [62,63].

A critical limitation of current data-driven models is their
poor generalization capability. A neural network trained to optimize
a microstrip patch antenna typically fails completely if applied to a
horn antenna or a dielectric resonator antenna. Most Al models in
literature are "topology-specific," meaning they learn the statistical
correlations of a fixed geometry but do not grasp the underlying
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Maxwell’s equations. This lack of physical intuition often leads to
the "black box" problem, where the model might predict physically
impossible results (e.g., efficiencies greater than 100% or negative
resistance) when queried outside its training domain. Ensuring the
trustworthiness of Al predictions is paramount; without rigorous
validation or physics-informed constraints (such as PINNs),
engineers may hesitate to rely on Al for mission-critical aerospace
or defense applications.

5.2. Future Trends: The Road to 6G and Beyond

Looking forward, the convergence of EMs and artificial
intelligence is poised to deepen. The focus is shifting from using Al
merely as a design tool to embedding it as the "brain" of the
communication hardware itself.

The transition to 6G networks will utilize the sub-THz and
THz spectrums to achieve data rates exceeding 1 Tbps. At these
frequencies, propagation losses are severe, requiring ultra-massive
MIMO (um-MIMO) arrays with hundreds or thousands of elements
to maintain connectivity via high-gain beamforming. Traditional
channel estimation and beam management techniques are too slow
to handle the high mobility and dynamic blockage characteristic of
these frequencies. Future antenna systems will employ Al-native
architectures where deep learning algorithms predict channel state
information (CSI) and optimize beamforming weights in real-time
[64]. These "cognitive antennas" can sense their environment,
predict user movement, and proactively adjust their radiation
patterns to ensure uninterrupted connectivity. This effectively
realizes the concept of smart radio environments [65].

The future of antenna engineering lies in "Generative
Design" and autonomous synthesis. Moving beyond simple
parameter optimization, future Al systems will function as end-to-
end designers. An engineer will simply input high-level
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specifications (e.g., "design a dual-band antenna for a wearable
device with X gain and Y size constraints"), and the Al, leveraging
GANs or RL, will autonomously evolve novel topologies that no
human engineer would intuitively conceive. These systems will
likely integrate multi-physics simulations to optimize EM
performance, thermal dissipation, and mechanical structural
integrity simultaneously, thereby streamlining the entire R&D
lifecycle from concept to fabrication.

To meet the ultra-low latency requirements (<1 ms) of future
applications like autonomous driving and remote surgery, antenna
control intelligence must move from the cloud to the extreme edge.
This involves implementing lightweight AI models directly on the
Field Programmable Gate Arrays (FPGAs) or Application-Specific
Integrated Circuits (ASICs) embedded behind the antenna array.
"Edge AI" will enable reconfigurable intelligent surfaces (RIS) and
phased arrays to adapt to changing interference environments in
microseconds. By processing data locally, these smart antennas will
reduce the signaling overhead on the network and enable
instantaneous self-calibration and fault correction, ensuring the
resilience required for next-generation wireless infrastructure [66].

Conclusion

This chapter has provided a comprehensive exploration of the
transformative impact of Al on the entire lifecycle of antenna
engineering, ranging from initial conceptualization and simulation to
physical manufacturing and quality control. The integration of Al is
not merely an incremental improvement but represents a
fundamental paradigm shift, moving the field from heuristic, trial-
and-error methodologies toward data-driven, automated, and
intelligent workflows. Summary of Approaches Discussed
Throughout the chapter, we have examined a diverse array of Al
methodologies tailored for EM problems. We highlighted how ML
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algorithms, such as SVMs and Random Forests, serve as powerful
tools for parameter estimation and regression. We explored the
capabilities of DL, particularly CNNs for predicting radiation
patterns from geometric images, and GANs for the inverse design of
novel antenna topologies. Furthermore, the role of EAs like GAs and
PSO in navigating complex, multi-objective design spaces was
detailed. Finally, the extension of Al into the manufacturing domain
was discussed, demonstrating its utility in optimizing 3D printing
parameters, designing metamaterials, and automating defect
detection via computer vision. Contributions of Al to Antenna
Engineering The contributions of Al to antenna engineering, as
detailed in this work, can be categorized into three primary pillars:

Efficiency and Speed: The most immediate impact is the
drastic reduction in computational time. Surrogate model-assisted
optimization has proven capable of replacing computationally
expensive full-wave EM simulations with rapid inferences,
accelerating design cycles from weeks to hours.

Handling Complexity: Al empowers engineers to address
problems of high dimensionality and non-linearity that are
intractable for traditional analytical methods. This includes the
design of complex metasurfaces, large-scale phased arrays, and
multi-band antennas where mutual coupling effects are significant.

Precision and Reliability: In the manufacturing phase, Al-
driven process control ensures that the physical realization of the
antenna matches the simulated design with high fidelity, minimizing
waste and ensuring consistent performance in mass production.

Recommendations for Future Research To fully realize the
potential of Al in EMs and overcome the remaining challenges,
future research efforts can focus on the following key areas:

Development of Standardized Open Datasets: The
community must collaborate to establish large-scale, open-access
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benchmark datasets for various antenna types. This will facilitate fair
comparison of Al models and accelerate the development of
"foundation models" for EMs.

Physics-Informed AI Architectures: Future work should
prioritize "Physics-Informed Neural Networks" (PINNs) over purely
data-driven "black box" models. Incorporating Maxwell’s equations
directly into the loss functions of neural networks will improve
model generalization and ensure physical consistency, even with
limited training data.

Real-Time Adaptive Systems for 6G: Research should
expand beyond static design optimization to dynamic, real-time
control. Developing lightweight Al algorithms capable of running on
edge devices is crucial for enabling the cognitive, self-adaptive
antenna systems required for 6G and THz communications.

Interdisciplinary Collaboration: Finally, fostering closer
collaboration between EM engineers, computer scientists, and
material scientists will be essential to solve the multi-physics
challenges of future intelligent wireless systems.

Ultimately, the convergence of artificial intelligence and
EMs heralds a new era of innovation where the boundaries of
physical design are continually expanded. As these intelligent
technologies mature, they will not replace but rather augment human
engineers, serving as indispensable tools to conceptualize and realize
the complex wireless systems of tomorrow. Embracing this data-
driven evolution is, therefore, not merely an option but a strategic
necessity for unlocking the full potential of future global
connectivity.
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CHAPTER 4

COMPARATIVE EVALUATION OF GAMMA-RAY
SHIELDING PROPERTIES OF IRON-BASED
MINERALS USING ATTENUATION AND
THICKNESS PARAMETERS

Kadir GUNOGLU*

1. Introduction

With the rapid advancement of modern technology,
applications involving high-energy photons have expanded across a
broad spectrum, ranging from medical technologies and energy
systems to industrial quality control processes and advanced
research infrastructures. Ensuring safe working conditions in such
applications, controlling radiation exposure, and maintaining
structural integrity have made the development of effective radiation
shielding materials a critical requirement. In this context, growing
attention has been directed toward materials that not only exhibit
high attenuation capability but are also environmentally benign,
economically viable, and structurally sustainable (Mann, et al., 2016;
Singh, et al., 2018)
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Conventional shielding materials such as lead and concrete
provide effective protection due to their high densities; however,
they suffer from several significant drawbacks, including toxicity,
excessive weight, limited workability, and long-term environmental
concerns. These limitations necessitate the exploration of alternative
materials, particularly for next-generation lightweight, modular, and
multifunctional shielding systems. Accordingly, natural minerals
and metal oxides have emerged as promising candidates owing to
their low cost, wide availability, and chemical stability (Azeez, 2019;
Abouhaswa, 2020; Gunoglu, 2024).

