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ÖNSÖZ 

Matematik, yalnızca soyut düşüncenin bir ürünü değil; aynı 

zamanda mühendislikten doğa bilimlerine, sosyal bilimlerden 

teknolojiye kadar uzanan geniş bir yelpazede gerçek dünya 

problemlerinin çözümünde vazgeçilmez bir araçtır. İnsanlık 

tarihinin en köklü ve evrensel bilimlerinden biri olan matematik, 

hem kuramsal derinliği hem de uygulamalı gücüyle bilimsel 

ilerlemenin temel dinamiklerinden biri olmayı sürdürmektedir.  

Kuramsal matematik; sayıların, yapıların, uzayların ve 

değişimin doğasını anlamaya yönelik soyut bir çaba olarak, cebir, 

analiz, geometri, topoloji, mantık ve sayı teorisi gibi alanlarda 

derinleşmektedir. Uygulamalı matematik ise bu soyut kavramların 

mühendislik, ekonomi, biyoloji, yapay zeka ve veri bilimi gibi 

alanlarda nasıl işlevsel hale getirilebileceğini göstermektedir. Bu iki 

yaklaşım, birbirini tamamlayan ve matematiğin evrenselliğini 

pekiştiren temel sütunlar olarak ele alınmaktadır.  

Bu bağlamda, Modern Matematikte Analiz ve Uygulamalı 

Yöntemler: Ölçü Teorisi, Diferansiyel Denklemler, Yaklaşım 

Yöntemleri ve Makine Öğrenmesi başlıklı bu akademik eser, 

matematiğin çok yönlü doğasını yansıtarak hem kuramsal hem de 

uygulamalı boyutlarını ele almaktadır. Temelinde modern 

matematiksel analizin farklı yönlerini bir araya getiren 

çalışmalardan oluşan bu kitap; ölçü teorisi, diferansiyel denklemler, 

nümerik yöntemler, yaklaşım teorisi ve makine öğrenmesi gibi temel 

konuları içeren bölümleriyle hem kuramsal çerçeve hem de 

uygulamalı bakış açısı sunmaktadır. Kitapta yer alan her çalışma, 

kendi alanının temel kavramlarına odaklanmakla birlikte, 

matematiğin farklı alt disiplinleri arasındaki doğal ilişkileri de 

görünür kılmakta ve farklı matematiksel yaklaşımları ortak bir 

zeminde buluşturmaktadır. Bu yönüyle eser, hem araştırmacılar hem 



de ilgili alanlarda çalışan lisansüstü öğrenciler için yararlı bir kaynak 

olmayı hedeflemektedir. 

Editör olarak, bu eserin hazırlanmasında bilimsel katkı sunan 

tüm yazarlarımıza  ve yayın sürecinde emeği geçen herkese teşekkür 

ederim. 

 

 

Prof. Dr. Şükran KONCA 

İzmir Bakırçay Üniversitesi 
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Giriş 

 

Ölçüm, temel olarak bir ipin uzunluğunu, bir tarlanın alanını ve bir 

evin haciminin hesaplanması, ihtiyacından doğmuştur ve insan 

yaşamında kolaylıklar getirmiştir. Bu duruma paralel olarak ölçüm 

kavramının hayatımıza girişi çok eskilere dayanmaktadır. Ölçüm ilk 

olarak, insanlar tarafından kendi sayılarını veya hayvanlarının 

sayılarını belirlemek için, ardından bir çubuğun veya bir ipin reel 

düzlemde ki uzunluğunun ölçümünün belirlenmesi için, daha 

sonraları tarımın gelişmesi ve yerleşik hayata geçiş ile birlikte bir 

tarlanın alanını hesaplanmak ve bir evin hacmini hesaplamak için 

basit anlamdaki ölçümleri temsil etmektedir. Ancak bu basit 

anlamdaki ölçümler daha kompleks ölçümler için yetersiz kalmıştır.  

Örneğin bir ağacın hacminin hesaplanmasında veya bir yaprağın 

yüzey alanının hesaplanmasında bir çok problemle karşılaşılmıştır. 

işte bu noktada basit anlamda ölçümün yetersizliği ortaya çıkmıştır. 

Buna paralel olarak daha kompleks şekil, cisim veya kümelerin 

ölçümü için bilimin ve özellikle de matematiğin gelişmesiyle bir çok 

çalışma yapılmıştır. Örneğin; A.L. Cauchy (1789-1857) integrali, bir 

toplamın limiti olarak tanımlayan ilk matematikçi oldu. Daha sonra 

Riemann (1826-1865), Cauchy’nin çalışmalarını sürdürmüştür. 

Ayrıca G. Cantor (1845-1918) integral ile ölçüm arasındaki ilişkiyi 

sezinlemiştir. Yapılan çalışmalar arasında özellikle de Fransız 

matematikçiler Emile Borel (1871-1956) ve Henri Lebesque (1875-

1941) in yapmış olduğu çalışmalar bugünkü klasik ölçüm teorisinin 
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temelini oluşturmaktadır. Klasik ölçüm teorisindeki toplamsallık 

özelliğinden dolayı bu ölçüme toplamsal ölçüm de denilmektedir. 

Bilimin hızlı ilerleyişine bağlı olarak toplamsallık şartının çoğu 

zaman kısıtlayıcı olduğu görülmüştür. Buna bağlı olarak 

toplamsallık yerine monotonluk, süreklilik gibi daha esnek şartlar 

kullanılarak oluşturulan ölçüm kuralları oluşturulmuştur. Bu konuda 

özellikle (Mukherjea, 1984), Sugeno (Sugeno, 1977) ve Zadeh 

(Zadeh, 1978) tarafından önemli çalışmalar yapılmıştır. Bu ölçümler 

genel olarak bulanık ölçüm olarak adlandırılır. 
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Klasik Ölçüm        

Klasik anlamdaki ölçümler toplamsal ölçümler olarak 

adlandırılırlar. Bu konuda Emile Borel (1871-1956) ve Henri 

Lebesque (1875-1941)’nin çalışmaları temel kaynaklar olmuştur. 

Daha sonra Caratheodory (Caratheodory, 1963) bu çalışmaları 

cebirsel yapıda incelemiş, ölçülebilirlik ve genişleme teoremlerini 

yazmıştır. Klasik ölçümlerle ilgili olarak (Zadeh, 1978), (Birkhoff, 

1967) önemli kaynaklardır.                                                                                                            

Tanım  ,  X kümesinin alt kümeleri üzerinde tanımlı bir  cebir  ve 

 ’de üzerinde tanımlanan genişletilmiş reel değerli bir 

fonksiyon olmak üzere;                                  

1-)   0                                                                                                                        

2-)  için   0                                                                                                   

3-) nın ikişer ikişer ayrık her  n dizisi için 

1

n

n





   

olacak şekilde  

 
11

n n

nn

 
 



 
   

 
  
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oluyorsa o zaman   ye  üzerinde bir ölçüm (klasik ölçüm) denir. 

(3). özellik   nün sayılabilir toplamsallığı olarak bilinir. Ayrıca 

nın ikişer ikişer ayrık her n dizisini, 

 
11

k k

n n

nn

 


 
   

 
  

şeklinde ifade edersek   ölçümü sonlu toplamsal ölçüm olarak 

tanımlanır (Atanassov K., Intuitionistic fuzzy sets, 1986).                                                                      

Örnek   2XP X  olsun.      

 
daki nokta sayısı , sonlu ise

, sonsuz ise


 
  

 
  

tarafından tanımlanan   bir ölçümdür (Atanassov K., More on 

intuitionistic fuzzy sets, 1989). 

 Gerçekten;                                                                                                                                                                                                

1-)   olmak üzere,    ise     0     dır.                                          

2-)   olmak üzere 2X  olduğundan 2X dir. O  halde 

Eğer,   ise  sayılabilir olduğundan   0  
 
dır.  Eğer 

  ise, iki durum söz konusudur.  sonlu ise   0s    

olduğundan 
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  0s    

dır. A sonsuz ise 

 s     

 olduğundan    0     dır. 

3-)   
1

n

k k
   , kümesi üzerinde ikişer ikişer ayrık olan sonlu 

bir dizi olsun. Bu durumda, 1,2,..., 1k n    için 1k k    

dır.                                                                                                                                        

           1 1 1 1k k k k k k k ks s s s s s                 

olur. Daha genel olarak, 

 
11

n n

k k

kk

s s


 
   

 
  

olmak üzere 

 
11

n n

k k

kk

 


 
   

 
  

dır.
 

 
1n n




 ,  kümesi üzerinde ikişer ikişer ayrık olsun. 

1n n    olmak üzere, 
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 
11

n n

nn

s s
 



 
   

 
  

 olduğundan 

 
11

n n

nn

 
 



 
   

 
  

   

olur ki bu durumda   bir ölçümdür.                                                                                                                       

Örnek  X sayılamayan bir küme ve 

 :ya ya da sayılabilirdirX X     

biçiminde  tanımlanan  bir  sınıf olsun. O zaman  bir cebirdir. 

Ayrıca, 

 
0 , Eğer sayılabilirse

1 , Eğer sayılabilirseX



  


 

 tarafından tanımlanan   bir ölçümdür (Atanassov K., New 

operations defined over the intuitionistic fuzzy sets, 1994). 

Bunun  için öncelikle  nın bir cebir olduğunu  gösterelim. 

