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ONSOZ

Matematik, yalnizca soyut diisiincenin bir tirlinii degil; ayn
zamanda miihendislikten doga bilimlerine, sosyal bilimlerden
teknolojiye kadar uzanan genis bir yelpazede gercek diinya
problemlerinin ¢dziimiinde vazgecilmez bir aractir. Insanlik
tarihinin en kokli ve evrensel bilimlerinden biri olan matematik,
hem kuramsal derinligi hem de uygulamali giiciiyle bilimsel
ilerlemenin temel dinamiklerinden biri olmay1 siirdiirmektedir.

Kuramsal matematik; sayilarin, yapilarin, uzaylarin ve
degisimin dogasini anlamaya yonelik soyut bir ¢aba olarak, cebir,
analiz, geometri, topoloji, mantik ve say1 teorisi gibi alanlarda
derinlesmektedir. Uygulamali matematik ise bu soyut kavramlarin
miihendislik, ekonomi, biyoloji, yapay zeka ve veri bilimi gibi
alanlarda nasil islevsel hale getirilebilecegini gostermektedir. Bu iki
yaklasim, birbirini tamamlayan ve matematigin evrenselligini
pekistiren temel siitunlar olarak ele alinmaktadir.

Bu baglamda, Modern Matematikte Analiz ve Uygulamali
Yontemler: Olcii Teorisi, Diferansiyel Denklemler, Yaklasim
Yontemleri ve Makine Ogrenmesi baslikli bu akademik eser,
matematigin ¢cok yonlii dogasini yansitarak hem kuramsal hem de
uygulamali boyutlarim1  ele almaktadir. Temelinde modern
matematiksel analizin farkli yonlerini bir araya getiren
caligmalardan olusan bu kitap; 6l¢ii teorisi, diferansiyel denklemler,
niimerik yontemler, yaklagim teorisi ve makine 6grenmesi gibi temel
konular1 igeren boliimleriyle hem kuramsal cerceve hem de
uygulamali bakis acis1 sunmaktadir. Kitapta yer alan her ¢alisma,
kendi alanimmin temel kavramlarma odaklanmakla birlikte,
matematigin farkli alt disiplinleri arasindaki dogal iliskileri de
goriiniir kilmakta ve farkli matematiksel yaklasimlar1 ortak bir
zeminde bulusturmaktadir. Bu yoniiyle eser, hem arastirmacilar hem



de ilgili alanlarda ¢alisan lisansiistii 6grenciler i¢in yararli bir kaynak
olmay1 hedeflemektedir.

Editdr olarak, bu eserin hazirlanmasinda bilimsel katki sunan
tlim yazarlarimiza ve yayin siirecinde emegi gecen herkese tesekkiir
ederim.

Prof. Dr. Siikran KONCA
[zmir Bakirgay Universitesi
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BOLUM 1

KLASIK OLCUM UZERINE BIR
DEGERLENDIRME
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Giris

Olgiim, temel olarak bir ipin uzunlugunu, bir tarlanin alanini ve bir
evin haciminin hesaplanmasi, ihtiyacindan dogmustur ve insan
yasaminda kolayliklar getirmistir. Bu duruma paralel olarak 6lgim
kavraminin hayatimiza girisi cok eskilere dayanmaktadir. Olgiim ilk
olarak, insanlar tarafindan kendi sayilarini veya hayvanlarinin
sayilarini belirlemek icin, ardindan bir ¢ubugun veya bir ipin reel
diizlemde ki uzunlugunun Ol¢liimiiniin belirlenmesi icin, daha
sonralar1 tarimin gelismesi ve yerlesik hayata gecis ile birlikte bir
tarlanin alanim1 hesaplanmak ve bir evin hacmini hesaplamak i¢in
basit anlamdaki olglmleri temsil etmektedir. Ancak bu basit
anlamdaki 6lgtimler daha kompleks 6lgiimler igin yetersiz kalmistir.
Ornegin bir agacin hacminin hesaplanmasinda veya bir yapragin
yiizey alaninin hesaplanmasinda bir ¢cok problemle karsilagiimistir.
iste bu noktada basit anlamda 6l¢limiin yetersizligi ortaya ¢ikmistir.
Buna paralel olarak daha kompleks sekil, cisim veya kiumelerin
Olgtimu igin bilimin ve 0zellikle de matematigin gelismesiyle bir ¢ok
caligma yapilmustir. Ornegin; A.L. Cauchy (1789-1857) integrali, bir
toplamin limiti olarak tanimlayan ilk matematik¢i oldu. Daha sonra
Riemann (1826-1865), Cauchy’nin ¢alismalarint siirdiirmiistiir.
Ayrica G. Cantor (1845-1918) integral ile 6lgim arasindaki iliskiyi
sezinlemistir. Yapilan caligmalar arasinda ozellikle de Fransiz
matematikciler Emile Borel (1871-1956) ve Henri Lebesque (1875-

1941) in yapmis oldugu ¢alismalar bugiinkii klasik 6l¢iim teorisinin
D



temelini olusturmaktadir. Klasik 6l¢iim teorisindeki toplamsallik

ozelliginden dolay1 bu 6l¢cuime toplamsal 6lcim de denilmektedir.

Bilimin hizhi ilerleyisine bagl olarak toplamsallik sartinin ¢ogu
zaman kisitlayict  oldugu goriilmistiir. Buna bagli olarak
toplamsallik yerine monotonluk, siireklilik gibi daha esnek sartlar
kullanilarak olusturulan 6l¢tim kurallari olusturulmustur. Bu konuda
ozellikle (Mukherjea, 1984), Sugeno (Sugeno, 1977) ve Zadeh
(Zadeh, 1978) tarafindan 6nemli ¢alismalar yapilmistir. Bu dlgimler

genel olarak bulanik 6l¢lim olarak adlandirilir.



Klasik Olglim

Klasik anlamdaki oOlciimler toplamsal o6l¢imler olarak
adlandirilirlar. Bu konuda Emile Borel (1871-1956) ve Henri
Lebesque (1875-1941)’nin g¢alismalar1 temel kaynaklar olmustur.
Daha sonra Caratheodory (Caratheodory, 1963) bu calismalari
cebirsel yapida incelemis, dlgiilebilirlik ve genisleme teoremlerini

yazmustir. Klasik dlgimlerle ilgili olarak (Zadeh, 1978), (Birkhoff,

1967) 6nemli kaynaklardir.

Tammm A, X kiimesinin alt kiimeleri izerinde taniml1 bir cebir ve

u ’de A lzerinde tanimlanan genisletilmis reel degerli bir

fonksiyon olmak (zere;
1-) u(2)=0
2-)VAe A icin u(A)>0

3-) Anmn ikiser ikiser ayrik her {A, } dizisi igin

OAn eA

n=1

olacak sekilde



oluyorsa o zaman i ye A Uzerinde bir 6l¢im (klasik 6lctim) denir.

(3). 6zellik x niin sayilabilir toplamsalligi olarak bilinir. Ayrica

A nm ikiser ikiser ayrik her {A, } dizisini,

i)

seklinde ifade edersek x Ol¢imu sonlu toplamsal 6l¢lim olarak

tamimlanir (Atanassov K., Intuitionistic fuzzy sets, 1986).
Ornek A =P(X)=2%olsun.

(A) _ | A daki nokta sayist , A sonlu ise
AN P , A sonsuz ise

tarafindan tanimlanan g bir 6lglimdur (Atanassov K., More on

intuitionistic fuzzy sets, 1989).

Gergekten;

1-) AeA olmak tlizere, A= ise pu(A)=u(J)=0 du.
2-) Ae A olmak iizere A =2" oldugundan A e2* dir. O halde
Eger, A= ise A sayilabilir oldugundan x(A)=0 dir. Eger
A= ise, iki durum sdz konusudur. A sonlu ise s(A)>0

oldugundan



dir. A sonsuz ise

oldugundan x(A)=00>0 dur.

3) (A,),, =A, Akimesi iizerinde ikiser ikiser ayrik olan sonlu
bir dizi olsun. Bu durumda, vk =1,2,....,n-1 igin A, NA,,, =9
dir.

S(A UA)=5(A)+S(An)—S(ANAL)=5(A)+5(A)

olur. Daha genel olarak,

olmak Uizere

dir.

(An )::1 , A kimesi tzerinde ikiser ikiser ayrik olsun.

A, NA,,, =< olmak Uzere,



oldugundan

olur ki bu durumda g bir 6lgtimddir.
Ornek X sayilamayan bir kiime ve

A={AcX:ya A yada X —A sayilabilirdir}

biciminde tanimlanan bir smif olsun. O zaman A bir cebirdir.

Ayrica,

0 , Eger A sayilabilirse
1 , Eger X — A sayilabilirse

u(A)=

tarafindan tanmimlanan g bir Olgimdur (Atanassov K., New

operations defined over the intuitionistic fuzzy sets, 1994).

Bunun i¢in oOncelikle A nin bir cebir oldugunu gosterelim.

E,FeA olmak lzere EcA icin ya E yada E=X-E

sayilabilirdir. F e A icinya F yada F = X — F sayilabilirdir.



Eger E ve F (yada E,F ) sayilabilirse, sayilabilir kiimelerin

birlesimleri de sayilabilir oldugundan EUF e A yada EUF e A

olur. Simdi z nun bir 6l¢iim oldugunu gosterelim:

1A=, (AcA)igin u(A)=0 dir.

2-) A yada A =X —A sayilabilir oldugundan. Eger A sayilabilir
ise 1(A)=0 veu(X —A)=lolur. Eger A =X — A sayilabilir ise

(X —A)=0 ve u(A)=1 olur ki her iki durumda da
,u(A)ZO
olur.

3-) (An ):O:l, A nin ikiser ikiser ayrik bir dizisi olsun. n=1,2,...
olmak uzere, A, ler sayilabilir olsun. Bu durumda Cantor’a gore

sayilabilir kimelerin birlesimi de sayilabilir oldugundan
)
n=1
dir. Oyle ki A, ler sayilabilir oldugundan

y(wlAnjziy(An)zO

n n=1



dir. Eger A, lersayilamaz ise, budurumda X — A ler sayilabilirdir.

(X—-A,)", dizisindeX —A, c X -A, c..c X-A, icin

u(X-A,)=1
oldugu agiktir.
Ornek X =Z* olsun. A =2 ve Zan pozitif reel sayilarin
n=1

yakinsak bir serisi olsun.

Ya, ., AzQvesonlu ise

neA

p(A)=1qo , A sonsuz ise
0 : A= ise

A tizerinde tanimlanan g bir 6l¢tim degildir. Fakat sonlu toplamsal
bir 6lcimdir (Atanassov K., 1989). Gercekten;
1A= ,(AeA) icin u(A)=0

2-) A=Q ise u(D)=0ve A= ise

/J(A) = Zan >0 Zan yakin sakseri old. )

neA neA

A= ise u(A)=o0 olurki her lig durumda da x>0 oldugundan

(2) kosulumuz saglanmis olur.



3) X= U icin x£(X)=00 oldugu agiktir. Ancak »_a,

n=1
yakinsak bir seri oldugundan Z,u{n} = Zan <oo olup u bir
n=1 n=1
Olgtim degildir. Fakat 4 sonlu toplamsal bir 6lcimdur. Cinkd

k

X = U{n} olacak sekilde sonlu segersek (X ) <o olacagindan

n=1

u(x) = Utn} ) =3

n=1 n

olur ki x sonlu toplamsal bir 6lciim olur.

Onerme A cebiri izerinde bir dlgim 4 olsun. O zaman,

1-) AcB, AcA,BeAigin ,u(A)S,u(B) dir.

2-)Eger A e A, 1<n<o ve UAne.A icin

n=1

n n=1

,u( :Anj < i,u(A

olur.
Ispat:
1-) B=AU(B—-A) alalim. Bu durumda

A=A, A,=(B-A)

--10--



ve n>2 igin A, =< ise O zaman u sayilabilir toplamsaldir. Bu

durumda 4(B)=u(A)+u(B-A) olur ki, buradan

olur.

n-1
2-) Bj=A, ve n>1icinB,=A, —UAi olsun. Buradan yola

i=1

¢tkarak Vn icin B, € A UBn:UAn eA, B,cA, ve B,

n=1 n=1

ayrik kiimeleri icin, asagidaki esitlik elde edilir.

;{OAJ:#[O Bngi,u(Bn) <3 u(A,) (Birkhoff, 1967).

n=1

Onerme u, A cebiri Uizerinde bir 6lgiim olsun.

1-)Eger A, C A, ,1<n<o igin A, €A ise 0 zaman

ﬂ([‘jAn):nmﬂ(An)

n=1 n—oo

dir.

2-)Eger A, DA, 1<n<w icin A e A, u(A)<xo ve

n+l?

(A, €A ise 0zaman,

n=1

-11--



e

n—>oo

dir. Ustelik x sonlu toplamsal 6l¢timii (1) vasitastyla sayilabilir

toplamsaldir.

Ispat: Oncelikle en son iddiamizi ispatlayalim. (1) 6zelligi ile u

sonlu toplamsal bir 6lgim olmak (zere A nin ayrik kiimelerinin

bir dizisi (A,)",

®© k
JA,eA ve B, = JA, olsun. O zaman
n=1 n=1

B, cB... B,eA ve [ JB =|JA, eAolur. Buyiizden (1)

k=1 n=1

Ozelliginin varsayimi tarafindan,

A oo

n=1 k=1 k—»0

> u(A) =X u(A)

elde edilir. Simdi (1) ve (2) 6zelliklerini ispatlayalim.

1) JA, e A ve A, cA

n=1

ve n>0 igin,

n+l

Bl :Al ) Bn =A‘n _An—l

olsun. O zaman,

--12--



B,NB,=< (n=m)

ve

2 #(B,)=limu(A,),

el k—0

[Ak :0 B, iginj

n=1

istenen elde edilmis olur.

2-) A, DA, u(A)<w, ﬁAn e A olsun. O zaman
n=1
Al_ﬂAn :U(Al_An)
n=1 n=1
ve

Al _An - Al _An+1

olur ki (1) dan dolayr w(A,)<eo igin,

--13--



H(A=A)=p(A)-u(A,)

bulunur. Eger x(X)<oo ise, X in alt kiimelerinin olusturdugu .4

cebiri Uzerindeki 4 olcimi sonludur. Eger u(X,)<oo ve

X = JX, ile Adaki kimelerin bir (X, ) dizisi var ise  olciimii

n=1
o —sonlu olarak adlandirilir. Onerme 3.1.1 deki (2) ifadesinden
ayrik kiimeler olarak (Xn);o=1 daima elde edilebilir. Bu sonsuzluk

sartt bir 6l¢iim iizerinde sik¢a rastlanir. Genel teoremlerin ¢cogu
kismi i¢in bu duruma ihtiya¢ duyulur. Bunun en 6nemli 6rnegi R
nin alt kimelerinin bir cebiri Uzerindeki o — sonlu 6lgimudar ki

buna araliklar tizerindeki Lebesque 6l¢timi denir (Delgado, 1987).
Ornek A cebiri Gizerinde sonlu toplamsal bir 6lgtim 4 olsun.
A,Be A igin,

1-) AcBise ,u(A)S,u(B)

2-) pu(Av B) + ,u(Am B):,u(A) + u(B)
--14--



3-) Eger AcB ve y(A)<oo ise ,u(B—A):,u(B)—,u(A) dir
(Dempster, 1967).

Gergekten;

1-) A,BeA ve AcB olmak izere B=AuU(B—A) olarak
yazabiliriz. A=A ,A,=B—-A, n>2 i¢in A, = ise 0 zaman

4 sayilabilir toplamsal olur. Bu durumda
#(B)=u(A) + u(B-A)
ifadesinden x(A) <u(B) elde edilir.

2-) Olgimiin (3). Ozelligi geregince (A,)", dizisi ikiser ikiser
ayrik olacagindan toplamsalolarak yazabiliriz. Yani
k=12,.,n-1 igin A, NA,,=0 dir. A;=A,A,=B olmak

uzere,
(A, UA,) ;Ak = u(A) + u(A,)
olur. Yani
H(AUB)=u(A,) + u(B)
dir.

--15--



3-) AcB ise B=AU(B-A) ve u(A)<oo olmak iizere,
y(B):,u(A)+,u(B—A) ifadesinden ,u(B)—,u(A):u(B—A)
elde edilir.

Ornek Sonlu toplanabilir z 6lgiimi icin 6nerme 3.1.2 nin (2)

sayilabilir bir dl¢iim olmadigini gosterebiliriz.

((2): Eger, A, DA,,;,1<n<ow icin Aje A, u(A)<wo ve

ﬁAn e A

n=1

ise 0 zaman,

y(ﬂAnj:Iim #(A,)) (Dubois, Possibility Theory, 1988).
n=1

X=Z"={1,2,..} ve Ac X alalim. A, ={n,n+1n+2,..} olmak

uzere, A,={12,3..}, A,={2,3,4,.}, A,={34,5,.} ... icin

A, -2

=1

>

oldugundan

--16--



elde edilir. Ayrica A, kiimesi sonsuz oldugundan (A, )=c0
olur dolaysiyla x 6lctimii Onerme 3.1.2 nin (2) si i¢in sayilabilir

olcim degildir.
Ornek Bazi ndegerleri icin, ,u(An)<oo olmadikca

A, DA, 1<n<ow, icinA e A, u(A)<wo ve []A,eA ise
n=1

y(@Anj:Iimy(An)

nN—oo

esitliginin gergeklesmeyecegini gosterebiliriz (Dubois, Constant
appraximations of belief functions, 1990).
X=Rve A, =(n,oo) , A=2" ve u sayilabilir bir él¢iim olsun.

n=1,2,3,...icin, Alz(l,oo), A2=(2,oo), A3:(3,oo)... olmak

uzere, ﬂAn = oldugunda ,u(ﬂ An]zo olur. Ancak diger

n=1 n=1

yandan, ¥n icin, ux(A,)=o oldugundan dolay:

ﬂ[ﬁAnjimﬂ(An)

n=1

olur. Bu da bize gosteriyor ki, A, = (n,oo) kiimelerinden baz1 A

ler icin ,u(Al)<oo olmadikga bu esitlik saglanmaz.

-17--



Sonuclar

Bulanik 6l¢iim, kesin smirlarla tanimlanamayan durumlari
belirsizlik duzeyleriyle ifade ederek Olgumlerin daha gercekgi
yapilmasin1  saglar. Ayrica, daha ¢ok geleneksel ©6lgcme
yontemlerinin yetersiz kaldigi gri alanlarda, bulanik kiimeler
araciligiyla daha esnek ve kapsayici degerlendirmeler yapilabilir. Bu
caligmada, klasik 6l¢iim ile ilgili bazi bilgiler verilip bu 6lglim ile

ilgili baz1 temel ve kapsayici tanimlara yer verilmistir.

--18--
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Giris

Olgiim, temel olarak bir ipin uzunlugu, bir tarlanimn alan1 ve
bir evin hacminin hesaplanmasi, ihtiyacindan dogmustur ve insan
yasamina kolayliklar getirmistir. Bu duruma paralel olarak 6l¢iim
kavraminin hayatimiza girisi cok eskilere dayanmaktadir. Ol¢iim ilk
olarak, insanlar tarafindan kendi sayilarimi1 veya hayvanlarimin
sayilarint belirlemek icin, ardindan bir ¢gubugun veya bir ipin reel
diizlemdeki uzunlugunun Ol¢limiiniin belirlenmesi i¢in, daha
sonralar1 tarimin gelismesi ve yerlesik hayata gecis ile birlikte bir
tarlanin alanin1 hesaplamak ve bir evin hacmini hesaplamak igin
basit anlamdaki o6lgtmleri temsil etmektedir. Ancak bu basit
anlamdaki 6l¢iimler daha karmasik dl¢limler i¢in yetersiz kalmistir.

Ornegin bir agacin hacminin hesaplanmasinda veya bir yapragin
yiizey alaninin hesaplanmasinda bir¢ok problemle karsilasilmistir.
Iste bu noktada basit anlamda 6l¢iimiin yetersizligi ortaya ¢ikmustir.
Buna paralel olarak daha kompleks sekil, cisim veya kiimelerin
oOl¢iimii i¢in bilimin ve 6zellikle de matematigin gelismesiyle bir ¢ok
calisma yapilmistir. Ornegin; A.L. Cauchy (1789-1857), integrali bir
toplamin limiti olarak tanimlayan ilk matematik¢i oldu. Daha sonra
Riemann (1826-1865), Cauchy’nin ¢alismalarint siirdiirmiistiir.
Ayrica G. Cantor (1845-1918) integral ile 6l¢iim arasindaki iliskiyi
sezinlemistir. Yapilan calismalar arasinda o6zellikle de Fransiz
matematikciler Emile Borel (1871-1956) ve Henri Lebesque (1875-
1941) in yapmis oldugu ¢alismalar bugiinkii klasik 6l¢iim teorisinin
temelini olusturmaktadir. Klasik 6lgiim teorisindeki toplamsallik
ozelliginden dolay1 bu 6l¢iime toplamsal 6l¢iim de denilmektedir.
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Bu bélimde, latis teorisi, latis genislemeleri ve 6zelliklerini
inceleyecegiz (Atanassov K., Intuitionistic fuzzy sets, 1986).
(L,A,v) sistemi ya da daha basit bir gosterimle £ ; eger A,v
islemleri altinda kapal1 ise bir latis olarak adlandirilir. iki tane latis
ailesi £ ve £ olsun. Eger £ den £ ne tanimlanan doniisim
birebir ise latis islemleri altinda izomorfizmlikten bahsedebiliriz.
Eger £ den £ ne bir izomorfiklik varsa £ ye, £ ile latis-
izomorftur denir ve £ = £ yazilir. Egerx Ay =X ise X<y yazariz
veya buna benzer olarak eger xAy=y ise y <X yazariz. Eger L
nin her A alt kiimesi supremum v A ve infimum AA y1 igeriyorsa
L ye bir tam latis denir. Bir £ tam latisi maksimum ve minimum
elemanlar: igeren bir latis ailesidir. Biz bu bélimde maksimum ve

minimum elemanlari, sirasiyla L, ve L, ile gosterecegiz.

Bu kisimda kullanacagimiz X kumesi, aksi belirtilmedikce
bir tam kiume olarak alinacaktir ve £ de, X in alt kimelerinin

olusturdugu bir latisler ailesi olarak kabul edilecektir.

Tamim Eger bir L latisler ailesi asagidaki kosullari sagliyorsa bir

latis o — cebiri olarak adlandirilir:

1) vfel igin f¢eL
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2-) Eger n=12,3,..i¢cin f €L ise o zaman v f. el dir

(Atanassov K., More on intuitionistic fuzzy sets, 1989).

L tarafindan iiretilen latis o — cebiri (L) seklinde gosterilir.

Bu kisim boyunca kullanacagimiz latisler, tam latisler olacaktir ve

X bir uzay olup, u# de, X in bulanik kiimelerinin tiyelik

fonksiyonu olarak kabul edilecektir.

Tamm Eger m:o(L ) — RuU{x} fonksiyonu asagidaki kosullari
sagliyorsa, m ye ,O'(C) latis o — cebiri lizerinde bir latis degerli

Ol¢iim adi verilir.