Iron-based minerals possess considerable potential for radiation
shielding applications due to their relatively high atomic numbers
and the presence of elements that actively participate in photon—
matter interactions. Iron oxides and iron-containing minerals such as
magnetite (FesOa4), hematite (Fe20:), limonite (FeO(OH)-nH:0),
siderite (FeCOs), and goethite (a-FeO(OH)) exhibit distinct
oxidation states, crystal structures, and bonding characteristics.
These structural and chemical differences are expected to directly
influence their photon energy—dependent attenuation behavior
(Kavaz, E., 2019; Gunoglu and Akkurt, 1., 2021; Oto, 2025) .

The quantitative assessment of radiation shielding
performance is commonly based on key parameters, including the
mass attenuation coefficient (MAC), linear attenuation coefficient
(LAC), half-value layer (HVL), tenth-value layer (TVL), and mean
free path (MFP). While MAC and LAC describe the probability of
photon interactions within a material, HVL, TVL, and MFP provide
practical guidance for determining the required shielding thickness
in engineering applications. Photoelectric absorption at low
energies, Compton scattering at intermediate energies, and pair
formation at high energies are the primary interaction processes
linked to the substantial dependency of these characteristics on
photon energy.
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Although experimental methods offer high accuracy,
comprehensive experimental investigations for every material are
not always feasible due to radiation safety requirements, cost, and
time constraints. Consequently, theoretical and computational
approaches have become effective tools for the preliminary
evaluation of potential shielding materials. The PhyX-PSD software
is a widely used platform that enables reliable calculation of
radiation shielding parameters over a broad photon energy range
based on the chemical composition and density of materials (Sakar
et al., 2020).

Despite the extensive literature on iron-based synthetic
composites, studies that systematically and comparatively examine
the radiation shielding properties of natural iron oxide minerals
remain limited. In particular, evaluating magnetite, hematite,
limonite, siderite, and goethite using a unified theoretical framework
is crucial for elucidating the relationship between mineralogical
structure and shielding performance.

In this study, the gamma-ray shielding characteristics of
magnetite, hematite, limonite, siderite, and goethite minerals were
theoretically investigated using the PhyX-PSD program. MAC,
LAC, HVL, TVL and MFP parameters were computed over a broad
range of photon energies, and the outcomes were compared using
dominant photon interaction mechanisms and mineral composition.
It is anticipated that the results of this study will further knowledge
about the potential of naturally occurring iron oxide minerals for
radiation shielding applications.

2. MATERIALS AND METHODS
The decrease in the intensity of ionizing photon radiation,
including gamma rays and X-rays, during transmission through a

shielding medium is governed by the fundamental mechanisms of
photon—matter interaction. These mechanisms primarily involve
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photoelectric absorption, Compton scattering, and, at sufficiently
high photon energies, pair production. Owing to the probabilistic
nature of these interactions, the attenuation of photons follows a
statistical behavior and is conventionally modeled using the Beer—
Lambert formalism (Bashter, 1997). Within this framework, the
relationship between the incident photon intensity lo and the
emerging intensity I after traversing a homogeneous material of
thickness x can be described as follows:

[ =Ije ™ (1)
where p denotes the LAC.

The LAC, expressed in units of cm™, represents the
probability of photon attenuation per unit path length within a
material. This parameter directly characterizes the rate at which
photon interactions occur inside the shielding medium. The
magnitude of the LAC is influenced by several factors, including
material density, elemental composition, atomic number, and the
energy of the incident photons. Larger LAC values correspond to
enhanced shielding performance, indicating that photons are
attenuated over shorter distances as they traverse the material.

Since MAC characterizes the probability of photon—matter
interactions per unit mass, it is considered independent of density
and is therefore widely used as a comparative parameter for
evaluating the shielding performance of materials with different
densities. For composite or multi-component materials, the MAC
can be calculated using the weight fractions of the constituent
elements based on the additive nature of photon interactions, as
follows (Gunoglu et al., 2021):

(.“/p)composite = 2iw; (u/p); (2)

where wi is the weight fraction of the itn component.
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The minimal thickness of a shielding material needed to lower the
incident photon intensity to 50% of its initial value is known as the
HVL. An engineering-friendly and useful metric of shielding
performance is HVL. It can be represented quantitatively as follows
and is inversely proportional to the linear attenuation coefficient
(Gunoglu, 2024):

HVL (xl, cm) = L"T(Z) 3)
2

Lower HVL values indicate that effective radiation shielding
can be achieved with thinner material layers.

The TVL represents the thickness of a material needed to
attenuate the incident photon intensity to 10% of its initial value.
TVL is particularly relevant in applications demanding high levels
of radiation protection, such as nuclear facilities and medical
radiation environments (Gunoglu, 2024). It is larger than the HVL
and is defined as

__ Ln(10)
u

TVL (Xi, cm) 4)

10

The MFP, which characterizes the average distance a photon
travels between subsequent contacts within the material, is another
crucial shielding characteristic (Gunoglu, 2024). This value, which
is equal to the inverse of the linear attenuation coefficient, represents
the stochastic character of photon-matter interactions:

MFP (1, cm) = i (5)
Smaller MFP values indicate more frequent photon

interactions and, consequently, superior shielding performance.

When considered together, these parameters offer a robust
and comprehensive evaluation of a material’s effectiveness in
attenuating gamma radiation. It is widely recognized that increases
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in material density and atomic number result in enhanced LAC and
MAC values, while concurrently leading to decreases in HVL, TVL,
and MFP. This trend underscores the strong potential of composite
materials that incorporate high-density and high—atomic-number
reinforcing phases for use in advanced radiation shielding systems.

3. RESULTS AND DISCUSSION

In this work, the PhyX-PSD software was used to
theoretically predict the fundamental radiation shielding properties
of iron oxide minerals, such as magnetite, hematite, limonite,
siderite, and goethite. Based on the density and chemical makeup of
the materials, this tool determines shielding values for gamma-ray
energy between 0.01 and 0.05 MeV. Table 1 summarizes the
densities and chemical compositions of the iron oxide minerals
under investigation.