,E F  olmak üzere E için ya E  yada  E X E   

sayılabilirdir. F  için ya  F  yada F X F  sayılabilirdir. 
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Eğer E  ve F  (yada ,E F ) sayılabilirse, sayılabilir kümelerin 

birleşimleri de sayılabilir olduğundan E F   ya da E F   

olur. Şimdi   nun bir ölçüm olduğunu gösterelim: 

1-) , ( )   için   0    dır.                                                                                                                  

2-)   yada  X    sayılabilir olduğundan.  Eğer   sayılabilir 

ise   0  
 
 ve   1X A   olur. Eğer X   sayılabilir ise 

  0X A    ve   1  
 
olur ki her  iki durumda da 

  0       

olur.                                                                                                        

3-)  
1n n




 ,   nın ikişer ikişer ayrık bir dizisi olsun. 1,2,...n 

olmak üzere, n
 
ler sayılabilir olsun. Bu durumda Cantor’a göre 

sayılabilir kümelerin birleşimi de sayılabilir olduğundan 

1

0n

n






 
  

 
 

dır. Öyle ki n ler sayılabilir olduğundan 

 
11

0n n

nn

 
 



 
    

 
  
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dır. Eğer n
 
ler sayılamaz ise, bu durumda nX 

 
ler sayılabilirdir.

 
1n n

X



  dizisinde 1 2 ... nX X X        için 

  1nX    

olduğu açıktır.                                                                                                              

Örnek X Z   olsun. 2X   ve  
1

n

n

a




   pozitif  reel  sayıların 

yakınsak  bir serisi olsun. 

 

, ve sonlu ise

, sonsuz ise

0 , ise

n

n

a






  


   

  





 

üzerinde tanımlanan  bir ölçüm değildir. Fakat sonlu toplamsal 

bir ölçümdür (Atanassov K., 1989). Gerçekten;                                                                                                                                                   

1-)  ,      için   0  
 
                                                                                                                                                                                                                                                                          

2-)   ise    0    ve   ise 

  0 ( yakın sakseri old. )n n

n n

a a
 

     

   ise
 

      olur ki her üç durumda da 0   olduğundan  

(2)  koşulumuz sağlanmış olur.                                                                                                                                             
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3-)   
1n

X n






 

 için  X     olduğu açıktır.  Ancak   
1

n

n

a




   

yakınsak bir seri olduğundan   
1 1

n

n n

n a
 

 

     olup   bir 

ölçüm değildir. Fakat   sonlu toplamsal bir ölçümdür.  Çünkü 

 
1

k

n

X n


 olacak şekilde sonlu seçersek  X    olacağından 

     
11

k k

nn

X n n  


 
  

 
  

olur ki   sonlu toplamsal bir ölçüm olur.                                                                                                                              

Önerme   cebiri üzerinde bir ölçüm   olsun. O zaman,                                                         

1-) B , , B   için     B    dir.                                                                              

2-) Eğer  , 1n n      ve  
1

n

n





   için 

 
11

n n

nn

 
 



 
   

 
  

olur.                                                                                                                            

İspat:                                                                                                                                             

1-)   B B    alalım. Bu durumda   

 1 2, B       

--10--



 

ve  2n   için n 
 
ise O zaman  sayılabilir toplamsaldır. Bu 

durumda       B B       olur ki, buradan  

   B    

olur.                                                                                                                         

2-) 1 1B   ve 1n   için
1

1

n

n n i

i

B




   olsun. Buradan yola 

çıkarak n  için nB 
1 1

n n

n n

B
 

 

   ,  n nB    ve nB  

ayrık kümeleri için, aşağıdaki eşitlik elde edilir. 

   
1 11 1

n n n n

n nn n

B B   
   

  

   
       

   
   (Birkhoff, 1967).

 

Önerme  , cebiri üzerinde bir ölçüm olsun.                                                                          

1-) Eğer 1 ,1n n n       için n   ise o zaman 

 
1

limn n

nn

 




 
   

 
 

dir. 

2-) Eğer  1 , 1n n n       için n  ,  1     ve  

1

n

n





   ise o zaman,    
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 
1

limn n

nn

 




 
   

 
 

dir. Üstelik   sonlu toplamsal ölçümü  (1) vasıtasıyla sayılabilir 

toplamsaldır.                                                                                                                                                 

İspat:  Öncelikle en son iddiamızı ispatlayalım. (1) özelliği ile   

sonlu toplamsal bir ölçüm  olmak  üzere  nın  ayrık  kümelerinin 

bir dizisi    
1n n




 ,   

1

n

n





    ve 
1

k

k n

n

B


 

 

 olsun. O zaman 

1k kB B  , kB   ve  
1 1

k n

k n

B
 

 

   olur.  Bu yüzden (1) 

özelliğinin varsayımı tarafından, 

 
1 1

lim limn k k
k

kn k

B B  
 


 

   
      

   
 

   
1 1

k

n n

n n

 


 

     

elde edilir. Şimdi (1) ve (2) özelliklerini ispatlayalım.                                                                                                                                    

1-)  
1

n

n





 

 

 ve 1n n    ve 0n    için, 

1 1 1, n n nB B       

olsun. O  zaman,   
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( )n mB B n m  
 

ve   

1 1

n n

n n

B
 

 

  

  

olur  ki  buradan  da, 

 
11 1

limn n n
k

nn n

B B  
  


 

   
      

   
  

   
1

lim
k

n k
k

n

B 




  , 

1

için
k

k n

n

B


 
  
 

 

istenen elde edilmiş olur. 

2-) 1n n   ,   1

1

, n

n






    

 

olsun.  O zaman 

 1 1

1 1

n n

n n

 

 

       

ve 

1 1 1n n      

olur ki (1) dan dolayı   1     için,
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 1 1

1

limn n
n

n

 





 
      
 

 

 1 1

1 1

n n

n n

  
 

 

   
         
   

 

ve 

     1 1n n         

bulunur. Eğer  X    ise, X in alt kümelerinin oluşturduğu 

cebiri üzerindeki  ölçümü sonludur. Eğer  nX   ve  

1

n

n

X X




  ile daki kümelerin bir  nX  dizisi var ise    ölçümü 

  sonlu olarak  adlandırılır.  Önerme 3.1.1 deki  (2)  ifadesinden  

ayrık kümeler olarak  
1n n

X



 daima elde edilebilir. Bu sonsuzluk 

şartı bir ölçüm üzerinde sıkça rastlanır. Genel teoremlerin çoğu 

kısmı için bu duruma ihtiyaç duyulur.  Bunun  en önemli örneği R 

nin alt kümelerinin bir cebiri üzerindeki   sonlu ölçümüdür ki 

buna aralıklar üzerindeki Lebesque ölçümü denir (Delgado, 1987).                                                     

Örnek   cebiri üzerinde sonlu toplamsal bir ölçüm   olsun. 

, B   için,           

1-)  B  ise    B                                                                                                               

2-)         B B B                                                                                          
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3-)  Eğer  B  ve      ise      B B       dır 

(Dempster, 1967).                                                                                                                                                                                                      

Gerçekten;                                                                                                                           

1-)  , B   ve B   olmak  üzere   B B  
  

olarak  

yazabiliriz.  1   , 2 B   ,  2n   için n    ise  o  zaman 

 sayılabilir toplamsal olur. Bu durumda 

     B B       

ifadesinden    B    elde edilir. 

2-)  Ölçümün  (3). Özelliği  gereğince  
1n n




   dizisi  ikişer ikişer  

ayrık olacağından toplamsalolarak yazabiliriz. Yani    

1,2,..., 1k n    için  1k k  
  

dır.  1   , 2 B   olmak 

üzere,   

     1 2 1 2

1

k

k

  


         

olur. Yani 

                                    1B B       

dir.                                                                                         
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3-) B   ise   B B     ve       olmak üzere,                        

     B B        ifadesinden       B B       

elde edilir. 

Örnek Sonlu  toplanabilir   ölçümü  için  önerme 3.1.2  nin  (2) 

sayılabilir bir  ölçüm  olmadığını  gösterebiliriz. 

 ( (2): Eğer,  1 , 1n n n       için n  ,   1     ve  

1

n

n





    

ise  o zaman, 

 
1

limn n

nn

 




 
   

 
) (Dubois, Possibility Theory, 1988).                                                                                                                                         

 1,2,...X Z    ve  X alalım.  , 1, 2,...n n n n     olmak 

üzere,   1 1,2,3,...   ,  2 2,3,4,...  ,  3 3,4,5,...  …   için  

1

n

n





   

olduğundan 

1

0n

n






 
  

   
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elde edilir. Ayrıca  n
 
kümesi  sonsuz  olduğundan   n  

  

olur dolayısıyla   ölçümü Önerme 3.1.2  nin (2) si için  sayılabilir 

ölçüm değildir.                                       

Örnek  Bazı n değerleri  için,  n    olmadıkça  

1 1 ,n n n       için n  ,   1     ve  
1

n

n





    ise 

 
1

limn n

nn

 




 
   

 
  

eşitliğinin gerçekleşmeyeceğini gösterebiliriz (Dubois, Constant 

appraximations of belief functions, 1990).                                                                     

X R  ve  ,n n   , 2X  ve   sayılabilir bir ölçüm olsun. 

1,2,3,...n  için,  1 1,   ,   2 2,   ,   3 3,   …  olmak  

üzere,  
1

n

n





 

  

olduğunda 
1

0n

n






 
  

   

olur. Ancak  diğer   

yandan,  n   için,  n  
 
olduğundan  dolayı 

 
1

limn n
n

n

 





 
   

 
 

olur. Bu da bize gösteriyor ki,  ,n n  
  
kümelerinden bazı n  

ler için  1     olmadıkça bu eşitlik sağlanmaz. 
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Sonuçlar 

Bulanık ölçüm, kesin sınırlarla tanımlanamayan durumları 

belirsizlik düzeyleriyle ifade ederek ölçümlerin daha gerçekçi 

yapılmasını sağlar. Ayrıca, daha çok geleneksel ölçme 

yöntemlerinin yetersiz kaldığı gri alanlarda, bulanık kümeler 

aracılığıyla daha esnek ve kapsayıcı değerlendirmeler yapılabilir. Bu 

çalışmada, klasik ölçüm ile ilgili bazı bilgiler verilip bu ölçüm ile 

ilgili bazı temel ve kapsayıcı tanımlara yer verilmiştir.  
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Giriş 

 

 Ölçüm, temel olarak bir ipin uzunluğu, bir tarlanın alanı ve 

bir evin hacminin hesaplanması, ihtiyacından doğmuştur ve insan 

yaşamına kolaylıklar getirmiştir. Bu duruma paralel olarak ölçüm 

kavramının hayatımıza girişi çok eskilere dayanmaktadır. Ölçüm ilk 

olarak, insanlar tarafından kendi sayılarını veya hayvanlarının 

sayılarını belirlemek için, ardından bir çubuğun veya bir ipin reel 

düzlemdeki uzunluğunun ölçümünün belirlenmesi için, daha 

sonraları tarımın gelişmesi ve yerleşik hayata geçiş ile birlikte bir 

tarlanın alanını hesaplamak ve bir evin hacmini hesaplamak için 

basit anlamdaki ölçümleri temsil etmektedir. Ancak bu basit 

anlamdaki ölçümler daha karmaşık ölçümler için yetersiz kalmıştır. 

