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PREFACE

The accelerating evolution of engineering technologies has
diminished the clear distinctions between conventional disciplines,
giving rise to highly integrated and multifaceted systems that
demand interdisciplinary perspectives. This book presents a
collection of recent theoretical advances and real-world
implementations spanning electromagnetic, microwave, and radio-
frequency technologies, intelligent sensing systems, modern
communication infrastructures, artificial intelligence, electric
mobility, and advanced control techniques. By uniting contributions
from a wide range of engineering domains, the book offers a holistic
view of emerging technologies that are driving innovation in
medical, industrial, and transportation applications. Intended for
researchers, undergraduate and graduate students, and stakeholders
across the engineering ecosystem, this volume emphasizes the
critical role of interdisciplinary collaboration in addressing modern
engineering problems and fostering the development of intelligent,
high-performance, and sustainable technological solutions.

Asst. Prof. Ali Can CABUKER
ARTVIN CORUH UNIVERSITY
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CHAPTER 1

INNOVATIVE APPLICATIONS OF MICROWAVE
AND RADIOFREQUENCY TECHNOLOGIES IN
MEDICAL DIAGNOSIS AND THERAPY

LEVENT SEYFi!

Introduction

This chapter provides an exhaustive examination of the
rapidly evolving intersection of microwave (MW) and
radiofrequency (RF) engineering with clinical medicine. It delves
beyond a superficial overview to present a detailed technical and
clinical analysis of non-ionizing electromagnetic technologies
reshaping diagnostic imaging, therapeutic intervention, and
personalized health monitoring. The discourse begins with a
rigorous foundation in the dielectric and thermal response of
biological tissues across the RF/MW spectrum. It subsequently
offers a critical, in-depth review of microwave imaging systems,
contrasting radar-based and tomography-based architectures for
breast and brain applications. A thorough analysis of thermal therapy
follows, comparing the physics, efficacy, and technological
evolution of RF and microwave ablation alongside focused
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hyperthermia systems. The chapter dedicates significant attention to
the specialized field of biomedical antenna design, addressing the
unique challenges of implantable and wearable devices, including
biocompatibility, miniaturization, and on-body performance. A
paramount emphasis is placed on safety protocols, specifically the
computational and experimental methodologies for Specific
Absorption Rate (SAR) evaluation and optimization. The
indispensable role of advanced numerical phantoms and tissue-
equivalent materials in system validation is detailed. The chapter
candidly addresses the multifaceted pathway to clinical adoption,
including regulatory hurdles, clinical trial design, and workflow
integration. Finally, it synthesizes a forward-looking perspective on
how metamaterial-enabled devices and artificial intelligence (AI)
algorithms are poised to fundamentally disrupt and enhance the
capabilities of next-generation medical RF/MW systems, paving the
way for truly adaptive and intelligent therapeutic and diagnostic
platforms.

The Electromagnetic Foundations of Biological Interaction

The therapeutic and diagnostic application of microwave
(MW) and radiofrequency (RF) energy is intrinsically predicated
upon the quantifiable interaction between propagating
electromagnetic fields and heterogeneous, dissipative biological
media. This interaction, distinct from ionizing radiation, is primarily
characterized by dielectric polarization and conductive loss
mechanisms, culminating in energy deposition and temperature
elevation.

At a fundamental level, the macroscopic response of tissue is
described by its complex relative permittivity,
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where the real part (&;.) signifies the ability to store electrical

energy (polarization), and the imaginary part (&,) encapsulates both
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dielectric relaxation losses and losses due to ionic conductivity (o),
g

related by &' =—— (Gabriel et al., 1996). The frequency

(w &)
dispersion of these parameters from kHz to GHz, characterized by
prominent a, [, and y dispersions, is critical for technology design
(Foster and Schwan, 1989). The penetration depth (&), defined as the
distance over which the field amplitude decreases by a factor of 1/e,
is approximated by

§ ~ 1/V{nfuo}

for conductive tissues, establishing a fundamental engineering trade-
off: lower frequencies (e.g., 100-500 MHz for RF ablation) penetrate
deeper but offer poorer spatial resolution, while higher frequencies
(e.g., 1-10 GHz for microwave imaging) provide finer resolution but
suffer from increased attenuation (Brace, 2011).

The thermal effect, the basis for most therapies, is governed
by the bioheat transfer equation, with the local volumetric heat
generation rate (Q) described by Q = % o |E|?> (Joule heating,
dominant at RF) or more generally by Q = % wege, |E|?
(dielectric heating, dominant at MW). The resulting temperature rise
can induce reversible hyperthermic sensitization (40-45°C) or
irreversible coagulative necrosis (>50-60°C) (Miklavcic, 2017). For
diagnostic imaging, the dielectric contrast between tissues is the key
source of information. Malignant breast tissues, for instance, have
been consistently shown to exhibit significantly higher &, and o than
adjacent healthy fibroglandular or adipose tissues across the 0.5-10
GHz range, due to increased water content and cellularity (Lazebnik
et al., 2007). This intrinsic contrast provides the physical basis for
tumor detection without exogenous contrast agents. A nuanced
understanding of these electromagnetic-thermal-tissue relationships
is therefore the indispensable first step in innovating safe, effective,
and targeted medical devices (O’Rourke et al., 2007).
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Microwave Imaging Systems: From Principles to Clinical
Prototypes

Microwave Imaging (MWI) leverages the dielectric contrast
described above to reconstruct anatomical or functional maps of the
body. It presents a compelling alternative to modalities like X-ray
mammography (ionizing) and MRI (high-cost), particularly for
specific applications. The field is broadly divided into two
algorithmic approaches: radar-based and tomography-based.

Radar-Based Microwave Imaging: This approach treats the
imaging problem as a target detection and localization task. A short
ultrawideband (UWB) pulse is transmitted, and backscattered
signals from dielectric discontinuities are collected. Techniques like
confocal microwave imaging (CMI) or delay-and-sum (DAS)
beamforming are used to synthetically focus on every point within
the region, creating a reflectivity map (Fear et al, 2003). Its strengths
are computational simplicity and robustness. It is highly effective for
detecting strong scatterers like tumors but provides less quantitative
tissue property information.

Tomography-Based Microwave Imaging (MWT): This is
a quantitative, inverse scattering approach. It aims to reconstruct the
complete spatial distribution of &, and ¢ by solving a nonlinear, ill-
posed optimization problem that minimizes the difference between
measured and simulated scattered fields (Meaney et al, 2000). While
computationally intensive and sensitive to modeling errors, it offers
the potential for true dielectric property mapping, which could aid in
tissue characterization (e.g., differentiating benign from malignant)
(Cetinkaya, 2025).

Clinical Applications:

a. Breast Cancer Screening and Diagnosis: MWI for the
breast is the most advanced application. Systems like the

MIT system (tomographic) and the MSI system from
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McGill/University of Calgary (radar) have undergone
extensive clinical studies (Porter et al, 2013). Results
indicate high sensitivity, especially in dense breasts
where mammography sensitivity drops. Recent advances
focus on 3D imaging, multi-frequency data fusion, and
integration with compression plates to improve image
quality and patient comfort (Nikolova, 2011).