Table 1. Chemical formula and density of iron minerals

Minerals Chemical Formula | Density (g/cm?)
Magnetite Fe;04 5,18

Hematite Fe, 05 5,3

Limonite FeOs;H; 3,4

Siderite FeCO; 4,0

Goethite FeO,H 4,26

The MAC and LAC values of different iron-based minerals
such as magnetite, hematite, limonite, siderite, and goetite, and their
variation with photon energy, are given in Figure 1 and Figure 2.
These graphs clearly demonstrate both the energy-dependent
interaction mechanisms and the effect of mineral type and chemical
content differences on shielding behavior.
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Figure 1. MAC values for the iron minerals
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Figure 2. LAC values for the iron minerals
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In the low-energy region (approximately 0.01-0.05 MeV), all
investigated minerals exhibit relatively high MAC and LAC values.
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In this energy range, the photoelectric absorption mechanism is
dominant, and its probability strongly depends on the atomic number
(Z) of the constituent elements. Minerals with higher iron content
and denser phases—particularly siderite and magnetite—display
higher attenuation coefficients compared to limonite and goethite.
The comparatively elevated MAC and LAC values of siderite can be
attributed not only to its iron content but also to its crystal structure
and the presence of carbon and oxygen in its composition, which
enhance the probability of photon absorption. In contrast, hydrated
iron oxide/hydroxide minerals such as limonite and goethite show
relatively lower attenuation coefficients in this region due to their
bonded water content and lower atomic numbers.

As the photon energy increases into the intermediate-energy
region (approximately 0.05—1 MeV), a pronounced decrease in both
MAC and LAC values is observed. Within this range, Compton
scattering becomes the predominant interaction mechanism, and the
interaction probability is governed mainly by electron density rather
than atomic number. Consequently, the differences among the
various mineral types diminish significantly. The convergence of the
attenuation curves reflects the similar electron densities of iron oxide
minerals. In this region, magnetite and hematite generally exhibit
nearly identical behavior, while limonite and goethite remain at the
lower end due to their reduced densities.

In the high-energy region (=1-15 MeV), MAC values
decrease to very low levels and show a more gradual variation with
increasing photon energy. Although pair production begins to
contribute in this range, its effect remains limited due to the
intermediate atomic number characteristics of iron-based minerals.
The inset plots corresponding to 15 MeV indicate that the differences
among mineral types are minimal; nevertheless, siderite and
magnetite retain a slightly superior attenuation capability. For LAC
values, the influence of material density becomes more pronounced,
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with  higher-density = minerals—particularly magnetite and
hematite—achieving larger LAC values at identical photon energies.

Overall, MAC values are primarily governed by chemical
composition and atomic number, whereas LAC values are influenced
by these factors in conjunction with material density. Hydrated and
relatively porous minerals such as limonite and goethite exhibit
lower shielding performance in terms of both parameters. In
contrast, dense, iron-rich minerals—including magnetite, hematite,
and especially siderite—demonstrate more effective gamma-ray
shielding behavior over a wide energy range. These findings clearly
indicate that, in the selection of iron oxide—based minerals for
radiation shielding applications, not only iron content but also
mineral phase, crystal structure, and density must be considered
simultaneously.

All three metrics clearly and consistently rise with increasing
photon energy for magnetite, hematite, limonite, siderite and
goethite when the HVL (Figure 3), TVL (Figure 4), and MFP (Figure
5) graphs are examined.

Figure 3. HVLvalues for the iron minerals
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Fikgure 4. TVL values for the iron minerals
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Figure 5. MFP values for the iron minerals
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In the low-energy region (<0.01-0.05 MeV), the HVL, TVL,
and MFP values of all investigated minerals are extremely small and
approach zero. This behavior is primarily attributed to the
dominance of the photoelectric absorption mechanism, which causes
photons to be absorbed over very short penetration distances. Within

this energy range, magnetite and hematite—characterized by higher
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density and atomic number—exhibit the lowest HVL, TVL, and
MFP values, indicating superior shielding efficiency. In contrast,
limonite and goethite, which possess hydrated structures and
comparatively lower densities, require greater shielding thicknesses
at the same photon energies.

As the photon energy increases into the intermediate-energy
region (=0.05—-1 MeV), a systematic and pronounced rise in HVL,
TVL, and MFP values is observed for all minerals. In this range,
Compton scattering becomes the dominant interaction mechanism,
and the attenuation probability is largely governed by electron
density. As a result, although the differences among mineral types
diminish, they do not disappear entirely. The plots indicate that
limonite reaches the highest HVL, TVL, and MFP values in this
region, which can be attributed to its lower density and higher
content of structurally bound water. Conversely, siderite and
magnetite remain more advantageous by requiring relatively smaller
shielding thicknesses.

In the high-energy region (=1-15 MeV), the increasing trend
of HVL, TVL, and MFP values persists; however, the slope of the
curves decreases, and the parameters exhibit a more gradual
variation with energy. At these energies, photon penetration
capability is significantly enhanced, while the contribution of pair
production remains limited for iron-based minerals. Notably, the
TVL and MFP plots show that limonite attains the highest values,
indicating that substantially thicker shielding is necessary to
attenuate high-energy gamma rays. Magnetite and hematite, on the
other hand, maintain comparatively lower HVL and TVL values
even at elevated energies, demonstrating more effective shielding
performance.

From a general comparative perspective, the ordering of
HVL, TVL, and MFP values closely follows an inverse trend relative

to the LAC values. Minerals with higher density and iron content,
--79--



such as magnetite and hematite, consistently exhibit smaller HVL,
TVL, and MFP values over a wide energy range, whereas limonite
and goethite show inferior shielding performance. Siderite
demonstrates a balanced behavior, particularly in the intermediate-
and high-energy regions, with values comparable to those of
magnetite and hematite, suggesting its potential as an alternative
shielding material. These results clearly indicate that, when selecting
iron oxide—based minerals for gamma-ray shielding applications,
energy-dependent performance as well as density—composition
relationships must be evaluated simultaneously.

4. CONCLUSION

In this study, the gamma-ray shielding performances of
magnetite, hematite, limonite, siderite, and goethite were
systematically evaluated over a wide photon energy range by means
of mass attenuation coefficient (MAC), linear attenuation coefficient
(LAC), half value layer (HVL), tenth value layer (TVL), and mean
free path (MFP) parameters. The results clearly demonstrate that
photon energy and mineralogical characteristics play a decisive role
in determining the attenuation behavior of iron-based minerals.

At low photon energies, where photoelectric absorption
dominates, all investigated minerals exhibit high MAC and LAC
values and correspondingly low HVL, TVL, and MFP values. In this
region, minerals with higher atomic number and compact crystal
structures, particularly magnetite and siderite, provide superior
shielding efficiency. The relatively lower performance of limonite
and goethite is mainly attributed to their hydrated structures and
lower effective densities, which reduce the probability of photon
interaction.

In the intermediate energy region governed by Compton
scattering, attenuation coefficients decrease markedly and the
differences between minerals become less pronounced.
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Nevertheless, density-dependent parameters such as LAC, HVL,
TVL, and MFP still reveal discernible distinctions among the
samples. Magnetite and hematite consistently require smaller
shielding thicknesses, whereas limonite exhibits the highest HVL,
TVL, and MFP values, indicating a weaker shielding capability in
this energy range.

At high photon energies, where pair production begins to
contribute, the attenuation parameters show a more gradual variation
with energy. Although the overall shielding effectiveness of all
minerals decreases, magnetite and hematite maintain comparatively
lower HVL and TVL values, while limonite remains the least
effective material due to its low density and mineralogical
composition. Siderite displays an intermediate but stable behavior
across medium-to-high energies, suggesting its potential as an
alternative shielding material when balanced performance is
required.