1-) m(9D) =L,

2-) Vf,geo(L)icin m(f),m(g)=L,:f<g=m(f)<m(g).
3-) vi,geo(L):m(fvg)+m(fAag)=m(f)+m(g).
4-)Bger f,co(L),neN ve f<f,<..<f <..iseozaman

m(zjl fnj =limm( f,) dir (Atanassov K., New operations defined

over the intuitionistic fuzzy sets, 1994).
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Uyar1 m, ve m, ayni latis o — cebiri iizerinde taniml1 latis degerli
Olctimler  olsunlar. Eger bunlarda  birisi  sonlu ise

m(E)=m,(E)-m,(E),Eeo(L) fonksiyonu iyi tammldir ve

0'([,) tizerinde sayilabilir toplamsaldir (Atanassov K., 1989).

Tamm Eger X iizerindeki iiyelik fonksiyonlarmm o (L) latisler

ailesi agagidaki kosullar1 sagliyorsa latis degerli fuzzy(bulanik) o —

cebir olarak adlandirilir.

1-) Va e L icin « sabit olmak tizere; a e o (L)
2-) V,uea(ﬁ) icin 1—,uea(£) dir.

3-) Eger (u,)eo(L)ise sup(u,)eo(L),neN dir (Atanassov
K., 1989).

Tanmm Eger m: O'(L )—) R u{oo} fonksiyonu asagidaki 6zellikleri

sagliyorsa, m ye latis degerli bulanik &l¢iim denir.

1) m(@)=L,

2-) Yy, eo(L),m(zs),m(15) 2058 < g, =M () <m(1s,).
3) Vet eo(L),m(ey v i) +m( ey Ap)=m(zg)+m(1,).
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4-) (t,)eo(L),neN, < p,...< p, S...;Sup(,un):,u:m(y)zlirfnm(,un)

(Birkhoff, 1967).

Tamm m’ ile gosterilen bir latis degerli bulanik dis 6lgiim, £
tizerinde tanimli latis degerli kiime fonksiyonlarinin bir

genislemesidir ve asagidaki 6zellikleri saglar.
1)ym (D)=L,

2-)m () <m () icin g4 < p,.

3ym’ (31 s j < i\Zm* (4, ) (Birkhoff, 1967).
Ornek Asagidaki drnegi inceleyelim:

m =

o e =0
Ly, pte # D

Burada L, latis kiimelerinden olusan ailelerin minimum elemani ve

L, ise maksimum elemanidir (Birkhoff, 1967).

Eger X en az iki eleman igerirse, m” latis degerli bulanik dis 6lgiim

olur aksi halde £* iizerinde bir latis degerli bulanik 6l¢iim olmaz.
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Onerme F, X in L, "1 igeren bulanik alt latis kiimelerinin bir sinifi

oyleki  her u, <u, icin F de (an)w dizisi mevcuttur ve

n=1

['e]

Ha S( an) ) dir. v, F lzerindeki latis degerli fonksiyonlarin bir

genislemesi olsun Oyle ki x, € F igin l//(@)= L, ve y/(yA)Z L,

dir. O zaman m", £* Uzerinde
m*(ﬂA) =inf {l//(ﬂsn )n=1 g €F,u, < /uBn}

ile taniml1 bir bulanik dis 6l¢im olur (Caratheodory, 1963).

Teorem m™ bulanik odlgiilebilir kiimelerin sinifi olan B ,bir o —

cebirdir. Aym zamanda m" nln B ye kisitlanisi olan m , bir latis
degerli bulanik dl¢timdir (Caratheodory, 1963).

Teorem (Generalized Carathedory Extension Theorem) m ,

o(L)< L' o— cebiri iizerinde bir latis degerli bulamk &l¢iim ve

He < iy i€,
m’ (g ) =inf {m(nylﬂgn j e, €0(L), e < nV_luEn}

olsun. O zaman asagidaki 6zellikler gecerlidir:

1-) m" ,bir latis degerli bulanik dis dl¢iimdiir.
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2-) U EO'(E) iken m(,uE):m*(,uE) dir.
3-) pe €o(L) iken g, m” latis bulanik dlgiilebilirdir.

4y m , m" nin m" - latis degerli bulanik dlgiilebilir kiimelere
daraltilmis, G(C) yi igeren bir bulanik o — cebiri tizerinde bir latis

degerli bulanik Sl¢iime, m nin bir genislemesidir

5-) Eger m latis degerli bulanik o — sonlu ise, m latis degerli

bulanik Ol¢iimi (O'(E) yi igeren en kii¢iik bulantk o — cebiri

Uzerinde) m nin bir genislemesidir ve tektir (Caratheodory, 1963).
Sifir — Toplamsallik

Tanim y:f—)[—oo,oo] fonksiyonu E,F € FENF=C ve

u(F)=0icin

#(EUF)=u(E)
kosulunu sagliyorsa u ye sifir-toplamsaldir denir (Delgado, 1987).
Tamm Her E,F € F, 4(E)=0,u(F)=0, iken

,u(EuF):O
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oluyorsa u ye zayif sifir-toplamsaldir denilir.

Teorem Bos olmayan herhangi bir F e F igin ,u(F)=O ise u

sifir-toplamsaldir (Dempster, 1967).

Ispat: u(F)=0 olacak sekilde bir Fe F varsa, F=& dir.

Buradan herhangi bir E € F icin x#(EUF)=u(E) elde edilir.

Teorem Eger u:F —>[O,oo] azalmayan bir kiime fonksiyonu ise

asagidaki ifadeler denktir (Dempster, 1967).

1-) u sifir toplamsaldir.
2-) E,FeF ve u(F)=0icin u(EUF)=u(E) dir

3-)E,FeF , FcE ve u(F)=0icin u(E—F)=u(E)dir.
4-) E,FeF ve u(F)=0icin u(E—-F)=u(E)dir.
5) E,FeF ve u(F)=0icin u(EaF)=u(E)dir.

Ispat:  (1)=(2) : u(F)=0 ise 0<u(E-F)<u(F)=0 ve

(F - E) NE =© olacagindan

U(EUF) = u(E)

elde edilir.
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(2)=(1): Aciktir.

(D)=@Q): u(E)=u((E-F)UF) yazmak yeterlidir.

3)=4): u(E-F)=u(E-(FNE))ve FNEcE oldugundan
0<u(FNE)<u(F)=0

ifadesinden istenilen elde edilir.

@)=(1): FNE=Q iken u(E)=pu((EUF)-F) dir.

(2) ve (4) = (5): u(E~—F)<u(EaF)<u(EUF) esitsizliginden

istenilen elde edilir.

(5)=(1): ENnF=Y iken EaF =EUF esitliginin dogrulugunu

gostermek yeterlidir.

Sifir toplamsal olmayan fuzzy (bulanik) 6l¢timlerine verecegimiz en

basit 6rnek asagidaki gibidir.

Ornek X ={a,b}, F =P(X) ve

1 E=X
“B)=10 ExX

(Dubois, Groups Operating on Fuzzy Sets, 1980).
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Teorem 4 sifir-toplamsal olmayan bir fuzzy-6lgimi ve E < &

olsun. # de lim u(F,) = Oolacak sekilde herhangi bir azalan kiime

dizisi igin :
limu(EUF,)=u(E)
ve diger yandan

u(E) <o iken u(E U Fy ) <ookosulunu saglayan en kiigiik bir
pozitif Nn_sayisi vardir (Dubois, Evidence measures based on fuzzy

information, 1985).

Ispat: Bu teoremi (E)<oo icin ispatlamak yeterlidir. F =()F,

n=1

alirsa ,u( F ) = IirEn ,u( F, ) =0 esitligini elde ederiz.

EUF, \YEUF oldugundan g niin sifir-toplamsal ve sirekli

olusundan
limu(EUF,)=u(EUF)=pu(E)
elde edilir.

Teorem Ee& ve u sifir-toplamsal bir fuzzy o6l¢iim olsun. &

deki limu(F,)=0 olan herhangi bir azalan {F,} dizisi igin

n
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limu(E—F,)=pu(E) dir (Dubois, Evidence measures based on

fuzzy information, 1985).

Oto-Siireklilik (Autocontinuity)

Tamm y:F —[—0,0] fonksiyonu n=12,3,.,Ee % F, e 7,

n

ENF,#J (yada F,cE) ve limu(F,)=0 iken

IirEn,u(Ean):,u(E)

kosulu saglaniyorsa . ’ye Ustten (ya da alttan) auto-streklidir denir.
Eger x4 hem ustten hem de alttan auto-surekli ise x4 ’ ye auto-

sureklidir denir (Dubois, Evidence measures based on fuzzy
information, 1985).

Teorem u:F —)[—oo,oo] genisletilmis reel degerli kiime

fonksiyonu olsun. Herhangi bir Ee & ve E#J igin
[u(E)|=2

kosulunu saglayan bir £>0 sayist bulunabiliyorsa x auto-

sureklidir (Dubois, Evidence measures based on fuzzy information,
1985).
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Ispat: Teoremin kosulundan {F,} = & ve limu(F,)=0 ise dyle
bir n, dogal sayis1 vardir ki her n>n, i¢in F, = ve buradan

Iim,u(Eu Fn): limu(E - Fn): Iim,u(E) :,u(E)
dir.

Teorem p: F—[—oo,00 | fonksiyonu iistten ya da alttan auto-stirekli

ise p sifir-toplamsaldir (Dubois, Possibility Theory, 1988).

Siradaki iki teoremde negatif olmayan kiime fonksiyonlarinin

stirekliligi ile auto-stireklilik arasindaki iliskiyi inceleyecegiz.

Teorem u:F — [0, oo] , & Uzerinde Ustten surekli ve Ustten (ya da

alttan) auto-strekli ise x Ustten (ya da alttan) sireklidir.

Ispat: {E }, # deki kiimelerin azalan bir dizisi ve

E=()E, = E,—-E\ @ dir.
n=1

w4’ niin & tizerinde sinirliligr ve istten siirekliliginden
limu(E,-E)=0

Ve u’ nln Ustten auto-siirekliligini kullanarak
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lim .(E, ) =lim u(E U(E, ~E)) = u(E)

elde edecegiz. Bu ise x’ niin iistten siirekli oldugunu verir. Alttan

stirekliligi de benzer sekilde ispatlanir.

Teorem u:F —[0,»], & zerinde azalmayan Ustten siirekli bir

fonksiyon ve Ustten auto-strekli ise 0 zaman g Ustten sureklidir.

Ispat: Eger {E,}, 1(E, <) olacak sekilde & > deki kimelerin

n

azalan bir dizisi ise x’ niin monotonlugundan

os/,{El—ﬁ Enjs;z(El)@o

n=1
olur. Devami bir 6nceki teoremin ispatinda oldugu gibi yapilir.

Lemma ,u:]-"—)[o,oo] asag1 yari-slrekli fuzzy o6lcusi (ya da

yukart yari-stirekli fuzzy olguisti) olsun. {E, } =% ve limu(E,)=0
olsun.  istten (alttan) auto-siireKli ise k =1,2,3,... igin &, = {Ex }

olacak sekilde {E,}* in bir {&} alt dizisi bulunabilir 6yle ki;

. * k | _
Ill[ny(ig Enij_o

dir.



Teorem y:]—"—>[0,oo] asag1 yari-surekli fuzzy o6lgust olsun. g ,
istten auto-stirekli ise , lim z(E,) =0 kosulunu saglayan " nin bir
n

{E,} dizisinin,
u(limE, =0

olacak sekilde bir {E, } alt dizisi bulunabilir (Dubois, Possibility

Theory, 1988). Bu durumun tersi, x sonlu sifir-toplamsal oldugu

zaman yine dogrudur.

Teorem p:F —>[0,00] sirh bir fuzzy 6lgiisii olsun.

4 alttan auto-sureklidir & u sifir-toplamsaldir ve herhangi bir

AeF, {En} alt dizisi vardir dyle ki,
,u(A—WEni ) = u(A) dir (Dubois, Possibility Theory, 1988).

Teorem p:F —[0,00] fuzzy dlgiisii olsun. Eger u Ustten auto-

surekli ise alttan auto-siireklidir. Dahasi, # sonlu ise alttan auto-

sureklilik Ustten auto-siirekliligi verir ve boylece auto-streklilik ,
ustten auto-streklilik ve alttan auto-streklilik denktir (Dubois,
Possibility Theory, 1988).
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Tamm g : F —[—o0,o0] Ustten (alttan) diizgiin auto-sureklidir &

£>0 igin dyle bir 6 =5(&) >0 vardir ki;

Ee,Fed, ENF=0 (yada EcF) ve|u(F)<ds dr

4 hem alttan hem de Ustten diizgiin auto-surekli ise x4 ye diizgiin

auto-sureklidir denir (Dubois, Constant appraximations of belief
functions, 1990).

Teorem Eger :F —[-o,00] fonksiyonu dstten diizgiin auto-

surekli ise (alttan) o zaman Ustten auto-sureklidir (alttan). Boylece
dizgun auto-sureklilik auto-siirekliligi verir (Dubois, Constant

appraximations of belief functions, 1990).

Teorem :F —[0,0] fonksiyonu azalmayan ise asagidaki

ifadeler denktir.
1-) u, dizgun auto-sureklidir.
2-) u, Ustten diizgun auto-sureklidir.

3-) u, alttan dizgun auto-sureklidir.
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4-) EeZ, FeZve p(F)<oo olsun.Herhangibir £>0 icin dyle

bir 5=5()>0 sayist vardir ki;
1(E)-e < u(EaF)< pu(E)+e

ispat : (1) = (2) Agiktr.

(2= (3) #(ENF)<u(F)<& oldugundan,

p(E)=u((E-F)U(ENF))<u(E-F)+¢ esitliginden ve u

niin monotonlugundan istenilen elde edilir.

3)=(4) ,u(EmF)S,u(F)S&oldugundan,

p(EaF)=u((EUF)—(EnF))2u(E-F)-e2pu(E)-¢

>
bulunur. Diger taraftan 4 (F -E)< x(F)<& oldugundan
p(E)= pu(E-F)=pu((EaF)—(F—E))= u(EaF)-¢ elde edilir.
(4) = (1) Agiktir.

Monoton Kiime Fonksiyonlarinin Yapisal Karakteristikleri

Bu bélimde u:F—)[O,oo] fonksiyonu azalmayan fonksiyon iken

yapisal karakteristikleri arasindaki iliskiyi 6zetleyecegiz.
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Teorem u:F —>[O,oo] quasi-toplamsal ise auto-siireklidir , dahasi

4 sonlu ise quasi-toplamsallik diizgiin auto-stirekliligi verir.

Ispat : u:F —[0,0], 0 6zel T-fonksiyonu ile quasi-toplamsal
olsun. Herhangi bir ENF, =& olacak sekilde EcZ, {F,}cZ
, n=123.. ve limu(F)=0 icin @ou ye toplamsallif:

uygularsak ve & ve @ 'in siirekliliginden

limu(EUF,)=1imo™| 0(u(E))+0(u(F,))]

= 9‘{9(/1(E))+9(|i£n,u(Fn))}

=0 0(u(E))]=u(E) olur.

Bu x’ nun Ustten auto-sirekli oldugunu verir. Benzer sekilde, E e

7, {Ric 7 {R}cEn=123.. wve limu(F)=0 icin

n

1(F,) <o oldugunu kabul edersek;
lim «(E - F,) =1im 07 0(u(E))-0(u(F,))]
=07 0(u(E))-0(limu(F,))|

= 9‘1[9(u(E))] =u(E) olur.
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Bu da x nin alttan auto-siirekli oldugunu verir. Sonug olarak

auto-siireklidir. Dahasi u(x)=a<oo ise; 6 , [0,a] Uzerinde

diizgtin streklidir. Boylece 67*,[0,6(a) | tzerindedir.

u(EF)=0"[0(u(E))+0(u(F))]

esitliginden herhangi ayrik iki E,F € & i¢in x4 nin Ustten diizgun
auto-siirekli  oldugunu  gormek kolaydir. Bdylece quasi-

toplamsalligin monotonlugu vermesi gergeginden, x dlzgun auto-

sureklidir.

Lemma Eger x:F —[0,0] fonksiyonu A — kuralini sagliyorsa

auto-siireklidir. Dahasi () <oo oldugunda diizgiin auto-suireklidir

(Dubois, Constant appraximations of belief functions, 1990).

Teorem Eger u:F —>[0,oo] fonksiyonu azalmayan ve alt-

toplamsal ise duzgin auto-sureklidir  (Dubois, Constant

appraximations of belief functions, 1990).
Ispat: Ec %, F e Ficin
y(E)Sy(EuF)Sy(E)+,u(F)

esitsizliginden istenen elde edilir.
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Teorem g4 : F —[0,0] ve p,:F —[0,0] fonksiyonlarinin ikisi
de sifir-toplamsal (ya da auto-sirekli, ya da duzgin auto-strekli)

olsun. Eger, herhangi bir E e Zigin p: F —[0,0],

#(E) =14 (E)+,(E)

seklinde tanimlanirsa p de sifir-toplamsaldir (ya da auto-strekli, ya
da dlizglin auto-strekli ) (Dubois, Constant appraximations of belief
functions, 1990).



Sonuclar

Bu ¢alismada, latis teorisi, latis genislemeleri ve 6zellikleri ile Klasik
ol¢tim, bulanik 6l¢iim ve latis degerli 6l¢tim arasindaki iliski ayrintili
olarak ortaya konmus ve klasik 6l¢limde yapilmis olan bir¢ok tanim
ve teorem, bulanik kiimeler ve latis kiimeleri yardimiyla bulanik

6lglim ve latis-degerli 6lgtim (latis 6l¢iim)’e taginabilmistir.

Ayrica klasik analizde O©nemli bir yere sahip olan
yakinsaklik, siireklilik, diizgiin yakinsaklik gibi kavramlar bulanik
Olciim uzay1 iizerine Egoroff ve Lusin teoremleri kullanilarak

genellestirilebilmistir.

Bu durum gosteriyor ki; klasik analizdeki bazi1 kavramlar ve
uygulamalari, bulanik 6l¢iim uzayi iizerine tasinabilir ve burada da

kendine uygulama alani bulabilir.
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BOLUM 3

YENI TiP BERNSTEIN-KANTOROVICH
POLINOMLARININ [-1,1] ARALIGINDAKI
YAKLASIMI

Harun CICEK!

Giris

Lineer pozitif operatorlerin yakinsaklik &zelliklerinin
incelenmesi, matematiksel analiz icerisinde uzun yillara yayilan
zengin ve derinlikli bir aragtirma alani olusturmustur. Bu incelemeler
sirasinda, 6zellikle fonksiyonel analiz ile yaklagim teorisi disiplinleri
birbirini tamamlayan bir biitiinliik igerisinde ele alinmis; s6z konusu
operatdrlerin yapisal karakteristiklerinin anlagilmasi, bu iki alanin
sundugu yontem ve kavramsal araclar olmaksizin miimkiin
goriilmemistir. Kapali bir aralik {izerinde tanimh siirekli
fonksiyonlarin uygun polinom dizileri aracilifiyla yaklasik olarak
temsil edilebileceginin ortaya ¢ikisi, yalnizca yaklasim teorisinin
gelisiminde bir doniim noktasi teskil etmekle kalmamis, ayni
zamanda fonksiyonel analiz c¢ergevesinde ele alinan operator
teorisinin de kapsamini genisletmistir. Bu bulgu, analizin cesitli alt
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disiplinleri arasinda kurulan teorik kopriilerin  en erken
orneklerinden biri olarak kabul edilmektedir.

Bu baglamda, 1885 yilinda Karl Weierstrass tarafindan
stirekli fonksiyonlarin polinomlarla yaklastirilabilecegini ifade eden
klasik ispat, yaklasim teorisinin tarihsel gelisiminde temel baslangi¢
noktasini olusturmus ve sonraki arastirmalarin yoniinii biiyiik olglide
belirlemistir. Ancak Weierstrass’in orijinal ispatinin gerek uzunlugu
gerekse teknik giriftligi nedeniyle donemin pek ¢ok matematikgisi
tarafindan yeterince aciklayic1 ve erisilebilir bulunmamasi, daha
sistematik, daha dogrudan ve yapisal 6zellikleri daha net ortaya
koyan alternatif ispat yontemlerinin gelistirilmesine duyulan ihtiyaci
artirmigti. Bu arayislar, pozitif lineer operatorlerin sistematik
bicimde ele alinmasiyla sonuglanmis ve bu operatdrlerin yakinsaklik
kriterlerinin arastiritlmasi modern yaklasim teorisinin temel
problemlerinden biri haline gelmistir.

Bu siireg icinde, S. N. Bernstein tarafindan tanitilan ve bugiin
Bernstein operatorleri olarak bilinen pozitif lineer operatorler,
yaklasim teorisinin hem kavramsal hem de uygulamali ydniine
onemli katkilar sunmustur. Bernstein operatorlerinin Weierstrass
yaklagim teoremini basit, acik ve tamamen pozitiflik ilkesine dayali
bir ispatla elde etmesi, yaklagim teorisinin seyrini degistirmis ve
pozitif lineer operatdrlerin onemini belirgin bigimde artirmistir.
Ardindan Korovkin tarafindan ortaya konulan ve belirli bir test
fonksiyonu ailesi araciligiyla operatdr dizilerinin yakinsakligini
karakterize eden Korovkin tipi teoremler, yaklagim teorisinin arag
kutusunu daha da genisletmis; hem klasik hem de genellestirilmis
fonksiyon uzaylarinda operator yakinsakliginin incelenmesine giiclii
bir ¢ergeve saglamistir.
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Tim bu gelismeler, lineer pozitif operatorlerin yalnizca
fonksiyonlarin yaklastirilmasinda temel araglar olmanin Gtesinde,
q —analiz, p, g-genellestirmeleri, agirlikli fonksiyon uzaylari ve
olasiliksal yorumlar gibi cagdas matematik alanlarma da niifuz eden
genis kapsamli bir teorik yapi ortaya c¢ikardigini gdstermistir.
Dolayistyla yaklagim teorisi, giinlimiizde analizin pek cok kolunda
kullanilan zengin operatér smiflarinin  incelenmesine imkan
saglayan, tarihsel temelleri yiizyili asan bir matematiksel disiplin
haline gelmistir.

1912 de S.N. Bernstein

n
B, (f;p) = Z f (%) (Z)p"(l —-p)n"
k=0
burada n € N, 0 < p <1 olmak iizere, polinomlar dizisi ile
birlikte siirekli bir f fonksiyonuna yaklasmanin daha basit bir ispati
verilmigtir.  (Bernstain,1912-1913). Lineer pozitif Bernstein
operatorleri temel almmasi {izerine bircok farkli operator
kurulmustur. Ayrica bunlarin farkli genellemeleri yapilmstir.

Gilintimiizde ise bu operatorler kullanilarak ¢aligmalar
yapilmaktadir. Bernstein operatorlerinin  kurulmasmin ardindan
Kantorovich 1930 yilinda, [0, 1] aralig1 {izerinde integrallenebilir f
fonksiyonlari i¢in;

k+1
n n+1

Kalfip) =@+ )y () oFa-pr* [ fode
k=0 _k_

biciminde tanimhi K,, operatorleri tanimlanmistir. K,, operatorlerine
ise Kantorovich operatorleri denilmektedir. (Lorentz, 1953).
p € [01],0 < ay, <1 oldugunda
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La(fiP) = ) F(@n)Pen(p), Pen(p) =0
k=0

pozitif operator dizisinin n — oo i¢in [0,1] aralifinda f
fonksiyonuna diizglin yakinsak olabilmesi icin gerek ve yeter
kosullar1 ii¢ tanedir. Bohman ise bunlari su sekilde siralamistir;

L,(p)31
Ly(tp)3p
L (t%p) = p?
seklinde ifade etmistir. Asikardir ki Bohman’mn arastirdigi

operatorlerin degeri f fonksiyonunun [0,1] araliginin digindaki diger
degerlerinden ise bagimsizdir.