Örneğin bir ağacın hacminin hesaplanmasında veya bir yaprağın 

yüzey alanının hesaplanmasında birçok problemle karşılaşılmıştır. 

İşte bu noktada basit anlamda ölçümün yetersizliği ortaya çıkmıştır. 

Buna paralel olarak daha kompleks şekil, cisim veya kümelerin 

ölçümü için bilimin ve özellikle de matematiğin gelişmesiyle bir çok 

çalışma yapılmıştır. Örneğin; A.L. Cauchy (1789-1857), integrali bir 

toplamın limiti olarak tanımlayan ilk matematikçi oldu. Daha sonra 

Riemann (1826-1865), Cauchy’nin çalışmalarını sürdürmüştür. 

Ayrıca G. Cantor (1845-1918) integral ile ölçüm arasındaki ilişkiyi 

sezinlemiştir. Yapılan çalışmalar arasında özellikle de Fransız 

matematikçiler Emile Borel (1871-1956) ve Henri Lebesque (1875-

1941) in yapmış olduğu çalışmalar bugünkü klasik ölçüm teorisinin 

temelini oluşturmaktadır. Klasik ölçüm teorisindeki toplamsallık 

özelliğinden dolayı bu ölçüme toplamsal ölçüm de denilmektedir. 
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Bu bölümde, latis teorisi, latis genişlemeleri ve özelliklerini 

inceleyeceğiz (Atanassov K., Intuitionistic fuzzy sets, 1986). 

 , ,   sistemi ya da daha basit bir gösterimle ; eğer ,   

işlemleri altında kapalı ise bir latis olarak adlandırılır. İki tane latis 

ailesi   ve   olsun. Eğer  den   ne tanımlanan dönüşüm 

birebir ise latis işlemleri altında izomorfizmlikten bahsedebiliriz. 

Eğer den    ne bir izomorfiklik varsa  ye,   ile latis-

izomorftur denir ve   yazılır. Eğer x y x   ise x y  yazarız 

veya buna benzer olarak eğer  x y y   ise y x  yazarız. Eğer  

nin her A  alt kümesi supremum  A  ve infimum A   yı içeriyorsa 

 ye bir tam latis denir. Bir  tam latisi maksimum ve minimum 

elemanları içeren bir latis ailesidir. Biz bu bölümde maksimum ve 

minimum elemanları, sırasıyla 1L  ve 0L  ile göstereceğiz.  

Bu kısımda kullanacağımız X  kümesi, aksi belirtilmedikçe 

bir tam küme olarak alınacaktır ve  de, X in alt kümelerinin 

oluşturduğu bir latisler ailesi olarak kabul edilecektir. 

Tanım Eğer bir  latisler ailesi aşağıdaki koşulları sağlıyorsa bir 

latis   cebiri olarak adlandırılır: 

1-) f   için  
cf   
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2-) Eğer 1,2,3,...n  için nf   ise o zaman  
1

n
n

f



   dir 

(Atanassov K., More on intuitionistic fuzzy sets, 1989). 

 tarafından üretilen latis   cebiri    şeklinde gösterilir.  

Bu kısım boyunca kullanacağımız latisler, tam latisler olacaktır ve 

X  bir uzay olup,   de, X  in bulanık kümelerinin üyelik 

fonksiyonu olarak kabul edilecektir. 

Tanım Eğer    :m R   L  fonksiyonu aşağıdaki koşulları 

sağlıyorsa, m  ye ,    latis   cebiri üzerinde bir latis değerli 

ölçüm adı verilir.   

1-)   0m L   

2-)  ,f g   L  için         0, : .m f m g L f g m f m g     

3-)          , : .f g m f g m f g m f m g      L  

4-) Eğer   ,nf n N L  ve 1 2 .... ...nf f f    ise o zaman  

 
1

limn n
n n

m f m f




 
  

 
 dir (Atanassov K., New operations defined 

over the intuitionistic fuzzy sets, 1994). 
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Uyarı 1m  ve  2m  aynı latis   cebiri üzerinde tanımlı latis değerli 

ölçümler olsunlar. Eğer bunlarda birisi sonlu ise  

       1 2 ,m E m E m E E    L  fonksiyonu iyi tanımlıdır ve 

   üzerinde sayılabilir toplamsaldır (Atanassov K., 1989). 

Tanım Eğer X  üzerindeki üyelik fonksiyonlarının  
 
latisler 

ailesi aşağıdaki koşulları sağlıyorsa latis değerli fuzzy(bulanık)  

cebir olarak adlandırılır.  

1-)    için  sabit olmak üzere;    L  

2-)      için  1     dir. 

3-) Eğer     n   ise     sup n  , n N   dir (Atanassov 

K., 1989). 

Tanım Eğer     :m R   L  fonksiyonu aşağıdaki özellikleri 

sağlıyorsa, m  ye latis değerli bulanık ölçüm denir. 

1-)   0m L   

2-)          1 2 1 2 1 2 1 2, , , 0; .m m m m             L  

3-)          1 2 1 2 1 2 1 2, ,m m m m              L . 
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4-)          1 2, , ... ...;sup limn n n n
n

L n N m m                 

(Birkhoff, 1967). 

Tanım *m  ile gösterilen bir latis değerli bulanık dış ölçüm, X  

üzerinde tanımlı latis değerli küme fonksiyonlarının bir 

genişlemesidir ve aşağıdaki özellikleri sağlar. 

1-)  *

0m L   

2-)    * *

1 2m m   için  1 2  . 

3-)  * *

1 1i iE E
i i

m m 
 

 

 
   

 
 (Birkhoff, 1967). 

Örnek  Aşağıdaki örneği inceleyelim: 

0*

1

,

,

E

E

L
m

L






 

 
 

Burada 0L latis kümelerinden oluşan ailelerin minimum elemanı ve 

1L  ise maksimum elemanıdır (Birkhoff, 1967). 

Eğer X  en az iki eleman içerirse, *m  latis değerli bulanık dış ölçüm 

olur aksi halde X  üzerinde bir latis değerli  bulanık ölçüm olmaz.  
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Önerme F , X  in 0L ’ı içeren bulanık alt latis kümelerinin bir sınıfı 

öyleki  her A X  için F  de  
1nB

n





 dizisi mevcuttur ve 

 
1nA B

n
 




  dır.  , F  üzerindeki latis değerli fonksiyonların bir 

genişlemesi olsun  öyle ki A F   için   0L    ve   0A L    

dir. O zaman *m , X  üzerinde 

    *

1
inf : ,

n n nA B B A B
n

m F     



    

ile tanımlı bir bulanık dış ölçüm olur (Caratheodory, 1963). 

Teorem *m  bulanık ölçülebilir kümelerin sınıfı olan B ,bir  

cebirdir. Aynı zamanda  *m  nün B  ye kısıtlanışı olan m  , bir latis 

değerli bulanık ölçümdür (Caratheodory, 1963). 

Teorem (Generalized Carathedory Extension Theorem)  m  , 

  X     cebiri üzerinde bir latis değerli bulanık ölçüm ve 

E X   için,  

   *

1 1
inf : ,

n n nE E E E E
n n

m m     
 

 

  
      

  
  

olsun. O zaman aşağıdaki özellikler geçerlidir: 

1-) *m ,bir latis değerli bulanık dış ölçümdür.  
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2-)  E   iken    *

E Em m   dir. 

3-)  E   iken  E , *m  latis bulanık ölçülebilirdir. 

4-) m  , *m  nin *m - latis değerli bulanık ölçülebilir kümelere 

daraltılmışı,    yi içeren bir bulanık    cebiri üzerinde bir latis 

değerli bulanık ölçüme, m  nin bir genişlemesidir 

5-) Eğer m  latis değerli bulanık    sonlu ise, m  latis değerli 

bulanık ölçümü (    yi içeren en küçük bulanık    cebiri 

üzerinde) m  nin bir genişlemesidir ve tektir (Caratheodory, 1963). 

Sıfır – Toplamsallık 

Tanım    : ,     fonksiyonu 𝐸, 𝐹 ∈ 𝑭,E F  ve 

  0F   için 

   E F E    

koşulunu sağlıyorsa   ye sıfır-toplamsaldır denir (Delgado, 1987). 

Tanım  Her 𝐸, 𝐹 ∈ 𝑭,    0, 0,E F    iken 

  0E F    

--28--



 

oluyorsa   ye zayıf sıfır-toplamsaldır denilir.  

Teorem Boş olmayan herhangi bir F   için   0F   ise   

sıfır-toplamsaldır (Dempster, 1967). 

İspat:   0F   olacak şekilde bir F   varsa, F   dir. 

Buradan herhangi bir E  için    E F E    elde edilir. 

Teorem Eğer  : 0,F    azalmayan bir küme fonksiyonu ise 

aşağıdaki ifadeler denktir (Dempster, 1967). 

1-)   sıfır toplamsaldır. 

2-) ,E F   ve    0F   için     E F E     dir. 