Overall, the comparative analysis reveals that the gamma-ray
shielding efficiency of iron-based minerals is governed not only by
iron content but also by mineral phase, density, and structural
characteristics. Among the investigated materials, magnetite and
hematite emerge as the most effective natural shielding candidates
over a broad energy range, whereas limonite and goethite are less
favorable, particularly at higher photon energies. These findings
provide valuable insight for the selection and optimization of iron-
based minerals in radiation shielding applications and can serve as a
reference for the development of mineral-reinforced composite
shielding materials.
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CHAPTER 5

THEORETICAL ANALYSIS OF THE RADIATION
SHIELDING PROPERTIES OF OXIDE-, CARBIDE-,
AND NITRIDE-REINFORCED Cr-Mo-Nb-Ta-V
BASED HIGH-ENTROPY COMPOSITE
MATERIALS USING THE WINXCOM, EPIXS, PHY-
X/PSD, AND PY-MLBUF SOFTWARE

Rafet YILMAZ'
Hamza TUNC?

INTRODUCTION

Today, radiation is considered one of the most significant physical factors
that directly affect human health and environmental safety. In particular, the
widespread use of nuclear energy systems and the rapid increase in the
number of technological devices used in daily life have led to a rise in

radiation exposure, creating a serious area of concern. Long-term or high-
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dose exposure to ionizing radiation can cause cellular damage, genetic

disorders, and severe health problems such as cancer.

In this context, radiation shielding is defined as a set of protective measures
developed to prevent or reduce the exposure of humans and the environment
to harmful types of radiation, such as gamma rays, X-rays, and neutrons.
Radiation shielding applications play a vital role in many fields, including
medical applications (radiology and radiotherapy units), nuclear power
plants, industrial facilities, and military operations. The effectiveness of
shielding materials varies depending on the type of radiation, its energy, and

the duration of exposure.

Ceramics constitute an important class of materials for radiation shielding
applications due to their combination of high density, thermal and chemical
stability, and mechanical strength. Ceramics doped with heavy metal oxides
or rare earth elements, in particular, exhibit high attenuation capacity against

gamma and neutron radiation.

In recent years, scientific studies aimed at eliminating or minimizing the
harmful effects of radiation have increased significantly. This has led
researchers to move beyond traditional shielding materials and focus on
developing a new generation of shielding materials that are lighter, more
economical, environmentally friendly, and have high radiation absorption
capacity. Significant research exists on glass concrete, ceramics, alloys, and

high-entropy alloys among these materials.

Glass-based materials have gained significant importance in radiation
shielding applications due to their structural homogeneity and high
formability in production processes. The study conducted by Kavgaci et al.
(2024) comprehensively investigated strontium borate glasses reinforced

with ZnO nanoparticles, focusing on their structural, optical, and mechanical
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properties, as well as evaluating their radiation shielding effectiveness. The
authors reported that oxide doping significantly enhances the radiation
shielding performance of the glass system. Rasul et al. (2025) investigated
the effect of HfO. addition on the structural, thermal, gamma-ray, and
neutron shielding properties of boro-tellurite glasses and reported that
increasing HfO: content significantly enhances radiation shielding
performance. Saudi and Gomaa (2019) investigated the effect of Nb2Os
addition on the structural and optical properties as well as the fast neutron
removal cross section of calcium borate glasses containing Bi** ions, and
reported that Nb2Os incorporation improves the neutron shielding
performance of the glasses. Yalcin, Aktas, and Yilmaz (2019) investigated
the gamma-ray shielding properties of obsidian glasses doped with cerium
oxide (Ce0O:2) and erbium oxide (Er0:), and reported that oxide doping
significantly enhances the radiation attenuation capability of the glass

samples.

Concrete is widely used as a radiation shielding material due to its high
density, cost-effectiveness, and workability. Onaizi et al. (2024) presented a
comprehensive review on radiation-shielding concrete, systematically
examining the materials used, their shielding performance, and the effects of
radiation on the mechanical and physical properties of concrete. Zorla et al.
(2017) investigated the radiation shielding properties of high-performance
concrete reinforced with basalt fibers infused with natural and enriched
boron, and reported significant improvements in gamma-ray and neutron

shielding performance due to boron incorporation.

Ceramics constitute an important class of materials for radiation
shielding applications due to their combination of high density, thermal and

chemical stability, and mechanical strength. Ceramics doped with heavy
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metal oxides or rare earth elements, in particular, exhibit high attenuation
capacity against gamma and neutron radiation.Madak et al., (2025)
investigated the gamma-ray and neutron shielding performance of
ALSi205(OH)+—KAlSi:0s—Si0: ceramics doped with CeO: and Er:0s, and
reported that oxide doping significantly enhances the radiation attenuation
capabilities of the ceramic materials.

Alloys are studied as radiation shielding materials due to their superior
properties, including mechanical strength, corrosion resistance, and thermal
stability. In particular, high-entropy alloys (HEAs), which consist of multiple
principal elements in near-equiatomic proportions, exhibit unique
microstructural features and enhanced mechanical and thermal performance.
These characteristics make HEAs potentially effective materials for gamma
and neutron radiation shielding. The composition, density, and phase
structure of an alloy are critical parameters that directly influence its
radiation attenuation capacity. Sakar (2020) investigated the photon-
shielding characteristics and build-up factors of nickel-silver alloys,
providing a detailed evaluation of their gamma-ray attenuation performance
and highlighting the influence of alloy composition on shielding
effectiveness.Wang et al. (2021) developed flexible, low-melting-point
radiation shielding materials by incorporating GalnSnPbBi high-entropy
alloy inclusions into soft elastomer matrices, and demonstrated that these
composites exhibit enhanced gamma-ray shielding performance while
maintaining mechanical flexibility. Adamson, Coleman, and Griffiths (2019)
critically reviewed irradiation creep and irradiation-induced dimensional
changes (growth) in zirconium alloys, evaluating the underlying physical
mechanisms, experimental findings, and their implications under nuclear
reactor conditions. Alim (2020) conducted a comprehensive study on the

radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B,
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Hastelloy-X, and Dilver-P alloys, systematically evaluating their gamma-ray
attenuation capabilities and identifying alloys with superior shielding

performance.

In this study, the gamma radiation shielding properties of Cr—Mo—Nb—
Ta—V-based high-entropy alloys reinforced with oxide (Ta:0s), carbide
(HfC), and nitride (TiN) phases were theoretically investigated using
WinXCOM(Gerward et al.,2004), EpiXS(Hila et al.,2021), Phy-
X/PSD(sakar etal., 2020), and Py-MLBUF software. Calculations were
performed in the energy range of 0.015-15 MeV, and the fundamental
shielding parameters describing the interaction of gamma photons with
matter—mass attenuation coefficient (MAC), linear attenuation coefficient
(LAC), half-value thickness (HVL), mean free path (MFP), effective atomic
number (Z.s), electron density (Ne1), energy absorption concentration factor

(EABF), and exposure concentration factor (EBF) were calculated.