. Cerebral Imaging (Stroke Detection): The urgent need for
rapid, bedside stroke differentiation drives MWI research
for the brain. The main challenge is the complex,
multilayered structure of the head (skin, skull, CSF,
brain). Advanced forward models and compensation
algorithms for the high-contrast skull are critical
(Mustafa et al, 2013). Prototype helmet-like arrays are
being developed for continuous monitoring in emergency
rooms or ambulances (Tobon Vasquez et al, 2020).

Functional and Other Applications: Emerging areas
include monitoring of brain temperature or edema,
imaging for joint inflammation (arthritis), and bone
health assessment (Shevelev et al., 2022; Laskari et al.,
2023; Shakhawat Hossen et al.,2024).

RF Ablation, Microwave Ablation, and Hyperthermia: A
Comparative Therapeutic Arsenal

Thermal ablation has revolutionized the minimally invasive
treatment of inoperable tumors. While sharing the goal of thermal
necrosis, RF and MW ablation differ fundamentally in physics,
performance, and clinical indications.

Radiofrequency Ablation (RFA): As the historical gold
standard, RFA employs frequencies between 375-500 kHz. An
alternating current propagates from a needle electrode through the
ionic tissue, causing resistive (Joule) heating. The extent of ablation
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is limited by electrical impedance, which rises sharply as tissue
desiccates and chars (~100°C), creating an insulating barrier that
restricts further current flow and limits ablation zone size (typically
< 3-4 cm). Multipronged or cooled-tip electrodes were developed to
mitigate this (Haemmerich and Schutt, 2011). RFA remains highly
effective for smaller tumors (<3 cm) in organs like the liver, kidney,
and bone.

Microwave Ablation (MWA): Operating at 915 MHz or
2.45 GHz (ISM bands), MWA delivers energy via an antenna that
emits an electromagnetic field. Heating occurs through the rotation
of water molecules (dielectric loss), which is a more efficient and
volumetric process. Key advantages over RFA include: 1) Faster
heating and higher intratumoral temperatures; 2) Larger ablation
volumes (>5 cm possible with single antenna); 3) Less susceptibility
to heat sink effects from nearby blood vessels; 4) Efficacy in charred
or cystic tissues (does not rely on conductivity) (Brace, 2009).
Technological advancements focus on antenna design to shape the
ablation zone (e.g., choked, triaxial, or slot-loaded antennas for more
spherical profiles), multi-antenna synchronous systems for large
volumes, and real-time temperature monitoring integration (Zhang
et al., 2025; Jin et al., 2025; Fang, 2025).

Focused RF/MW Hyperthermia: This adjuvant therapy
aims for a moderate, uniform temperature rise (40-45°C) within a
tumor to increase its sensitivity to radiation or chemotherapy. It
requires sophisticated phased-array applicators (e.g., annular phased
arrays, waveguide arrays) that can electronically steer and focus
energy deep inside the body. The technical challenge is to overcome
focusing limitations in heterogeneous tissue. Treatment planning
systems using patient-specific CT/MRI data are used to optimize
phase and amplitude settings for each antenna element to maximize
the therapeutic index (Wust et al., 2002). Clinical evidence supports
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its benefit in cancers of the cervix, rectum, and soft tissue sarcomas
(Van Rhoon et al, 2013).

Advanced Antenna Design for Implantable and Wearable
Biomedical Devices

The antenna is the critical interface between electronic
medical devices and the biological environment or external world.
Its design is governed by a unique set of constraints that diverge
sharply from conventional free-space antenna theory.

Implantable Antennas: Devices such as cardiac
pacemakers, deep brain stimulators (DBS), gastric monitors, and
biodegradable sensors require antennas that are miniaturized,
biocompatible, and stable within the lossy, high-permittivity tissue
medium. Key challenges include:

a. Extreme Miniaturization: Strategies include fractal
geometries, meander lines, spiral designs, and the use
of high-permittivity ceramic substrates (&> 10)
which reduce the guided wavelength, allowing for
smaller resonant structures (Kiourti and Nikita,
2012).

b. Biocompatibility and Hermetic Sealing: The antenna
must be electrically insulated from the host tissue to
prevent corrosion and biofouling, typically using
bioglass, alumina (Al,03), or medical-grade
polymers like PEEK or PDMS. This encapsulant
layer significantly detunes the antenna, necessitating
co-design.

c. Robust Performance in Tissue: The near-field is
dominated by the surrounding tissue properties.
Design optimization must be performed using
numerical models with realistic tissue layers.
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Bandwidth is often prioritized to accommodate
frequency shifts due to variable tissue encapsulation
thickness or composition (Nikita, 2014).

d. Safety (Low SAR): The antenna must be designed to
operate with minimal near-field heating, adhering to
strict SAR limits for implanted devices.

Wearable and On-Body Antennas: Used in smart health
patches, continuous glucose monitors, EEG/ECG sensors, and Body
Area Networks (BANs). Primary considerations are:

a. Flexibility and Conformality: Antennas must bend
and stretch with skin movement without performance
degradation. This is achieved using flexible
substrates (polyimide, PET, textile) and conductive
materials like silver ink, conductive thread, or liquid
metal alloys (e.g., Galinstan) (Koul and Bharadwaj,
2021; Yurduseven et al, 2018).

b. Detuning and Body Coupling: The antenna's input
impedance and radiation pattern are severely
distorted when placed on the body. Techniques to
mitigate this include incorporating a metallic ground
plane as a reflector (also reduces SAR), using
electromagnetic band-gap (EBG) or artificial
magnetic conductor (AMC) surfaces to create an in-
phase reflective boundary, and designing specific
"on-body" matching networks (Ashyap et al., 2025).

c. Specific Absorption Rate (SAR) Management: For
devices operating near the body, minimizing
backward radiation is crucial. Directional antennas
(e.g., planar inverted-F antennas - PIFAs) and the
aforementioned EBG structures are effective in
lowering peak spatial SAR.
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d. Durability: Wearable antennas must withstand
washing, sweat, and mechanical wear. Encapsulation
and robust material choices are essential.

Comprehensive Safety Assessment and SAR Optimization
Methodologies

Ensuring patient safety is the non-negotiable cornerstone of
any medical RF/MW application. The Specific Absorption Rate
(SAR), defined as the time derivative of the incremental energy

absorbed by an incremental mass in a tissue volume (SAR =

d (dw . : . : . .
- (E) = % |E|?), is the primary dosimetric quantity for assessing

exposure.

Regulatory Limits and Standards: International
guidelines, notably from the International Commission on Non-
Ionizing Radiation Protection (ICNIRP) and the Institute of
Electrical and Electronics Engineers (IEEE), define basic restrictions
for localized and whole-body SAR. For example, IEEE C95.1-2019
sets a localized SAR limit of 2 W /kg averaged over any 10 g of
tissue in the head and trunk for the general public, with higher limits
for extremities and occupational exposure (IEEE Std, 2019).
Medical devices must demonstrate compliance through rigorous
testing.