1953 yilinda Korovkin, Bohman tarafindan ortaya konulan
yakinsaklik kosullarmin genel bir ¢ergeve icinde gecerliligini fark
etmis ve bu gozlem dogrultusunda bugiin Korovkin tipi teoremler
olarak anilan temel sonuglardan ilkini ispatlamistir. Bu c¢alisma,
yaklasim teorisinde pozitif lineer operatorlerin yakinsakligini
karakterize eden test fonksiyonlari yonteminin sistematik bi¢cimde
kullanilmasinin Oniinii agmis ve alanin kuramsal temellerini 6nemli
Olciide giiglendirmistir. Bunu izleyen yillarda, 6zellikle Bernstein
polinomlar1 {izerine ¢ok sayida aragtirma gerceklestirilmis, bu
polinomlarin hem klasik hem de genellestirilmis formlarina iliskin
yontemler giderek daha kapsamli bir bigimde incelenmistir.
Bernstein polinomlar1 iizerine yiiriitiilen sistematik c¢alismalarin
1990’11 yillardan itibaren belirgin bir ivme kazandigi, bu dénemde
polinomlarin analitik, cebirsel ve olasiliksal 6zelliklerine iliskin pek
cok arastirmanin literatiirde yer aldigi goriilmektedir. Bernstein
yaklasiminin farkli fonksiyon uzaylarina, degisken agirlik yapilarina
ve genellestirilmis g-calculus yontemlerine uyarlanmasiyla birlikte,

--46--



her gecen yil yeni operatdr aileleri, yeni yakinsaklik kriterleri ve
cesitli genellestirme tiirleri literatiire kazandirilmastur.

Bu gelismeler icerisinde en dikkat ¢ekici ilerlemelerden biri
Lupas’a aittir. Nitekim Lupas, 1987 yilinda Bernstein polinomlarinin
g-analogunu tanitarak klasik polinom ailesini g-analiz baglaminda
yeniden big¢imlendirmis ve bu yeni yap1 altinda polinomlarin
yaklagim Gzelliklerini ayrintili bigimde incelemistir. Lupas’in
calismasi, g-analiz ile yaklasim teorisi arasindaki etkilesimi
gliclendirmis, daha sonra ortaya ¢ikan g-Bernstein, p, g-Bernstein ve
diger g-genellestirmeli operatdrlerin temelini olusturmustur.

Ote yandan, yaklasim teorisinde klasik yakimsaklik kavrami
etrafinda sliregelen arastirmalar devam ederken, modern ¢aligmalar
icerisinde “istatistiksel yakinsaklik” kavrami da Onemli bir yer
edinmistir. Bu kavram araciligiyla operator dizilerinin klasik
noktadan-noktaya veya uniform yakinsaklik diginda kalan daha zay1f
fakat oldukega etkili yakinsaklik tiirleri incelenebilmekte; bdylece
operatorlerin istatistiksel yaklasim ozellikleri, istatistiksel limit
davraniglar1 ve yaklasim hizlar1 sistematik bir bicimde analiz
edilmektedir. Ozellikle Korovkin tipi sonuglarin istatistiksel
ortamlara uyarlanmasi, pek ¢ok operator ailesinin hem teorik hem
uygulamali agidan yeni niteliklerinin kesfedilmesine imkéan
tanimistir.

Yukaridaki bilgiler 1s18inda  yeniden tanimladigimiz
Bernstein-Kantorovich operatorlerinin yeni bir genellemesini
tanitacagiz. Calismamizda

p€[01]vefe C[-1,1]ve

<Pr];1 (p) = (m+)7 (l + p)j (L - p)m_jolmak uzere

2m)™m™ \m+1 m+1
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seklinde tanimlamig oldugumuz operatoriin lineer pozitif operatdr
oldugunu ayrica Korovkin teoreminin sartlarini sagladigini, [—1,1]
simetrik arali§i lizerinde diizgiin yakimsadigimi gosterilecektir.
Stireklilik modiilii yardimi ile yaklagim hizi hesaplanacaktir. Bu
operatér i¢in ise bazi teoremler ispat edilecektir. Ayrica bu
operatoriin merkezcil momentleri yardimi ile de asimptotik
yaklagimi hesaplanacaktir. N,,(f; p) operatoriiniin f fonksiyonuna
yaklagimi grafikler yardimi ile gosterilecektir. Son olarak secilen
baz1 fonksiyonlara operatoriin yaklasimi baz1 m ve p degerleri igin
niimerik tablosu da hazirlanacaktir.

ARASTIRMA VE BULGULAR

Operatoriin Tanimlanmasi

Bu bolimde N,,(f;p) operatori tanitilarak Korovkin
teoremi kullanilarak operatdriin yaklasim o6zellikleri incelenecektir.
N,,(f; p) operatoriiniin merkezi momentleri hesaplanacaktir.
Voronowskaja’nin Bernstein polinomu i¢in yapmis oldugu
asimptotik yaklagim hesabi1 N,,(f;p) operatorii i¢in yapilacaktir.
N,,(f; p) operatorii i¢in yaklasim hizi hesaplanacak ve bu operator
i¢in ise bazi teoremler de ispat edilecektir.

p €[0,1]ve f € C[—1,1] ve

‘Pr]ﬁ (p) = % (l + p)j (l - p)m_jolmak uzere

m+1 m+1
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Nm(fi P)

m (Zr]r:lfl)mrL
D2
=TSN e [ roa M
1= (zm{;-l_l)mrzl-l

Bernstemn-Kantorovich Operatdrii (1) ile tanimlansm. Oncelikle
N,,,(f; p) operatoriiniin lineer pozitif operator oldugu ispatlanmastr.

Lineerlik 6zelligi: V a, € R ve Vf, g fonksiyonu igin
Nin(a.f + B.g) = a.Nin (f; p) + B. Nin(g; p)

esitligi saglandiginda N,,, operatdrii lineer operatordiir.

Tanim

X ve Y ayn1 F cismi iizerinde iki lineer uzay olmak iizere; L
: X — Y Seklinde tanimlanan doniisiimlere operator adi verilir,

Tanim
Lineer pozitif operatér monoton artandir. Yani;
flp) < g(p) = L(gip) = L(f;p)
esitligi saglanir.
Teorem

L bir lineer pozitif operator olmak tizere |L(f)| < L(|f])
esitsizligi saglanir.

Tanim

(f,,) dizisi f fonksiyonuna x tizerinde diizgiin yakinsaktir. <
Ve>0 icin Iny Oyle ki Vn > nyveVp € X igin |f,,(p) — f(p)| <
€ olacak sekilde n, (&) sayisi vardir.
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Tanim

(a, b) c R agik bir aralik ve f de (a, b) den R ye bir fonksiyon
olsun. t, v € (a, b) i¢in

i 20— ()
im————=
p

t-ov t —

= A(p)
sonlu limiti varsa, bu A(p) sayisina f fonksiyonunun p noktasindaki
tiirevi denir ve f ' (p) ile gosterilir.

Bu durumda, f fonksiyonu v noktasinda tiirevlenebilirdir
denir.

Tanim
f bir I araliginda tanimlanmuisg bir fonksiyon olsun.
0 < a <1 olmak iizere, her p;, p, € I i¢in;

|f (p1) — f(p2)| < M|p; — p,|*

olacak sekilde M > 0 varsa, f ’ye Lipschitz sinifindandir denir ve
f € Lipy (@) ile gosterilir.

Tanim

[a, b] araliginda tanimli f fonksiyonu verilsin. [0, b — a]
araliginda tanimli

w(6) = w(f;6)
_ {Suplf(pz) —fpDl:lp2 —pul 6,}
p1, P2 € [a,b]

fonksiyonuna f ’nin siireklilik modiilii denir.

Teorem
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N,,(f; p) operatorii [-1,1] araliginda siirekli ve tiim reel
eksende sinirli olan f fonksiyonuna ayni aralikta diizgiin yakinsaktir
yani,

T}li_l}go”Nm(f; p) = fllc=1,11=0

Teorem

f € C[—1,1] olsun bu taktirde yeterince biiyiik K’lar igin;

1
IN (f50) — f(P)| < 20 (f:\/—E)

esitsizligi saglanir.
Teorem

f tiirevlenebilir ve tlirevi [—1,1] araliginda, siirekli ve tiim
reel eksende sinirli bir fonksiyon olsun. Bu durumda; belirli bir n
den sonra;

Ny, (f; p) — f(P)I<\/—_+2w< ’;%) dur.

Teorem

f fonksiyonu [—1,1] araliginda sinirli ve (—1,1) araliginin bir
x noktasinda ikinci tiirevi mevcut olsun. Bu takdirde;

lim m(Nin (f; ) = f(p)) = —pf' () + (1 =p )f '(0)

esitligi saglanir.

Ornek

Asagida f(p) = (1 + p?)sin(2pm) fonksiyonuna N,, (f; p)
Bernstein-Kantorovich operatdriiniin yaklagimi maple programinda
grafikler c¢izilerek gosterilmistir. Sekil 1 de siyah renk f
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fonksiyonunu yesil, mavi ve kirmizi renkler ise grafik iizerinde
degisen degerler belirtilmistir.

Sekil 1 f(p) fonksiyonunun m = 10,m = 25 ve m = 50
degerleri i¢in operatoriimiiziin yaklagimi

0.5+

Ornek

Asagida f(p) = (1 + p?)sin (% pn) fonksiyonuna
Bernstein-Kantorovich operatoriiniin yaklagimi maple programinda
grafikler c¢izilerek gosterilmistir. Sekil 2 de siyah renk
f fonksiyonunu yesil, mavi ve kirmizi renkleri ise degisen degerleri
belirtmistir.
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Sekil 2 f(p) fonksiyonunun m = 10,m = 25 ve m = 50

degerleri i¢in operatoriimiiziin yaklagimi

0.5

Sekil 3 f(p) fonksiyonunun m = 10,m = 25 ve m = 50
degerleri i¢in operatoriimiiziin yaklasimi

08
06 —+
0.4 4

02




Ornek

Asagida f(p) = (1 + p*)sin(pm) fonksiyonuna Bernstein-
Kanorovich operatoriiniin yaklasimi maple programinda grafikler
cizilerek gosterilmistir. Sekil 3 de siyah renk f fonksiyonunu yesil,
mavi ve kirmizi renkleri ise degisen degerleri belirtmistir.

Sonug¢

[—1,1] simetrik aralik tizerinde tanmimlamis oldugumuz
N,,(f; p) operatoriiniin lineer pozitif operator oldugu, korovkin
teoremi gartlarin1 sagladigl ve f fonksiyonuna diizgiin yakimsadigi
gosterilmis olup daha sonra ise N, (f;p) operatoriiniin merkezi
momentleri hesaplanmistir. ve asagidaki esitlikler de elde edilmistir.

Nn,O (P) =1

p

Rp1(p) = — ———

2p%  3m3+11m?+ 12m+3
m+1 3(m+1)*

N11,2(,0) =
6m> + 19m* + 22m3 + 12m? + 4m + 1
(m+1)°
3vm*(6 — p?) — pm3(12p? + 49) + 3pm?(23 — 6p?)
+
3(m+1)>
3pm(15 — 12p?) + 3p(3 — p?)
3(m+1)°
4p*(m+1)7  24p3(m3 +m?)
5(m+ 1)° (m + 1)

Nn,3 (p) = -

Nn,4 (p) =



N —10m” 4+ 305m® + 670m° + 311m* + 230m3 + 235m? + 70m + 5
5(m+ 1)8

p2(6m® +20m* + 95m3 + 11m? + 12m + 3)
(m+ 1)°

p(6m® + 20m* + 22m3 + 12m? + 4m + 1)
(m +1)6

Hesapladigimiz merkezi momentler kullanilarak N, (f; p)
operatoriiniin asimptotik yaklagimi incelenmis ve asagidaki esitligin
saglandig1 gosterilmistir.

f"(p)
2

Daha sonra siireklilik modiili yardimiyla N, (f;v)
operatdriinlin yaklasim hizi hesaplanmis olup asagidaki esitsizlik
elde edilmistir.

lim m(Nou(f;0) = f(p)) = —pf'(p) + (1 + p?)

1
INy (f5 0) — | < Zw( :-)
m(fip) = f(p) f N
f tiirevlenebilir ve tiirevi [—1,1] araliginda, siirekli ve tim

reel eksende siirli bir fonksiyon olsun. Bu durumda; belirli bir n
den sonra

K 1
Vm|N, (f; p) — S—+2W< ';—)
esitsizligi elde edilmistir.
Son olarak N, (f; p) operatdriiniin

f(p) = (1 + p?)sin(2pm)
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Ve

g(p) = (1 + p*)sin (%pﬂ)

fonksiyonlarina ait farkli m degerleri i¢in yaklasimlarin karsilastiran
grafikler cizilmistir.
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BOLUM 4

4w — BERNSTEIN - DURRMEYER - STANCU
OPERATOR DiZiSi ICIN VORONOVSKAJA TIP
YAKINSAMA TEOREMI

Giilten TORUN!

Ulkii DINLEMEZ KANTAR?

Giris
Diizgiin yaklasimi en uygun sekilde ifade eden Weierstrass
yaklagim teoremini kanitlamak i¢in Bernstein (Bernstein, 1912)
tarafindan olusturulmus olan Bernstein operatorleri {izerine
arastirmalar giiniimiizde de devam etmektedir. Son zamanlarda
arastirmacilar, bu tip operatorlerin yakinsama davranisinin daha iyi
oldugunu gostermek i¢in A ve u gibi parametreleri dahil etmisler ve
bdylece yaklagim teorisindeki modelleme olanaklarini gelistirmeye
calismislardir. Zhou ve Cai (Zhou ve Cai, in review), (4, u)-Bernstein
operatorleri olarak adlandirdiklari iki parametreli yeni bir Bernstein
operatorii tanimlamiglardir. Ayrica, Stancu tipi genellestirilmis
(1, w)-Bernstein operatorlerinin g¢esitli yaklasim ozellikleri (Cai ve
ark., 2024) de incelenmis ve bu c¢alismada Voronovskaja tipi
asimptotik teorem ve noktasal tahminler gibi yeni tanimlanan
operatorlerin daha ileri yaklasim 06zelliklerini de incelenmistir.

! Dog. Dr., Kastamonu Universitesi, Egitim Fakiiltesi, Matematik ve Fen Bilimleri
Egitimi Boliimii, Kuzeykent, Kastamonu, ORCID:0000-0002-1897-0174
2 Prof. Dr., Gazi Universitesi, Fen Fakiiltesi, Matematik Bolimi, 06500

Yenimahalle, Ankara, ORCID: 0000-0002-5656-3924
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Ardindan (Cai ve Zhou, 2024) makalesinde, (A, u)-Bernstein
operatdrlerini Durrmeyer tipinde tanimlanarak, bu operatorler igin
Korovkin tipi yaklagim teoremi elde edilmis, yakinsama oranini
sirastyla stireklilik modiilii, Lipschitz siirekli fonksiyonu ve Steklov
ortalamasimi kullanarak incelenmis ve Voronovskaja asimptotik
formilii olusturulmustur. (Dinlemez Kantar & Torun, 2025)
makalesinde yapilan ¢alismada ise, (4, u)-Bernstein-Durrmeyer-
Stancu tip operator dizisi tanitilmis ve bu operator dizisi igin gerekli
olan momentler ve merkezi momentler hesaplanmis, Korovkin
teoremi ispatlanmis ve bir yakinsaklik oran1 bulunmustur. Biz de bu
operatdr dizisi igin birinci ve ikinci gesit siireklilik modiillerini
kullanarak yakinsaklik oranlarin1 ve ayrica Lipschitz simnifi
fonksiyonlarin yardimiyla yakinsaklik oranini verecegiz. Ardindan
ele alinan operator dizisi icin Voronovskaja tip yakinsaklik teoremini
ispatlayacagiz. En son olarak da bu yakinsamayi destekleyen
grafikleri verecegiz.

(Dinlemez Kantar & Torun, 2025) makalesinde asagidaki
sekilde tanimlanmis olan (4, u)-Bernstein-Durrmeyer-Stancu tip
operatdr dizisini ele alalim:

g € C[0,1] ve 0 < a < B olmak iizere,

Unt5(9:%) = (m+ D IR vt () [y vma(2)g (B dz, (1
burada v (x) (1, ) —Bezier baz fonksiyonlaridir ve

4,
Umff(x) = V1 () + ViV 1,0(%) = Y41 Vima,041 (X)),

1=01,..,m, 2)
{ Yo =Ym+1 =0, 3)
4 o\m—2k+1 1+p _
Y, =(1—-pw 22 D) + 2t D) A 1=01,..,m,

—1<1<1vey,1ilem arasinda yer alan bir sabittir (Cai & Zhou,

2024).
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Ilk 6nce bu calismada elde edilecek Teoremleri verebilmek igin
gerekli olan Lemmalar1 verelim.

Lemma 1. (Dinlemez Kantar & Torun, 2025) e;(z) = z/,
j=0,1,23,4 ve m > 1dogal say1 olmak lizere U;}l”‘(‘z’ﬁ(ej(z); x) igin
asagidaki esitlikler elde edilir;

i) U'l”ﬁ(eo(z) x) =1,

o 1-2x+xMt1_(1—x)M*1
ll) Umaﬁ(el(z) x) - +ﬁ( + m+2 + (1 - ) 2(m-1)(m+2)
1_(1 X)m+1 a
HU+ AT ) 4

2x(2-3x) 6x2—8x+2
iii) U ﬁ(ez(z) )= +ﬁ)2 (xz +

m+3 (m+2)(m+3)

x—2x24xm+1 1—2x—2x2+3xm+1—(1—x)m+1]
(m+2)(m+3) (m—-1)(m+2)(m+3)

+1-w |

1— x‘m+1_(1_x)m+1
(m+1)(m+2)(m+3) )

+(1 + “)/1 [(m+2)(m+3)

2ma 1-2x+xM*T1_(1—x)Mm+1
+ (m+p)? (x 'u) 2(m-1)(m+2)
1_(1 x)m+1 aZ
+(1 + ,Ll) 2(m+1)(m+2) ) (m+p)?’

3x2(3-4x) = 9x(2-6x+4x?%) | 6—36x+54x%-24x3
m+4 (m+2)(m+3) (m+2)(m+3)(m+4)

3
iv) Umaﬁ(eg,(z) x) = e (x3 +

+(1—p [3x2—6x3+3xm+1 6x3-18x2+6x+6xM+1 3—6x—15x2+18xm+1—3(1—x)m+1]
K 2(m+3)(m+4) (m+2)(m+3)(m+4) (m—-1)(m+2)(m+3)(m+4)
3x2-3xMm*1 6x—3x2+3xM+1 11(1-x"M+1—(1-x)"+1)
+(1 + 'U)A [2(m+3)(m+4) (m+2)(m+3)(m+4)  2(m+1)(Mm+2)(m+3)(m+4) )

m+1

3m2a 2, 2x(2-3%) 6x%—8x+2 _ [x 2x2%+x
(m+B)3( + m+3 (m+2)(m+3) (1 M) (m+2)(m+3)

_ 1-2x-2x%43x™H-(1-x)™t ]+ 1+ )2 [ 1— xm+1_(1_x)m+1])
(m-1)(m+2)(m+3) H (m+2)(m+3) (m+1)(m+2)(m+3)
3ma? 1-2x+xMT1_(1—x)Mm+1
t (m+p)3 (x

2(m-1)(m+2)

W)
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1_(1 x)m+1 tl3
2(m+1)(m+2) ) (m+p)3’

+(1+ ,u)/l

4, 4x3(4-5x) | 72x?-192x3+120x*
V) ma, 3(64 (Z) x) = (m+B)4 ( m+5 (m+4)(m+5)

96x—432x2+576x3-240x* | 24-192x+432x%-384x3+120x%
(m+3)(m+4)(m+5) (m+2)(m+3)(m+4)(m+5)

3x2—4x*+2x™M*1  18x2-56x3+28x*+10xM*1
(m+4)(m+5) (m+3)(m+4)(m+5)

+(1—;O[

36x—114x%+100x3—-32x*+40x™M*1 23—46x—232x2+255xm+1—23(1—x)m+1]
(m+2)(m+3)(m+4)(m+5) 2(m-1)(m+2)(m+3)(m+4)(m+5)

2x3—2x™M*1 18x2-12x3-6x™*1  36x—36x2+12x3-12xM*1
(m+4)(m+5) (m+3)(m+4)(m+5) (m+2)(m+3)(m+4)(m+5)

+u+un[

12(1-x™M+1-(1-x)M+1) ]) am3a ( 3, 3x%2(3-4x) |, 9x(2-6x+4x?)
(m—1)(m+2)(m+3)(m+4)(m+5) (m+p)* m+4 (m+2)(m+3)

3x2—6x3+3x™M*1  ex3-18x2+6x+6xM1
2(m+3)(m+4) (m+2)(m+3)(m+4)

6—36x+54x2-24x3
(m+2)(m+3)(m+4)

+a-p|

3x2-3xM*1 6x—3x2+3xM*1
2(m+3)(m+4) (m+2)(m+3)(m+4)

3—6x—15x2+18xM*+1-3(1-x)M*1
(m-1)(m+2)(m+3)(m+4)

|+ +mal

11(1—x™M+1—(1-x)™m*1) ) 6m2a2( 2+2x(2—3x) 6x%—8x+2
2(m+1)(m+2)(m+3)(m+4) (m+p)* m+3 (m+2)(m+3)

1

X
] + (1 + /J)/l [(m+2)(m+3)

+(1 - 1) [95—2252+xerl _ 1-2x—2x243xM+t1_(1—x)M+
(m+2)(m+3) (m-1)(m+2)(m+3)

1-2x+xM*H1_(1—x)Mm+1

)

_ 1—xm+1—(1—x)m+1]) 4ma (

(m+1)(m+2)(m+3) (m+p)* 2(m-1)(m+2)
1_xm+1_(1_x)‘m+1 a4
+(1 + ,u)ﬂ 2(m+1)(m+2) ) (m+p)¥

Lemma 2. (Dinlemez Kantar & Torun, 2025) m > 1 dogal
sayl olmak iizere U:}l’fx 5(9(2); x) operator dizisi i¢in Lemma 1
kullanilarak asagidaki esitlikler elde edilir;

1-2x+xM*1_(1—x)M*1

m (1-2x
l) Umaﬁ (Z - x) x) m+ﬁ’ m+ﬁ {m+2 + (1 - M) 2(m-1)(m+2)
1_(1 x)m+1 a —
+(1 + #)A 2(m+1)(m+2) } + m+f ﬁ(x)
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2 2_
i) U (2 = 0% x) = + o {2x(2 - 30) + T2

(m+ﬁ)2 (m+pB)2(m+3) (m+2)
1-2x2 4™+l 1_2x—2x243xMH1_(1—x)M*1
+(1 ) [ (m+2) (m-1)(m+2) ]

1 1— m+1_(1_ )m+1 2
w2 [T - ST T o

(m+1)(m+2) (m+p)2
2ma {1—2x ( _ )1—2;\¢+xm+1—(1—9«:)7""'1
(m+B)2 lm+2 2(m-1)(m+2)
F1_(1—x)m+1 2mx(1-2x) a?
+(1+ 2= 2(m+1)(m+2) } T m+p)(m+2) | (m+p)?
_ 2mx {( _ ) 1-2x+xM*t1_(1—x)m+1
(m+2)(m+p) 2(m-1)

1—xM¥1l_(1-x)Mm+1 2ma
+(1 + w4l 2(m+1) } m+B 'Dm“ﬁ(x)

x* 4x*(16x3-20x%)  am3x(9x%-12x3)

iiii) Umaﬁ((z —0)%x) = (m+[?)4 (m+B)*(m+5) (m+B)3(m+4)

6m?x®(4x-6x?)  4x3m(1-2x) & m*(72x*-192x3+120x%)
(m+pB)2(m+3) (m+B)(m+2) (m+B)*(m+5)(m+4)

_am3(18x*-54x3+36x*) | 6m?(2x”-8x3+6x*)

(m+p)3(m+4)(m+3) (m+B)2(m+3)(m+2)
+(1—p) [m4(2x3—4x4+2xm+1) _2m3(3x3-6x*+3x™+2)
(m+pB)*(m+5)(m+4) (m+B)3(m+4)(m+3)

6m?(x3—2x*+x"*3)  2m3(x3—2x*+x w3 (1))
(m+B)?(m+3)(m+2) (m+pB)(m+2)(m-1)

(2x _me+1) _ 6m3(x3—xm+2)
+(1 + A [(m+ﬁ)4(m+s>(m+4> (m+ )3 (m+4)(m+3)

em2(x3—xmt3) 2m(x3—xm+4—x3(1—x)m+1)] 0 (l)
(m+B)2(m+2)(m+3) (m+B)(m+2)(m-1) )

Lemma 3. (Dinlemez Kantar & Torun, 2025) m > 1 dogal
sayl olmak iizere U:}l’fx 5(9(2); x) operator dizisi i¢in Lemma 2
kullanilarak asagidaki esitlikler elde edilir;

i) nlll_r)rgo mUﬁl’f;'ﬂ((z - x);x) =1-Q2+p)x+a,

--62--



ii) 11m mU ‘;ﬁ(((z —x)?); x) = 6x — 10x?,

iii) Tlll_r}(lmm maﬁ(((z —x)*);x) = 12x% (x — 12

Yaklasim Ozellikleri

Upia ﬂ(g(z) x) operatorleri i¢in Korovkin tipi yaklasim teoremi

(Dinlemez Kantar & Torun, 2025) de verilmistir. Burada once
streklilik modiillerini kullanarak yakinsaklik oranlarin1 veren
teoremleri verecegiz.