METHOD

The theoretical calculations were carried out using the EpiXS [41],
WinXCOM [42], and Phy-X/PSD [43] software packages, which are based
on internationally recognized databases and physical models for determining
photon—matter interaction parameters. The WinXCOM program calculates
mass attenuation coefficients for elements and compounds using the XCOM
database developed by NIST. EpiXS provides high-accuracy results by
integrating up-to-date cross-section data with advanced theoretical models.
Phy-X/PSD is a web-based platform that enables the rapid, consistent, and
user-friendly determination of XCOM-based radiation shielding parameters.

These software tools yield mutually consistent and comparable results within
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the energy range of 0.015—15 MeV, thereby supporting the reliability and

validity of the theoretical evaluations performed in this study.
CALCULATIONS

This study examines attenuation processes resulting from the interaction of
photons with matter, focusing on both absorption and scattering phenomena,
based on Lambert's law. Attenuation due to absorption, in particular, is
defined and evaluated within the framework of Beer-Lambert's

Law,(Abouhaswa et al.,2025).

I=Ige (1)

in this expression, the unit of linear absorption coefficient is p (cm™), I
represents the initial photon intensity, and / represents the photon intensity
after passing through the material. The parameter t corresponds to the
material thickness. The mass absorption coefficient (p/p) of a material (or
compound) is in cm?/g.(Mariyappan et al., 2018).

(1! p)e =D wul p), @)

In this context, (w,) and (u/p )i denote the weight fraction and the mass

absorption (attenuation) coefficient, respectively. For a given compound, the
weight fraction is defined as follows .

W, = 4,
l Z”./Aj

In this expression, A; represents the atomic weight of an element, while
nin_ini denotes the number of atoms of that element. The total molecular
cross section (om ) is calculated using the following formulation defined in
the literature (Gowda ef al., 2005).

)

o Py @)
NA
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M=) "nA, )

Here, M denotes the molecular weight, while N4 represents Avogadro’s
number. The atomic cross section (o, ) and the electronic cross section (Ger )

are calculated using the equations given below (Gowda et al., 2005).

- % 6
o, S, (6)
1 —4
=— N Zify. 7
o, NAE'Z,.f'“’ (7

Here, f; denotes the fractional abundance of the element in the compound,
while Z; represents the atomic number of the corresponding constituent
element.

®)

n;
fes

Here, nin_ini represents the number of atoms of the corresponding
constituent element. The effective atomic number (Zcs) can be defined as the
ratio of the total atomic cross section to the total electronic cross section. In
terms of total interactions with photons, the Z.r value can be calculated
using the method proposed by Gowda et al. (2005). Additionally, Z.s+ can
also be determined using Equation 10 (Manohara et al., 2008).

Z,, =—* ©)
eff o,
E ifiAi,ui 10
Zeff:zA. o
J
/i z,"

Here, ;i represents the total absorption coefficient. Within the
framework of Equation (10), the variation in the effective atomic number

(Zerr) can be evaluated using the total p; coefficients (Gowda et al., 2005).
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Additionally, the N¢ value can be calculated using the method
proposed by Manohara (2008).

N, =N, <ZAff> (11)
The average atomic mass is denoted by (A). Parameters such as the half-
value layer and the mean free path, which play a crucial role in the
interaction of radiation with matter, are directly related to the absorption
properties of the material. These quantities can be calculated using the

following equations as reported in the relevant studies.
HVL=In2/pn (12)

MFP (cm) = 1/p (13)

EABF (Energy Absorption Enhancement Factor) is a parameter that
quantitatively expresses the contribution of secondary scattered photons
generated by gamma photons passing through a material to the total energy
absorbed in the environment. In contrast, the Exposure Buildup Factor
(EBF) represents the contribution of scattered photons to the radiation dose
in air after passing through the shielding material. These concepts and their
differences have been discussed in detail in the literature (Oto et al., 2019).
Within this theoretical framework, the EABF and EBF values of the alloys
were calculated using the EpiXS software with the Geometric Progression
(GP) fitting method, and photon buildup effects were quantitatively

evaluated.
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RESULTS AND DISCUSSION

In this study, the gamma radiation shielding properties of Cr—Mo—Nb—
Ta—V-based high-entropy alloys reinforced with oxide (Ta20s), carbide
(HfC), and nitride (TiN) phases were analyzed by presenting the
theoretically calculated parameters—obtained using the above-mentioned
software programs—in tables and as graphs showing their variation with
energy. The results obtained from the calculation programs used in the study
showed very good agreement with each other. This consistency of the results
supports the reliability and accuracy of the present work. The densities of the
constituent elements in the Cr—Mo-Nb-Ta—V-based high-entropy alloys
reinforced with oxide (Ta:0s), carbide (HfC), and nitride (TiN) phases are
listed in Table 1. The mass attenuation coefficients (MAC, cm?g) of the
investigated composite materials were calculated using the WinXCOM,
EpiXS, Phy-X/PSD, and Py-MLBUF software packages. These programs
were employed not only to determine the mass attenuation coefficients but
also to derive the corresponding photon—matter interaction parameters. The
calculated mass attenuation coefficient values are presented in Tables 2 and
Table 3.

The mass attenuation coefficient (MAC) is a parameter that indicates
how much radiation or light energy a material absorbs per unit mass. In other
words, it measures how much radiation is absorbed by each kilogram of the
material, independent of its density. This allows materials with different
densities to be compared in terms of their energy absorption capabilities. An
effective shielding material against gamma radiation is made from a material
with a high mass attenuation coefficient; thus, the material absorbs more
radiation and acts as a strong radiation-absorbing shield.

Tables 2 and 3 show that the results of the calculations indicate that
the mass attenuation coefficient (MAC) values reach their maximum in this
energy range, particularly due to the dominance of the photoelectric effect
(approximately 0.015-0.15). As is known, the probability of a photoelectric
effect occurring is inversely proportional to the energy (E3) (Monohora,
2008). This indicates that as the energy increases, the photoelectric

--02--



dominance decreases. In Figure 1,( according to EpiXS) an increase in MAC
values is observed in the 60-80 energy range due to the fact that elements
such as Hf and Ta in the alloys have absorption shore energies of
approximately 65-67 keV, respectively. As seen in Figure 1, a significant
decrease in MAC values is observed as the energy increases. In this study, it
is observed that the HfC reinforced composite material has the highest mass
attenuation coefficient. At 0.015 keV, the MAC attenuation coefficient of the
undoped alloy material was found to be 71.413 cm?/g, while that of the HfC-
doped composite material was 83.691 cm?*g. This represents a 17.19%
increase in radiation shielding efficiency. The second highest was the Ta,Os-
doped composite material, with a 14.8% increase, resulting in a mass
attenuation coefficient of 80.982 cm?/g. In this study, the TiN-doped material
showed the lowest mass attenuation coefficient. This indicates that density is
a significant factor in absorption, as the addition of TiN to the pure alloy
reduces the density of the composite material. Furthermore, at other
energies, the HfC-doped composite material exhibits higher values. In the
mid-energy range (0.15-1 MeV), Compton scattering becomes the dominant
interaction mechanism, and as photon energy increases, a more gradual
decrease in MAC values occurs across all composite materials. At higher
photon energies (=1 MeV), it has been observed that MAC values reach an
almost constant level. This indicates that the effect of processes such as pair
formation and high-energy scattering increases in the relevant energy range.