3-) ,E F   , F E  ve   0F   için     E F E   dir. 

4-) ,E F    ve   0F   için     E F E   dir. 

5-) ,E F    ve    0F   için     E F E  dir. 

İspat:  (1)⇒(2) :   0F   ise    0 0E F F      ve 

 F E E    olacağından  

   E F E     

elde edilir. 
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(2)⇒(1): Açıktır. 

(1)⇒(3):     E E F F     yazmak yeterlidir. 

(3)⇒(4):     E F E F E      ve F E E   olduğundan 

                                       0 0F E F      

 ifadesinden istenilen elde edilir. 

(4)⇒(1): F E   iken      E E F F     dir. 

(2) ve (4) ⇒ (5):       E F E F E F       eşitsizliğinden 

istenilen elde edilir. 

(5)⇒(1): E F   iken E F E F   eşitliğinin doğruluğunu 

göstermek yeterlidir. 

Sıfır toplamsal olmayan fuzzy (bulanık) ölçümlerine vereceğimiz en 

basit örnek aşağıdaki gibidir. 

Örnek   , ,X a b  P X
 
ve 

 E 
1,

0,

E X

E X








 

(Dubois, Groups Operating on Fuzzy Sets, 1980). 
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Teorem    sıfır-toplamsal olmayan bir fuzzy-ölçümü ve E  ℱ 

olsun.  ℱ  de     lim 0n
n

F  olacak şekilde herhangi bir azalan küme 

dizisi için : 

   lim n
n

E F E    

ve diğer yandan 

   E   iken  
0

( )E Fn    koşulunu sağlayan en küçük bir 

pozitif  
0

n sayısı vardır (Dubois, Evidence measures based on fuzzy 

information, 1985). 

İspat: Bu teoremi   E   için ispatlamak yeterlidir. 
1

n

n

F F




   

alırsa    lim 0n
n

F F    eşitliğini elde ederiz. 

nE F E F   olduğundan   nün sıfır-toplamsal ve sürekli 

oluşundan 

     lim n
n

E F E F E       

elde edilir. 

Teorem   Eℱ  ve   sıfır-toplamsal bir fuzzy  ölçüm olsun. ℱ  

deki  lim 0n
n

F   olan herhangi bir azalan  nF  dizisi için 
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   lim n
n

E F E    dir (Dubois, Evidence measures based on 

fuzzy information, 1985). 

Oto-Süreklilik (Autocontınuıty) 

Tanım  : ,     fonksiyonu 1,2,3,..,n E   ℱ, nF  ℱ , 

nE F   (ya da nF E )  ve   lim 0n
n

F 
 
iken  

   lim n
n

E F E    

 koşulu sağlanıyorsa  ’ye üstten (ya da alttan) auto-süreklidir denir. 

Eğer   hem üstten hem de alttan auto-sürekli ise   ’ ye auto-

süreklidir denir (Dubois, Evidence measures based on fuzzy 

information, 1985). 

Teorem  : ,     genişletilmiş reel değerli küme 

fonksiyonu olsun. Herhangi bir  E  ℱ  ve E   için  

 E   

koşulunu sağlayan bir 0   sayısı bulunabiliyorsa   auto-

süreklidir (Dubois, Evidence measures based on fuzzy information, 

1985). 
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İspat: Teoremin koşulundan  nF   ℱ  ve   lim 0n
n

F   ise öyle 

bir 0n   doğal sayısı vardır ki her 0n n  için nF   ve buradan  

       lim lim limn n
n n n

E F E F E E                                         

dir. 

Teorem   μ : ℱ →[−∞,∞ ] fonksiyonu üstten ya da alttan auto-sürekli 

ise μ sıfır-toplamsaldır (Dubois, Possibility Theory, 1988). 

Sıradaki iki teoremde negatif olmayan küme fonksiyonlarının 

sürekliliği ile auto-süreklilik  arasındaki ilişkiyi inceleyeceğiz. 

 Teorem  : 0,   ,   üzerinde üstten sürekli ve üstten (ya da 

alttan) auto-sürekli ise   üstten (ya da alttan) süreklidir. 

İspat :  nE , ℱ  deki kümelerin azalan bir dizisi ve  

1

n n

n

E E E E




     dir. 

 ’ nün   üzerinde sınırlılığı ve üstten sürekliliğinden  

 lim 0n
n

E E    

Ve  ’ nün üstten auto-sürekliliğini kullanarak  
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      lim limn n
n n

E E E E E       

elde edeceğiz. Bu ise  ’ nün üstten sürekli olduğunu verir. Alttan 

sürekliliği de benzer şekilde ispatlanır. 

Teorem   : 0,   ,   üzerinde azalmayan üstten sürekli bir 

fonksiyon ve üstten auto-sürekli ise o zaman   üstten süreklidir. 

İspat: Eğer    1,nE E    olacak şekilde ℱ ’ deki kümelerin 

azalan bir dizisi ise  ’ nün monotonluğundan 

 1 1

1

0 n

n

E E E 




 
     

 
 

olur. Devamı bir önceki teoremin ispatında olduğu gibi yapılır. 

Lemma   : 0,    aşağı yarı-sürekli fuzzy ölçüsü (ya da 

yukarı yarı-sürekli fuzzy ölçüsü) olsun.  nE ℱ  ve   lim 0n
n

E   

olsun.   üstten (alttan) auto-sürekli ise 1,2,3,...k   için =  
i

k

nE   

olacak şekilde  nE ’ in bir  alt dizisi bulunabilir öyle ki;  

1

lim 0
i

k

n
k

i

E




 
 

 
 

dır. 

k

 k
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Teorem  : 0,    aşağı yarı-sürekli fuzzy ölçüsü olsun.  , 

üstten auto-sürekli ise ,  lim 0n
n

E   koşulunu sağlayan ℱ ’ nin bir 

 nE  dizisinin, 

 lim 0
in

n
E   

olacak şekilde bir  
inE  alt dizisi bulunabilir (Dubois, Possibility 

Theory, 1988). Bu durumun tersi,   sonlu sıfır-toplamsal olduğu 

zaman yine doğrudur. 

Teorem  : 0,    sınırlı bir fuzzy ölçüsü olsun.  

  alttan auto-süreklidir ⟺   sıfır-toplamsaldır ve herhangi bir  

Aℱ ,  nE  alt dizisi vardır öyle ki, 

   lim
in

n
A E A     dır (Dubois, Possibility Theory, 1988). 

Teorem  : 0,    fuzzy ölçüsü olsun. Eğer   üstten auto-

sürekli ise alttan auto-süreklidir. Dahası,   sonlu ise alttan auto-

süreklilik üstten auto-sürekliliği verir ve böylece auto-süreklilik , 

üstten auto-süreklilik ve alttan auto-süreklilik denktir (Dubois, 

Possibility Theory, 1988). 
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Tanım  : ,     üstten (alttan) düzgün auto-süreklidir ⟺ 

0   için öyle bir   0     vardır ki; 

     E E F E                       

       E E F E            

Eℱ , F ℱ , E F    ( ya da E F )  ve  F   dır. 

   hem alttan hem de üstten düzgün auto-sürekli ise   ye düzgün 

auto-süreklidir denir (Dubois, Constant appraximations of belief 

functions, 1990). 

Teorem Eğer   : ,     fonksiyonu üstten düzgün auto-

sürekli ise (alttan) o zaman üstten auto-süreklidir (alttan). Böylece 

düzgün auto-süreklilik auto-sürekliliği verir (Dubois, Constant 

appraximations of belief functions, 1990). 

Teorem  : 0,    fonksiyonu azalmayan ise aşağıdaki 

ifadeler denktir. 

1-)  , düzgün auto-süreklidir. 

2-)  , üstten düzgün auto-süreklidir. 

3-)  , alttan düzgün auto-süreklidir. 
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4-) Eℱ , F ℱ ve   F    olsun. Herhangi bir 0   için öyle 

bir   0     sayısı  vardır ki; 

     E E F E         

İspat : (1) ⇒ (2) Açıktır. 

(2) ⇒ (3)    E F F      olduğundan, 

        E E F E F E F           eşitliğinden ve   

nün monotonluğundan istenilen elde edilir. 

(3) ⇒ (4)    E F F     olduğundan, 

          E F E F E F E F E               

bulunur. Diğer taraftan    F E F       olduğundan  

          E E F E F F E E F            elde edilir. 

(4) ⇒ (1) Açıktır. 

Monoton Küme Fonksiyonlarının Yapısal Karakteristikleri 

Bu bölümde  : 0,    fonksiyonu azalmayan fonksiyon iken 

yapısal karakteristikleri arasındaki ilişkiyi özetleyeceğiz. 
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Teorem  : 0,    quasi-toplamsal ise auto-süreklidir , dahası 

  sonlu ise quasi-toplamsallık düzgün auto-sürekliliği verir. 

İspat :  : 0,   ,   özel T-fonksiyonu ile quasi-toplamsal 

olsun. Herhangi bir    nE F   olacak şekilde  E ℱ ,  nF ℱ 

, 1,2,3,...n   ve  lim 0n
n

F   için    ye toplamsallığı 

uygularsak ve    ve  1  in sürekliliğinden  

       1lim limn n
n n

E F E F            

                          =      1 lim n
n

E F      
  

 

                          1 E E          olur. 

Bu  ’ nün üstten auto-sürekli olduğunu verir. Benzer şekilde, E

ℱ,  nF  ℱ,   , 1,2,3,...nF E n   ve  lim 0n
n

F   için  

 nF    olduğunu kabul edersek; 

       1lim limn n
n n

E F E F            

                            1 lim n
n

E F       
  

 

                        1 E E          olur. 
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Bu da   nün alttan auto-sürekli olduğunu verir. Sonuç olarak   

auto-süreklidir. Dahası  x a     ise;  ,  0,a  üzerinde 

düzgün süreklidir. Böylece 1  ,  0, a    üzerindedir. 