Computational SAR Evaluation: Numerical simulation
using anatomically detailed human models (e.g., "Duke," "Ella,"
"Norman" from the IT'IS Foundation) and Finite-Difference Time-
Domain (FDTD) or Finite Element Method (FEM) solvers is the
standard for predictive safety analysis. It allows for 3D volumetric
SAR mapping under various exposure scenarios before physical
prototyping (Christ et al., 2010). Key outputs include peak spatial-
average SAR (psSAR) and its distribution.

SAR Optimization Strategies:
-0



a. For Therapeutic Devices (Ablation/Hyperthermia):
The goal is to maximize SAR in the target volume
while minimizing it in healthy tissue. This involves:

Antenna/Applicator Design: Shaping the near-field
pattern (e.g., using multi-slot antennas for more spherical
ablation).

Phased-Array Focusing: Using multiple applicators with
optimized amplitude and phase control to constructively
interfere at the target. This is the basis for deep-heating
hyperthermia systems (Nguyen, 2017).

Robust Treatment Planning: Using optimization
algorithms (e.g., particle swarm, convex optimization)
with patient-specific models to calculate driving signals.

b. For Diagnostic/Wearable Devices: The goal is to
minimize SAR while maintaining functional link
budget or image quality.

Antenna Design: Employing directional designs (PIFA,

patch with EBG) to reduce energy directed into the body.

Power Management: Implementing duty cycling and
adaptive power control.

Array Excitation Optimization: In MWI, using low-SAR
illumination patterns that still provide sufficient
information for image reconstruction.

Experimental SAR Measurement: Validation is performed
in tissue-equivalent liquid phantoms using robotic SAR probes (e.g.,

isotropic electric field probes) that scan the area of interest according
to standardized protocols (e.g., IEC 62209) (Burkhardt and Kuster,
2000; International, 2020).
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Anthropomorphic Phantoms: Bridging Simulation and Clinical
Reality

Phantoms are physical or numerical models that mimic the
electromagnetic or thermal properties of human tissues. They are
indispensable for device development, calibration, performance
validation, and safety testing, serving as a crucial bridge between
computational models and in vivo applications.

Numerical (Digital) Phantoms: These are 3D computer
models with assigned tissue properties.

a. Voxel Models: Derived from high-resolution MRI or
CT scans (e.g., "Virtual Family," "AustinMan"), they
provide unparalleled anatomical realism but have
discrete tissue boundaries (ITIS, 2025).

b. Surface-Based Models: Composed of smooth
triangular meshes, often derived from the same
medical images, they are better suited for certain
numerical methods like FEM. These models enable
virtual clinical trials, allowing for statistical analysis
of device performance across a population with
different anatomies.

Physical Tissue-Equivalent Phantoms: These are
fabricated materials with controlled dielectric properties (&;., o).

a. Liquid Phantoms: Homogeneous mixtures of water,
salt, sugar, and hydrogel-forming agents (e.g., TX-
151, agar). They are ideal for SAR measurement and
antenna testing in standardized geometries (e.g.,
SAM head) (Deng et al., 2025).

b. Gel/Solid Phantoms: Using agents like agar, gelatin,
or polyacrylamide, these can be molded into shapes.
They are used for imaging phantoms (e.g., breast
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phantoms with embedded tumor simulants) and
ablation validation.

c. Anatomically Realistic Phantoms: Advances in 3D
printing and molding enable the creation of phantoms
with realistic external shapes and internal
heterogeneous structures. Multi-material 3D printing
allows for spatial variation of dielectric properties, a
significant step forward (Bai et al., 2025).

d. Dynamic and Thermal Phantoms: For ablation
studies, phantoms that mimic the temperature-
dependent dielectric properties of tissue or that allow
for thermographic mapping of ablation zones are
under development (Bublex, et al., 2025; Meaney et
al., 2025).

The development of accurate, stable, and reproducible
phantoms across a broad frequency range remains an active research
area critical for standardizing performance evaluation across
different research groups and for regulatory submissions.

The Pathway to Clinical Adoption: Regulatory, Economic, and
Practical Hurdles

Translating a promising engineering prototype into a
clinically adopted, commercially viable medical device is a complex,
resource-intensive journey fraught with non-technical challenges.

Regulatory Approval: In the United States, devices are
regulated by the Food and Drug Administration (FDA) under
classifications (Class I, II, II) based on risk. Most RF/MW
therapeutic devices (ablation systems) are Class 11 (510(k) clearance)
or Class III (Premarket Approval - PMA), requiring demonstration
of substantial equivalence to a predicate device or extensive clinical
data proving safety and effectiveness, respectively (U.S. Food,

--12--



2025). In the European Union, the Medical Device Regulation
(MDR) 2017/745 requires a conformity assessment by a Notified
Body. The regulatory dossier must include detailed technical files,
risk management reports (ISO 14971), biocompatibility data (ISO
10993), electromagnetic compatibility (EMC) reports, and crucially,
clinical evaluation reports.

Clinical Trial Design: Generating high-quality clinical
evidence is the most significant hurdle. Trials must be meticulously
designed to answer specific clinical questions (e.g., non-inferiority
to the standard of care for an ablation device, or
sensitivity/specificity for an imaging system). Challenges include
patient recruitment, defining appropriate endpoints (e.g., technical
success vs. overall survival), and managing confounding variables.
For novel imaging systems like MWI, establishing the "ground
truth" for comparison (e.g., MRI or biopsy) is essential but can be
logistically difficult (Adachi, 2021).

Reimbursement: Even with regulatory approval, adoption
hinges on reimbursement from healthcare payers (e.g., Medicare in
the US). This requires the establishment of a Current Procedural
Terminology (CPT) code and demonstration of clinical utility and
cost-effectiveness compared to existing alternatives. This economic
argument is often as important as the technical one.

Integration into Clinical Workflow: A device must be user-
friendly, reliable, and fit seamlessly into existing hospital
workflows. Complex systems requiring lengthy setup, specialized
operators, or significant additional training will face resistance.
Reliability, serviceability, and cost of consumables are key practical
considerations (Vilaca, 2020; Leong et al, 2024).

Frontiers of Innovation: Metamaterials and Artificial
Intelligence
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The convergence of RF/MW engineering with metamaterials
(MTMs) and artificial intelligence (Al) is defining the next
technological frontier, promising breakthroughs in performance,
functionality, and autonomy.

Metamaterials for Enhanced Devices: MTMs are artificial
structures with sub-wavelength unit cells that exhibit extraordinary
electromagnetic properties not found in nature (e.g., negative
refractive index, near-zero permittivity).

a. Super-Resolution Imaging: MTM lenses or
"superlenses" can overcome the diffraction limit,
potentially enabling microwave imaging with
resolutions approaching the millimeter scale, rivaling
ultrasound (Engheta and Ziolkowski, 2006).

b. Miniaturized and Efficient Antennas: MTM-inspired
structures (e.g., metasurfaces) can be used as
substrates or superstrates to dramatically reduce
antenna size, enhance bandwidth, or improve
isolation between elements in dense arrays for MWI
or hyperthermia (Kumar et al., 2021; El Houda Nasri,
et al., 2025).

c. Smart Skins and Dynamic Apertures: Reconfigurable
metasurfaces, whose properties can be tuned
electronically, could lead to wearable imaging
systems or adaptive hyperthermia applicators that can
focus energy dynamically in response to patient
movement or tissue changes (Cai et al., 2025; Pang,
2025).