Sureklilik modulunt

w(g;6):= sup  sup |g(x+k)—g(x)|, ge€C[01] 4)
0<ks<é x,x+k€[0,1]

olarak verelim. Siireklilik modiiliiniin

19(2) — 90| < w(g; &) (1+27) (5)
ozelligi vardir.

Teorem 1. g € C1[0,1] olsun. m > 1 dogal sayisi i¢in

Upt 5(9(2); %) = g@)| < 19" GOl ots 5 ()|

2 [p (o (g'; /pf,;f;,ﬁ(x)) (6)

esitsizligi vardir. Burada a e B(x) ve pm o B(x) ler Lemma 2 nin (i)

ve (i1) esitlikleri ile tanimlidir ve g’ niin siireklilik modiilii w(g'; &)
ile ifade edilmektedir.
Ispat. g € ¢'[0,1] olsun. V x,z € [0,1] i¢in ortalama deger

teoremini kullanirsak;
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9@ —g(x)=g' Dz -x)+(g'(2) —g'())(z—x) ()

yazabiliriz. (7) esitligine (1) de tanimlanan Um‘fxﬁ operatorini

uygulayip, operatoriin lineerligini, ardindan esitligin her iki tarafina
mutlak deger kullanirsak;

Upt 5(9(@); %) — g(x) = g' Uk (2 — x;%)
maﬁ ((g (2)—g (X))(Z—x) x)
Ut 5(g(2); %) — g(x)| < 1g’ (x)|| ka2 =)

+Ur/}112c/3(|9'(2) =g (Ollz — x|; x).

Son esitsizligin sag tarafindaki ikinci ifadeye (5) 6zelligi ve Cauchy
Schwartz esitsizligini uygularsak;

(Ut (g2 %) = ()| < 1g' I [URE, (2 = x|

+a)(g’;6)Ur’}1’,’fZ,B (lz x| + lz— xl x),

<1g' )l Uyt 5(z = x;0)|

+w(gr;5)\/ujgjw((z—x)2;x) <1+§\/Umﬁ((z_x)z;x)>,

<1g' @)l ot (O] + w(g'; ) /pf,;f;ﬁ(x) (1 +s /pma ﬁ<x>>

olur. § = / pfn’; 8 (x) secersek (6) esitsizligini elde etmis oluruz.
& > 0 icin Peetre k fonksiyoneli

K2(g;6) = _inf {llg—hll +&|lh"|1}, )

hec2[0,1]

ile tanimlanir. (De Vore & Lorentz 1993, Teo. 2.4.) den
--64--



Ky(g;6) < sz(g;\/g) )

olacak bigimde bir L > 0 sabit vardir. Burada w, (g V6 ) fonksiyonu
g nin ikinci dereceden siireklilik modiilidiir ve

wz(g:V8) = sup sup  |g(x +2k) — 29(x + k) + g(x)|
0<ks<\8 Xx+kx+2ke[0,1]

(10)
seklinde tanimlanir.

Teorem 2. g € C[0,1] olsun. x € [0,1] ve m > 1 dogal sayis1
icin agagidaki esitsizlik elde edilir;

ro(got,@), (D

burada L > 0 pozitif bir sabit, o,,", B(x) ve pm o B(x) ifadeleri Lemma

2 de tanimlanmistir. Ayrica w ve w, fonksiyonlart g nin sirasiyla
birinci ve ikinci stireklilik modiilleridir.

Ispat. g € €[0,1] fonksiyonu i¢in yardime1 bir operatorii;
A (g(0) = UNh (g@i) = g (x + apb s(0) + 90 (12)

ile tanimlayalim. l’]\r’}l'f;ﬁ(g(z);x) operator dizisinin lineerligi ve

Lemma 1 in (i) ve (ii) 6zelliklerini kullanirsak

maﬁ(z xx) =0 (13)
oldugunu goriiriiz. h€ €?[0,1] i¢in Taylor acilim;
h(z) =h(x) +h' (x)(z—x) + fxz(z —w)h' (w)du (14)
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seklindedir. (14) esitliginin her iki yanina Um’fx p operator dizisini

uygulayip, (13) i kullanirsak;

maﬁ(h(z) x) —h(x) = maﬁ <f (z —wh" (Wdu; X>

olur. (12) ve Lemma 2 nin (ii) esitliginden

| T2 5(h(2); ) — h(x)| <U;P;B<U:(z—u)h"(u)du ;

)

+J~x+0' aﬁ(x) |X + O_maﬁ(x) _ u| |hn(u)|du

2
Au
A, (Z — u)2 (Um,a,ﬁ (x))
< Il Umf;,ﬁ( . ;x>+f.

h//
|| a ||< maﬁ( )+( maﬁ(x)> > (15)

esitsizligini elde ederiz. Ayrica (1) operatori, (12) yardimci
operatdrii ve Lemma 1 in (i) esitliginden

02 5 (g 0| < Uk s (@0 + | (x + ot )| + g

< 3llgll (16)
olur. (12), (15) ve (16) dan

|@£pw@x@—g@ﬂSF%QAM@—h@x@—(g—m@ﬂ

+ |03k 5 h 20 = h@)| + [ (x + o3t ,(0)) - g )|

< 4llg —h||+”hzﬂ< e )+< maﬁ(x)) >+w(g;0,fl’f;[;(x))

(17)
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olur. Her h € €?[0,1] i¢in (17) esitsizliginin sag tarafinda infimum
alirsak

it 5+ (o2t 50))
8

A
|Umlfz/3(g(z)ix) - g(x)| <4K,| g;

A,
+o (g; oit <x)),

+w (g af}{’éﬂ(x))

esitsizligini elde ederiz.

Simdi U o ﬂ(g (2); x) operatdr dizisinin yakinsama oranini Lipschitz
siifi fonksiyonlarin yardimu ile inceleyecegiz. Eger g € Lip.(7) ise

lg(2) —g()| < Mlz—x|";  zx€[0]1] (18)

dir. BuradaM >0 ve 0 <7 < 1dir.

Teorem 3. Eger g € Lip.(t) ise U o B(g(z) x) operator
dizisi i¢in
T

Une 5920 = 9| < M}ty )
esitsizligi vardir. Burada pr/}l’fx P (x), Lemma 2 de tanimlanmuistur.

Ispat. g € Lip.(t) olsun. U i ﬁ(g(z) x) operatdr dizisinin

lineerliginden

Upte (9(2); %) — g@)| < UM (19(2) — g ()]s %)
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< M+ 1D IR () [y vma (@) |9 (B) - 9(0)| dz

m+3

Zm+g—xlr dz (19)

+

< M(m+1) X2, v, (X)f Vim,1(2)

olur. 3+ % =1 esitliginde p = % ve q = % olarak alip, (19) un sag
tarafinda yer alan integrale Holder esitsizligini uygularsak;

2-T

190 - 9| < w1 (VR (= 27520 ) (Ut 1)) ©

<M ()t ﬁ(x))
olarak elde ederiz.

Son olarak, U e ﬁ(g(z) x) operatorlerinin asimptotik davranigini
incelemek i¢in Voronovskaja tip bir yaklagim teoremi verecegiz.
Teorem 4. g € C?[0,1] olsun. x € [0,1] vem > 1 dogal sayisi
i¢cin
lim m (U (9(2)0) = g(0) = (1= 2+ Bx + @)g' ()
+(3x — 5x%)g" (x)

esitsizligi elde edilir. Burada —1<A<1ve 0 <a < dir

Ispat. g € ?[0,1] olsun. g(z) fonsiyonuna x civarinda
Taylor formiiliinii acarsak;

9(@) =g +g'(x)(z—-x)+ %g"(x)(z — )% +71(z,%)(z — x)* (20)

yazabiliriz. Burada 11m r(z,x) = 0 dir. (20) esitligine U, B(g(z) x)

operator dizisini uygular ve m ile ¢arparsak;

m(Ugk 900 = () = mg' UL, o (2 = 10 )
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+= g"(x)uma (2= 20%0) +mUE (r(z,0)(z — 0% %) (21)
olur. (21) in son terimine Cauchy-Schwarz esitsizligini uygularsak;

mUpk - (r(z,%)(z — 2)% x)

N

< (Vi) (0 2%

esitsizligini elde ederiz.

11m u. A ﬂ(rz(z x); x) = 0 ve Lemma 3 iin (ii1) esitliginden m — oo

icin m? m,mﬂ((z —x)* x) limiti sonlu oldugundan
hm mUmaB(r(z x)(z—-x)%x)=0 (22)

elde ederiz. Boylece (21) esitliginin m — oo i¢in limitini alip, Lemma
3 iin (1) ve (11) esitlikleri ve (22) yi1 kullanirsak Teorem 4 {in ispatini
tamamlamis oluruz.

Grafiksel Sonuglar

Bu calismada, (4, u)-Bernstein-Durrmeyer-Stancu operatorlerinin
yaklasim Ozellikleri inceledik ve bu operatorlerin asimptotik
davranigi i¢in Voronovskaja tipi teorem verdik. Caligmada elde
edilen teorik sonuglar1 desteklemek amaciyla, bu operatorlerin bir
g fonksiyonuna  yakinsamasini  baz1  grafiksel  Orneklerle
gosterecegiz.

Ornek. g(x) = x?e~?* fonksiyonunun x € [0 1] i¢in tanimlandigini
varsayalim. Ilk olarak, asagidaki grafik U o ﬁ(g, x) operatdrlerinin
u=1,1=1 a=p=0.01 ve farkh m degerleri i¢cin g(x)
fonksiyonuna yakinsamasini gostermektedir (Sekil 1).
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Sekil 1. Urlri,lo.o1,o.o1(g; x) operatorlerinin g(x) fonksiyonuna

yvakinsamasi

Ikinci olarak, asagidaki grafik U,‘;L’,';B(g;x) operatorlerinin y =1,
A=1 olmak iizere ma ve L 'nmin farkli degerleri igin
g (x)fonksiyonuna yakinsamasini gostermektedir (Sekil 2).

Sekil 2. Urlrillajﬁ(g;x) operatorlerinin g(x) fonksiyonuna

yvakinsamasi

m = 10 o =1, B=2

25 a=01 B=02

- ” S0 o =001 s 0.02
— 72 = 100, o =0.001, B =0.002
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Son olarak, agagidaki grafik U,", B(g, x) operatdrlerinin m, u, 4,

a ve B 'min farkli degerleri i¢in g(x) fonksiyonuna yakinsamasini
gostermektedir (Sekil 3).

Sekil 3. U, ﬁ(g, x) operatorlerinin g(x) fonksiyonuna

yakinsamasi

~0 = 2
100, 1 =10, 2 = -

¥ H u \I

M 3

Boylece, m > 1 dogal say1 olmak iizere [0,1] lizerinde U” ma,p (95 %)

operator dizisinin m arttikca g € €[0,1] fonksiyonuna dogru egilim
gosterdigi gozlemlenmektedir.
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BOLUM 5
SUREKSIZLIK NOKTASI ICEREN SINIR DEGER
PROBLEMININ GREEN FONKSIYONU ACILIMI
VE CARLEMAN FORMULU

1. KADRIYE AYDEMIR!
Giris
Ozdegerler ve bunlara karsilik gelen 6zfonksiyonlar1 arastirmak igin
bircok neden vardir. ik olarak, adi ve kismi diferansiyel
denklemlerle modellenen bir¢ok problemin ¢oziimleri genellikle
ozfonksiyon agilimlari cinsinden agikga verilebilir (inceleyecegimiz
problemler i¢in, bu tiir 6zfonksiyon ag¢ilimlari, bir vektoriin 3-
boyutlu uzaydaki i, j ve k bilesenleri cinsinden gosterimine veya n-
boyutlu uzaydaki karsilik gelen gosterimlerine tamamen benzerdir).
Ikinci olarak, ozdegerler genellikle bagimsiz ilgi konusudur.
Ozdegerler, 1s1 iletimi, konsantrasyon analizleri, gozenekli
ortamlarda akis vb. durumlarda ortaya cikan ¢ozeltilerin bozunma
(veya biiylime) hizlar1 hakkinda net tahminler saglamaya yardimci
olur. Titresim problemlerinde ise miizik aletlerinin temel
frekanslarin1 ve harmonik seslerini verirler. Ozdegerler, niikleer
reaksiyonlar i¢in kritik kiitlenin belirlenmesinde onemlidir. Ayrica,
0zdegerler optimizasyonda ve varyasyon hesaplamalarinda dogal
olarak  ortaya ¢ikar. Cogu Ozdeger problemi agikga
cozlilemediginden hem 6zdegerlerin hem de 6zfonksiyonlarin nitel
davranisini arastirmak oldukca 6nemlidir. Bu nedenle, 6zdegerlerin

! Prof. Dr., Amasya Universitesi, Fen Edebiyat Fakiiltesi, Matematik Béliimii,

Orcid: 0000-0002-8378-3949
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ve karsilik gelen 6zfonksiyonlarin degerlendirmesi i¢in etkili sayisal
yontemler de mevcuttur.

Sturm-Liouville problemleri genellikle kismi diferansiyel bir
denklemde degiskenlerin ayrilmasi yontemi ile ortaya ¢ikmaktadir.
Ancak, 6zdeger problemleri, adi ve kismi diferansiyel denklemlerin
yani1 sira matris teorisi ve daha genel operator igeren bir¢ok alanda
ortaya ¢ikar. Euler bir kirisin burkulmasini ele alirken ilk olarak bir
0zdeger problemini ele almistir (Guenther & Lee, 2018: 1). Bu
problem i¢in uzunlugu 1 olan diiz bir elastik ¢ubuk (kiris) dikey
olarak yukari dogru konumlandirilsin ve tabanindan sabitlensin.
Bunun i¢in kalin bir metal tel alinabilir. Sekil 1.1'de goriildiigii gibi,
cubugun serbest ucuna K biiyiikliiglinde kiigiik bir basing kuvveti
dikey olarak asagi dogru etki eder. Cubugun seklini belirleyen
denklemler

Ely" = —Ky, 0< x<

y(0) =0y =0
bi¢imindedir.

-

Burada y = y(x), c¢ubugun orta ¢izgisinin dikey denge
konumundan enine sapmasidir. Fiziksel sabitler E ve I, cubugun
elastik ve geometrik 6zellikleriyle belirlenir. Bu denklemler,

Sekil 1.1
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0 < x < ligin her zaman y(x) = 0 ¢dziimiine sahiptir. Ornek,
K kiiciik oldugunda ¢ubugun seklinin bu oldugunu, ancak K kritik
bir degere yiikseltildiginde ¢ubugun biikiilecegini dogrulamaktadir.
Biikiilme, cubugun dikeyden saparak yeni bir denge sekline
donecegi anlamma gelir. Bu denklem basit bir Sturm-Liouville
denklemidir ve

y'+ay =0 y0) =yD =0,
seklinde ifade edilebilir. Burada A = K/EI > 0 ile gosterilmistir.
Burkulma meydana gelirse, asikar ¢6ztiim olan y(x) = 0 dan farkh
bir ¢oziim (veya c¢Oziimler) bulmak miimkiin olmalidir. Bu
diferansiyel denklemin genel ¢6ziimii

y = Acos (VAx) + Bsin (Vix)

bicimindedir. y(0) = 0 oldugundan, A = 0 dir. Sifirdan farkli
sapmalar (¢6zlimler) miimkiinse,
B # Ovey(l) = Bsin(WAl) = 0

olmalidir. Dolayisiyla, sifirdan farkli y ¢ozlimleri ancak ve ancak
A =2, = (nr/D)?, n = 1,2,3,... ise mevcuttur ve n pozitif bir
tam say1 ise mevcuttur. Karsilik gelen c¢oziimler y = y,(x) =
B,sin (ntx/l) ve B, # 0 dir. Bu c¢oziimlere karsilik
gelen A degerleri (dolayisiyla K) o6zdeger olarak adlandirilir ve
karsilik gelen ¢oziimlere ise O0zfonksiyon denir. Bu probleme ise
0zdeger problemi denir. Euler modeli, burkulmalarin meydana
gelebilecegini ve yalnizca A,, 6zdegerlerinde meydana geldigini ve
karsilik gelen burkulmus denge durumlarmin sin (nmx /1)
fonksiyonunun katlar1 oldugunu belirler. Aslinda, ¢ubuk
burkuldugunda, fiziksel durum lineer olmadig1 i¢in yeni bir modele
ithtiya¢ duyulur. Bununla birlikte, lineer olmayan sistemde bile,
uygun bir lineer olmayan modelin dogrusallastirilmast olan
yukaridaki lineer problem, burkulmalarin meydana gelebilecegi
K degerlerini 6ngoriir. Bu tiir problemlere g¢atallanma (dallanma)

problemleri denir ¢iinkii lineer olmayan durumlar, lineerlestirilmis
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problemin 6zdegerleri olan belirli kritik degerlerde, kararli bir
dogrusal durumdan (genellikle y = 0) ayrilir. Dallanma noktasina
karsilik gelen ve A,, 6zdegeri tarafindan belirlenen y,, 6zfonksiyonu,
dallanma noktasinin yakininda olusan kiigiik genlikli lineer olmayan
burkulmus tepkilerin seklini yaklagik olarak belirler. Euler burkulma
denklemleri,

y'+ 2y = 0,y(0) = y0 =0,

bi¢ciminde regiiler bir Sturm-Liouville 6zdeger problemini olusturur
burada A = K/EI > 0 bigimindedir. Gegmisten giiniimiize kadar,
matematiksel fizikte yeni ve ilgi cekici uygulamalarin ortaya
cikmasiyla baglantili olarak Sturm-Liouville problemleri ortaya
cikmaktadir (bak, Burghelea, & ark., 2018:3380, Cannon & Meyer,
1971:434, Courant, & Hilbert, 2024:1, Guenther & Lee,
2018:1, Kittel, 2005:1, Ren, 2006:1, Seitz & Johnson, 1940:1).

Bu calismada iki ayrik aralikta tanimli olan

Ew = —w"(x) +q()w = 2w, x€[§,8)U (.81 (1)

iki-aralikli Sturm-Liouville denkleminden,

by = (Inw)'(§1) = « (2)

byw = (Inw)'(§3) = B 3)
sinir sartlarindan ve de ortak ¢, ug¢ noktasinda verilen

tiw = w (& +0) = dw(§; —0) (4)

taw = w'(§; +0) = yw'(§; — 0) ()

gecis sartlarindan olusan iki-aralikli bir Sturm-Liouville problemi
arastirilmistir.  Burada q(x) potansiyeli [§1,&,) ve (&, &
araliklarinin her birinde siirekli olan reel degerli fonksiyondur ve
sonlu tek tarafli q(&; + O):xl—i>r§r-l+ q(x) limitleri mevcuttur, a, B, §, v

reel sabitlerdir, A kompleks bir spektral parametredir. Bu ¢alismanin
amaci, klasik Sturm-Liouville problemlerinin bazi temel spektral
ozelliklerini elde etmek ve genellestirmektir. Bu bdliim de sinir
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sartlarina ilave olarak etkilesim noktasinda iletim kosullar1 (bu
kosullar literatiirde gecis kosullari, siireksizlik kosullart veya
impulsiv kosullar olarak da adlandirilmaktadir) da igeren yeni tip iki
aralikli Sturm-Liouville problemlerinin bazi spektral ozellikleri
arastirilmistir. Gegis sartlar1 sol araligin sag u¢ noktasinda ve sag
araligin sol u¢ noktasinda verilmistir. Calismada iki bilinmeyen
¢Ozlim i¢in iki farkli Sturm-Liouville denklemi incelenmistir; biri sol
aralik [&,&,) lizerinde, digeri ise sag aralik (&,,,&;] lizerinde
tanimlidir ve ortak bir u¢ noktas1 x = &, olan etkilesim noktasidir
ve bu noktaya ek iletim kosullar1 uygulanir. Kendi yaklasimimizi
kullanarak, Green fonksiyonunun bir 6zfonksiyon serisine agilima,
Parseval esitligi ve Carleman formiili gibi Onemli spektral
ozellikleri arastirilmistir.

Son yillarda gegis sartlar1 iceren sinir deger iletim
problemleri literatiirde ¢ok yogun olarak ¢alisilmistir (bak, Aydemir
& ark.,2018:921, Allahverdiev & Tuna, 2019:1, Binding & Volkmer,
2012:477, Cavusoglu & Mukhtarov, 2022:98, Fu & ark., 2021:2037,
Li & ark., 2017:189, Malathi & ark., 1998:119, Mukhtarov & ark.,
2015:1671, Mukhtarov & ark., 2020:1, Mukhtarov & ark., 2019:85.
Olgar & ark., 2017:114, Olgar & ark., 2022:275, Oztiirk & ark.,
2023:1, Sen, 2018:6604, Yiicel & ark., 2022:90, Wang, 2012:1).