The linear attenuation coefficient (LAC), a parameter that indicates
how much radiation or light a material absorbs per unit thickness. Its unit is
usually cm™ and it is calculated using Equation 1. The larger the coefficient,
the more radiation the material absorbs at the same thickness, providing
more effective shielding. In other words, materials with a high linear
attenuation coefficient better block the passage of radiation.

As shown in Table 4 and Figure 2, the linear attenuation coefficient
(LAC) values as a function of photon energy for the materials in the study
are graphically presented in Figure 2. In the low energy region (~0.01 MeV),
the LAC values are high. As seen here, the results show that a significant
decrease in LAC values is observed as the photon energy increases. This
indicates that photons pass through the material more easily as the energy
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increases. These data provide important information for material
characterization and radiation protection applications.

Table 1. Chemical compositions (Wt%) and theoretical density
(p, g/cm?) values of the Cr—Mo—Nb—Ta—V based high-entropy alloy
and oxide/carbide/nitride-reinforced composites (HEA and HEAC1—

HEACS3).
Sample | wt% wt% | wt% wt% wt% wt% | wt% | wt% | Theoretical
Density
code Cr Mo Nb Ta \% Ta,Os | HfC | TiN (p) g/em’
HEA 10.999 | 20.296 | 19.653 | 38.276 | 10.776 | - - - 10.148
HEACI | 8.249 | 15222 | 14.74 | 28.707 | 8.082 | 25 - - 9.579
HEAC2 | 8.249 | 15222 | 14.74 | 28.707 | 8.082 | - 25 - 10.685
HEAC3 | 8.249 | 15.222 | 14.74 | 28.707 | 8.082 | - - 25 8.210
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Table 2. Mass attenuation coefficients (MAC, cm?/g) of HEA and HEACI-HEAC3 high-entropy alloys

calculated using different software packages (WinXCOM, EpiXS, Phy-X/PSD, and Py-MLBUF).

Mass attenuation coefficient (cm2.g?)

Photon HEA | HEAC1 HEAC2

energy EpiXS WinX Phy-X/ Py- EpiXS WinX Phy-X/ Py- EpiXS WinX Phy-X/ Py-
(MeVv) com PSD MLBUF com PSD MLBUF com PSD MLBUF
0.015 71.413 71.66 71.66 71.653 80.982 81.268 81.268 81.258 83.691 83.963 83.964 83.971
0.02 56.173 59.687 59.687 59.687 47.658 57.773 57.773 57.773 48.918 59.031 59.031 59.031
0.03 20.644 20.62 20.62 20.619 19.98 19.961 19.961 19.959 20.402 20.384 20.384 20.383
0.04 9.534 9.536 9.536 9.536 9.254 9.264 9.264 9.262 9.448 9.457 9.457 9.457
0.05 5.225 5.239 5.239 5.239 5.088 5.11 5.11 5.11 5.191 5.215 5.215 5.216
0.06 3.2 3.223 3.223 3.223 3.124 3.156 3.156 3.157 3.183 3.221 3.221 3.221
0.08 3.775 3.767 3.767 3.767 4.395 4.387 4.387 4.386 4.556 4.55 4.55 4.55
0.1 2.141 2.138 2.138 2.138 2.494 2.491 2.491 2.491 2.583 2.579 2.579 2.579
0.15 0.79 0.788 0.788 0.788 0.913 0.911 0.911 0.911 0.941 0.939 0.939 0.939
0.2 0.416 0.415 0.415 0.415 0.474 0.473 0.473 0.473 0.487 0.485 0.485 0.485
0.3 0.198 0.198 0.198 0.198 0.218 0.218 0.218 0.218 0.222 0.222 0.222 0.222
0.4 0.133 0.133 0.133 0.133 0.143 0.143 0.143 0.143 0.144 0.145 0.145 0.145
0.5 0.105 0.105 0.105 0.105 0.11 0.11 0.11 0.11 0.111 0.111 0.111 0.111
0.8 0.071 0.071 0.071 0.071 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.073
1 0.061 0.061 0.061 0.061 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
1.5 0.048 0.048 0.048 0.048 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049
2 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043
3 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
4 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037
5 0.036 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037
6 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037
8 0.037 0.037 0.037 0.037 0.038 0.038 0.038 0.038 0.039 0.039 0.039 0.039
10 0.039 0.039 0.039 0.039 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
15 0.042 0.043 0.043 0.043 0.044 0.044 0.044 0.044 0.045 0.045 0.045 0.045
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Table 3. Mass attenuation coefficients (MAC, cm%/g) of ~ HEAC4
high-entropy alloys obtained from different software programs

(WinXCOM, EpiXS, Phy-X/PSD, and Py-MLBUF).

Mass attenuation coefficient (cm2.g?)
Photon HEAC3
ENergy |"eyixs WinXcom Phy-X Py-MLBUF
(MeV) pPsD
0.015 60.581 60.754 60.746 60.746
0.02 47.736 47.866 47.865 47.865
0.03 16.465 16.444 16.443 16.443
0.04 7.593 7.593 7.593 7.593
0.05 4.166 4.175 4.175 4.176
0.06 2.559 2.576 2.576 2.576
0.08 2.919 2.913 2.913 2.913
0.1 1.667 1.665 1.665 1.665
0.15 0.632 0.631 0.631 0.631
0.2 0.345 0.344 0.344 0.344
0.3 0.175 0.175 0.175 0.175
0.4 0.123 0.123 0.123 0.123
0.5 0.099 0.099 0.099 0.099
0.6 0.086 0.086 0.086 0.086
1 0.061 0.061 0.061 0.061
15 0.048 0.048 0.048 0.048
2 0.043 0.043 0.043 0.043
3 0.037 0.037 0.037 0.037
4 0.035 0.035 0.035 0.035
5 0.034 0.034 0.034 0.034
6 0.034 0.034 0.034 0.034
8 0.034 0.034 0.034 0.034
10 0.035 0.035 0.035 0.035
15 0.038 0.038 0.038 0.038
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Figure 1. Variation of the mass attenuation coefficient (MAC) with
photon energy for the high-entropy alloys.
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Table 4. Linear attenuation coefficient (LAC) values of the HEA
samples calculated using the EpiXS software.