Artificial Intelligence and Machine Learning: Al is being infused
throughout the device lifecycle.
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a. Inverse Problem Solving: Deep learning (DL)
networks, particularly convolutional neural networks
(CNNs) and U-Net architectures, are revolutionizing
MWI reconstruction. They can learn to directly map
scattered field data to dielectric maps or detect
lesions, offering dramatic speed improvements and
often better accuracy than traditional iterative solvers,
especially in handling noise and model errors (Silva
et al., 2025; Dig¢s et al., 2025).

b. Therapy Planning and Control: Al algorithms can
predict optimal ablation parameters (power, time) or
hyperthermia steering settings based on patient
anatomy and target location from pre-procedural
scans. During treatment, Al can fuse real-time
temperature monitoring (e.g., from MR thermometry)
with models to dynamically adjust parameters for
optimal outcome.

c. Diagnostic Decision Support: Al can classify
microwave images (benign/malignant), correlate data
streams from wearable sensors with disease states,
and predict patient outcomes, moving from simple
sensing to predictive health analytics (Shao, 2025;
Godase, 2025).

d. Hardware Acceleration: Al is also being used to
design novel antenna and circuit geometries through
generative adversarial networks (GANs) and other
optimization techniques.

The synergistic integration of MTMs for physical layer
enhancement and Al for signal processing and control is poised to
create a new generation of "intelligent" medical electromagnetic
systems that are adaptive, precise, and accessible.
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CHAPTER 2

SPATIO-TEMPORAL VARIANCE ASSESSMENT
OF INDOOR AND OUTDOOR AIR QUALITY
METRICS MONITORED VIA INTERNET OF

THINGS BASED SENSOR ARRAYS

Mehmet TASTAN?

1. Introduction

With transitions in human lifestyles, individuals residing
particularly in urban environments spend approximately 90 percent
of their time in indoor settings (Ferreira et al., 2022). Consequently,
Indoor Air Quality (IAQ) has gained escalating significance
regarding public health and well-being. Although indoor
environments are generally perceived as safer and more sanitary than
outdoor settings, numerous studies demonstrate that indoor pollutant
concentrations can be 2 to 5 times—and in specific instances, more
than 100 times—higher than outdoor levels (J. Wang et al., 2023).
Poor TAQ has been proven to be directly correlated with various
adverse health outcomes, including respiratory diseases, allergic

! Dog. Dr. Mehmet TASTAN, Department of Electronics and Automation,
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reactions, cardiovascular complications, cephalalgia, fatigue, and
cognitive impairment. Furthermore, it has been associated with more
severe long-term health issues such as carcinoma (Europe, 2010).
Children, the elderly, and individuals with chronic morbidities are
particularly susceptible cohorts to the potential risks of these
detrimental effects (Maung et al., 2022). In this context, the
comprehensive monitoring, assessment, and mitigation of TAQ
within residential environments have emerged as a prioritized
research domain.

The residential IAQ profile is dynamically shaped by both
pollutants infiltrating from the outdoor environment and those
generated through routine domestic activities. Particulate Matter
(PM), specifically fine particles with an aerodynamic diameter of
less than 2.5 micrometers (PMa s5), constitutes one of the most critical
components of indoor air pollution. There are two primary sources
of PM in residences. Firstly, the infiltration of outdoor PM> 5 through
building envelope fractures, windows, and ventilation systems
significantly influences indoor PM,s concentrations. Studies
indicate that outdoor PM; s levels generally exceed indoor levels,
with an average 1/O ratio of approximately 0.94 (Deng et al., 2015).
This metric serves as a substantial indicator of outdoor pollutant
penetration into indoor spaces (F. Wang et al., 2016). The magnitude
of'this infiltration is governed by factors such as building airtightness
and meteorological conditions (Bekierski et al., 2021).

Another significant indoor source is cooking activities,
particularly those involving high-temperature methods such as
frying and grilling (Xiang et al., 2021). Cooking induces abrupt and
pronounced spikes in PMazs concentrations within the kitchen
(Aquilina & Camilleri, 2022), which subsequently disperse to other
areas of the dwelling depending on spatial distance and ventilation
efficiency (He et al., 2004). Previous research has reported PMa 5
concentrations reaching up to 118.45 ug/m® during cooking events
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(Shah et al., 2024). Consequently, the kitchen acts as the primary
source for these pollutants, leading to distinct and transient surges in
PM; 5 and CO; levels (Abdullahi et al., 2013).

CO; is typically a pollutant derived from human respiration
and serves as a surrogate indicator for [AQ and ventilation adequacy.
In enclosed and poorly ventilated indoor environments, particularly
during nocturnal sleep periods, the accumulation of anthropogenic
COy is observed (Mendell et al., 2024), with levels frequently
surpassing the 1000 parts per million (ppm) threshold recommended
by ASHRAE (Kim et al., 2025). In certain instances, concentrations
may reach 2000 ppm, precipitating more severe symptoms such as
cephalalgia, lethargy, and cognitive impairment (Wu et al., 2021).
Empirical studies have demonstrated that nocturnal CO»
accumulation, especially in bedrooms, reaches levels exceeding
recommended health limits (Strem-Tejsen et al., 2016). The
increased airtightness of modern energy-efficient buildings has
further exacerbated the issue of CO, stagnation by reducing natural
air exchange rates.

RH and temperature are critical parameters that influence not
only thermal comfort but also pollutant dynamics (e.g., the
hygroscopic growth of PM) and indoor biological risks. Persistently
high humidity levels (exceeding 60 percent) significantly elevate the
risk of mold and bacterial proliferation, degradation of structural
materials, and the release of allergenic spores into the atmosphere
(Chamseddine et al., 2025). Activities such as showering trigger
sudden and substantial humidity increments in the bathroom, and it
has been observed that excess moisture can propagate to other
residential zones. ASHRAE and other organizations recommend an
ideal RH range of 30-60 percent throughout the year (Vaughn, 2021).

Conventional [AQ monitoring methodologies have
traditionally been expensive, complex, and limited in temporal

scope. However, the recent rapid advancement of IoT technology
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and LCSs has enabled continuous, high-resolution, and spatially
distributed monitoring of TAQ in residential settings(Tastan &
Gokozan, 2018, 2019) . IoT-based systems facilitate the
identification of causal relationships and temporal lags between
domestic activities (such as cooking, sleeping, cleaning, and
showering) and TAQ fluctuations by providing persistent data
streams. Specifically, routine activities like sleeping, cooking, and
showering have been identified as having significant impacts on [AQ
(Du et al., 2020). While the measurement accuracy and reliability of
LCSs may present constraints, particularly when not periodically
calibrated against reference instruments, these sensors are highly
valuable for analyzing relative variations and patterns over time
rather than absolute concentration values. IAQ data are typically
collected as high-dimensional time series, and the comprehensive
analysis of such data requires sophisticated methods extending
beyond simple arithmetic averaging. Understanding how pollutants
emitted from a source event, such as cooking, are transported and
diluted across other residential areas (e.g., living room, bedroom) is
of critical importance (Yu et al., 2024). Visualization techniques play
a vital role in elucidating the dispersion of pollutants from sources
and their behavior in diverse indoor environments. Examining the
inter-relationships between pollutants (e.g., correlations between
PM, CO,, and humidity) is essential for comprehending ventilation
status and physical mechanisms such as the hygroscopic growth of
PM. Notable correlations have been identified between PM and CO»
concentrations and humidity, particularly during specific activities
and under inadequate ventilation conditions.