       1E F E F            

eşitliğinden herhangi ayrık iki ,E F ℱ için   nün üstten düzgün 

auto-sürekli olduğunu görmek kolaydır. Böylece quasi-

toplamsallığın monotonluğu vermesi gerçeğinden,   düzgün auto-

süreklidir. 

Lemma Eğer  : 0,    fonksiyonu 𝜆 − kuralını sağlıyorsa 

auto-süreklidir. Dahası  x    olduğunda düzgün auto-süreklidir 

(Dubois, Constant appraximations of belief functions, 1990). 

Teorem  Eğer  : 0,    fonksiyonu azalmayan ve alt-

toplamsal ise düzgün auto-süreklidir (Dubois, Constant 

appraximations of belief functions, 1990). 

İspat : Eℱ , F ℱ için 

       E E F E F        

eşitsizliğinden istenen elde edilir. 
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Teorem  1 : 0,    ve  2 : 0,    fonksiyonlarının ikisi 

de sıfır-toplamsal (ya da auto-sürekli, ya da düzgün auto-sürekli) 

olsun. Eğer, herhangi bir  Eℱ için  : 0,   , 

     1 2E E E     

şeklinde tanımlanırsa μ de sıfır-toplamsaldır (ya da auto-sürekli, ya 

da düzgün auto-sürekli ) (Dubois, Constant appraximations of belief 

functions, 1990). 
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Sonuçlar 

Bu çalışmada, latis teorisi, latis genişlemeleri ve özellikleri ile klasik 

ölçüm, bulanık ölçüm ve latis değerli ölçüm arasındaki ilişki ayrıntılı 

olarak ortaya konmuş ve klasik ölçümde yapılmış olan birçok tanım 

ve teorem, bulanık kümeler ve latis kümeleri yardımıyla bulanık 

ölçüm ve latis-değerli ölçüm (latis ölçüm)’e taşınabilmiştir. 

 Ayrıca klasik analizde önemli bir yere sahip olan 

yakınsaklık, süreklilik, düzgün yakınsaklık gibi kavramlar bulanık 

ölçüm uzayı üzerine Egoroff ve Lusin teoremleri kullanılarak 

genelleştirilebilmiştir. 

Bu durum gösteriyor ki; klasik analizdeki bazı kavramlar ve 

uygulamaları, bulanık ölçüm uzayı üzerine taşınabilir ve burada da 

kendine uygulama alanı bulabilir. 
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YENİ TİP BERNSTEIN-KANTOROVICH 

POLİNOMLARININ [-1,1] ARALIĞINDAKİ 

YAKLAŞIMI 

Harun ÇİÇEK1 

 

Giriş 

Lineer pozitif operatörlerin yakınsaklık özelliklerinin 

incelenmesi, matematiksel analiz içerisinde uzun yıllara yayılan 

zengin ve derinlikli bir araştırma alanı oluşturmuştur. Bu incelemeler 

sırasında, özellikle fonksiyonel analiz ile yaklaşım teorisi disiplinleri 

birbirini tamamlayan bir bütünlük içerisinde ele alınmış; söz konusu 

operatörlerin yapısal karakteristiklerinin anlaşılması, bu iki alanın 

sunduğu yöntem ve kavramsal araçlar olmaksızın mümkün 

görülmemiştir. Kapalı bir aralık üzerinde tanımlı sürekli 

fonksiyonların uygun polinom dizileri aracılığıyla yaklaşık olarak 

temsil edilebileceğinin ortaya çıkışı, yalnızca yaklaşım teorisinin 

gelişiminde bir dönüm noktası teşkil etmekle kalmamış, aynı 

zamanda fonksiyonel analiz çerçevesinde ele alınan operatör 

teorisinin de kapsamını genişletmiştir. Bu bulgu, analizin çeşitli alt 

 
1 Doktor Öğretim Üyesi, Bitlis Eren Üniversitesi, Matematik Bölümü, Orcid: 

0000-0003-3018-3015 

BÖLÜM 3
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disiplinleri arasında kurulan teorik köprülerin en erken 

örneklerinden biri olarak kabul edilmektedir. 

 

Bu bağlamda, 1885 yılında Karl Weierstrass tarafından 

sürekli fonksiyonların polinomlarla yaklaştırılabileceğini ifade eden 

klasik ispat, yaklaşım teorisinin tarihsel gelişiminde temel başlangıç 

noktasını oluşturmuş ve sonraki araştırmaların yönünü büyük ölçüde 

belirlemiştir. Ancak Weierstrass’ın orijinal ispatının gerek uzunluğu 

gerekse teknik giriftliği nedeniyle dönemin pek çok matematikçisi 

tarafından yeterince açıklayıcı ve erişilebilir bulunmaması, daha 

sistematik, daha doğrudan ve yapısal özellikleri daha net ortaya 

koyan alternatif ispat yöntemlerinin geliştirilmesine duyulan ihtiyacı 

artırmıştır. Bu arayışlar, pozitif lineer operatörlerin sistematik 

biçimde ele alınmasıyla sonuçlanmış ve bu operatörlerin yakınsaklık 

kriterlerinin araştırılması modern yaklaşım teorisinin temel 

problemlerinden biri hâline gelmiştir. 

 

Bu süreç içinde, S. N. Bernstein tarafından tanıtılan ve bugün 

Bernstein operatörleri olarak bilinen pozitif lineer operatörler, 

yaklaşım teorisinin hem kavramsal hem de uygulamalı yönüne 

önemli katkılar sunmuştur. Bernstein operatörlerinin Weierstrass 

yaklaşım teoremini basit, açık ve tamamen pozitiflik ilkesine dayalı 

bir ispatla elde etmesi, yaklaşım teorisinin seyrini değiştirmiş ve 

pozitif lineer operatörlerin önemini belirgin biçimde artırmıştır. 

Ardından Korovkin tarafından ortaya konulan ve belirli bir test 

fonksiyonu ailesi aracılığıyla operatör dizilerinin yakınsaklığını 

karakterize eden Korovkin tipi teoremler, yaklaşım teorisinin araç 

kutusunu daha da genişletmiş; hem klasik hem de genelleştirilmiş 

fonksiyon uzaylarında operatör yakınsaklığının incelenmesine güçlü 

bir çerçeve sağlamıştır. 
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Tüm bu gelişmeler, lineer pozitif operatörlerin yalnızca 

fonksiyonların yaklaştırılmasında temel araçlar olmanın ötesinde, 

𝑞 −analiz, 𝑝, 𝑞-genelleştirmeleri, ağırlıklı fonksiyon uzayları ve 

olasılıksal yorumlar gibi çağdaş matematik alanlarına da nüfuz eden 

geniş kapsamlı bir teorik yapı ortaya çıkardığını göstermiştir. 

Dolayısıyla yaklaşım teorisi, günümüzde analizin pek çok kolunda 

kullanılan zengin operatör sınıflarının incelenmesine imkân 

sağlayan, tarihsel temelleri yüzyılı aşan bir matematiksel disiplin 

haline gelmiştir. 

1912 de S.N. Bernstein 

𝐵𝑛(𝑓; 𝜌) = ∑ 𝑓 (
𝑘

𝑛
)

𝑛

𝑘=0

(
𝑛

𝑘
) 𝜌𝑘(1 − 𝜌)𝑛−𝑘    

burada  𝑛 ∈  ℕ  , 0 ≤ 𝜌 ≤ 1 olmak üzere, polinomlar dizisi ile 

birlikte sürekli bir 𝑓 fonksiyonuna yaklaşmanın daha basit bir ispatı 

verilmiştir. (Bernstain,1912-1913). Lineer pozitif Bernstein 

operatörleri temel alınması üzerine birçok farklı operatör 

kurulmuştur. Ayrıca bunların farklı genellemeleri  yapılmıştır. 

 

Günümüzde ise bu operatörler kullanılarak çalışmalar 

yapılmaktadır. Bernstein operatörlerinin kurulmasının ardından 

Kantorovich 1930 yılında, [0, 1] aralığı üzerinde integrallenebilir 𝑓 

fonksiyonları için; 

𝐾𝑛(𝑓; 𝜌) = (𝑛 + 1) ∑ (
𝑛

𝑘
)

𝑛

𝑘=0

𝜌𝑘(1 − 𝜌)𝑛−𝑘 ∫ 𝑓(𝑡)𝑑𝑡

𝑘+1
𝑛+1

𝑘
𝑛+1

 

biçiminde tanımlı 𝐾𝑛 operatörleri tanımlanmıştır. 𝐾𝑛 operatörlerine 

ise Kantorovich operatörleri denilmektedir. (Lorentz, 1953). 

𝜌 ∈  [0,1] , 0 ≤ 𝑎𝑘,𝑛 ≤ 1  olduğunda 
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𝐿𝑛(𝑓; 𝜌) = ∑ 𝑓(𝑎𝑘,𝑛

∞

𝑘=0

)𝑃𝑘,𝑛(𝜌),                   𝑃𝑘,𝑛(𝜌)  ≥ 0 

 

pozitif operatör dizisinin 𝑛 →  ∞ için [0,1] aralığında 𝑓 

fonksiyonuna düzgün yakınsak olabilmesi için gerek ve yeter 

koşulları üç tanedir. Bohman ise bunları şu şekilde sıralamıştır; 

𝐿𝑛(1; 𝜌) ⇉ 1 

𝐿𝑛(𝑡; 𝜌) ⇉ 𝜌 

𝐿𝑥(𝑡2; 𝜌) ⇉ 𝜌2 

şeklinde ifade etmiştir. Aşikardır ki Bohman’ın araştırdığı 

operatörlerin değeri 𝑓 fonksiyonunun [0,1] aralığının dışındaki diğer 

değerlerinden ise bağımsızdır. 