Linear Attenuation Coefficient (LAC, cm™)
Photon
energy HEA HEACI1 HEAC2 HEAC3
(MeV)
0.015 724.683 775.724 894.211 497.384
0.02 468.553 456.516 522.674 309.822
0.03 209.493 191.388 217.984 135.177
0.04 96.747 88.648 100.949 62.339
0.05 53.027 48.739 55.467 34.203
0.06 32.473 29.921 34.013 21.010
0.08 38.309 42.099 48.676 23.967
0.1 21.73 23.894 27.602 13.69
0.15 8.017 8.744 10.059 5.190
0.2 4.226 4.540 5.201 2.831
0.3 2.012 2.089 2.372 1.436
0.4 1.354 1.369 1.544 1.010
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0.5 1.063 1.056 1.186 0.816
0.6 0.901 0.883 0.99 0.704
0.8 0.722 0.698 0.779 0.575
1 0.620 0.595 0.663 0.499
1.5 0.490 0.466 0.519 0.397
2 0.432 0.411 0.458 0.349
3 0.384 0.367 0.410 0.305
4 0.368 0.352 0.395 0.288
5 0.364 0.350 0.393 0.281
6 0.366 0.352 0.397 0.279
8 0.377 0.364 0.412 0.283
10 0.392 0.379 0.430 0.291
15 0.431 0.418 0.476 0.314

Linear Attenuation Coefficient (u,cm™)

Figure 2. Variation of the linear attenuation coefficient (LAC,

cm™) with photon energy for the high-entropy alloys.
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Table 5. Mean free path (MFP, cm) values of the HEA samples
calculated using the EpiXS software.

Mean Free Path (cm)

Photon

energy HEA HEACI1 HEAC2 HEAC3
(MeV)

0.015 0.001 0.001 0.001 0.002
0.02 0.002 0.002 0.002 0.003
0.03 0.005 0.005 0.005 0.007
0.04 0.010 0.011 0.010 0.016
0.05 0.019 0.021 0.018 0.029
0.06 0.031 0.033 0.029 0.048
0.08 0.026 0.024 0.021 0.042
0.1 0.046 0.042 0.036 0.073
0.15 0.125 0.114 0.099 0.193
0.2 0.237 0.220 0.192 0.353
0.3 0.497 0.479 0.422 0.696
0.4 0.739 0.731 0.648 0.990
0.5 0.941 0.947 0.844 1.226
0.6 1.110 1.132 1.010 1.421
0.8 1.385 1.433 1.284 1.739
1 1.612 1.680 1.509 2.002
1.5 2.043 2.144 1.928 2.517
2 2.316 2.431 2.184 2.866
3 2.606 2.727 2.441 3.277
4 2.720 2.838 2.531 3.477
5 2.749 2.861 2.544 3.562
6 2.735 2.842 2.521 3.585
8 2.653 2.749 2.430 3.537
10 2.550 2.638 2.326 3.442
15 2.320 2.392 2.102 3.189
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Figure 3. Variation of the mean free path (MFP) of the HEAs
with photon energy.
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The mean free path (MFP) indicates that radiation is absorbed
over a shorter distance within the material, thus exhibiting better
shielding performance.As presented in Table 5 and Figure 4, the mean
free path (MFP) values of all samples are lower at low photon
energies and increase markedly with increasing photon energy. This
trend indicates that higher-energy photons are able to travel longer
distances within the material. Among the investigated alloys and
composites, the HEAC2 sample exhibits the lowest MFP values,
confirming its superior radiation shielding performance, whereas the
HEAC3 sample demonstrates comparatively the weakest shielding
effectiveness.
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Table 6. Half value layer (HVL) values of the HEA samples
calculated using the EpiXS software.

Half Value Layer (HVL, cm)
Photon
energy HEA HEACI1 HEAC2 HEAC3
(MeV)
0.015 0.001 0.001 0.001 0.001
0.02 0.001 0.002 0.001 0.002
0.03 0.003 0.004 0.003 0.005
0.04 0.007 0.008 0.007 0.011
0.05 0.013 0.014 0.013 0.020
0.06 0.021 0.023 0.02 0.033
0.08 0.018 0.016 0.014 0.029
0.1 0.032 0.029 0.025 0.051
0.15 0.086 0.079 0.069 0.134
0.2 0.164 0.153 0.133 0.245
0.3 0.345 0.332 0.292 0.483
0.4 0.512 0.506 0.449 0.686
0.5 0.652 0.657 0.585 0.850
0.6 0.769 0.785 0.700 0.985
0.8 0.960 0.993 0.890 1.205
1 1.117 1.165 1.046 1.388
1.5 1.416 1.486 1.336 1.745
2 1.605 1.685 1.514 1.987
3 1.806 1.890 1.692 2.272
4 1.885 1.967 1.754 2.410
5 1.905 1.983 1.763 2.469
6 1.896 1.970 1.747 2.485
8 1.839 1.906 1.684 2.452
10 1.768 1.829 1.612 2.386
15 1.608 1.658 1.457 2.210
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Figure 4. Variation of the half value layer (HVL, cm) with photon
energy for the high-entropy alloys.
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The half-value layer (HVL) is one of the fundamental
parameters used to evaluate the radiation shielding effectiveness of a
material, where lower HVL values indicate more efficient shielding
performance. In particular, reinforced composite materials exhibiting
low HVL values provide effective radiation attenuation at smaller
thicknesses, offering a significant advantage for radiation shielding
applications.

As presented in Table 6 and Figure 4, the half-value layer (HVL)
values of all high-entropy alloy and composite materials (HEA,
HEACI1, HEAC2, and HEAC3) exhibit a general increasing trend with
rising photon energy. This behavior indicates that greater material
thicknesses are required to attenuate higher-energy photons. Notably,
HEAC3 shows the highest HVL values, implying the need for thicker
shielding layers, whereas HEA, HEACI1, and HEAC2 demonstrate
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comparatively lower HVL values, reflecting more effective
attenuation capability at high photon energies. Among all investigated
materials, the HfC-reinforced composite consistently presents the
lowest HVL values across the entire energy range, highlighting its
superior performance as a radiation shielding material.

Table 7. Effective atomic number (Z.y) values of the HEA samples
calculated using the EpiXS software

Effective Atomic Number (Zefr)

Photon

energy HEA HEACI HEAC2 HEAC3
(MeV)

0.015 52.472 57.612 58.071 44.984
0.02 49.106 53.666 54.07 44.404
0.03 47.526 51.324 51.687 44.249
0.04 47.734 51.436 51.853 44.358
0.05 47.859 51.407 51.909 44225
0.06 47.881 51.209 51.824 43.855
0.08 60.324 63.511 63.919 56.321
0.1 60.02 62.817 63.478 54.861
0.15 57.971 59.686 61.167 49.517
0.2 55.204 55.794 58.11 44.142
0.3 50.271 49.04 52.449 36.918
0.4 47.118 44.764 48.643 33.306
0.5 45.252 42.234 46.311 31.431
0.6 44.096 40.67 44.842 30.357
0.8 42.85 38.979 43.209 29.259
1 42.22 38.126 42.38 28.729
1.5 41.708 37.46 41.715 28.339
2 41.834 37.73 41.95 28.545
3 42.444 38.864 42.963 29.374
4 43.068 40.053 44.005 30.274
5 43.6 41.1 44.905 31.099
6 44.033 41.984 45.65 31.819
8 44.69 43.365 46.791 32.993
10 45.159 44.373 47.609 33.886
15 45912 45.985 48.899 35.366
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Figure 5. Variation of the effective atomic number (Zep) with photon
energy for the high-entropy alloys.
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The effective atomic number (Z.fr) is a conceptual parameter
used particularly in radiation—matter interactions, which represents the
photon interaction behavior of a compound, alloy, or composite
material by a single equivalent atomic number. In this study, Table 7
and Figure 5 examine the effective atomic number (Zfr) values of
HEA, HEACI1, HEAC2, and HEAC3 samples as a function of photon
energy. The highest Zeff values are observed in the low energy range
(0.015-0.2 MeV). The increases in the energy range between 0.07
MeV and 0.2 MeV are due to the high atomic number elements in the
materials, as their K absorption shore energy ranges are located in this
region. In the mid-energy range (0.1-1.5 MeV), a decrease in MAC
values is observed as Compton scattering becomes dominant, while
Z.sr values approach a minimum. This indicates that the effect of
atomic structure on attenuation is reduced, and all samples exhibit
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similar performance. In the high-energy regions (>1 MeV), Z.r tends
to increase again. In this energy range, the shielding efficiency of the
material remains at moderate levels due to the activation of the pair
formation mechanism. Overall, the HEAC3 sample exhibits lower
performance in terms of both MAC and Z.s. Furthermore, the study
shows that HfC-doped high-entropy alloy provides more effective
photon shielding in the low and medium energy range.