Not: Bu c¢alismada a#0, §#0 ve 6>0, y >0 kabul
edilecektir. a =, 6 = y oldugu 06zel durumda, incelenen
problem klasik periyodik Sturm-Liouville problemlerine indirgenir,
bu nedenle bu caligmada elde edilen sonuglar ilgili klasik sonuglari
gelistirir ve genellestirir. S6z konusu problem karesi integrallenebilir
fonksiyonlarin klasik Hilbert uzayinda genel olarak kendine eslenik
degildir. Bu nedenle bir ¢ok klasik yontem arastirdigimiz probleme
direkt olarak uygulanamaz. Bu ¢calismamizda bazi klasik yontemleri
daha da genellestirerek 6zdegerlerin ve Ozfonksiyonlarin bazi
onemli Ozellikleri de arastiriimistir.
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Esas Sonuclar
(1) denkleminin [&;, &,) sol araligi tizerindeki
W(El,l) = 1’ ’blfl(fl,ﬂ.) =a (6)

baslangi¢ kosullarini saglayan ¢oziimii y; (x, A) fonksiyonu ve ayni
denklemin sag aralik (&,,, &;] tizerindeki

’LU’(Eg,A) = 1’ W’(€3,A) = :B (7)

baslangi¢ kosullarini saglayan ¢éziimii z,(x, 1) fonksiyonu olsun.
v1(x,A) ve z,(x, A) fonksiyonlar1 her sabit x icin A parametresinin
tam fonksiyonlardir (bak, Titchmarsh, 2011). (1) denkleminin
(&,,,&3] sag araliginda

w (&, +0) =6y,(& —0) 8
w' (& +0) =yy,' (&, —0) €))

baslangi¢ kosullarini saglayan ¢oziimiini y,(x, A) fonksiyonu ile ve
ayni denklemin sol aralik [&;,&,) tizerinde tanimli olan ve

w (&, —0) = 52,(& +0) (10)
w'(§; = 0) =225 +0) (11)

baslangi¢ kosullarini saglayan ¢oziimiini z;(x, A) fonksiyonu ile
gosterelim. (Aydemir & Mukhtarov, 2015) calismasindaki yontem
kullanilarak ~ y,(x,1) ve  z;(x,A) fonksiyonlarmin A € C
parametresinin tam fonksiyonlar1 oldugu gosterilebilir. Bdylece
v1(x, 1), y,(x, 1), z,(x, ) ve z,(x, A) fonksiyonlarinin tanimindan
asagidaki sonug kolayca ispatlanabilir.

Sonug 1. [§;,&,) U (§,,,&] iki-araligi izerinde tanimlanan

yl(x' /1)' X € [61' EZ)

y(x,A) = {}’Z(X' D, xe(&, &)
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fonksiyonu (1) denklemini, (2) sinir sartin1 ve (4)-(5) gecis
sartlarinin her ikisini saglar. Benzer sekilde [&;,&,) U (§;,,%5]
araligi izerinde tanimlanan

Zl(xl A), X € [El' EZ)
) (X, /1): X € (5;2' ’ 5;3]

fonksiyonu (1) denklemini, (3) sinir sartin1 ve (4)-(5) gecis
sartlarinin her ikisini saglar. Kolayca gosterilebilir ki,

A (D:=Wi(x, 1), zi(x, D)) ve B (A): =W (y2(x, ), 22(x,4))
fonksiyonlar1 x degiskeninden bagimsizdirlar

z(x,A) = {

W,z x) =yx)z'(x) — y'(x)z(x), y ve z fonksiyonlarinin
Wronskian determinantidir).

Sonu¢ 2. A;(1) ve A,(A) fonksiyonlart A parametresinin tam
fonksiyonlaridir.

Teorem 1. A, (1) = 6yA{(A) esitligi saglanir.

Ispat. W (y;(x, 1), z,(x, 1)) ve Wy, (x, ), z,(x, 1))
fonksiyonlar1 x degiskeninden bagimsiz oldugundan (4)-(5) gecis
sartlar1 kullanilirsa

A,(N) = W(y,(x1A),2,(x,1))
= W(y, (& + 0,1),2,(&, + 0,1))
= 8y W(y1 (& — 0,1, 2,(§, — 0,1))
= &yA; (D)

elde edilir.

Tanim 1. A(A) = A,(A) = dyA;(4) fonksiyonu (1)-(5)
probleminin karakteristik fonksiyonu olarak adlandirilmaktadir.

Teorem 2. A € C sayisinin (1)-(5) siir deger gegcis probleminin bir
Ozdegeri olmasi i¢in gerek ve yeter sart A(A) = 0 olmasidir.
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Ispat. A herhangi bir 6zdeger ve buna karsihik gelen dzfonksiyon
u(x,1) olsun. Kabul edelim ki A(A) # 0 olsun. Bu durumda
(a1, bq,a5,b,) %= (0,0,0,0) olmak tizere u(x, 1) 6zfonksiyonu

a;y1(x, 1) + b1y,(x, 1), x €[&,&)
a,z1(x, A1) + byzy(x, 1), x € (&3, 5]

bi¢iminde yazilabilir. Bu fonksiyon (2)-(5) sinir-gegis sartlarinda

u(x, 1) = {

yerine yazilirsa a4, by, a,, b, bilinmeyen katsayilarina gére homojen
lineer bir denklem sistemi elde edilir. Gerekli hesaplamalar yapilirsa
bu denklem sisteminin determinantinin M # 0 olmak tizere MA(A)
bigiminde oldugu gosterilebilir. A(1) # 0 oldugundan dolay1 bu
denklem sistemi sadece (aq,bq,ay, by)=(0,0,0,0) asikar
¢Oziimiine sahip olur. Bu ise u(x,4) fonksiyonunun 6zfonksiyon
olmast ile gelisir. Simdi A(A) = 0 olsun. Karakteristik fonksiyonun
tanim1 geregi A,(4) = A (1) =0 olur. A;(4) = 0 esitligi geregi
y1(x, 1) ve z1(x, A) fonksiyonlari lineer bagimlidir yani,

y1(x, A) = my z,(x, 1), x €[§1,82)

olacak sekilde m; # 0 sayis1 vardir. Benzer sekilde A,(4) =0
esitligi geregi y,(x,A) ve z,(x,A) fonksiyonlar1 lineer bagimlidir
yani,

Y2 (x,2) = m; z,(x, ), x € (&2,&5]

olacak sekilde m, # 0 sayist vardir. Bu durumda Sonug 1. den
u(x, A) fonksiyonu, (2) sinir sartin1 da saglar ve bu nedenle bu
fonksiyon bu A i¢in (1)—~(5) probleminin ¢oziimiidiir, dolayisiyla
u(x, A) fonksiyonu A 6zdegerine karsilik gelen bir 6zfonksiyondur.
Boylece, A(4) fonksiyonunun her sifirinin bir 6zdeger oldugu
kanitlanmus oldu. Ispat bitti.

Tanmm 2. [§;,&,) U (§,,,&] iki-aralig1 lizerinde tanimli olan ve
L,[&,,&,) ve L,(&,,,&;5] uzaylarna ait olan tiim kompleks degerli
f (x) fonksiyonlar kiimesi H ile gdsterilsin. Bu kiime iizerindeki i¢

carpim
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(o =8 [ F00 gGIdx +2 [0, f) g@dx  (12)

olarak tanimlanmaktadir.

Sonu¢ 3. 0 < a < b olmak iizere dyle a ve b sayilar1 mevcuttur
ki

a{f, 9 l61.6) @ Lonts) = 19 = DA, 9),16,.6) @ Lo(2.85)
esitsizlikleri saglanir. Bu nedenle H bir Hilbert uzayidir.

Teorem 3. (1)-(5) probleminin tiim 6zdegerleri reeldir.

Ispat. 1 herhangi bir 6zdeger ve buna karsilik gelen 6zfonksiyon
u(x, A) olsun. O halde

Eu—Au=0, x € [§,&) U (%, 8] (13)
bju—a=20 (14)

byu—pB =0 (15)
tyu—ou(é,—0)=0 (16)
t,bu—yu'(§,—0)=0 (17)

olur. g(x) fonksiyonunun reel degerli fonksiyon ve a, 3,8,y reel
sabitler oldugu dikkate alimip (13)-(17) esitliklerinin kompleks
eslenigi alinirsa

Eu—AU=0, x €[%,&) U (&, 5] (18)
bd —a=0 (19)

b,u —B =0 (20)

t,u —6u (&, —0) =0 (21)

t,u —yu'(§,—0) =0 (22)

yazilabilir. (13) ve (18) deki denklemler sirasiile u ve u ile garpilip
taraf tarafa ¢ikarilirsa
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;—XW(u,E; )= A-20 lu® I (23)

esitligi bulunur. (23) esitligi [&;,&,) ve (&5,&5]  araliklarinda
integrallenirse

A=2) (6f$2 | u(x) |1? dx + - fg o | u(x) 17 dx)

=W(u,u;x)

R (UATEY | 2 (24)
esitligi elde edilir. (2)-(3) sinir sartlarindan

WuWT;&) = WWT;&) = 0 (25)
bulunur ve (4)-(5) iletim kosullar1 uygulanirsa

W ;& +0) = SyW(wT; & — 0) = 0 (26)
elde edilir. (25)-(26) esitliklerini (24) de yerine yazilirsa

(A—Z)(@f; | w(x) 12 dx + = fg+0|u(x) 12 dx) =0

oldugu agiktir. u(x,4) bir 6zfonksiyon oldugu i¢in
§2-0
6.f | u(x) |2 dx+— f lu(x) 12 dx =0
2+o
ve dolayisiyla A—2=0 yani A=21 bulunur. Yani (1)-(5)
probleminin her bir A 6zdegeri reeldir.
Sonug 4. (1)—(5) probleminin tiim 6zfonksiyonlar1 “esas itibariyla”

reeldir, yani her 6zdegere karsilik gelen bir reel degerli 6zfonksiyon
mevcuttur.

Not. Sonug 4 hesaba katilarak, bundan sonra (1)—(5) probleminin
tiim 6zfonksiyonlarmin reel degerli oldugu kabul edilebilir.

Teorem 4. (4;,u;(x)) ve (A,uy(x)) (1)-(5) probleminin iki

ozdeger-6zfonksiyon ¢ifti olsun. Eger 4; # 4, ise u;(x) ve u,(x)
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Ozfonksiyonlar1 (9) esitligi ile tanimlanan i¢ carpima gore
ortogonaldir; yani,

6f€12-0u1(x, A) up(x, Ndx + = ff ? o u1(xA) uy(x, Ddx = 0 (27)

esitligi saglanir.

Ispat. u,(x) ve u,(x) dzfonksiyonlar olduklari igin

Bup —Auy =0, x € [§,&) U(E,,, 8] (28)
bju; —a =10 (29)
bu; —B =0 (30)
tiu; —6u (§, —0) =0 (31)
tou —yu (6, —0) =0 (32)

ve
Eup —Aup =0, x € [§,§2) U (&, 53] (33)
byu, —a =0 (34)
byu, —f =0 (35)
tiuy —6uy(§,—0) =0 (36)
tyau, —yu,’ (6, —0) =0 (37)

esitlikleri saglanir. (28) ve (33) deki denklemleri sirast ile u, ve u,
ile ¢arpilip taraf tarafa ¢ikarilir ve §; noktasindan &; noktasina
integrallenirse

(A —A2) (8 7" wy () (x) dx + 2 fg ot () () dx)

= W (uq,uy; x) 52 o4 W (uq, uy;

--83--



bulunur. Teorem 3 teki ispata benzer argiimanlar kullanilarak, bu son
esitligin sag tarafinin sifira esit oldugu ve dolayisiyla bu esitligin sol
tarafinin da sifira esit oldugu gosterilebilir. 1; # 1, oldugundan (24)
esitligi edilir. Yani u;(x) ve u,(x) ozfonksiyonlar1 L,[&;,¢,) @
L,(&,,,&5] Hilbert uzayinda (12) ile tanimlanan i¢ garpima gore
ortogonal fonksiyonlardir.

Green Fonksiyonunun Ozfonksiyonlar Aracihg Ile A¢ilimi

Homojen olmayan
—w"(x) + (@) = Dw = f(x), x €[§1,5) U (52, 8] (38)

Sturm-Liouville denklemini ve (2)-(5) sinir-gegis sartlarini alalim.
Burada f (x), q(x) fonksiyonlar1 (1)—(5) probleminin ifadesinde
ongoriilen kosullar1 saglayan reel degerli fonksiyonlardir. A € C
(1)—(5) probleminin 6zdegeri olmayan herhangi bir kompleks say1
olsun. Boyle bir 4 i¢in G (x,y; A1) Green fonksiyonunun

S0, y; 1)

1
( 5}’1(95:/1)21(3’:@ ) x € [§1,82), y € [§1,x)

1
gzl()’,/l)%(x,/l) ) x € [§1, 7)), y € [x,&)
1 |1 y06Dz.(y, 1), x € [§1,82), y € (§2,3]

5 1

44 |6 a0y h),  xe@El ye g

% ¥ D202,  x€E&l  yE Gl
1

| 2000, xelil ye Iod)

seklinde oldugunu gosterebiliriz. Bu fonksiyon (1)-(5) probleminin
Green fonksiyonu olarak adlandirilir ayrica bu fonksiyon x ve y
degiskenlerine goére simetriktir yani G(x,y; 1) = G(y,x; 1)
saglanir.



Teorem 5. f(x) fonksiyonu [§;,&,) ve (§,,,&3] araliklarinda
stirekli olsun ve sonlu f (&,+) degerlerine sahip olsun. Bu taktirde
homojen olmayan (36), (2)-(5) sinir degeri gecis probleminin bir tek
u(x, 1) ¢oziimii vardir ve bu ¢6ziim

(D) =8 [0 Gl t; DO +5 7, Glx, t; Df()AL39)
bi¢imindedir.

Ispat. vy,(x, 1), y,(x,1),2,(x, 1), z,(x, 1) ¢odziimlerinin, A(A)
karakteristik fonksiyonunun ve G(x,y; 4) Green fonksiyonunun
tanimlar1 kullanilirsa, (39) ile tanimlanan u(x, 1) fonksiyonunun
homojen olmayan (6) Sturm-Liouville denklemini ve (2)-(5) sinir
degeri gecis sartlari1 sagladigi agiktir. Boylece genelligi
kaybetmeden A = 0 sayisinin bir 6zdeger olmadigi varsayilsin.
Aksi takdirde, 4 (K) # 0 olacak sekilde K > 0 reel sayisini secilir
ve

—u + (CI(X) - K)u = Au' X € [61'52) U (EZHE?;]

denklemi aynmi (2)-(5) smur degeri gecis sartlartyla birlikte
diisiintiliirse bu problem (1)—(5) problemi ile ayni1 6zfonksiyonlara
sahip olur ve tiim 6zdegerler K sayisi kadar sola kayar. G(x,y) =
G(x,y; 0) gostererek ve (38) denklemini

—u+qgx)u = Au+ f

seklinde yeniden yazarak homojen olmayan (38), (2)-(5) problemi

§2-0 &3

u(x,A) +A(6 f G(x,tu(t,)dt +% f G(x,t) u(t,A)dt)
1 §2+0

=5 fjf‘" G(x,t) f(t)dts fg;o G(x, t) f(t)dt (40)
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integral denklemi seklinde yazilabilir. Sonug olarak, karsilik gelen
(1)-(5) homojen problemi,

u(x,A) + (6 ffz G(x, u(t, A)dt += ff o Gl ) u(t, Ddt)
=0 (41)
integral denklemine esdegerdir. Simdi, T integral operatorii

(Tw)(x) =8 fff“’ G (x, Hu(t)dt += ff Gl t; D) u(t)de (42)

esitligi ile tanimlansin. Boylece (41) integral denklemi u = —%

olmak lizere

(T — ul)u = 0 (43)

operator-denklem formunda yazilabilir, burada I birim operatorii
Iu = u seklinde tanimlidir. T Integral operatériiniin ¢ekirdegi, yani
G(x,t) Green fonksiyonu simetrik ve siirekli oldugundan, ekstremal

prensibi uygulanabilir. Boylece T integral operatorii sonsuz sayida

Un = —/,Li, n=20,1,2,... reel 6zdegere sahiptir. Bu 6zdegerlere

kargilik gelen uy(x), uq(x),... dzfonksiyonlari

6 I Uun (O (At +3 [, (Ot ()t = (44)

1, if n=m
0, if negm

seklinde tanimlanan Kronecker 6 sidir. (Aydemir & Mukhtarov,

seklinde normallestirilsin. &, sayilari 8, ={

2015) ye benzer sekilde, |1,| = 0(n?) oldugunu gosterebiliriz.
u,(x), n =01, . . . smrh ve sirekli fonksiyonlar
oldugundan, F (x, t) fonksiyonunu

Fot) = oy tn(0Un(t) (45)
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esitligi ile tanimlanabilir. Esitligin sag tarafi mutlak ve diizgiin
yakinsak bir seri oldugundan, F (x, t) fonksiyonu siireklidir. Ayrica,
F(x,t) nin simetrik bir fonksiyon oldugu agiktir. G(x,t) =
— F(x,t) oldugunu gosterelim. Varsayalim ki

G(x,t) + F(x,t) fonksiyonu 6zdes olarak sifir olmasin. Simetrik,
stirekli ve sifirdan farkli c¢ekirdege sahip Fredholm tipi integral
denklemlerin bilinen o6zelligine gore (bak, Courant & Hilbert,
2024).

uCe, ) + A8 [ (G, €) ++F (e 0))ult, Adt

#0860t + FGo0) utt, Dd) =0 (46)

integral denklemi
$2-0

6f (G(x, ) + F(x,t))u(t)de
&

&3
1 ~
+;$ Lm(x, £) + F(x,0) (e )de)

ii(x) 47)

=

olacak sekilde (4, 7i(x)) bir dzdeger-6zfonksiyon ciftine sahiptir.
(40) ve (44) esitliklerinden

Sféz_o(G(x, £) + F(x,0))up(0)dt

&
+% j(G(x, t) + F(x, 1)) uy(t)dt)

&40
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() + —

T ()

s
-0 (48)

bulunur. Dolayisiyla, G(x,t) + F(x,t) fonksiyonu tim u, (x), n
=0, 1, 2, ... 6zfonksiyonlar1 ile ortogonal olur. O halde, (47) ve (48)
den

6[512 %8 (Ou, (Odt += ff T (Dua(O)dt =0 (49)

= 0,1,2,... elde edilir. Bu esitlik geregi, i(x) = i(x,1)
ozfonksiyonu tim u,(x), n = 0,1,2,... Ozfonksiyonlar1 ile
ortogonaldir. O halde bu 6zfonksiyonun kendisine de ortogonal
oldugu, yani

§2-0
5f i (e, D) dt+— f|u(t/1)| dt =0

2+0

elde edilir. Buradan ii(x, 1) 6zdes olarak sifir olur. Bu ise ¢eliskidir.
Ispat bitti.

Teorem 5 in ispatinda, asagidaki 6nemli sonucu da ispatladik.

Teorem 6. G (x, t) Green fonksiyonu mutlak ve diizgiin yakinsak bir
6(x,t) = - Eluaw%@ (50)

seri seklinde yazilabilir.

Ozfonksiyonlarin Tamhgi: Genellestirilmis Parseval Esitligi

Bu boliimde, oOnceki boliimlerin  sonuglarina  dayanarak,
ozfonksiyonlar sisteminin tamlik 6zelligi hakkinda bazi 6nemli

sonugclar verilecektir.
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Teorem 7. f(x) fonksiyonu [&;,¢&,) ve (&,,, &3] araliklarinda iki
kez siirekli tiirevlenebilir olsun ve f (&, ¥ 0), f'(&, F0), f''(é, F
0) sonlu limit degerlerine sahip olsun. Ayrica (2)—(5) sinir-gecis
kosullarini saglasin. Bu durumda, f(x), mutlak ve diizgiin yakinsak
olan

&0

f(x)—Z(a f FOun e+ j FOun(Odt) un(x) (51

&40

serisine agcilabilir.
ispat. f”(x) — q(x)f(x) = g(x)olsun. (39) ve (50) goz 6niinde
bulundurarak
&3
1
fx) = ;(5 f 6x,Dg(D)dr +- f G(x, ) g(t)dt)

&40

§2—-0 &3

Z”Ai") & J un<t)g<t)dt+— | untwg@dn) 52)

n=0 $1 fz"'o

elde edilir. Her iki tarafi u,, (x) ile ¢arpip integrali alinirsa

&2-0 &3
5 j f(t)um(t)dt+— [ r@un@a
§2+0

=@ [ gOun(Odt +3 [, g(Oun()dt)  (53)

bulunur. (53) esitligi (52) de yerine yazilirsa (51) esitligi elde edilir.
Ispat bitti.
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u, (x),n =0,1,2,... 6zfonksiyonlarinin ortogonallik 6zelligini
hesaba katarak ve iyi bilinen standart teknigi kullanarak (6rnegin
bak, Levitan, 1950) asagidaki 6nemli sonucu elde edebiliriz.

Sonug 5. (Genellestirilmis Parseval esitligi)

felL,[¢é,&) @ L,y(&,,,&;] olsun. Bu durumda genellestirilmis

ffz Olf(x)l dx + = ff +0|f(x)|2dx

= ¥ o8 [ fOun® e +2 2, fOun(Odt)?  (54)
Parseval esitligi saglanir.

Rezolvent Ac¢ilimi Ve Genellestirilmis Carleman Esitligi

Teorem 8. f(x) fonksiyonu [&;,&,) ve (&,,,&5] araliklarinda
stirekli olsun ve f (&, F 0) sonlu limit degerlerine sahip olsun.

Ayrica A bir 6zdeger olmasin. Bu durumda, (39) resolventi

Un(%,4) = Xn=o7— un(X) (55)

biciminde bir 6zfonksiyon serisine agilabilir.

ispat. Onceki boliimde ispat edildi ki, A sayis1 (1)-(5) homojen
probleminin bir 6zdegeri degilse bu probleme karsilik gelen (38),
(2)-(5) homojen olmayan problem

u(,A) =6 ffz “Glx,t; DOt +2 ff * G(x,t; Df(E)dt (56)
¢oziimiine sahiptir. Bu rezolvent, u, (x), n = 0, 1, ... dzfonksiyonlar

sistemi aracilig1 ile bir Fourier serisine acilabilir. Her n =0, 1, ...
i¢in

(D) =8 [F7 fFOun(Odt +3 [E fOun(Ode  (57)
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sayisi, f(x) fonksiyonunun u,(x), n=0,1,.. Ozfonksiyonlar
sistemine gore genellestirilmis Fourier katsayisi olarak adlandirilir.
Iki kez kismi integral alarak ve (39) rezolventinin (2)-(5) sinir-gegis
kosullarin1 sagladigini goz 6niinde bulundurarak,

&2-0
1) f W' (t, ) — q(®)u(t, 1)u,(t)dt

5 +0(u"(t A = q@u(t, D))u, (t)dt

§2-0

5 j w(t, D) (" (8) — q(Oun (D)) dt

FE uE D" (O - aOun©)de
= 1,05 ffz ult, Du, (t)dt += ff * ult, Duy(D)dt)

= Ancn(u(.,l))

yazilabilir. u(x,A) rezolvent fonksiyonu homojen olmayan (38)
denklemini sagladigindan (56) esitliginden

ea(f()) = 8 [ (6 D) — q(®ult, ) — (e, D)uy(dt
+= fg () — g(®u(t, 1) — Au(t, D))u, ()dt

= Ancn(u(.,/l)) — Acn(u(.,/l))

bulunur. Sonug olarak,

Cn(f( )

n(u(, ) =225
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elde edilir. Bu nedenle, u(x,A) rezolventi verilen f(x) fonksiyonu
ve (A, uy(x)) 0zdeger-6zfonksiyon cifti aracilig ile

we ) = Y 2O, 6

n=0
Fourier serisi seklinde yazilabilir. Ispat bitti.