The automated recognition of domestic activities (Activity
Recognition) using patterns in [oT sensor data and the prediction of
future pollutant levels represent the most significant application
areas of ML techniques. It is evaluated that ML techniques offer
substantial potential for a deeper understanding of [AQ data
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regarding activity recognition and pollutant level forecasting (Laton
et al., 2025; Tastan, 2025).

This study aims to perform a detailed analysis of specific and
critical TAQ dynamics using high-resolution data collected via loT-
based sensors in a residence in Manisa, Turkiye throughout 2024.
This research contributes to the literature by specifically focusing on
the following objectives:

e Investigation of the infiltration degree of outdoor PM2 5 into
the indoor environment (I/O ratios) and the role of the
balcony as a reference point for PM» 5 levels.

¢ (Quantitative analysis of the dispersion of cooking-induced
PM 5/CO; pollutants to different rooms in terms of temporal
lag and percentage increase in concentration.

e Comprehensive evaluation of nocturnal CO, accumulation
during sleep hours concerning exposure durations above
health thresholds (1000 ppm).

e Statistical examination of the correlations between
PM>s/CO, concentrations and humidity, along with a
discussion of potential interaction mechanisms.

The subsequent sections of the study are structured as
follows: Section 2 presents the Materials and Methods, including the
physical characteristics of the selected residence, the technical
specifications of the loT-based LCSs utilized, and the data pre-
processing stages. Section 3 evaluates the Results and Discussion,
such as outdoor PM> s infiltration, inter-room dispersion dynamics
of cooking activities, and nocturnal CO; accumulation in the
bedroom, through detailed statistical analyses. Finally, Section 4
synthesizes the findings to present strategic mitigation
recommendations for improving IAQ and suggests pathways for
future research.
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2. Materials and Methods

2.1. Description of the Study Area and Dataset

This study analyzes data acquired from a residence located in
Manisa, Turkiye. The data, collected throughout 2024, encompasses
a one-year period, providing the opportunity to investigate seasonal
variations. Measurements were conducted via IoT-based sensors
strategically deployed across diverse functional zones of the
residence.

Tablo 1. Sensor Models and Specifications

Measured Parameter = Sensor Model = Measurement Type Unit
CO, MH-Z19B NDIR ppm
PMi, PM, s, PMjg PMS-7003 Laser Scattering pg/m3
Temperature AHTI10 CMOS Technology °C
Relative Humidity AHTI10 CMOS Technology %

The monitoring system utilized IoT-based LCSs to ensure
high-resolution and uninterrupted data acquisition across all five
measurement zones. The technical specifications of the sensors
deployed in the Kitchen, Bedroom, Living Room, Bathroom, and
Balcony are summarized in Table 1. CO, concentrations, serving as
a fundamental proxy for ventilation status, were measured using the
MH-Z19B Non-Dispersive Infrared (NDIR) sensor. Fine PM (PM;,
PM;s, PMjo) was monitored via the PMS-7003 optical particle
counter, which operates on laser scattering technology.
Environmental comfort parameters, specifically temperature and
RH, were obtained through the AHT10 sensor utilizing advanced
CMOS technology. Despite being categorized as LCSs, this sensor
selection provided the requisite temporal resolution to capture the
dynamic nature of indoor-sourced events.

The analyzed data were recorded as average values at 5-

minute intervals. This high resolution is of critical importance for
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accurately capturing the impacts of short-term dynamic events—
such as cooking, showering, or natural ventilation—as well as the
inter-room dispersion rates of pollutants.
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LIVINGROOM
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30 m2

3,91

Figure 1. Floor Plan of the Residence and Sensor Deployment
Locations

The floor plan of the residence, which constitutes the spatial
foundation of the analysis and illustrates the five critical zones where
the IoT sensors are positioned, is presented in Figure 1. Sensors were
deployed within the kitchen, bedroom, living room, bathroom, and
balcony areas. This configuration facilitated the monitoring of IAQ
fluctuations associated with pollutant sources (cooking) and
anthropogenic presence (sleeping). Furthermore, approximate
distances from the kitchen to other rooms were measured—
specifically 4 to 5 meters to the living room, 10 to 12 meters to the
bedroom, and 6 to 7 meters to the bathroom—providing the
necessary reference data to investigate the spatial dispersion
dynamics of pollutants. The balcony served as a reference point for
tracking outdoor PM3 s infiltration.
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2.2. System Architecture and Data Transmission

The monitoring system architecture is designed to
continuously acquire and transmit sensor measurements. Data
harvested from the sensors were processed by the ESP8266-12E
microcontroller, featuring an integrated WiFi module, and
subsequently transferred to a cloud-based server via the Blynk
platform (Omran et al., 2022). This platform facilitated real-time
monitoring of sensor data and ensured its storage in time-stamped
"csv" format.
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Figure 2. Sensor Data Collection and Calibration Process of loT-
Based Air Quality Monitoring System

The data flow hierarchy and operational principles of the [oT-
based environmental monitoring system designed in this study are
presented in Figure 2. Raw data from LCSs deployed in distinct
microclimatic zones are harvested by the microcontroller. These
high-resolution datasets are concurrently transmitted to a cloud-
based server via wireless network protocols and archived as time-
stamped datasets for the analytical phase. This systematic
framework enables the uninterrupted tracking of indoor pollutant
dynamics and the scientific evaluation of spatial variations.

2.3. Data Pre-processing and Constraints

Raw sensor data subjected to analysis underwent a series of
pre-processing stages to ensure the acquisition of reliable results.

These procedures included the management of missing data, as well
--20--



as the detection and mitigation of outliers within the dataset.
Furthermore, time-series data from disparate sensors were
synchronized based on their time stamps to facilitate comparative
analyses.

All analytical procedures were executed on a platform
developed using the Python programming language. To enhance the
measurement precision of the utilized LCSs, the sensors were tested
and calibrated against actual emission sources (tobacco smoke,
cooking, and cleaning chemicals) within a calibration chamber prior
to their deployment in the field (Tastan, 2025).

2.4. Analytical Methods

Various statistical methodologies were employed to
characterize the dataset and derive meaningful inferences. For each
parameter and sensor location, the mean, median, standard deviation,
minimum, and maximum values were calculated. The 1/O ratio was
computed to determine the degree of outdoor PM> 5 infiltration into
the indoor environment.