Table 8. Electron density (Nel, electrons-g™) values of the HEA
samples calculated using the EpiXS software.

Electron Density (Nel, elektron-g™)

Photon

energy HEA HEAC1 HEAC2 HEAC3
(MeV)

0.015 3.342 4.126 3.692 4.338
0.02 3.128 3.844 3.438 4.282
0.03 3.027 3.676 3.286 4.267
0.04 3.04 3.684 3.297 4.278
0.05 3.048 3.682 3.3 4.265
0.06 3.05 3.668 3.295 4.229
0.08 3.842 4.549 4.064 5.431
0.1 3.823 4.499 4.036 5.29
0.15 3.692 4.275 3.889 4.775
0.2 3.516 3.996 3.694 4.257
0.3 3.202 3.512 3.335 3.56
0.4 3.001 3.206 3.093 3.212
0.5 2.882 3.025 2.944 3.031
0.6 2.809 2,913 2.851 2.927
0.8 2.729 2.792 2.747 2.822
1 2.689 2.731 2.694 2.771
1.5 2.657 2.683 2.652 2.733
2 2.665 2.702 2.667 2.753
3 2.703 2.783 2.731 2.833
4 2.743 2.869 2.798 2.919
5 2.777 2.944 2.855 2.999
6 2.805 3.007 2.902 3.068
8 2.846 3.106 2.975 3.182
10 2.876 3.178 3.027 3.268
15 2.924 3.293 3.109 3.411
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Figure 6. Variation of the electron density (Nel) of the HEAs with
photon energy.
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The electron density (No) refers to the total number of
electrons per unit mass or volume of a material and is one of the
fundamental parameters governing the probability of photon matter
interactions. An increase in electron density indicates an enhancement
in radiation shielding effectiveness, particularly in energy regions
where Compton scattering is the dominant interaction mechanism. An
examination of the data presented in Table 8 and Figure 6 reveals that
the variation of electron density with photon energy closely follows
the trend observed for the effective atomic number (Zefr). The Nei
values attain their maximum levels in the low-energy region (0.015-
0.2 MeV), where photoelectric absorption is predominant. With
increasing photon energy, a pronounced decrease in electron density is
observed, reaching minimum values around 1 MeV. This behavior is

attributed to the dominance of Compton scattering in this energy
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range, which reduces the probability of photon—matter interactions. At
higher photon energies (> 1 MeV), a gradual increase in N values is
detected due to the growing contribution of the pair production
mechanism. Among the investigated samples, the HEAC3 specimen
exhibits the highest electron density over the entire energy range,
which can be attributed to its lower average atomic mass, leading to a
higher number of electrons per unit mass. In general, an increase in
electron density enhances the likelihood of photon interactions,
thereby indicating an improvement in the radiation shielding
effectiveness of the material.

Figure 7. Variation of the energy absorption buildup factors (EABF)
with photon energy at different penetration depths (1—15 mfp) for the
high-entropy alloy (HEA) samples.
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The Energy Absorption Buildup Factor (EABF) is a parameter
that quantifies the contribution of secondary photons generated by
scattering processes within a shielding material to the total absorbed
energy. As the EABF value increases, the effect of multiple scattering
inside the material becomes more pronounced; therefore, higher
EABF values indicate lower energy absorption efficiency, whereas
lower EABF values correspond to improved radiation shielding
performance.

In Figure 7, the Energy Absorption Deposition Factor (EABF)
values for all samples start at low levels at low photon energies and
increase significantly as the energy increases, forming a distinct peak
in the mid-energy region. This peak corresponds to the energy range
where multiple scattering and absorption processes within the material
are most intense. As the photon energy continues to increase, the
EABEF values decrease again and show a more stable trend at higher
energy levels. At all energies, HEA, HEACI1, and HEAC2 have lower
EABF values compared to other HEAC materials, indicating good

radiation shielding performance.
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Figure 8. Variation of the exposure buildup factors (EBF) with
photon energy at different penetration depths (1—15 mfp) for the high-
entropy alloy (HEA) samples.
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The Exposure Buildup Factor (EBF) is a parameter that
represents the contribution of secondary radiation generated by photon
scattering within a shielding material to the total radiation exposure.
Higher EBF values indicate increased exposure due to multiple
scattering events and, consequently, reduced shielding effectiveness,
whereas lower EBF values signify more effective radiation shielding
performance. As shown in Figure 8, the significant increases and local
fluctuations observed in the Exposure Deposition Factor (EBF) values
in the low to medium energy range for all samples are due to the high
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atomic number elements present in the alloy compositions. These are
particularly attributed to the strong interactions near the absorption
edges with high atomic number elements Hf and Ta.

CONCLUSION

The mass attenuation coefficient (MAC) and effective atomic number
(Zesr) values obtained from the WinXCOM, EpiXS, and Phy-X/PSD software
packages exhibit mutually consistent results within the numerical uncertainty
limits of theoretical models across the entire energy range. For all
investigated samples (HEA, HEAC1, HEAC2, and HEAC3), high MAC and
Z.r values were observed in the low-energy region, indicating that the
materials effectively absorb photons in energy ranges where the
photoelectric effect is dominant. In the intermediate energy region, as
Compton scattering becomes the prevailing interaction mechanism, a
noticeable decrease in both MAC and Z.x values was recorded. At higher
photon energies, Z.r values exhibit a tendency to increase again, whereas
MAC values remain approximately constant.

Comparative analyses reveal a high degree of agreement among the
predictions of the four computational tools, thereby confirming the reliability
of the theoretical estimations. The results further demonstrate that the
HEAC2 sample (hafnium-reinforced high-entropy alloy) exhibits superior
performance for photon shielding applications over a broad energy range.
HEAC?2 stands out among the investigated alloys by exhibiting higher MAC
and Z.g values, along with lower half-value layer (HVL), energy absorption
buildup factor (EABF), and exposure buildup factor (EBF) values. These
findings highlight that incorporating heavy, high—atomic-number elements
into alloy compositions represents a critical design strategy for enhancing
photon shielding performance and provides an important pathway for the

development of advanced radiation shielding materials.
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