1953 yılında Korovkin, Bohman tarafından ortaya konulan 

yakınsaklık koşullarının genel bir çerçeve içinde geçerliliğini fark 

etmiş ve bu gözlem doğrultusunda bugün Korovkin tipi teoremler 

olarak anılan temel sonuçlardan ilkini ispatlamıştır. Bu çalışma, 

yaklaşım teorisinde pozitif lineer operatörlerin yakınsaklığını 

karakterize eden test fonksiyonları yönteminin sistematik biçimde 

kullanılmasının önünü açmış ve alanın kuramsal temellerini önemli 

ölçüde güçlendirmiştir. Bunu izleyen yıllarda, özellikle Bernstein 

polinomları üzerine çok sayıda araştırma gerçekleştirilmiş, bu 

polinomların hem klasik hem de genelleştirilmiş formlarına ilişkin 

yöntemler giderek daha kapsamlı bir biçimde incelenmiştir. 

Bernstein polinomları üzerine yürütülen sistematik çalışmaların 

1990’lı yıllardan itibaren belirgin bir ivme kazandığı, bu dönemde 

polinomların analitik, cebirsel ve olasılıksal özelliklerine ilişkin pek 

çok araştırmanın literatürde yer aldığı görülmektedir. Bernstein 

yaklaşımının farklı fonksiyon uzaylarına, değişken ağırlık yapılarına 

ve genelleştirilmiş 𝑞-calculus yöntemlerine uyarlanmasıyla birlikte, 
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her geçen yıl yeni operatör aileleri, yeni yakınsaklık kriterleri ve 

çeşitli genelleştirme türleri literatüre kazandırılmıştır. 

 

Bu gelişmeler içerisinde en dikkat çekici ilerlemelerden biri 

Lupaş’a aittir. Nitekim Lupaş, 1987 yılında Bernstein polinomlarının 

q-analogunu tanıtarak klasik polinom ailesini 𝑞-analiz bağlamında 

yeniden biçimlendirmiş ve bu yeni yapı altında polinomların 

yaklaşım özelliklerini ayrıntılı biçimde incelemiştir. Lupaş’ın 

çalışması, 𝑞-analiz ile yaklaşım teorisi arasındaki etkileşimi 

güçlendirmiş, daha sonra ortaya çıkan 𝑞-Bernstein, 𝑝, 𝑞-Bernstein ve 

diğer 𝑞-genelleştirmeli operatörlerin temelini oluşturmuştur. 

 

Öte yandan, yaklaşım teorisinde klasik yakınsaklık kavramı 

etrafında süregelen araştırmalar devam ederken, modern çalışmalar 

içerisinde “istatistiksel yakınsaklık” kavramı da önemli bir yer 

edinmiştir. Bu kavram aracılığıyla operatör dizilerinin klasik 

noktadan-noktaya veya uniform yakınsaklık dışında kalan daha zayıf 

fakat oldukça etkili yakınsaklık türleri incelenebilmekte; böylece 

operatörlerin istatistiksel yaklaşım özellikleri, istatistiksel limit 

davranışları ve yaklaşım hızları sistematik bir biçimde analiz 

edilmektedir. Özellikle Korovkin tipi sonuçların istatistiksel 

ortamlara uyarlanması, pek çok operatör ailesinin hem teorik hem 

uygulamalı açıdan yeni niteliklerinin keşfedilmesine imkân 

tanımıştır. 

Yukarıdaki bilgiler ışığında yeniden tanımladığımız 

Bernstein-Kantorovich operatörlerinin yeni bir genellemesini 

tanıtacağız. Çalışmamızda  

𝜌 ∈ [0,1] 𝑣𝑒 𝑓 ∈  ∁[−1,1] 𝑣𝑒 

𝜑𝑚
𝑗 (𝜌) =

(𝑚+1)𝑚

(2𝑚)𝑚 (
𝑚

𝑚+1
+ 𝜌)

𝑗
(

𝑚

𝑚+1
− 𝜌)

𝑚−𝑗
olmak üzere  
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𝑁𝑚(𝑓; 𝜌) =
(𝑚 + 1)2

2𝑚
∑ 𝜑𝑚

𝑗

𝑚

𝑗=0

(𝜌) ∫ 𝑓(𝑡)𝑑𝑡

(2
𝑗+1
𝑚+1−1)

𝑚
𝑚+1

(2
𝑗

𝑚+1−1)
𝑚

𝑚+1

 

şeklinde tanımlamış olduğumuz operatörün lineer pozitif operatör 

olduğunu ayrıca Korovkin teoreminin şartlarını sağladığını, [−1,1] 

simetrik aralığı üzerinde düzgün yakınsadığını gösterilecektir. 

Süreklilik modülü yardımı ile yaklaşım hızı hesaplanacaktır. Bu 

operatör için ise bazı teoremler ispat edilecektir. Ayrıca bu 

operatörün merkezcil momentleri yardımı ile de asimptotik 

yaklaşımı hesaplanacaktır.  𝑁𝑚(𝑓; 𝜌) operatörünün 𝑓 fonksiyonuna 

yaklaşımı grafikler yardımı ile gösterilecektir. Son olarak seçilen 

bazı fonksiyonlara operatörün yaklaşımı bazı 𝑚 ve 𝜌 değerleri için 

nümerik tablosu da hazırlanacaktır. 

 

ARAŞTIRMA VE BULGULAR 

 

Operatörün Tanımlanması 

 

Bu bölümde 𝑁𝑚(𝑓; 𝜌) operatörü tanıtılarak Korovkin 

teoremi kullanılarak operatörün yaklaşım özellikleri incelenecektir. 

𝑁𝑚(𝑓; 𝜌) operatörünün merkezi momentleri hesaplanacaktır. 

Voronowskaja’nın Bernstein polinomu için yapmış olduğu 

asimptotik yaklaşım hesabı 𝑁𝑚(𝑓; 𝜌) operatörü için yapılacaktır. 

𝑁𝑚(𝑓; 𝜌) operatörü için yaklaşım hızı hesaplanacak ve bu operatör 

için ise bazı teoremler de ispat edilecektir. 

𝜌 ∈ [0,1] 𝑣𝑒 𝑓 ∈  ∁[−1,1] 𝑣𝑒   

𝜑𝑚
𝑗 (𝜌) =

(𝑚+1)𝑚

(2𝑚)𝑚 (
𝑚

𝑚+1
+ 𝜌)

𝑗
(

𝑚

𝑚+1
− 𝜌)

𝑚−𝑗
olmak üzere 
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𝑁𝑚(𝑓; 𝜌)

=
(𝑚 + 1)2

2𝑚
∑ 𝜑𝑚

𝑗

𝑚

𝑗=0

(𝜌) ∫ 𝑓(𝑡)𝑑𝑡

(2
𝑗+1
𝑚+1−1)

𝑚
𝑚+1

(2
𝑗

𝑚+1−1)
𝑚

𝑚+1

                             (1) 

Bernsteın-Kantorovıch Operatörü (1) ile tanımlansın. Öncelikle  

𝑁𝑚(𝑓; 𝜌) operatörünün lineer pozitif operatör olduğu ispatlanmıştır. 

Lineerlik özelliği: ∀ 𝛼, 𝛽 ∈ ℝ 𝑣𝑒 ∀𝑓, 𝑔 fonksiyonu için 

𝑁𝑚(𝛼. 𝑓 + 𝛽. 𝑔) = 𝛼. 𝑁𝑚(𝑓; 𝜌) + 𝛽. 𝑁𝑚(𝑔; 𝜌)  

eşitliği sağlandığında 𝑁𝑚 operatörü lineer operatördür. 

 

Tanım 

𝑋 ve 𝑌 aynı 𝐹 cismi üzerinde iki lineer uzay olmak üzere; 𝐿 

∶ 𝑋 → 𝑌 Şeklinde tanımlanan dönüşümlere operatör adı verilir, 

Tanım 

Lineer pozitif operatör monoton artandır. Yani; 

𝑓(𝜌) ≤ 𝑔(𝜌) ⟹ L(g; 𝜌) ≥ 𝐿(𝑓; 𝜌) 

eşitliği sağlanır. 

Teorem 

𝐿 bir lineer pozitif operatör olmak üzere |𝐿(𝑓)| ≤ 𝐿(|𝑓|) 

eşitsizliği sağlanır. 

Tanım 

(𝑓𝑛) dizisi 𝑓 fonksiyonuna x üzerinde düzgün yakınsaktır. ⇔ 

∀𝜀 > 0  için ∃𝑛0 öyle ki  ∀𝑛 > 𝑛0 ve ∀𝜌 ∈ 𝑋 için |𝑓𝑛(𝜌) − 𝑓(𝜌)| <

𝜀 olacak şekilde 𝑛0(𝜀) sayısı vardır. 
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Tanım 

(𝑎, 𝑏) ⊂ ℝ açık bir aralık ve 𝑓 de (𝑎, 𝑏) den ℝ ye bir fonksiyon 

olsun. 𝑡, v ∈ (𝑎, 𝑏) için 

lim
𝑡→𝑣

𝑓(𝑡) − 𝑓(𝜌)

𝑡 − 𝜌
= 𝐴(𝜌) 

sonlu limiti varsa, bu 𝐴(𝜌) sayısına 𝑓 fonksiyonunun 𝜌 noktasındaki 

türevi denir ve 𝑓 ′ (𝜌) ile gösterilir. 

Bu durumda, 𝑓 fonksiyonu 𝑣 noktasında türevlenebilirdir 

denir. 

Tanım 

𝑓 bir 𝐼 aralığında tanımlanmış bir fonksiyon olsun.  

0 < 𝛼 ≤ 1 olmak üzere, her 𝜌1, 𝜌2 ∈ 𝐼 için; 

|𝑓(𝜌1) − 𝑓(𝜌2)| ≤ 𝑀|𝜌1 − 𝜌2|α 

olacak şekilde 𝑀 >  0 varsa, 𝑓 ’ye Lipschitz sınıfındandır denir ve 

𝑓 ∈ 𝐿𝑖𝑝𝑀(𝛼) ile gösterilir. 