Cooking events were identified by the abrupt and sharp
increments observed in the kitchen PMs and CO, sensor data.
Dispersion dynamics were quantitatively determined using time-lag
analysis and concentration increase ratios. During sleep and
awakening periods, the duration for which CO: levels in the
bedroom remained above critical threshold values, such as 1000 ppm
and 2000 ppm, was calculated. To examine the inter-relationships
between parameters, the Pearson correlation coefficient was utilized.

3. Results and Discussion

This section presents the analytical findings derived from the
data acquired across distinct residential zones throughout the year
2024.
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3.1. General Pollutant Profile and Statistical Overview

The descriptive statistics of the one-year dataset illustrate the
distribution of pollutant and comfort parameters, as well as potential
exposure levels. Table 2 summarizes the mean, standard deviation,
and quartiles for the CO; and PM> s metrics.

Table 2. Descriptive statistics for CO>and PM> s parameters.
Location  Parameter Mean Std Min 25% 50% 75% Max

Kitchen CO, 761 323 400 473 694 986 2000
PM> 5 17 36 0 5 10 17 1082
Bedroom CO, 973 466 403 569 828 1322 2000
PM, 5 17 27 0 7 12 20 951
Living CO, 857 383 401 549 743 1093 2000
Room PM, s 18 28 0 8 13 20 887
Bathroom CO, 853 376 400 497 800 1151 2000
PM, s 16 25 0 7 12 19 876
Outdoor CO, 562 187 401 461 525 612 2000
PM, s 23 30 0 9 15 29 955

Note: CO, levels are expressed in parts per million (ppm), and PM;;
concentrations are reported in micrograms per cubic meter (ug/m?).

Figure 3 presents the distribution plots corresponding to the
temperature and RH data.

Temperature (°C) Distribution Across All Locations Relative Humidity (%) Distribution Across All Locations

132200440
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Figure 3. Analysis of the distribution of temperature and relative
humidity variables (Violin Plot)

Violin plots comprehensively reflect the distributional
characteristics—such as symmetry, skewness, and multimodality—
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of the respective variables. The width of the plot indicates the
intervals where data concentration is highest (high density), while
the central bold line represents the median value. This visual analysis
is of critical importance for identifying the dominant regimes within
the dataset, in addition to evaluating the measures of central
tendency and dispersion of the variables.

3.2. Impact of Outdoor PM;s Infiltration on Indoor
Concentrations

In this phase, the degree of outdoor PM: 5 infiltration through
the building envelope was quantitatively evaluated. The 1/O ratio,
utilized to determine the predominance of outdoor-sourced pollution
on IAQ, was derived by proportioning the annual average PM> s
values of each microclimatic zone to the reference outdoor point
(balcony).

Table 3. Average PM> s Concentrations by Location and Calculated
1/0 Ratios

Location PM, s (ug/m?) I/O Ratio
Outdoor 22.91 (Reference)
Kitchen 18.03 0.79
Bedroom 16.69 0.73
Bathroom 16.62 0.73
Living Room 15.80 0.69

Analysis of the data presented in Table 3 reveals that the
average outdoor PM,s concentration is 22.91 ug/m’, with indoor
infiltration rates fluctuating between 0.69 and 0.79. The findings
indicate that the 1/O ratio exceeded the 0.70 threshold, which is
typically accepted in the literature as a reference for residential
settings, in most rooms. This situation suggests that the building
envelope serves as a weak barrier against outdoor pollution (Krebs
et al., 2021).
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The maximum I/O ratio was identified in the kitchen zone at
0.79. This elevated ratio can be attributed to the kitchen's direct
physical connectivity with the balcony and the intensive ventilation
periods following cooking activities, which facilitate the mass
transfer of outdoor particles into the indoor environment. The values
of 0.73 detected in the bedroom and bathroom zones confirm a
moderate-to-high dependence of these spaces on outdoor air quality.
Particularly assuming that windows remain closed during sleep, this
ratio emphasizes the impact of air leakage. With the minimum ratio
of 0.69, the living room area is relatively more protected from
outdoor-sourced pollutants due to its lower exterior wall surface
area-to-volume ratio and its positional proximity to the building
core. Consequently, high I/O coefficients escalate the risks posed by
outdoor pollution to indoor health, scientifically necessitating
advanced filtration and building airtightness strategies.

3.3. Indoor-Sourced Pollutant Generation: Dynamics of Cooking
Activities and Pollutant Dispersion

In this section, the pollutant emission profile of cooking
activities—the most predominant indoor-sourced activity
influencing IAQ—and the inter-room dispersion dynamics of these
pollutants were examined. The temporal variation of emissions
occurring within the kitchen zone and their interaction with adjacent
spaces were analyzed using high-resolution sensor data. During a
typical cooking event analyzed, it was observed that the PMas
concentration in the kitchen zone escalated rapidly from baseline
levels to a peak value of 887.13 ug/m®. This dramatic surge signifies
that aerosol emissions and combustion by-products generated during
cooking dominate the indoor air within seconds. This value, which
is approximately 60 times the 24-hour limits recommended by the
WHO, poses an acute exposure risk for kitchen occupants and the
household (WHO Global Air Quality Guidelines, n.d.). Upon
investigating the transfer of pollutants from the kitchen to the living
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room area, it was determined that the living room PM> 5 levels rose
to 875.81 ug/m® concurrently (time lag < 1 hour) with the kitchen
peak. This high correlation and low concentration gradient between
the two spaces indicate that the air change per hour (ACH) and inter-
room air-flow pathways facilitate pollutant propagation. Similar to
research conducted by (Xu et al.,, 2024), it was found that fine
particles generated in the kitchen rapidly and homogeneously
distribute throughout the entire residential volume due to open doors
or inadequate local exhaust ventilation. This dispersion dynamic
scientifically validates that cooking activity is not confined solely to
the kitchen but deteriorates the overall air quality of the residence
within minutes.

3.4. Nocturnal CO2 Accumulation in the Bedroom and Exposure
to Critical Thresholds

Bedrooms in residential buildings are the most critical
locations where CO> accumulation reaches peak levels due to
restricted ventilation conditions and continuous metabolic emissions
during the sleep period. Figure 4 presents the characteristics
exhibited by CO> concentrations in the bedroom throughout the
night, based on real-time monitoring data.
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Figure 4. Nocturnal CO> Accumulation in the Bedroom
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Examination of the graphical data reveals an upward trend in
COs; levels starting with the onset of the sleep period (approximately
23:00). Contrary to the annual average of 973 ppm in the dataset, the
concentration rises rapidly during nocturnal hours, exceeding 1650
ppm and persisting at these elevated levels until the morning hours.
This phenomenon indicates that the natural infiltration rate in the
room is insufficient to exhaust the CO; load generated by occupant
respiration. Particularly, the breach of the 1000 ppm comfort
threshold during the initial phases of sleep and the persistence above
1600 ppm for the majority of the night confirm that users are
subjected to prolonged exposure to an atmosphere categorized as
"poor air quality." Current literature establishes that exposure to
1500 ppm and above reduces sleep quality by 15 to 20 percent and
leads to cognitive decline characterized by impaired concentration
the following morning (Xu et al., 2021). The continuous upward
trend in our data validates that the bedroom functions as a CO;
accumulation zone. As emphasized by (Kempton et al., 2022),
increased building airtightness for the sake of energy efficiency
elevates indoor pollutant concentrations above health limits when
not supported by adequate ventilation strategies. Consequently, the
measured values scientifically demonstrate that the current
ventilation strategy in the bedroom (closed doors/windows) falls
significantly below health standards, necessitating controlled
nocturnal ventilation as a mandatory requirement.