Teorem 9. (Genellestirilmis Carleman esitligi) A sayis1 (1)—(5)
probleminin bir 6zdegeri olmasin. Bu taktirde

§2-0 " &3
6J G(x,x; V)dx +— fG(xx A)dx—j —dN(t)
1 yfz*'o

esitligi aglanir.

Ispat. (55)-(57) esitliklerini kullanarak

$2-0 $3
5J G(x, t; )l)f(t)dt+— jG(x t; A) f(t)dt
EZ+0
oo $2—0
=y — f FOu@de + ff@hm@ﬁ# e
n=o0 " fz+0

(6 ffz Zn Oun(x)un(t) dt‘l‘ J‘E " Zn Oun(x)un(t) dt)f(t)

elde edilir. f(x) keyfi oldugundan, son denklem Green
fonksiyonunun

™ 1 ()11, (£)

G(x, t; A) = 1
n

n=0
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seklindeki agilimini verir. §¢ = x alip integral alinarak ve (44)
denklemi kullanilarak

-0 1 (& o) 1
8Je " Glox; Ddx+- [ G x; D) dx =3 05—  (58)

bulunur. t den biiyiik olmayan A,, 6zdeger sayis1 N (t) ile gosterilsin.
Yani N(t) =X, 1 olsun. O halde (58) esitligi Carleman

formiilinin

£2-0 " &3 © q
6J G(x,x; dx + — fG(x,x; A) dx=j ——dN(t)
¢ Y o o At

seklindeki Carleman genellemesini ifade eder.

--03--



Kaynak¢a

Aydemir, K., & Mukhtarov, O. S. (2015). Spectrum and Green’s
function of a many-interval Sturm—Liouville problem. Zeitschrift fiir
Naturforschung A, 70(5), 301-308.

Aydemir, K., Olgar, H., Mukhtarov, O. S., & Muhtarov, F. (2018).
Differential operator equations with interface conditions in modified
direct sum spaces. Filomat, 32(3), 921-931.

Allahverdiev, B. P., & Tuna, H. (2019). Eigenfunction expansion for
singular Sturm-Liouville problems with transmission conditions.
Electronic Journal of Differential Equations, Vol. 2019 (2019), No.
03, pp. 1-10

Binding, P., & Volkmer, H. (2012). A Priifer angle approach to the
periodic Sturm-Liouville problem. The American Mathematical
Monthly, 119(6), 477-484.

Burghelea, D., Saldanha, N. C., & Tomei, C. (2009). The geometry
of the critical set of nonlinear periodic Sturm—Liouville operators.
Journal of Differential Equations, 246(8), 3380-3397.

Cannon, J. R., & Meyer, G. H. (1971). On diffusion in a fractured
medium. SIAM Journal on Applied Mathematics, 20(3), 434-448.

Courant, R., & Hilbert, D. (2024). Methods of mathematical physics,
volume 2. John Wiley & Sons.

Cavusoglu, S., & Mukhtarov, O. S. (2022). Modified Finite
Difference Method for solution of two-interval boundary value
problems with transition conditions. Turkish Journal of Mathematics
and Computer Science, 14(1), 98-106.

Fu, J., Hao, X., Li, K., & Yao, S. (2021). Discontinuous fractional
Sturm-Liouville problems with eigen-dependent boundary

--04--



conditions. Journal of Applied Analysis and Computation, 11(4),
2037-2051.

Guenther, R. B., & Lee, J. W. (2018). Sturm-Liouville problems:
theory and numerical implementation. CRC Press.

Kittel, C. (2005). Introduction to solid state physics. John Wiley &
sons, inc.

Levitan, B. M. (1950). Expansion in characteristic functions of
differential equations of the second order. Gosudarstv. Izdat. Tehn.-
Teor. Lit., Moscow-Leningrad.

Li, K., Sun, J., & Hao, X. (2017). Weyl function of Sturm—Liouville
problems with transmission conditions at finite interior
points. Mediterranean Journal of Mathematics, 14(5), 189.

Malathi, V., Suleiman, M. B., & Taib, B. B. (1998). Computing
eigenvalues of periodic Sturm-Liouville problems using shooting
technique and direct integration method. Infernational journal of
computer mathematics, 68(1-2), 119-132.

Mukhtarov, O. S., Olgar, H., & Aydemir, K. (2015). Resolvent
operator and spectrum of new type boundary value problems.
Filomat, 29(7), 1671-1680.

Mukhtarov, O. S., Yiicel, M., & Aydemir, K. (2020). Treatment a
new approximation method and its justification for Sturm—Liouville
problems. Complexity, 2020, 1-8.

Mukhtarov, O., Cavusoglu, S., & Olgar, H. (2019). Numerical
solution of one boundary value problem using finite difference

method. Turkish Journal of Mathematics and Computer Science, 11,
85-89.

--05--



Olgar, H., & Muhtarov, F. S. (2017). The basis property of the
system of weak eigenfunctions of a discontinuous Sturm—Liouville
problem. Mediterranean Journal of Mathematics, 14(3), 114.

Olgar, H., Mukhtarov, O. S., Muhtarov, F. S., & Aydemir, K. (2022).
The weak eigenfunctions of boundary-value problem with
symmetric discontinuities. Journal of Applied Analysis, 28(2), 275-
283.

Oztiirk, S. N., Mukhtarov, O., & Aydemir, K. (2023). Non-classical
periodic  boundary  value  problems  with  impulsive
conditions. Journal of New Results in Science, 12(1), 1-8.

Ren, S. Y. (Ed.). (2006). Electronic states in crystals of finite size:
quantum confinement of Bloch waves. New York, NY: Springer New
York.

Seitz, F., & Johnson, R. P. (1940). Modern theory of solids. Uspekhi
Fizicheskikh Nauk, 23(3), 293-315.

Sen, E. (2018). Computation of eigenvalues and eigenfunctions of a
Schrédinger-type  boundary-value-transmission  problem  with
retarded argument. Mathematical Methods in the Applied
Sciences, 41(16), 6604-6610.

Yiicel, M., Muhtarov, F., & Mukhtarov, O. (2022). A New
Transformation Method for Solving High-Order Boundary Value
Problems. Journal of New Theory, (40), 90-100.

Titchmarsh, E. C. (2011). Elgenfunction Expansions Associated
With Second Order Differential Equations. Read Books Ltd.

Wang, D. B. (2012). Periodic boundary value problems for nonlinear
first-order impulsive dynamic equations on time scales. Advances in
Difference Equations, 2012(1), 1-9.

--06--



BOLUM 6

ELIPTIK SINIF KISMi DIFERANSIYEL
DENKLEMLERIN SONLU FARK SEMASI VE
CIFT LAPLACE METODU iLE COZUMU

Harun CiICEK!
Hasan GOKBAS?

Giris
Kismi diferansiyel denklemler, gerek matematiksel modelleme
gerekse  fiziksel, biyomekanik ve jeofiziksel siireglerin
coziimlemesinde temel nitelikteki analitik araglardan biri olarak
kabul edilmektedir. Ozellikle ¢cok degiskenli sistem davranislarinin
tamimlanmasinda merkezi bir rol oynayan bu denklemler,
termodinamik sistemlerin denge analizinden elastisite kuramindaki
gerilme-sekil degistirme iligkilerine, akiskanlar mekaniginde
tiirbiilans ¢éztimlemelerinden biyolojik difiizyon modellerine kadar
uzanan genis bir uygulama spektrumuna sahiptir. Hilbert uzayinda
tanimlanan, 6z-eslenik ve pozitif tanimli operatdr yapisi iceren
iiclincii mertebe diferansiyel denklemler i¢in ele alinan yerel
olmayan smir deger problemleri, matematiksel fizigin soyut

! Doktor Ogretim Uyesi, Bitlis Eren Universitesi, Matematik Boliimii, Orcid:
0000-0003-3018-3015
2 Doktor Ogretim Uyesi, Bitlis Eren Universitesi, Matematik Boliimii, Orcid:
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diizeydeki uygunluk kosullarinin incelenmesi baglaminda énemli bir
¢oziim sinift sunmaktadir (Nayfeh, 1970).

Bu baglamda, kismi diferansiyel denklemlerin (KDD) kuramsal ve
hesaplamalt ¢0ziim yontemlerinin gelistirilmesi, uygulamali
matematik disiplininin tarihsel ve metodolojik ¢ergevede en temel
amaglarindan biri olarak 6ne ¢ikmaktadir. KDD’lerin ¢6ziimiinde
kullanilan sayisal yontem ailesi; sonlu eleman metodu, simir
elemanlar1 yaklagimi, sonlu hacim ydntemi ve spektral teknikler
seklinde kategorize edilmekte olup, s6z konusu yontemlerin her biri
¢Oziim uzaymnin yapisal Ozelliklerine gore giiclii ve zayif form
ifadelerine ayrilmaktadir. Zayif formiilasyonlar, ¢6ziim alaninin
degismeli integral yapilar1 g¢ercevesinde cebirsel sistemlere
indirgenmesini saglamakta ve polinom tabanli fonksiyonlarin
streklilik kosullarinin gevsetilmesine imkan taniyarak temsil
giiclinli artirmaktadir. Buna karsin gii¢lii form teknikleri, algoritmik
sadelikleri ve dogrudan tiirevsel tanimlamalariyla dikkat ¢ekmekle
birlikte, agsiz yaklasimlarin kotii kosullanmis sistem matrisleri
nedeniyle istikrarsizlik tiretmesi, uygulama agisindan belirgin
siirliliklar dogurmaktadir.

Fiziksel stireclerin deterministik, stokastik veya yari-deterministik
dogalarmin  matematiksel temsilinde, kismi  diferansiyel
denklemlerin  ortaya ¢ikist  kagmilmazdir. Bu cercevede
degiskenlerin ayrilmasi, siiperpozisyon ilkesi, integral doniistimleri
ve yansima yontemleri gibi analitik araglar kullanilarak elde edilen
kapali form c¢ozlimler, yalnizca siirli sayidaki idealize edilmis
problem sinifi i¢in gecerliligini korumaktadir. Cogu gercek yasam
modelinde tam ¢o6ziim erisilebilirligi miimkiin olmadigindan,
pertiirbasyon yontemleri (Van Dyke, 1975; Kevorkian ve Cole,
1981; Parlange, 1971), ardisik yaklagim algoritmalari (Tsang, 1960)
ve ortogonal fonksiyon tabanlarinin kullanildigr 6zel ¢6ziim
mekanizmalar1 (Assar1 ve Dehghan, 2017) yaklasik ¢6ziim elde etme
stirecinde vazgecilmez hale gelmistir. Logaritmik ¢ekirdek temelli
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sayisal yaklagimlarin, ikinci tiir iki boyutlu Fredholm integral
denklemlerinin ¢dziimiine uygulanmasi ise yerel agsiz yontemlerin
gegerlilik ve performans alanini ciddi sekilde genigletmistir (Bayona
ve ark., 2017).

Ozellikle son yillarda, eliptik tipte kismi diferansiyel denklemlerin
yaklasik ¢Ozlimlerine yonelik arastirmalar giderek daha sofistike
hale gelmistir. Radyal tabanli fonksiyonlar araciliiyla olusturulan
sonlu fark semalar1 (RBF-FD), hem geometrik uyumluluk hem de
yiiksek dereceli dogruluk kabiliyeti nedeniyle eliptik denklemlerin
niimerik ¢oziimiinde 6ne ¢ikan yontemlerden biridir. Khoromskij ve
caligma arkadaslar1 (2017), diizensiz veya ¢ok baglantili bolgelerde
poliharmonik egrilerin ¢ok degiskenli polinom temsiliyle hibrit
yaklagiminin, dogruluk, algoritmik sadelik ve hesaplama verimliligi
bakimindan dikkate deger bir sinerji sundugunu gostermistir. Cok
parametreli eliptik denklemlerin rank-1 tensdrlerin sonlu toplamlari
ile temsil edilmesine bagli yakinsama hizi analizi ise Babuska ve
digerleri (2017) tarafindan ayrintili bicimde incelenmistir. Ayrica
stokastik katsayilar ve homojen Dirichlet smir kosullar1 iceren
dogrusal eliptik problemlerin iki farkli niimerik teknikle
yorumlanmast Gorial (2011) tarafindan matematiksel dogruluk ve
kararlilik teorisi baglaminda degerlendirilmistir.

Diferansiyel =~ denklemlerin =~ kavramsal  siniflandirmasinda,
bilinmeyen fonksiyonun tiirevlerine iliskin bagimliligin varlig
temel belirleyici dlgiittiir. Tek bagimsiz degisken iceren ifadeler adi
diferansiyel denklem, iki veya daha fazla bagimsiz degisken
icerenler ise kismi diferansiyel denklem olarak adlandirilmaktadir.
Bu baglamda diferansiyel denklemin genel ¢6ziimii, ¢oziim ailesinin
tiim potansiyel elemanlarini igeren bir {ist kiimeyi temsil ederken,
belirli baglangi¢ veya sinir kosullarini karsilayan 6zgiil ¢oziim tiirleri
0zel ¢6zlim nitelendirmesi altinda simiflandirilmaktadir.

Eliptik kismi diferansiyel denklemlerin analizi, fonksiyonel analiz

ve operatdr teorisinin temel ilkeleri 1s181inda degerlendirildiginde,
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¢cozlimiin varhigl, tekligi ve kararliligina iliskin sonuclarin elde
edilmesinde soyut matematiksel yapilarin 6nemi daha da belirgin
hale gelmektedir. Eliptik operatorlerin incelenmesinde, o6zellikle
Hilbert ve Sobolev uzaylarin tanimladigi fonksiyonel gerceve,
¢Ozlimiin  diizenlilik  6zelliklerinin  belirlenmesi  bakimindan
vazgecilmezdir. Bu baglamda, eliptik operatorlerin zayif ¢6ziim
kavrami lizerinden ele alinmasi, klasik anlamda
diferansiyellenebilirlik ~ kosullarin1  saglayamayan  fonksiyon
siiflarinin da ¢6ziim uzayina dahil edilmesine imkan tanimaktadir.

Eliptik operatdr £ nin H}(2) gibi Sobolev uzaylarinda tanimlanan
zay1f ¢6ziim yaklasimi, diferansiyel denklem problemine karsilik
gelen varyasyonel formun, uygun i¢ carpim yapilar1 altinda
tanimlanmasiyla olusturulmaktadir. Bu ¢ercevede, eliptik tip KDD

Lu=f€N
u=20 on/

kosullart altinda, klasik tlirev kavrami yerine zayif tiirevler
kullanilarak ifade edilen problem, uygun test fonksiyonlar v €
H}(Q) igin

a(i;v) =< f,v>

bi¢imindeki soyut forma indirgenmektedir. Burada a(.;.), eliptik
operatore karsilik gelen iki terimli bilinear fonksiyonel,

(+,) ise dualite ¢arpimidir. Eliptiklik kosulu bu bilinear formun
coercive (zorlayici) ve stlirekli olmasmi gerektirmekte olup, soz
konusu oOzellikler fonksiyon uzaymnda tanimlanan i¢ carpim
yapilarina baglhdir. Bu nedenle eliptik operatoér kurami, varlik-teklik
¢coziim kosullarini garanti altina alan Lax—Milgram teoremi ile giiclii
bir yapisal iliski igerisindedir.

Lax—Milgram teoremi, soyut Hilbert uzay1 baglaminda tanimlanan
bilinear formun coercivity ve boundedness kosullarini saglamasi
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halinde, zayif ¢oziimiin varligin1 ve tekligini glivence altina alir.
Boylece eliptik diferansiyel denklemler, klasik ¢oziim ¢ergevesinde
analiz edilemeyen durumlarda dahi, variasyonel yontemler
yardimiyla tanimlanabilir bir ¢6ziim sinifi ortaya koymaktadir. Daha
acik bir anlatimla, eliptik operatdriin sahip oldugu pozitif tanimlilik
ve 0z-adjointlik (self-adjointness) kosullari, ¢oziimiin yalnizca var
olmasmi degil ayn1 zamanda norm esdegerligi altinda kararli
olmasini da temin etmektedir.

Operator kurami perspektifinden bakildiginda, eliptik diferansiyel
operatoriin spektral karakteristikleri, ¢6ziimiin davranis bigimini,
diizgiinlik derecesini ve smir kosullarina bagli olarak ortaya
cikabilecek 0Oz-deger yapisimi belirleyici rol iistlenmektedir.
Fredholm alternatifi, kompakt operator yaklagimi ve Riesz temsili
teoremi bu baglamda ¢6ziim uzaymin tamamlayiciligini saglayan
soyut matematiksel baglantilari olugturmaktadir. Ozellikle Fredholm
operatdr yapisi, ¢Oziimiin varliginin 6zvektdr uzaylari tlizerinden
incelenmesine olanak saglamakta ve ayni zamanda sinir deger
problemlerinin parametrik hassasiyet analizinde kritik bir rol
oynamaktadir.

Sobolev gomiilmeleri ve diizenlilik teoremleri, eliptik tip denklemin
¢oziimiiniin yalmizca varhigini degil, ayn1 zamanda H2({2) gibi daha
yiksek mertebe Sobolev uzaylarina ait olabilecegini de
gostermektedir. Boylece eliptik operatoriin diizenlilik parametreleri,
¢coziimiin diferansiyellenebilirlik derecesini dogrudan belirlemekte;
sinir kosullarinin tiirline bagli olarak ¢oziimiin global veya lokal
anlamda ne Olciide diizgiinlesecegini ortaya koymaktadir.

Bu kuramsal altyapi, eliptik denklemlerin sayisal analizine gegiste
de temel nitelik arz eder. Zay1f formun varlig1 sayesinde elde edilen
varyasyonel cerceve, sonlu eleman yontemleri, spectral teknikler,
RBF tabanli ayriklastirma stratejileri ve diferansiyel operator tabanli
meshfree yaklagimlarin uygulanabilirligini garanti altina almaktadir.

Nitekim niimerik kararlilik, yakinsama hizi, hata normlari ve ¢6ziim
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dogruluk analizleri, eliptik operatdriin fonksiyonel o6zellikleriyle
dogrudan iligkili olup, ¢6ziim uzayinin se¢imi ile ayriklastirma
yonteminin yapisal uyumlulugu bu baglamda kritik belirleyicilerdir.

Temel Kavramlar

Tanim f(t), [0,00) araliginda tanimli bir fonksiyon olsun. f

fonksiyonunun Laplace doniistimii
F(s) = [ e st f(D)dt
integrali ile tanimlanan F fonksiyonu olup;

LIF(©O} = F(s)

ile gosterilir. Integralin mevcut oldugu biitin s degerleri

F fonksiyonunun tanim kiimesini olusturur” (Podlubny, 1999).

Tamim (Tiirevin Laplace Doniisiimii): “Bir fonksiyonun n.

mertebeden tiirevinin Laplace doniisiimii:

f@, f'@), ... f@D(t) fonksiyonlar1 [0,00) araliginda siirekli,
f"(t), [0, o) araliginda pargali siirekli ve bu fonksiyonlarmn timii

a lstel mertebeden olsunlar. ” Bu durumda s > « i¢in
L)} = s™ £{f ()} —s™ 1 £(0) —s™2 f7(0) — -
~ D)

olur. Ozel olarak n = 2 olmasi durumunda
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LU (O} =s* L{f ()} —s £(0) —f'(0)

ven =3 igin ise

LU0} = s° L{f ()} = s? £{f(0)} —s f'(0) —f"(0)
bagintinlan kolayca elde edilebilir” (Podlubny, 1999).

Tanmm “f(t), [0,00) araliginda siirekli ve £ {f(t)} = F(s) olsun.
f(t) fonksiyonuna F(s)nin ters Laplace doniisiimii denir. Ters

Laplace doniistimii
L7HF()} =f(®)
ile gosterilir olarak tanimlanir” (Podlubny, 1999).

Tamim “ xy diizleminin pozitif ceyreginde, iki degiskenli bir u(x, t)
fonksiyonu tanimlansin. u(x,t) fonksiyonu icin ¢ift Laplace

dontisimii
LyLfulx, )} =u(s,p) = fooo foooe"px"“u(x, t)dxdt

olarak tanimlanir (Dhunde ve Waghmare,2016). Burada p ve s

kompleks sayilardir. Bu tanim
Ll UM g0} = uP)g(s) = L{(u()}c {g()}
formunda da yazilabilir”.

Tammm “Kompleks c¢ift integral formiilii ters ¢ift Laplace

doniistimiini tanimlamak i¢in

Lyt Huls, p)} = ulx, t)
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formiilii kullanilir (Debnath,2016). Bu formiil de

Lt Huls, p)} = ulx, t)

= el e an [,

2im

d+ico
e tﬁ(s,p) dS]

seklinde tanimlanir. Burada ¢ ve d bilinen reel sabitler ve (s, p),
Re(p) = cile Re(s) = d esitsizlikleri ile gosterilen bolgede her bir

p ve s icin analitik fonksiyonlar olmalidir.

(Modanli ve Bajjah, 2021) de tanimlanan ¢ift Laplace doniisiim
formiilii herhangi tamsay1 mertebeden kismi tiirevlerin dontistimii

i¢in

o™u(x, t) . n-1o ik
Lth{W}_p u(syp)—zizop Leyaat
o*u(x, t) e k=t L
Lxﬁt{T}—S u(s,p)—zjzos Ly @

o™ u(x, t)
Lxb e\ gxmack |~

n-1 atu(o,
lu(s p) — Z p"t” ‘flx{ lg(lt)} u(s,p)
k=1 du(x,0)
LY e, 1150
j=0 dxJ
R 0"7u(0,0)
e

formulleri ile kullanilir”.
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Bu caligmada, asagidaki baslangi¢c-sinir deger kosullarina

bagli eliptik kismi diferansiyel denkleminin yaklasik ¢ozimiini

(U (t, %) + B (8, x) + Auyy (8, x) + vu(t, x) = f(t,x),
0<x<[,0<t<T, apB,1s>0

U(O,X) = gl(x)l ut(le) = gz(x): O S X S l;

\u(t,0) =u(t,]) =0, 0<t<T
(1)

inceleyecegiz. Burada, g (x), g.(x) ve f(t, x) bilinen fonksiyonlar
u(t, x) ¢oztimii bilinmeyen belirli bir fonksiyondur. (1) denkleminin

eliptik bir kismi diferansiyel denklem olmasi i¢in
B2 —4ar <0

kosulu saglanmalidr.