Tanım 

[𝑎, 𝑏] aralığında tanımlı 𝑓 fonksiyonu verilsin. [0, 𝑏 − 𝑎] 

aralığında tanımlı  

𝜔(𝛿) = 𝜔(𝑓; 𝛿)

= {
𝑠𝑢𝑝|𝑓(𝜌2) − 𝑓(𝜌1)|: |𝜌2 − 𝜌1| ≤ 𝛿,

𝜌1, 𝜌2 ∈ [𝑎, 𝑏]
}                                   

fonksiyonuna 𝑓 ’nin süreklilik modülü denir. 

 

Teorem 
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𝑁𝑚(𝑓; 𝜌)  operatörü [-1,1] aralığında sürekli ve tüm reel 

eksende sınırlı olan 𝑓 fonksiyonuna aynı aralıkta düzgün yakınsaktır 

yani, 

lim
𝑚→∞

‖𝑁𝑚(𝑓; 𝜌) − 𝑓(𝜌)‖𝐶[−1,1] = 0 

 Teorem 

𝑓 ∈ 𝐶[−1,1]  olsun bu taktirde yeterince büyük 𝐾’lar için; 

|𝑁𝑚(𝑓; 𝜌) − 𝑓(𝜌)| ≤ 2𝜔 (𝑓;
1

√𝑘
) 

eşitsizliği sağlanır. 

Teorem 

𝑓 türevlenebilir ve türevi [−1,1] aralığında, sürekli ve tüm 

reel eksende sınırlı bir fonksiyon olsun. Bu durumda; belirli bir 𝑛 

den sonra;  

√𝑛|𝑁𝑚(𝑓; 𝜌) − 𝑓(𝜌)| ≤
𝑀

√𝑛
+ 2𝜔 (𝑓′;

1

√𝑛
)      𝑑𝚤𝑟. 

Teorem  

𝑓 fonksiyonu [−1,1] aralığında sınırlı ve (−1,1) aralığının bir 

𝑥 noktasında ikinci türevi mevcut olsun. Bu takdirde; 

lim
𝑚→∞

𝑚(𝑁𝑚(𝑓; 𝜌) −  𝑓(𝜌)) = −𝜌𝑓′(𝜌) + (1 − 𝜌2)
𝑓′′(𝜌)

2
  

eşitliği sağlanır. 

 

Örnek 

Aşağıda 𝑓(𝜌) = (1 + 𝜌2)𝑠𝑖𝑛(2𝜌𝜋) fonksiyonuna 𝑁𝑚(𝑓; 𝜌) 

Bernsteın-Kantorovıch operatörünün yaklaşımı maple programında 

grafikler çizilerek gösterilmiştir. Şekil 1 de siyah renk 𝑓 
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fonksiyonunu yeşil, mavi ve kırmızı renkler ise grafik üzerinde 

değişen değerler belirtilmiştir. 

 

Şekil  1  𝑓(𝜌) fonksiyonunun 𝑚 = 10, 𝑚 = 25 𝑣𝑒 𝑚 = 50 

değerleri için operatörümüzün yaklaşımı 

 

 

 

Örnek  

Aşağıda 𝑓(𝜌) = (1 + 𝜌2)𝑠𝑖𝑛 (
1

6
𝜌𝜋) fonksiyonuna 

Bernsteın-Kantorovıch operatörünün yaklaşımı maple programında 

grafikler çizilerek gösterilmiştir. Şekil 2 de siyah renk 

𝑓 fonksiyonunu yeşil, mavi ve kırmızı renkleri ise değişen değerleri 

belirtmiştir. 
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Şekil  2  𝑓(𝜌) fonksiyonunun 𝑚 = 10, 𝑚 = 25 𝑣𝑒 𝑚 = 50 

değerleri için operatörümüzün yaklaşımı 

 

 

 

Şekil  3  𝑓(𝜌) fonksiyonunun 𝑚 = 10, 𝑚 = 25 𝑣𝑒 𝑚 = 50 

değerleri için operatörümüzün yaklaşımı 
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Örnek  

Aşağıda 𝑓(𝜌) = (1 + 𝜌3)𝑠𝑖𝑛(𝜌𝜋) fonksiyonuna Bernsteın-

Kanorovıch operatörünün yaklaşımı maple programında grafikler 

çizilerek gösterilmiştir. Şekil 3 de siyah renk 𝑓 fonksiyonunu yeşil, 

mavi ve kırmızı renkleri ise değişen değerleri belirtmiştir. 

 

Sonuç 

[−1,1] simetrik aralık üzerinde tanımlamış olduğumuz 

𝑁𝑚(𝑓; 𝜌) operatörünün lineer pozitif operatör olduğu, korovkin 

teoremi şartlarını sağladığı ve 𝑓 fonksiyonuna düzgün yakınsadığı 

gösterilmiş olup daha sonra ise  𝑁𝑚(𝑓; 𝜌) operatörünün merkezi 

momentleri hesaplanmıştır. ve aşağıdaki eşitlikler de elde edilmiştir. 

ℵ𝑛,0(𝜌) = 1 

  ℵ𝑛,1(𝜌) = −
𝜌

𝑚 + 1
 

ℵ𝑛,2(𝜌) =
2𝜌2

𝑚 + 1
−

3𝑚3 + 11𝑚2 + 12𝑚 + 3

3(𝑚 + 1)4
 

ℵ𝑛,3(𝜌) = −
6𝑚5 + 19𝑚4 + 22𝑚3 + 12𝑚2 + 4𝑚 + 1

(𝑚 + 1)6
 

+
3𝑣𝑚4(6 − 𝜌2) − 𝜌𝑚3(12𝜌2 + 49) + 3𝜌𝑚2(23 − 6𝜌2)

3(𝑚 + 1)5
 

+
3𝜌𝑚(15 − 12𝜌2) + 3𝜌(3 − 𝜌2)

3(𝑚 + 1)5
 

ℵ𝑛,4(ρ) =
4𝜌4(𝑚 + 1)7

5(𝑚 + 1)8
−

24𝜌3(𝑚3 + 𝑚2)

(𝑚 + 1)6
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+
−10𝑚7 + 305𝑚6 + 670𝑚5 + 311𝑚4 + 230𝑚3 + 235𝑚2 + 70𝑚 + 5

5(𝑚 + 1)8
 

 

−
𝜌2(6𝑚5 + 20𝑚4 + 95𝑚3 + 11𝑚2 + 12𝑚 + 3)

(𝑚 + 1)6
                                         

                    

−
𝜌(6𝑚5 + 20𝑚4 + 22𝑚3 + 12𝑚2 + 4𝑚 + 1)

(𝑚 + 1)6
                                               

 

Hesapladığımız merkezi momentler kullanılarak 𝑁𝑚(𝑓; 𝜌) 

operatörünün asimptotik yaklaşımı incelenmiş ve aşağıdaki eşitliğin 

sağlandığı gösterilmiştir. 

lim
𝑚→∞

𝑚(𝑁𝑚(𝑓; 𝜌) − 𝑓(𝜌)) = −𝜌𝑓′(𝜌) + (1 + 𝜌2)
𝑓′′(𝜌)

2
 

Daha sonra süreklilik modülü yardımıyla 𝑁𝑚(𝑓; 𝑣) 

operatörünün yaklaşım hızı hesaplanmış olup aşağıdaki eşitsizlik 

elde edilmiştir. 

|𝑁𝑚(𝑓; 𝜌) − 𝑓(𝜌)| ≤ 2ω (𝑓;
1

√𝑘
) 

𝑓 türevlenebilir ve türevi [−1,1] aralığında, sürekli ve tüm 

reel eksende sınırlı bir fonksiyon olsun. Bu durumda; belirli bir 𝑛 

den sonra 

√𝑚|𝑁𝑚(𝑓; 𝜌) − 𝑓(𝜌)| ≤
𝐾

√𝑚
+ 2𝑤 (𝑓′;

1

√𝑚
) 

eşitsizliği elde edilmiştir. 

Son olarak 𝑁𝑚(𝑓; 𝜌) operatörünün  

𝑓(𝜌) = (1 + 𝜌2)𝑠𝑖𝑛(2𝜌𝜋) 
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ve 

𝑔(𝜌) = (1 + 𝜌2)sin (
1

6
𝜌π) 

fonksiyonlarına ait farklı 𝑚 değerleri için yaklaşımların karşılaştıran 

grafikler çizilmiştir.  
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(𝝀, 𝝁) − BERNSTEIN - DURRMEYER - STANCU    

OPERATÖR DİZİSİ İÇİN VORONOVSKAJA TİP 

YAKINSAMA TEOREMİ 

Gülten TORUN1 

Ülkü DİNLEMEZ KANTAR 2  

Giriş 

             Düzgün yaklaşımı en uygun şekilde ifade eden Weierstrass 

yaklaşım teoremini kanıtlamak için Bernstein (Bernstein, 1912) 

tarafından oluşturulmuş olan Bernstein operatörleri üzerine 

araştırmalar günümüzde de devam etmektedir. Son zamanlarda 

araştırmacılar,  bu tip operatörlerin yakınsama davranışının daha iyi 

olduğunu göstermek için 𝜆 ve 𝜇 gibi parametreleri dahil etmişler ve 

böylece yaklaşım teorisindeki modelleme olanaklarını geliştirmeye 

çalışmışlardır. Zhou ve Cai (Zhou ve Cai, in review), (𝜆, 𝜇)-Bernstein 

operatörleri olarak adlandırdıkları iki parametreli yeni bir Bernstein 

operatörü tanımlamışlardır. Ayrıca, Stancu tipi genelleştirilmiş 

(𝜆, 𝜇)-Bernstein operatörlerinin çeşitli yaklaşım özellikleri (Cai ve 

ark., 2024) de  incelenmiş ve bu çalışmada Voronovskaja tipi 

asimptotik teorem ve noktasal tahminler gibi yeni tanımlanan 

operatörlerin daha ileri yaklaşım özelliklerini de incelenmiştir. 