3.5. Humidity Dynamics and Inter-Parameter Correlation
Analysis

Statistical interactions among parameters defining ITAQ
provide critical data for identifying pollutant sources and evaluating
ventilation efficiency. Figure 5 presents the inter-relationships
between physical and chemical parameters across the residence via
correlation coefficients (r).
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Figure 5. Correlation Matrix of Air Quality Parameters

A high-resolution examination of the correlation matrix
reveals that despite the physical partitioning of the residence, it
behaves as an integrated mass in terms of air quality and thermal
dynamics. Specifically, the exceptionally high correlations between
inter-room temperature values, ranging from r=0.94 to r=0.95,
demonstrate that the residential heating or cooling system ensures a
high degree of thermal synchronization across all spaces (Tastan et
al., 2022). Similarly, the high permeability of PMa .5 values between
rooms (r=0.92) indicates that pollutants generated at a single point
within the dwelling rapidly disperse throughout the entire residence
via airflow, suggesting very low inter-room pollutant isolation.

When conducting a sensor-based general evaluation,
temperature and PMzs emerge as the most consistent parameters.
The observation that the LCSs did not exhibit significant deviations
in PM,s5 measurements, even under high humidity conditions,
indicates that measurement precision remained stable within this
dataset. Conversely, the fact that the inter-room correlation of CO2

--36--



levels remained substantially lower than others (r=0.47) confirms
that this gas exhibits an independent profile in each room, contingent
entirely upon room-specific anthropogenic activity. Consequently, it
can be concluded that the overall air quality of the residence is tightly
interconnected across rooms through "invisible linkages."

3.6. Natural Ventilation Strategies and Pollutant Removal
Efficiency

The temporal variation of pollutant concentrations within the
residence exemplifies the critical role of natural ventilation activities
(e.g., opening windows and doors) in improving air quality and
illustrates the system's dynamic response to these interventions.
Analysis of high-resolution (5-minute) time-series data reveals that
a cooking activity occurring in the kitchen zone on February 14,
2024, at 17:55, propelled the PM; 5 concentration to an extreme level
of 652.92 ug/m® (Figure 6). Upon the initiation of ventilation, the
particulate density exhibited a rapid decline, descending to 30.83
ug/m’ by 18:10 within only 15 minutes. This rapid dilution rate of
95 percent demonstrates how effective active air exchange serves as
a barrier in the removal of kitchen-sourced aerosols.

High-Resolution Kitchen PM; 5 Ventilation Dynamics (Feb 14)
< Peak: 652.92 ug/m? Kitchen PM; 5

Concentration (ug/m?)

17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00
Time (HH:MM)

Figure 6. Cooking-Sourced PM> s Emissions in the Kitchen Zone and

Removal Dynamics via Natural Ventilation (February 14, 2024).
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A comparable dynamic was observed in the removal of
metabolically sourced CO> accumulation within the bedroom
(Figure 7).
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Figure 7. Bedroom CO:; Levels and Ventilation Impact (January 5,
2024)

On the morning of January 5, 2024, toward the end of the
sleep period at 08:10, the CO> concentration—hovering near the
critical threshold of 2000 ppm with a value of 1962.52 ppm—
descended to 1078.5 ppm by 08:45 following the opening of
windows. This reduction of 884 ppm occurring within
approximately 35 minutes confirms that natural ventilation offers
high effectiveness not only for PM s but also for the dilution of gas-
phase pollutants. These findings indicate that increasing the ACH is
the most effective mitigation method regardless of the pollutant type,
and that occupant behavior (ventilation routines) plays a key role in
ensuring IAQ standards.

4. Conclusion

This study investigated the spatial and temporal dynamics of
IAQ by analyzing data collected from distinct microclimatic
locations within a residence via loT-based multi-sensor networks.
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The findings quantitatively reveal that the indoor pollution load is
directly dependent not only on outdoor infiltration but also on the
frequency and intensity of household activities.

One of the most striking outputs of the study is the extreme
correlation coefficient of 0.98 identified between the kitchen and
living room zones. The fact that the PM2s peak value of 887.13
ug/m’ recorded in the kitchen during cooking activities was mirrored
as 875.81 ug/m’® on the living room sensor within minutes proves
that pollutants encounter almost no physical resistance during inter-
location transfer. This situation scientifically validates the
inadequacy of local ventilation systems (e.g., extractor hoods) in
removing indoor-sourced pollution in residences with open-plan
architecture and confirms the rapid, homogeneous dispersion rate of
pollutants throughout the entire living space.

The CO, accumulation monitored in the bedroom during the
nocturnal sleep period demonstrates that concentrations approach
the 2000 ppm threshold, creating significant carbon stagnation in the
environment. This finding proves that current natural ventilation
strategies for the removal of metabolic emissions fall substantially
below health standards, creating an indoor atmosphere that
potentially threatens sleep quality. Outdoor analyses indicated that
the indoor particulate load is in a strong correlation with outdoor-
sourced pollution, ranging from 0.72 to 0.85, highlighting the low
filtration capacity of the building envelope. Multidimensional
statistical analyses confirmed the increase in signal noise of optical
sensors in high-humidity areas such as the bathroom (peak values of
90 percent RH) and the suppressive effect of outdoor temperature
drops on occupant ventilation behavior. In conclusion, this study
scientifically demonstrates that for healthy, sustainable, and energy-
efficient indoor management, smart home systems must rely on
sensor fusion and data-driven dynamic ventilation control strategies
rather than the monitoring of singular parameters.
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CHAPTER 3

SENSING ORIENTED MONOSTATIC ISAC
MODEL WITHOUT KNOWLEDGE OF CHANNEL
STATE INFORMATION

1. SELMAN KULAC'

Introduction

The integration of sensing and communication capabilities
in monostatic systems has emerged as a critical enabler for
advanced applications in autonomous systems, smart infrastructure,
and environmental monitoring (Liu et al., 2022:40). Unlike bistatic
configurations, monostatic ISAC systems offer inherent advantages
in terms of hardware integration, synchronization simplicity, and
compact implementation (Xiao & Zeng, 2022:15). However, the
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practical implementation of these systems faces significant
challenges, particularly when dealing with unknown channel
conditions in dynamic environments.

Current research in ISAC systems has primarily focused on
scenarios with perfect channel knowledge, which often represents
an idealistic assumption in real-world deployments (An et al.
2023:19). The absence of Channel State Information (CSI) at the
sensing receiver introduces substantial uncertainties in target
detection and parameter estimation, potentially degrading system
performance (An et al. 2023:19), (Liu et al. 2022:41). This
challenge becomes particularly critical in sensing-oriented
applications where detection reliability is paramount.