Sonlu Fark Semasi1 Olusturulmasi

(1) probleminin yaklasik ¢éziimiinii hesaplamak icin grid (1zgara)
araligi

[0, T],={ ty=kt,0 <k <N,NT =T},
[0, []p={ xp,=nh,0 < n<M,Mh =1L},
Wen=[0,T]: X [0, n={(tk, %) tx € [0,T]r,xn € [0,1]1}
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seklindedir. Bu araliklar
(s Xn)s (Crez15%n ) > (tk s Xng1)s (Ter1, Xns1) € Wep
dir.

t =t,, x = x, alinir (2.1) denkleminde yerine yazilirsa

autt(tijn) + Butx(tk»xn) + Auxx(tk'xn) + vu(tk 'xn)

= f(tr,xn)

bulunur. Taylor a¢ilim1 kullanilirsa,

U (tk , Xn ) — U(tg+1,%n ) _Zu(tll-czrxn )+u(tg—1,%n) + O(TZ), (2)
utx(t' X)
_ u(th Xn ) - u(tk—lx Xn ) - u(tkr Xn-1 ) + u(tk—1: Xn-1 )
th
+0(t% + h?), 3)
uxx(tk Xy, ) — Ut Xn+1 )_Zu(iiczvxn )+u(teXn-1) + O(hZ) (4)

(2), (3) ve (4) formiillerinde kiictlik terimler ihmal edilirse,

k+1 k k—1
o Up' T —2uptun” )
U (b, Xy ) = )

Q)
Rl o k=1 k+1 o k=1
utx(tr x) ~ Un+1 ~Unt1 " Up—1TUp—1

Th
(6)

T2

)

k k k
Unt ~2UntUn_g
hZ2 ?

uxx(tk » Xn ) =

(7
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yazilabilir. (5), (6) ve (7) formiilleri kullanilir, kii¢iik terimler ihmal
edilir (1) denkleminde yerine yazilirsa

k+1 k. k-1 k+1 _ k—1_ k+1 . k-1
(aun —2uUp+un ) + ﬁ Un+1 ~Un+1~Un-1tUp—3

T2 Th
k k k+1 - k+1 -
Aun+1 —2u,’§+un_1 + ugt +u7”€l ! _ it +fr’1‘ !
h2 v 2 - 2 )

Y11<k<N-11<n<M-—1 ,
u?lzgl(xn)r =g2(x‘n)' OSnSM:

\uk =uk, =0, 0<k<N

)]

elde edilir. Bu fark semasi

U —up

2
olarak da yazilabilir.

Cift Laplace Metodu ile Coziim

(U (t, x) + L, (t,x) + Auy (t, x) + vult,x) = f(t,x),

0<x<l,0<t<T,apflv>0

] )
u(O,X) = g1(X), ut(oix) = gZ(x)l 0 S X S l;

\u(t,0) =u(t,l) =0, 0<t<T
(9) probleminin ¢éziimii i¢in ¢ift Laplace metodunu olusturalim.
L,.LAu(t,x)} =U(s,p)

olsun. (9) denkleminin her tarafinin £ ,L, Laplace doniisiimii
alinirsa,
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(ZSZU(S, p) - asU(O, p) - CZUt(O, p) =L xL t{_ﬁutx(tl X) -
Ay (8, x) —vul(t,x) + f(t,x)}
(10)

formiilii elde edilir. (10) formiilii diizenlenip yeniden yazilirsa

1 1 F(s,
U(s,p) =<U(0,p) + 5 U:(0,p) +%+

L oL ¢ —5 (=Pt (8, %) — Ay (£, ) — vu(t, x)}
(11)
bulunur buradan da

L L Af(tx)}=F(s,p)

dir. (11) denkleminin her tarafinin £;1£;1 alinir, (9) problemindeki
baslangi¢ degerleri de kullanilirsa

u(t,x) = L7L7HU (s, p)I= agi(x) + atgy (x) + LML {—F(s'p)}

s2
FL LT S L oL =Pty (6 %) — At (8,2) — vu(t, %) (12)
yazilir. (12) denkleminin ¢6ziimii i¢in

u(t, x) = Zg:O un(t, x)
(13)
sonsuz serisi kullanilirsa, (13) denklemi
o = L7 L L 0" oo
Y=o Un(t,x) = L3 L; w2 X t(—B @ano up(t,x) —
62 [00] oo
A T ot (£,6) = v it Un (£, ) U (6, 0)) | + gy +
atg,x + L71L71 {%} (14)

olarak yazilabilir. Bu durumda (9) denkleminin ¢6ziimii

F(s, p)}

s2

uo(t,x) = agyx + ag, ()t + L71L;71 {

ve benzer sekilde
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- — 1 92 o
un+1(t; x) = Lx 1Lt 1 {E (,C x,c t(_BmZTL:O u"l’l(t! x) —
92 oo o
Az Zinzo Un(6X) =V Xamo tn (£, X))} (15)

genel formiilii bulunur.
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BOLUM 7

GUT HASTALIGININ SINIFLANDIRILMASINDA
LOJISTIK REGRESYON VE KNN
ALGORITMALARININ KARSILASTIRMALI
ANALIZi
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Artritin agrili bir formu olan ve bireyin yasam kalitesinde
diisme, gilinliik hayatta is giicii kayb1 gibi sorunlar1 beraberinde
getiren gut hastaligi; kronik bdobrek hastaligi, bdbrek tasi,

hipertansiyon, obezite, diyabet ve kardiyovaskiiler hastalik gibi,
kiiresel saglik sistemleri i¢in Onemli bir yiik olusturan kronik
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hastaliklara eslik eden ve her yil artis gosteren bir hastalik olmasi
nedeniyle, bir halk saglig1 sorunu haline gelen bir hastaliktir (Borghi
& ark., 2020: 1-11; Zhang & ark., 2022 3525).

Bu nedenle erken teshis ve etkin yoOnetim, hastaligin
ilerlemesini yavaslatmak ve komplikasyonlar1 azaltmak i¢in kritik
oneme sahiptir. Basarili erken teshis metodolojileri ile bir yandan
bireysel diizeyde saglikli fiziksel yapilar1 korunarak, diger yandan
da tedavisi oldukga pahali olan hastaliklarin orani ve bireysel saglik
yapilar1 tizerindeki kalic1 etkilerinin minimize edilerek iilke saglik
sistemlerinin yiiksek maliyetlerden korunmasina katki saglanmig
olacaktur.

Cao ve Hu, Ulusal Saglik ve Beslenme inceleme Arastirmasi
(NHANES) veri setini kullanarak potansiyel gut riski icin
bireysellestirilmis miidahaleler gelistirmek amaciyla diyet lifi ve
trigliserit-glikoz indeksini birbirine baglamak iizere ¢esitli makine
ogrenimi modelleri gelistirmislerdir (Cao & Hu, 2024).

Brikman ve arkadaslari, Israil'de iilke capinda yapilan
retrospektif bir kohort ¢alismasinda, Ocak 2007 ile Aralik 2022
arasinda en az iki serum trat ol¢limii 6,8 mg/dl'yi asan 18 yas ve
iizeri yetigkinleri belirlemek i¢in 473.124 kisiden olusan Clalit
Saglik Sigortasi veri tabani kullanarak, gut hastalig1 gelistirme riski
tasiyan hiperiirisemik katilimcilar1 belirlemek i¢in makine 6grenimi
tabanli bir tahmin modeli gelistirmislerdir (Brikman & ark., 2024).

Hou, Xiao ve Zhu, ¢esitli lojistik regresyon algoritmalar1 ve
rastgele ormanin tahmin performanslarmi 123.968 6rnek igeren bir
tibbi muayene veri setini analiz ederek gut hastaliginin tespitini
yapmuslardir (Hou, Xiao & Zhu, 2020: 468-503).

Ichikawa ve arkadaglari, gradient-boosting karar agaci,
rastgele orman ve lojistik regresyon yaklagimlarini egitim veri
kiimesini kullanarak egitmis ve ardindan test veri kiimesinde
hiperiirisemiyi tahmin etmek i¢in kullanmiglardir (Ichikawa & ark.,
2016: 20-24).
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Kumar ve arkadaglari, tiikiiriigiin hpcl yontemiyle analiz
edilmesi iirik asit konsantrasyonunun belirlenmesine yardimci
oldugu i¢in hpcl kromatografisinin ¢iktis1 grafik oldugundan, grafik
goriintiisiinii makine 6grenimi algoritmasi kullanarak mevcut veri
kiimeleriyle karsilagtirmislar ve kisinin gut hastast olup olmadigini
tayin etmislerdir (Kumar & ark., 2022: 11-15).

Bu caligmada, gut hastaliginin simiflandirilmasi icin lojistik
regresyon (LR) ve k£ en yakin komsu (KNN) algoritmalarinin
performansi karsilagtirilmistir. Her iki algoritmanin performans
metrikleri detayli olarak analiz edilmis ve klinik uygulamalardaki
etkinlikleri karsilastirilmistir. Bulgular, her iki algoritmanin da klinik
karar destegi icin  kullanilabilme potansiyeli  oldugunu
gostermektedir. Bu arastirma, yapay zeka teknolojilerinin saglik
alanindaki uygulamalarin1 genisletme potansiyeline dikkat ¢ekmek
ve gut gibi yaygin saglik sorunlarinin yonetiminde yapay zekanin
roliinii vurgulamak amaciyla sunulmustur.

Bir bilimsel c¢aligmanin sonuglarnin  gilivenilirligini
belirleyen iki temel unsur vardir: verilerin giivenilirligi ve geneli
temsil etme potansiyeli ile verilerin gegerliligi. Bu iki unsur temel
almarak, izmir Bakirgay Universitesi Cigli Egitim ve Arastirma
Hastanesi Bilgi Yonetim Sisteminde kayitli 612 hastanin verileri
kullanilmigtir. Veri kiimeleri, cinsiyet, yas ve iirik asit seviyesi gibi
tibbi ongoriicli degiskenlerden olusmaktadir. Arastirmada, veri seti
iizerinde gerceklestirilen analizlerde her iki modelde belirtilen
ozellikler  kullanilarak  egitilmistir. Modellerin ~ performansi
dogruluk, duyarlilik, o6zgiillik ve F1 skoru gibi metriklerle
degerlendirilmistir.

Materyal ve Metod

Bu kisimda, kullanilan veri seti, istatistikler ve makine
O0grenmesi yontemlerine yer verilecektir.
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Veriler ve Yontemler

Bu calismada, Izmir Bakircay Universitesi Cigli Egitim ve
Arastirma Hastanesi Bilgi Yonetim Sisteminde kayitli hastalarin yas,
cinsiyet ve lirik asit seviyelerini igeren veri seti kullanilmistir. 612
verinin %70' egitim seti i¢in, %30'u test seti i¢in kullanilmistir.
Makine 6grenmesi algoritmalarindan ilk olarak £ en yakin komsu
algoritmas1 (KNN) sonrasinda da lojistik regresyon (LR) yontemi
kullanilmistir.

Veri Tanim ve Istatistikler

Bu kisimda, kullanilan veri setine ait tanimlayici istatistikler
Tablo 1 ’de verilmistir. Asagida Tablo 1°’de yer alan tanimlayici
istatistikler, gut hastaligimin cinsiyete bagli dagiliminda belirgin
farkliliklar oldugunu gostermektedir. Analize dahil edilen 612 birey
icin kadinlarin yas ortalamasi 36,40, ortalama iirik asit diizeyi 3,99
ve gut hastalig1 ortalamasi 0,044 olarak hesaplanirken; erkeklerde bu
degerler sirasiyla 43,88, 5,93 ve 0,1593’tiir. Bu bulgular, gut
hastaliginin erkeklerde kadinlara kiyasla yaklagik dort kat daha
yiikksek oranda goriildiigiinii ortaya koymaktadir. Ayrica, gut
degiskenine ait standart sapma degerlerinin erkeklerde (0,3668)
kadinlara (0,2055) gore daha yiiksek olmasi, erkeklerde hastaligin
daha genis bir dagilim sergiledigine isaret etmektedir. Elde edilen
sonuglar, literatiirde erkek cinsiyetin gut hastaligi i¢in 6nemli bir risk
faktorli oldugunu belirten ¢alismalarla uyumludur.

Ayrica Tablo 1°den carpiklik ve basiklik degerlerinin de gut
degiskeninin dagilim Ozellikleri acisindan  6nemli  oldugu
goriilmektedir. Kadinlarda gut i¢in carpiklik 4.4617, basiklik ise
17.9998 olarak hesaplanmisti. Bu olduk¢a yiiksek degerler,
dagilimin asir1 derecede saga carpik oldugunu ve yogun ug degerler
barindirdigini ortaya koymaktadir.
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Tablo I Tanmimlayict istatistikler tablosu

Kadin Erkek

Hasta Hasta
Say1 386 Sayist 17 Say1 226 Sayist |36

Oznitelik Oznitelik
Olgiit Yas Urik asit | Gut Olgiit Yas asit Gut
Ortalama 36,4006 |3,9932 |0,0440 Ortalama 43,8750 |[5,9255 |0,1593
Standart

Standart Hata | 0,7831 0,0735 |0,0105 Hata 1,0105 [0,1049 |0,0244
Ortanca 31,8110 | 4,0000 | 0,0000 Ortanca 45,4154 |5,7000 |0,0000
Kip (Mod) 60,9102 | 3,6000 |0,0000 Kip(Mod) | 56,9759 |5,5000 | 0,0000
Standart Standart
Sapma 15,3862 | 1,4445 |0,2055 Sapma 15,1905 |1,5771 |0,3668
Varyans 236,736 |2,0866 |0,0422 Varyans 230,750 [2,4871 |0,1345
Basiklik -1,3903 3,1612 | 17,9998 | Basiklik -1,2415 | 1,7356 | 1,5273
Carpiklik 0,3952 -0,1053 | 4,4617 Carpiklik -0,3172 | 0,5890 | 1,8745
Aralik 46,9213 10,9444 | 1,0000 Aralik 46,7979 | 11,5970 | 1,0000
En Biiyiik 64,9869 | 11,1000 | 1,0000 En Biiytik | 64,8965 | 12,2000 | 1,0000
En Kiigiik 18,0656 | 0,1556 | 0,0000 En Kiigtik | 18,0985 |0,6030 | 0,0000

Bu durum, kadinlarda gut hastaligina sahip birey sayisi
oldukca diisiik olmasina ragmen, nadiren de olsa yiiksek degerlere
Erkeklerde
carpiklik degeri 1.8745, basiklik degeri 1.5273 olup, bu degerler
kadinlara gore daha diisiik seviyelerdedir. Bu, erkeklerde dagilimin

sahip vakalarin goriildiigiinii  gostermektedir.
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gorece daha dengeli oldugunu, ancak yine de saga carpiklik
egiliminin siirdiigiinii géstermektedir. Standart sapma ve c¢arpiklik
degerleri, erkeklerde dagilimin daha genis bir varyasyona sahip
oldugunu isaret etmektedir. Bu nedenle, erkeklerde gut hastaliginin
hem daha yaygin hem de daha cesitli klinik diizeylerde gézlendigi

sOylenebilir.
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Urik Asit Miktar1 (mg/dL)

Sekil 1 Urik asit histogram grafigi

Sekil 1°de {irik asit histogram grafigi goriilmektedir. Bu
grafikten trik asit seviyesinin genellikle ortalama etrafinda
yogunlastig1 ve saga carpik bir dagilim gosterdigi tespit edilmistir.

Makine Ogrenmesi Yontemleri

Enerji ve kamu hizmetlerinden, seyahat ve otelcilige,
iretimden lojistige kadar tiim sektorlerde kullanilan makine
ogrenmesi algoritmalari; denetimli 6grenme, denetimsiz 6grenme,
yart denetimli 6grenme, kendi kendini denetleyen O6grenme ve
pekistirmeli 6grenme olmak iizere bes kategoriye ayrilir (Chrystal,
2025). Sekil 2’ de makine 6grenmesi algoritmalarinin kategorileri
siniflandirilmistir.

--118--



_Makine
Ogrenmesi

Denetimli Ofrenme Denetimsiz Ogrenme Yan
Denenml.\ Fequtlmﬂeh
Kend.u:u —
Denetleyen Ofre
Ogrenme
i Hiyerargik Olasiliksal
l ot I e l Nm: l 4:;' IK“mﬂame l maleme

Sekil 2 Makine égrenmesi algoritmalarimin kategorileri (Chrystal, 2025).

Denetimli makine O0grenmesi algoritmalarindan,
siniflandirma  algoritmalari, girdi  verilerinin  pargalarini
etiketleyerek kategorik ¢ikti degiskenlerini (6rnegin, "hasta" veya
"hasta degil") tahmin eder. Siniflandirma algoritmalar1 arasinda
lojistik regresyon (LR), k£ en yakin komsular (KNN) ve destek vektor
makineleri (SVM) bulunur (Chrystal, 2025).

Bu boliimde denetimli makine 6grenme yodntemlerinden,
siniflandirma algoritmasi olan lojistik regresyon (LR) ve k£ en yakin
komguluk (KNN) algoritmalar1 ele alinacaktir.

Smiflandirma yoOntemleri genel olarak parametrik ve
parametrik olmayan problemler olarak ikiye ayrilabilir. Aslinda,
parametrik yontemler normal dagilimli popiilasyon varsayimlarina
dayanir ve problemi ¢ozmek i¢in dagilimlarin parametrelerini
tahmin eder. Ancak Berry ve Linoff ’a gore parametrik olmayan
yontemler, ilgili belirli dagilimlar hakkinda hi¢bir varsayimda
bulunmaz ve bu nedenle dagilimdan bagimsizdir. KNN
smiflandirici, parametrik olmayan istatistiksel yaklasimin bir 6rnegi
olarak hizmet eder (Berry & Linoff, 1997).

Lojistik Regresyon (LR): Siniflandirma modelleri, belirli
bir girdi verisinin 6nceden tanimlanmais bir sinifa ait olup olmadigini
belirleyen algoritmalardir. ikili simiflandirmada, ¢ikti iki siniftan
birine ait iken ¢ok degiskenli siniflandirmada birden fazla siiftan
birine aittir. Lojistik regresyon analizi, ele alinan veri setindeki
gozlemlerin gruplara atanmasinda kullanilan yontemlerden biridir.
Siif sayis1 bilinen lojistik regresyon analizinde var olan veriler

119



kullanilarak siniflandirma modeli elde edilir ve elde edilen bu model
sayesinde veriye eklenecek yeni gozlemlerin siniflara atanmasi
saglanabilmektedir (Hosmer & ark., 2010; Kuyucu, 2012). Lineer
regresyon, bagimli degisken ile bagimsiz degiskenler arasindaki
iliskiyi modellemek i¢in bagimsiz degiskenlerin dogrusal bir
kombinasyonunu kullanarak bagimli degiskeni tahmin etmeye
calisan bir tekniktir (Zhao, Yuhuan & Schaftner, 2001: 2129-2135).

Lojistik regresyon, iki veri faktorii arasindaki iliskileri
belirlemek i¢in kullanilan yapay zeka ve makina 6grenimi alaninda
onemli bir veri analizi ve istatistiksel yontemdir. Bagimli degiskenin
iki kategoriden birine ait oldugu durumlarda, bagimsiz degiskenlerin
etkisini logit fonksiyonu ile modellemek i¢in kullanilir. Bu yontem,
dogrusal regresyonun varsayimlarini karsilamayan verilerle
caligmak icin gelistirilmistir. Bir 6grencinin sinav sonucuna gore
gecip gecmedigini tahmin etmek i¢in ya da bir web sitesinde
harcanan zaman, aligveris sepetindeki iiriin sayis1 ve ziyaret siklig
gibi bagimsiz degiskenlere bakarak, yeni bir ziyaretcinin aligveris
yapma olasiligt tahmin edilebilir. Burada bagimli degisken,
ziyaret¢inin aligveris yapip yapmamasi (O=Hayir, 1=Evet) olacaktir.
Ayrica, bir hastanin belirli bir hastaligi olup olmadigin1 tahmin
etmek i¢in de kullanilabilir. Burada incelenecek hastalik tipine bagl
olarak degiskenlik gostermekle beraber, 6rnegin, diyabet hastaligin
tahmin etmek i¢in yas, viicut kitle indeksi, kandaki glikoz ve insiilin
degerleri gibi bagimsiz degiskenler dikkate alinabilir.

Ayni zamanda lojistik regresyon, bagimli degiskenin yani
smif degiskeninin iki veya daha fazla kategorili oldugu durumlarda
bagimsiz degiskenlerle olan neden-sonug iliskisini belirlemede
kullanilan bir yontemdir. Lojistik regresyon analizinde bagimsiz
degiskenlerle bagimli degisken arasindaki iliskinin 6nemli olup
olmadig1 incelenerek, ilgilenilen degiskenin modelde var olup
olmadigi durumlar i¢in elde edilen tahmin degerleri ile gozlenen
degerlerin karsilastirilmas1 yapilmaktadir. Ilgilenilen degiskenin
modelde yer aldig1 durumda daha iyi, daha dogru tahminler elde
edilmesi; o degiskenin model i¢in Oonemli bir degisken oldugu
seklinde yorumlanir. Arastirmacilarin, ¢alistiklar: konuda birden ¢ok
etkenin olmasi halinde, etkenlerin bagimli degisken {izerine etkisini
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tek tek Ogrenmenin yani sira, bunlarin birlikte bagimli degisken
tizerindeki etkisini de bilmek ve incelemek istemeleri durumunda
tercih ettikleri yontemlerden biridir. Lojistik regresyon modellerinin
ozellikle tip alanindaki uygulamalarinda bagimsiz degiskenler; risk
degiskenleri ya da bir hastaligin ortaya ¢ikip ¢ikmamasini belirleyen
degiskenlerdir. Bu degiskenlerin tespiti, erken tani ve hastaliga
neden olan etkenlerle miicadelede Onemli bir yer tutmaktadir
(Ozliier, Yangin & Saridas, 2021: 112-120).

Lojistik regresyon, iki smifli siniflandirma problemlerinde
olasiliklart modelleyerek kategorik siniflar1 (6rnegin, 0 veya 1)
tahmin etmek i¢in kullanilir. Dogrusal regresyon ise siirekli sayilarla
(6rnegin fiyat tahmini) calisir. Temel fark, lojistik regresyonun
tahminlerini O ile 1 arasinda siirlayan sigmoid egrisine dayanirken,
dogrusal regresyonun bagimli degiskenler arasindaki iligkiyi
dogrusal bir denklemle modellemesidir. Her iki yontem de bagimli
ve bagimsiz degiskenler arasindaki iligskiyi modellemeye yonelik
olup, lojistik regresyon olasiliklari, dogrusal regresyon ise siirekli
degerleri tahmin eder (Zhao & ark., 2001: 2129-2135).

Lojistik regresyonun kokenleri 19. yiizyila, 1845'te Pierre
Frangois Verhulst'un popiilasyon biiyiimesini modellemesine kadar
uzanir. Modern lojistik regresyon ise 20. ylizyilin ortalarinda
gelismeye baglamistir. 1944'te Joseph Berkson, tibbi arastirmalarda
lojistik fonksiyonun kullanimini 6nermis, 1970’lerde ise lojistik
regresyon, sosyal bilimler ve biyomedikal alanda yayginlasmistir
(Senel & Alatli, 2014: 35-52). 1962 yilinda Cornfield, diskriminant
fonksiyon  yaklagimim1i  kullanarak  lojistik  regresyonun
popiilerlesmesini saglamigtir. Sonraki yillarda, 1980'de Breslow ve
Day, 1985’te Abbott, 1995’te Gardside ve Glueck, saglik, yasam
analizi ve kalp hastaligi gibi alanlarda uygulamalar yapmuslardir.
Ayrica, Vupa ve Celikoglu 2006 yilinda akciger kanseri igin, Unsal
ve Giiler 2005°te Tiirk bankacilif1 icin lojistik regresyon analizi
kullanmiglardir. Hava durumu tahminleri {izerine yapilan
caligmalarda ise 2004 yilinda Lewis deniz sisi, Stern ve Parkyn
1999'da Melbourne havaalani, Fabbian ve arkadaslar1 2007'de
Canberra havaalani, Ugur 1984'te Yesilkoy Hava Meydan1 ve Tuncer
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1991'de Esenboga Hava Liman igin sis tahminleri yapmigtir (Aktas
& Erkus, 2009: 47-59).

Lojistik regresyon, makine oOgreniminde yaygin olarak
kullanilan basit bir tekniktir ve derin makine 6grenmesi bilgisi
gerektirmez. Diger yoOntemlere gore avantajlar1  yaninda
smiflandirma yontemlerine baz model olmasi yer alir. Lojistik
regresyon, siniflandirma sorunlarinda, veri O6n isleme, makine
arizalarimi tahmin etme, saglik hizmetlerinde hastalik olasiliklarini
degerlendirme, finansal risk analizi ve pazarlamada reklam
tahminleri gibi pek ¢ok alanda kullanilir.

Regresyon analizinin temel isleyis adimlarina bakildiginda;
once bir ig sorusu belirlenir. Bagimli ve bagimsiz degiskenler
belirlenerek analiz i¢in gerekli olan veriler toplanir, veri temizligi
yapilir. Veri temizlemenin temel adimlari, hatali ve eksik veri
alanlarim1 degistirmeyi ve kaldirmayi, yinelenen bilgileri ve alakasiz
verileri tespit edip ¢ikarmay1 ve bicimlendirmeyi, eksik degerleri ve
yazim hatalarini diizeltmeyi igerir. Verilerin egitim ve test setlerine
ayrilmasi saglanir, model egitilir. Model, verileri matematiksel
denklemlerle baglar ve bilinmeyen degerler i¢in tahminler yapar.
Egitilen model kullanilarak yeni veriler i¢in olasilik tahminleri
yapilir. Modelin performans: dogruluk, ROC egrisi, F1 skoru gibi
metriklerle degerlendirilir ve sonuglar yorumlanir. Modelin
iyilestirilmesi i¢in gerekirse model yeniden egitilebilir.

Lojistik regresyon modelinin matematiksel
formiilasyonunun yapilmas1 kisminda genellikle asagida verilen
logit fonksiyonu Denklem (1) kullanilir.

logit(p) = 1n(1_LJ =z=B+BX+BX,+.. + B X, (1)
et 1
y_1+ez_1+e‘z )

Model egitiminde, ge¢cmis veriler kullanilarak modelin
parametreleri (8) optimize edilir. f sembolii, regresyon katsayisini
temsil eder. Bu genellikle maksimum olasilik tahmini y, Denklem (2)
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ile yapilir (Kuyucu, 2012; Zhao, Yuhuan & Schaffner, 2001: 2129-
2135; Aktas & Erkus, 2009: 47-59). Denklem (2) ile verilen lojistik
fonksiyon grafigi Sekil 3 ’te verilmistir.

J/

Xo

Sekil 3 Lojistik regresyon fonksiyonu

K En Yakin Komsu Algoritmasi1 (KNN): KNN algoritmasi,
ozellikle siniflandirma ve regresyon problemlerinde yaygin olarak
kullanilan bir denetimli makine 6grenme algoritmasi olup temelleri
ilk olarak 1951 yilinda Fix ve Hodges tarafindan tanimlanmistir (Fix
& Hodges, 1951: 1-21; Syriopoulos, Kalampalikis & Kotsiantis,
2023). Cover ve Hart ise 1967 yilinda bu yaklasimi1 genisletmistir
(Cover & Hart, 1967: 21-27).

KNN, kiiciik veri kiimeleri ic¢in basit ve dogru bir
algoritmadir. Oriintii tanima, veri inceleme, istatistiksel tahmin,
ozellik se¢imi, kategorik problemler, tavsiye sistemleri, izinsiz giris
tespiti ve finansal tahminler gibi cesitli alanlarda kullanilir.
Uygulamas1 kolay ve basit olan KNN, biiyiik egitim verilerinden
olumsuz etkilenmez ve giiriiltiilii verilere kars1 dayaniklidir. Ancak,
k parametresinin belirlenmesi gerekliligi bir dezavantaj olarak kabul
edilir.

KNN algoritmasi, egitiminin olmamasi,
gerceklestirilmesinin kolay, analitik olarak izlenebilir, yerel bilgilere
uyarlanabilir, paralel ger¢eklestirmeye uygun, giiriiltili egitim
verilerine karst direngli olmasi gibi avantajlar1 ile siniflandirma
uygulamalarinda 06zellikle tercih edilmektedir. Bu avantajlara
ragmen, yliksek miktarda bellek alanina gereksinim duymasi, veri
seti ve Oznitelik boyutu arttik¢a islem yiikiiniin ve maliyetin 6nemli
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oOlciide yiikselmesi, performansin k£ komsu sayisi, uzaklik olgiitii ve
Oznitelik sayis1 gibi parametre ve ozelliklere bagli olarak etkilenmesi
gibi birtakim dezavantajlar1 da beraberinde getirmektedir (Bhatia &
Vandana, 2010: 302-305; Liu & Zhang, 2012; 1067-1074).

KNN algoritmasi, biiyiikk egitim setlerinin varliginda,
oldukca etkin sonuglar verebilmektedir. KNN algoritmasi, ilgisiz
Ozniteliklerin varliginda da siiflandirma modeli
olusturabilmektedir. Boyle durumlarda egitim ic¢in gereken slire
oldukc¢a artmaktadir (Aha, Kibler & Goldstone, 1991: 37-66). KNN
algoritmasi basit yapisina karsin, yiiksek bir hesaplama maliyetine
sahiptir. Sinif etiketi belirlenmek istenen Grnegin, veri setinde yer
alan ornekler ile arasindaki uzakligin belirlenmesi, 6zellikle biiyiik
egitim veri setleri i¢in oldukca maliyetli olabilmektedir. Bu maliyeti
ortadan kaldirmak i¢cin KNN algoritmasi temel bilesenler analizi gibi
boyut azaltma yontemleri ile ya da arama agaglar1 gibi daha giiclii
veri yapilari ile kullanilabilmektedir (Shmueli, Patel & Bruce, 2010).
Bunun yani sira, KNN algoritmasi, ¢ok boyutlu veri setlerinde etkin
degildir, yiiksek bellek gereksinimlerine sahiptir, komsu sayisi,
uzaklik Olciitii gibi parametrelere duyarhidir (Duda, Hart & Stork,
2000). KNN arama problemi, referans noktalarmin k en yakin
komsularini  bulmay1 icerir. Genellikle Oklid, Manhattan ve
Minkowski uzakliklar1 kullanilir, hesaplamasi Denklem (3), (4), (5)
ile yapilmaktadir.

Oklid Uzaklig = JZLIZE.‘:I(XI- —x) i#j:12,..,n 3)
Manhatatan Uzakhgt = E?zlz}tzl‘xi — xj-‘ i=j:12,...,n (4
Minkowski Uzakligr = (E?:lz?zl(xi - xj-)q)l/q i#j:1,2,...,n(5)

Ancak Chebyshev normu, Dilca uzaklig1 veya Mahalanobis

uzakhig gibi diger uzaklik oOlcilileri de kullanilabilir. KNN
algoritmasinin sd6zde kodu Tablo 2’ de verilmistir.
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Tablo 2 KNN algoritmast sozde kodu

Adim 1. Veri kiimesi yiiklenir.

Adim 2. Veri kiimesi egitim ve test setlerine boliiniir.

Adim 3: k degeri, yani en yakin ka¢ komsuya bakilacagi belirlenir.
Adim 4: Test setindeki her drnek islenirken;

Mesafeleri hesaplanir ve siralanir.

En yakin k komsu segilir.

Cogunluk oyu ile sinif belirlenir.

Adim 5: Test verisi lizerinde algoritmanin dogrulugu 6l¢iiliir.

Siniflandirmanin nasil yapildig1 k=3 i¢in Sekil 4’de gosterilmistir.

A S5O W

Sekil 4 KNN ile £ =3 igin yeni bir veri noktasinin siniflandirilmasi

Performans Olgiitleri, Bulgular ve Tartisma

Bu kisitmda her iki algoritma ile kurulan modelin
dogrulugunu, hassasiyetini, hizin1 ve verimliligini anlamaya
yardime1 olacak performans Olgiitlerine yer verilecektir. Bu dlgiitler
sayesinde hangi algoritmanin daha iyi sonug verdigini veya modelin
tyilestirilmesi gereken yonleri belirlenebilir. Bir sonraki boliime
geemeden, calismada ele alinan performans Olgiitlerinde siklikla
kullanacak olan terimler bu kisimda hatirlatilacaktir.

Gergek degeri pozitif olup pozitif olarak tahmin edilen
ornekler dogru pozitif (dp) olarak adlandirilir. Gergek degeri pozitif
olup negatif olarak tahmin edilen 6rnekler ise yanlis negatif (yn)
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olarak adlandirilir. Pozitif olarak tahmin edilip, ger¢ekte negatif olan
ornekler yanlis pozitif (yp) olarak adlandirilir. Negatif olarak tahmin
edilip, gercekte de negatif olan 6rnekler ise dogru negatif (dn) olarak
adlandirilir.

Dogruluk skoru (Accuracy): Modelin dogru smiflandirdig
orneklerin, toplam tahmin sayisina orami olarak hesaplanir. Bu
metrik, dogru pozitifler ile dogru negatiflerin toplamin alir ve bunu
modelin yaptig1 tiim tahminlerin toplamina bdlerek elde edilir.

dp +dn
(dp +dn + yp + yn)

(6)

Accuracy =

Dogru Pozitif Orani (True Positive Rate, TPR): Modelin, pozitif
siifi dogru sekilde tahmin etme oranidir ve su formiille hesaplanir:

TPR=— %P 7
~ (dp +yn) 2

Yanlis Pozitif Oram (False Positive Rate, FPR): Yanlis pozitif
orani, modelin negatif sinifa ait 6rnekleri yanlislikla pozitif olarak
tahmin etme oranini ifade eder. Bu oran, bir modelin yanlis pozitif
tahminlerinin tiim gercek negatif 6rneklerine gére oranini gosterir.

yp )

FPR= —>"
(yp +dn)

Performans analizi yapilirken dogru pozitif oran1 ve yanlis
pozitif oranlarmin agirlikli ortalama sonuglar1 dikkate alinmigtir
(Aydemir, 2018).

Kesinlik (Precision): Modelin pozitif olarak tahmin ettigi
orneklerin gercekte pozitif olma oranini 6lgen parametredir. Formiil
asagida belirtilmistir (Aydemir, 2018).

dp

" (dp +yp) ©)

p
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Hassasiyet (Recall): Siniflandirma modelinin performansint
degerlendirmek i¢in kullanilan hassasiyet, pozitif sinifa ait tlim
orneklerde ne kadarini dogru tahmin edebildigini 6lgen orandir. Bu
formiil

" p )

bi¢cimindedir (Aydemir, 2018).

F1 Olgiisii: Kesinlik ve hassasiyet, bir modelin
performansini degerlendirmek icin yaygin olarak kullanilir. Ancak,
bu Olgiitler tek basma yeterli degildir ve genellikle birlikte
degerlendirilerek, F-Olglisii devreye girer. F-Ol¢iisii, kesinlik ve
hassasiyetin harmonik ortalamasini temsil eder ve bu sayede her iki
olgiitli birlestirerek daha kapsamli bir performans degerlendirmesi
saglar. F'/ Olgiisii ise kesinlik ve hassasiyetin esit onemde oldugu
durumlarda kullanilir ve asagidaki formiille hesaplanir (Istk &
Ulusoy, 2021).

Kesinlik x Hassasiyet pr

F1 6lgiisii = 2 =22 (11)

Kesinlik+Hassasiyet p+r

LR ve KNN modellerine ait karmagsiklik matrisleri sirasiyla
Sekil 5 ve Sekil 6’ da verilmistir.

Karmasgiklik Matrisi - Lojistik Regresyon

Dogruluk sinifi

0 1
Tahmin sinifi

Sekil 5 LR modeli icin karmasikitk matrisi
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Karmasiklik Matrisi - KNN

Dogruluk sinifi

0 1
Tahmin sinifi

Sekil 6 KNN modeli icin karmasiklik matrisi

Karmagiklik matrisi yardimiyla, ele alinan LR smiflandirma
modelinin performansi detayli bir sekilde analiz edilebilir. Bu tablo,
modelin tahmin ettigi siniflar ile gercek siniflar arasindaki iligkileri
Ozetler. Yukaridaki karmagiklik matrisi kullanilarak, dogruluk,
kesinlik, hassasiyet ve F1 skoru gibi 6nemli performans olgiitleri
Tablo 3’te verilmistir.

Tablo 3 LR ve KNN modelleri igin performans degerleri

Model Dogruluk Kesinlik Duyarhhik | F1 Skoru
LR 0.92 1 0.12 0.21
KNN 0.94 0.65 0.76 0.70

Her iki model de %92-%94 arasinda dogruluk oranina sahip
olup, bu da modellerin genel olarak dogru tahminlerde bulundugunu
gosteriyor. Ancak, yalnizca dogruluk oranina bakmak yaniltici
olabilir, ¢linkii dogruluk tek basina dengesiz veri setlerinde yeterli
bir performans Sl¢iitii olmayabilir.

LR ve KNN ’nin kesinlik degerleri sirasiyla 1 ve 0.65 tir.
Kesinlik, modelin pozitif olarak siniflandirdigi her 6rnegin ne

kadarinin gergekten pozitif oldugunu gosterir. Bu degerlerin diistik
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olmasi, modelin cogunlukla yanlis pozitif sonuglar {irettigini
gosterir. LR 'nin duyarlilik degeri 0.12, KNN 'nin ise 0.76 dir.
Duyarlilik, modelin gergek pozitifleri dogru bir sekilde tahmin etme
oranidir. LR modelinin duyarlilig1 6zellikle daha diisiik olup, bu da
modelin ¢cogunlukla pozitif hastalik vakalarini tespit etmede zayif
oldugunu gosteriyor. LR’ nin F1 skoru 0.21, KNN'ninki ise 0.70 tir.
Bu degerler de LR modelinin pozitif siniflar1 dogru sekilde
simiflandirma konusunda zayif oldugunu ortaya koyuyor. F1 skoru,
ozellikle siif dengesizligi olan veri setlerinde daha diisiik ¢iktig1
zaman modelin performansinin iyilestirilmesi i¢in veri setinin
homojen sec¢ilmesi gerektigini isaret eder. Her iki modelin
performansin1  degerlendirmek i¢in ROC (Receiver Operating
Characteristic) egrileri Sekil 7 ve Sekil 8 'da gosterilmistir.

] ROC Egrisi - LR: AUC=0.8781
T T T T T

09 r

0.8

0.7

0.6

0.5

0.4 -

Dogru pozitif orani

0.3

0.2

0.1F

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Yanlis pozitif orani

Sekil 7 LR modeli ROC egrisi
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ROC Egrisi - KNN: AUC= 0.8613

Dogru pozitif orani
© © o o o o o o
N w S (5] o ~ (o=} ©
=

o

o

, . . . . . . n .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Yanlis pozitif orani

Sekil 8 KNN modeli ROC egrisi

o

ROC egrisi, modelin 7PR ve FPR oranlarini, degisen esik
degerleri ile sirastyla y-ekseni ve x-ekseni boyunca gosterir. Bu egri
sayesinde, modelin ¢esitli esik degerlerinde ne kadar iyi performans
gosterdigi gozlemlenebilir.

Ayrica her iki model i¢in, ROC egrisinin altinda kalan alani
ifade eden ve modellerin siniflandirma performansini 6zetleyen bir
olgiit olan AUC degerleri (Area Under the Curve) hesaplandiginda;
LR, 0.8781'lik yiiksek AUC degeriyle siniflar1 oldukea 1yi ayirarak
iyl bir performans sergilerken, KNN modeli de LR ’ye yakin
0.8613'lik AUC degeriyle LR ’ye yakin bir performans gosteriyor.
KNN modelindeki yiiksek dogruluk (0.94), cogunlukla negatif
siifin (saghiklt  bireyler) dogru siniflandirilmasindan
kaynaklanabilir, bu da modelin pozitif siifi (gut hastaligl) dogru
tespit etmede LR modeline kiyasla gorece zayif oldugunu gdsteriyor.
Sonu¢  olarak, Lojistik  Regresyon, gut  hastaliginin
simiflandirilmasinda daha giivenilir bir model olarak 6ne
cikmaktadir.

Bunlara ek olarak, Tablo 4’te cinsiyet, yas ve irik asit

degiskenlerine bagl gut hastaligi LR modelinin parametrelerine ait
istatistikleri verilmistir.
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Tablo 4 Cinsiyet, yas ve iirik asit miktarina bagh gut hastaligi LR verileri

Degisken Tahmin | Standart Hata | ¢ istatistigi | p Degeri
Yineleme Terimi | -7.7798 | 0.9742 -7.9862 1.3922e-15
Cinsiyet (x;) 0.4620 0.4348 1.0625 0.2880
Yas (x;) 0.0560 0.0161 3.4784 0.0005
Urik Asit (x3) 0.4641 0.1204 3.8536 0.0001

Lojistik regresyon modeli sonuglarina gore, cinsiyet, yas ve
irik asit degiskenleri gut hastaliginin olasili§i tizerinde farkli
diizeylerde etkiler gostermektedir. Modelin yineleme terimi —7.7798
oldukca anlamli olup p degeri (p < 0.001) oldugundan gut hastalig1
olasiliginin diisiik oldugunu gostermektedir.

x, degiskeninin parametre tahmini 0.4620 olmakla birlikte, p
degeri 0.2880 istatistiksel olarak anlamli degildir. Bu sonug, bu
model kapsaminda cinsiyetin gut hastalig1 iizerinde birincil olarak
belirgin ve bagimsiz bir etkisinin bulunmadigim gostermektedir.

X, degiskeninin parametre tahmini 0.0560 olup =3.4784 ve
p=0.0005 degerleri, yasin gut hastalig1 riskini istatistiksel olarak
anlamli bir bicimde artirdigin1 ortaya koymaktadir. Bu bulgu, ileri
yasin gut hastalifi icin Onemli bir risk faktorii oldugunu
dogrulamaktadir.

x3 degiskeninin parametre tahmini 0.4641 olup /=3.8536 ve
p=0.0001 degerleri, lrik asit diizeyinin gut hastalig1 olasiligi
lizerinde giiclii ve anlamli bir etkiye sahip oldugunu gostermektedir.

Bu analiz, iirik asit diizeyi ve yasin modeldeki en onemli
degiskenler oldugunu ve gelecekteki tahminler i¢in bu degiskenlerin
dikkate alinmasinin gerekli oldugunu gostermektedir.
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Sonuclar ve Oneriler

Ele alinan veri setinde cinsiyet degiskeninde kadin erkek
sayist arasinda dengesizlik goriilmektedir. Diinya genelinde gut
hastaligina yakalanma cinsiyet orani, (kadin/erkek) 1/3 sabit
kalmistir, ancak kiiresel gut insidansi zaman i¢inde her iki cinsiyette
de artmaktadir (He & ark., 2023). Bu da veri setinin % 63 ’iiniin
kadinlardan olustugu goz oniine alindiginda hasta sayisinin az olma
nedeni olarak ac¢iklanabilir.

Sonuglar baglaminda bir degerlendirme yapilirsa, her iki
modelin de giiglii yonleri bulunmaktadir. LR modeli yanlis pozitif
oranini minimize ederek giivenilirlik saglarken, KNN modeli daha
yliksek duyarlilik ve F1 skorlar ile klinik a¢idan daha etkin bir
performans  sunmaktadir. Bu  bulgular, gut hastaliginin
siiflandirilmasinda KNN ’nin pratik uygulamalarda daha avantajli
olabilecegini, ancak LR ’nin de 6zellikle yanlis pozitiflerin kritik
onem tasidig1 durumlarda degerli bir alternatif olarak 6ne ¢iktigini
gostermektedir. Model 1iyilestirmeleri ve daha i1yi sonuglar i¢in
orneklem dengesizligini gidermek veya farkli metrikler kullanmak
(6rnegin, sinif agirliklariyla yeniden egitim) gerekebilir.

Tanimlayict istatistikler incelendiginde, gut hastaliginin
kadinlarda diisiik bir oranda, erkeklerde ise daha yiiksek bir oranda
goriildiigii saptanmistir. Ayrica erkek grubunda yas ortalamasinin
kadinlara kiyasla daha yiliksek oldugu, bunun yaninda {irik asit
diizeylerinin de erkeklerde belirgin sekilde daha yiiksek seyrettigi
gorilmiistiir. Bu literatiirde gut hastaliginin o6zellikle orta yas ve
tizerindeki erkeklerde yayginligina dair ¢aligmalarla ortlismektedir.

Lojistik regresyon analizine gore, cinsiyet degiskeninin gut
hastaligi ile iligkisi istatistiksel agidan anlamli bulunmamistir. Buna
karsin yas ve dirik asit diizeyleri gut hastaliginin 6nemli
belirleyicileri olarak &ne ¢ikmustir. Ozellikle iirik asit diizeyi,
istatistiksel olarak son derece anlamli bulunmus ve gut hastaliginin
en giiclii biyokimyasal belirleyicisi oldugunu gdstermistir. Yas
degiskeni de benzer sekilde anlamli diizeyde bir katki saglamis ve
hastaligin ilerleyen yaslarda daha sik goriilme egilimini
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desteklemistir. Bu sonuglar, gut hastaliginin tespitinde temel
degiskenin iirik asit diizeyi oldugunu, yas faktoriiniin ise ek bir risk
artirict unsur olarak rol oynadigini ortaya koymaktadir.

Elde edilen bulgular, literatiirdeki genel kabul ile uyumludur:
gut hastaligmin en giiclii belirleyicisi hiperiirisemi olup, yas ile
hastalik riski artmaktadir. Cinsiyet ise Ozellikle erkeklerde daha
yiiksek bir goriilme sikligina isaret etse de, model bazinda bagimsiz
bir belirleyici olarak anlamli bulunmamistir. Bu sonug, cinsiyetin
irik asit diizeyi iizerinden dolayli bir etkide bulundugunu
distindiirmektedir.

Sonu¢ olarak, calisma kapsaminda yapilan analizler, gut
hastaliginin tam1 ve risk degerlendirmesinde iirik asit diizeyinin
merkezi roliinii dogrulamaktadir. Ayrica yas faktoriiniin dikkate
alinmasinin, 6zellikle ileri yas gruplarinda tarama ve erken tani
acisindan kritik Gneme sahip oldugunu gostermektedir. Bu baglamda
gelistirilecek klinik ve epidemiyolojik modellerde iirik asit diizeyi ve
yas degiskenlerinin birincil Oncelikli parametreler olarak
degerlendirilmesi onerilmektedir.
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