Recent studies have begun addressing power allocation in
ISAC systems, but most approaches either rely on sophisticated
estimation techniques or known CSI (Wang & Han, 2024:6),
(Touahar & Kulag, 2025:8). There remains a significant gap in
developing practical frameworks that maintain robust sensing
capabilities while operating under realistic channel conditions. This
work bridges this gap by proposing a comprehensive monostatic
ISAC model that explicitly addresses the challenge of unknown
CSIL

The main contributions of this work are:

e A novel sensing-oriented monostatic ISAC framework
that operates without prior CSI knowledge

e Optimal power allocation strategy that balances sensing
and communication requirements

e Obtaining probability of false alarm (PFA) values with
given power and probability of detection (PD) levels in
case of unknown CSI
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e Obtaining power values with given PFA (%1) and PD
(%99) levels in case of unknown CSI

The remainder of this study is organized as follows: Section
2 describes the system model. Section 3 presents analytical
expressions and discusses the power allocation framework and
optimization results. Section 4 presents numerical results and
performance evaluations. Finally, Section 5 concludes the paper
with key findings and future research directions.

System Model and Sensing Framework

It is considered a monostatic ISAC system as in Figure 1
where a base station simultaneously performs communication with
a user equipment and detects potential targets in the environment.
The system operates without prior knowledge of the sensing
channel coefficient /s, representing a practical scenario where
target characteristics are unknown.

Figure 1 Monostatic ISAC system model

Monostatic ISAC BS

Transceiver

Base Station

[ \ )

Communication Signal Sensing Signal Echo Signhal

Communication User
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The composite transmitted signal is formulated as in (An et
al. 2023:19), (Touahar & Kulag, 2025:8) :

S(t) = \/Ds8s(t) + \/Pese(t) (1)

Here, s4(2) represents the sensing signal, while s.(?) is the
communication signal. The terms p, and p. are the power
allocation coefficients satisfy (An et al. 2023:19), (Touahar &
Kulag, 2025:8):

Ps + Pe = 1 2)

For the communication link, the received signal is as (An et
al. 2023:19), (Touahar & Kulag, 2025:8):

re(t) = hoeVPs(t) 4 ne(t) (3)

ne(t) ~ CN(0, Jg)
where

The received signal at the sensing receiver is modeled as as
in (An et al. 2023:19), (Touahar & Kulag, 2025:8) :
ry(t) = hoVPs(t =) 4 ny()
with ng(t) ~ CN(0,02)
noise.

representing the receiver

Sensing-Free Communication

It 1s assumed that the sensing signal s(?), specified by the
protocol, is known a priori at the Communication User (CU).
Consequently, nearly all components of the sensing signal can be
eliminated at the CU using Successive Interference Cancellation
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(SIC) techniques, allowing the application of a classical Rayleigh-
fading channel communication model (An et al. 2023:19):

The communication achievable rate is given by as in (An et
al. 2023:19), (Touahar & Kulag, 2025:8) :

2

peP|h.|

R=1log, |1+ ——m—
ogz( + s,

C

(5)
Sensing Performance Analysis Without CSI

In the absence of channel state information, it is employed
the Generalized Likelihood Ratio Test (GLRT) approach for target
detection (An et al. 2023). The probability of false alarm and
probability of detection are derived as in (An et al. 2023:19) as:

(6)

(7
The optimal power allocation that minimizes total transmit

power while satisfying both sensing and communication constraints
is obtained through as in (An et al. 2023:19):

Pin = max PS‘,min: Y
(3

P .
where S,min is determined by solving:
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Q1 ( C%Ps,minT\hs\Q, \/TH:M;) = Ib min ©)

Numerical Results and Performance Evaluation

It is evaluated the proposed framework through extensive

numerical simulations under three distinct power scenarios as in
(An et al. 2023:19):

Case 1: With transmit power P=17.8 dBm and target
detection probability PD = 0.95 as in Figure 2, the computed
threshold x = 14.4745 yields PFA = 5.17x10”. This demonstrates
excellent PFA capability at higher power levels.

Figure 2 PFA vs. PD for P = 17.8 dBm.
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Probability
o
(6]

o©
N

0.3 J
0.2 J
01 PFA (False Alarm) |
PD (Detection)
0 L | L L L

0 2 4 6 8 10 12 14 16 18 20
x (Threshold)

--50--



Case 2: For P=14.8 dBm and PD = 0.60 as in Figure 3, the
system achieves PFA = 1.175x10” withx = 11.35, showing
balanced performance at moderate power levels.

Figure 3 PFA vs. PD for P = 14.8 dBm.

PFA and PD vs. k using Eq. (6) and (7)
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Case 3: At P=11.8 dBm with PD = 0.25 as in Figure 4, the
framework maintains reliable performance with PF4 = 1.042x10
“and x = 9.1692, proving PFA effectiveness even at lower power
budgets.
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Figure 4 PFA vs. PD for P = 11.8 dBm.
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The results consistently show that the proposed sensing-
oriented approach maintains PFA values below practical thresholds
across all tested scenarios, confirming its robustness against
channel uncertainty.

Achievable Rate vs. Power Allocation

As shown in Figure 5, the achievable rate R increases with
the power allocation ratio p. (0 to 1). For PD = 0.60 with lower
PFA, the maximum achievable rate with p. = 1 is attained at the
optimal power level of 14.8 dBm, consistent with theoretical
predictions in (An et al. 2023:19). In addition, the power level as
15.35 dBm is found as a contribution when PD = 0.99 and PFA =
0.01 levels are aimed.
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Figure 5 Achievable rate R as a function of p.

ISI-}C: Communication-Assisted Sensing without knowledge of CSI (hs)

0.9

© ©o o o o

A O o N 0

\\III
1]
1
1]
1
!
1
1]
1
1]
1
1]
1
1]
1
1]
1
1]
1
1]
1
1
1
!
1
1]
1
1
1
1]
1
!
1
1]
1
»*

o
W
T

The probability of detection,PD

o
N
:

P = 15.35 dBm with PFA = 0.01 (PD=0.99)
P = 17.8 dBm with PFA = 5.17x10-7

0.1 === P = 14.8 dBm with PFA = 1.175x10-5
P = 11.8 dBm with PFA = 1.042x10-4
ol * Optimal solution ! | L i
0 1 2 3 4 5 6 7 8 9 10
The achievable rate, R [b/s/Hz]
Conlusions

This study has presented a sensing-oriented monostatic
ISAC framework that effectively operates without channel state
information. The approach leverages robust sensing performance
while optimally allocating power between sensing and
communication functions. Numerical results validate the
framework's effectiveness, demonstrating reliable detection
capabilities with PFAs below 107 across various operational
scenarios. In addition, the power level as 15.35 dBm is found as a
contribution when PD = 0.99 and PFA = 0.01 levels are aimed. The
proposed solution provides a practical foundation for implementing
monostatic ISAC systems in real-world environments where
channel information is unknown. Future work will explore adaptive
threshold techniques and machine learning-based approaches to
further enhance performance under dynamic channel conditions.
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