                                                 
1 Doç.  Dr., Kastamonu Üniversitesi, Eğitim Fakültesi, Matematik ve Fen Bilimleri 

Eğitimi Bölümü, Kuzeykent, Kastamonu, ORCID:0000-0002-1897-0174  
2 Prof. Dr., Gazi Üniversitesi, Fen Fakültesi, Matematik Bölümü, 06500 

Yenimahalle, Ankara, ORCID: 0000-0002-5656-3924 

BÖLÜM 4
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Ardından (Cai ve Zhou, 2024) makalesinde, (𝜆, 𝜇)-Bernstein 

operatörlerini Durrmeyer tipinde tanımlanarak, bu operatörler için 

Korovkin tipi yaklaşım teoremi elde edilmiş, yakınsama oranını 

sırasıyla süreklilik modülü, Lipschitz sürekli fonksiyonu ve Steklov 

ortalamasını kullanarak incelenmiş ve Voronovskaja asimptotik 

formülü oluşturulmuştur. (Dinlemez Kantar & Torun, 2025) 

makalesinde yapılan çalışmada ise, (𝜆, 𝜇)-Bernstein-Durrmeyer-

Stancu tip operatör dizisi tanıtılmış ve bu operatör dizisi için gerekli 

olan momentler ve merkezi momentler hesaplanmış, Korovkin 

teoremi ispatlanmış ve bir yakınsaklık oranı bulunmuştur.  Biz de  bu 

operatör dizisi için birinci ve ikinci çeşit süreklilik modüllerini  

kullanarak yakınsaklık oranlarını ve ayrıca Lipschitz sınıfı 

fonksiyonların yardımıyla yakınsaklık oranını vereceğiz. Ardından 

ele alınan operatör dizisi için Voronovskaja tip yakınsaklık teoremini 

ispatlayacağız. En son olarak da bu yakınsamayı destekleyen 

grafikleri vereceğiz.  

(Dinlemez Kantar & Torun, 2025) makalesinde aşağıdaki 

şekilde tanımlanmış olan (𝝀, 𝝁)-Bernstein-Durrmeyer-Stancu tip 

operatör dizisini ele alalım:  

𝑔 ∈ 𝐶[0,1]  ve  0 ≤ α ≤ β  olmak üzere,  

𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔; 𝑥) = (m + 1) ∑ 𝑣𝑚,𝑙

𝜆,𝜇(𝑥) ∫ 𝑣𝑚,𝑙(𝑧)𝑔 (
𝑧𝑚+α

𝑚+β
) 𝑑𝑧,

1

0
m
𝑙=0             (1) 

burada 𝑣𝑚,𝑙
𝜆,𝜇(𝑥), (𝜆, 𝜇) −Bezier baz fonksiyonlarıdır ve 

 𝑣𝑚,𝑙
𝜆,𝜇(𝑥) = 𝑣𝑚,𝑙(𝑥) + Υ𝑙𝑣𝑚+1,𝑙(𝑥) − Υ𝑙+1𝑣𝑚+1,𝑙+1(𝑥), 

                                                                         𝑙 = 0,1, … , 𝑚,               (2) 

{
Υ0 = Υ𝑚+1 = 0,

Υ𝑙 = (1 − 𝜇)
𝑚−2𝑘+1

2(𝑚2−1)
+

1+𝜇

2(𝑚+1)
𝜆,    𝑙 = 0,1, … , 𝑚,

                            (3) 

−1 ≤ 𝜆 ≤ 1 ve 𝜇, 1 ile 𝑚 arasında yer alan bir sabittir (Cai & Zhou, 

2024 ). 
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İlk önce bu çalışmada elde edilecek Teoremleri verebilmek için 

gerekli olan  Lemmaları verelim.  

 Lemma 1. (Dinlemez Kantar & Torun, 2025)  𝑒𝑗(𝑧) = 𝑧𝑗 , 

    𝑗 = 0,1,2,3,4  ve  𝑚 > 1 doğal sayı olmak üzere 𝑈𝑚,𝛼,𝛽
𝜆,𝜇

(𝑒𝑗(𝑧); 𝑥) için 

aşağıdaki eşitlikler elde edilir; 

i)  𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑒0(𝑧); 𝑥) = 1,  

ii) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑒1(𝑧); 𝑥) =

𝑚

𝑚+𝛽
(𝑥 +

1−2𝑥

𝑚+2
+ (1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)
   

                                      +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)(𝑚+2)
) +

𝛼

𝑚+𝛽
,  

iii) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑒2(𝑧); 𝑥) =

𝑚2

(𝑚+𝛽)2 (𝑥2 +
2𝑥(2−3𝑥)

𝑚+3
+

6𝑥2−8𝑥+2

(𝑚+2)(𝑚+3)
 

                                       +(1 − 𝜇) [
𝑥−2𝑥2+𝑥𝑚+1

(𝑚+2)(𝑚+3)
−

1−2𝑥−2𝑥2+3𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚−1)(𝑚+2)(𝑚+3)
]      

                                 +(1 + 𝜇)𝜆 [
𝑥−𝑥𝑚+1

(𝑚+2)(𝑚+3)
−

1−𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚+1)(𝑚+2)(𝑚+3)
]) 

                                 +
2𝑚𝛼

(𝑚+𝛽)2 (𝑥 +
1−2𝑥

𝑚+2
+ (1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)
 

                                      +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)(𝑚+2)
) +

𝛼2

(𝑚+𝛽)2,    

iv) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑒3(𝑧); 𝑥) =

𝑚3

(𝑚+𝛽)3 (𝑥3 +
3𝑥2(3−4𝑥)

𝑚+4
+

9𝑥(2−6𝑥+4𝑥2)

(𝑚+2)(𝑚+3)
+

6−36𝑥+54𝑥2−24𝑥3

(𝑚+2)(𝑚+3)(𝑚+4)
 

   +(1 − 𝜇) [
3𝑥2−6𝑥3+3𝑥𝑚+1

2(𝑚+3)(𝑚+4)
+

6𝑥3−18𝑥2+6𝑥+6𝑥𝑚+1

(𝑚+2)(𝑚+3)(𝑚+4)
+

3−6𝑥−15𝑥2+18𝑥𝑚+1−3(1−𝑥)𝑚+1

(𝑚−1)(𝑚+2)(𝑚+3)(𝑚+4)
]  

   +(1 + 𝜇)𝜆 [
3𝑥2−3𝑥𝑚+1

2(𝑚+3)(𝑚+4)
 +

6𝑥−3𝑥2+3𝑥𝑚+1

(𝑚+2)(𝑚+3)(𝑚+4)
+

11(1−𝑥𝑚+1−(1−𝑥)𝑚+1)

2(𝑚+1)(𝑚+2)(𝑚+3)(𝑚+4)
]) 

   +
3𝑚2𝛼

(𝑚+𝛽)3 (𝑥2 +
2𝑥(2−3𝑥)

𝑚+3
+

6𝑥2−8𝑥+2

(𝑚+2)(𝑚+3)
+ (1 − 𝜇) [

𝑥−2𝑥2+𝑥𝑚+1

(𝑚+2)(𝑚+3)
  

   −
1−2𝑥−2𝑥2+3𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚−1)(𝑚+2)(𝑚+3)
] + (1 + 𝜇)𝜆 [

𝑥−𝑥𝑚+1

(𝑚+2)(𝑚+3)
−

1−𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚+1)(𝑚+2)(𝑚+3)
])   

   +
3𝑚𝛼2

(𝑚+𝛽)3 (𝑥 +
1−2𝑥

𝑚+2
+ (1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)
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   +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)(𝑚+2)
) +

𝛼3

(𝑚+𝛽)3,  

v) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑒4(𝑧); 𝑥) =

𝑚4

(𝑚+𝛽)4 (𝑥4 +
4𝑥3(4−5𝑥)

𝑚+5
+

72𝑥2−192𝑥3+120𝑥4

(𝑚+4)(𝑚+5)
 

       +
96𝑥−432𝑥2+576𝑥3−240𝑥4

(𝑚+3)(𝑚+4)(𝑚+5)
+

24−192𝑥+432𝑥2−384𝑥3+120𝑥4

(𝑚+2)(𝑚+3)(𝑚+4)(𝑚+5)
     

       +(1 − 𝜇) [
3𝑥2−4𝑥4+2𝑥𝑚+1

(𝑚+4)(𝑚+5)
+

18𝑥2−56𝑥3+28𝑥4+10𝑥𝑚+1

(𝑚+3)(𝑚+4)(𝑚+5)
  

       +
36𝑥−114𝑥2+100𝑥3−32𝑥4+40𝑥𝑚+1

(𝑚+2)(𝑚+3)(𝑚+4)(𝑚+5)
+

23−46𝑥−232𝑥2+255𝑥𝑚+1−23(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)(𝑚+3)(𝑚+4)(𝑚+5)
]  

      +(1 + 𝜇)𝜆 [
2𝑥3−2𝑥𝑚+1

(𝑚+4)(𝑚+5)
+

18𝑥2−12𝑥3−6𝑥𝑚+1

(𝑚+3)(𝑚+4)(𝑚+5)
+

36𝑥−36𝑥2+12𝑥3−12𝑥𝑚+1

(𝑚+2)(𝑚+3)(𝑚+4)(𝑚+5)
 

       +
12(1−𝑥𝑚+1−(1−𝑥)𝑚+1)

(𝑚−1)(𝑚+2)(𝑚+3)(𝑚+4)(𝑚+5)
]) +

4𝑚3𝛼

(𝑚+𝛽)4 (𝑥3 +
3𝑥2(3−4𝑥)

𝑚+4
+

9𝑥(2−6𝑥+4𝑥2)

(𝑚+2)(𝑚+3)
  

       +
6−36𝑥+54𝑥2−24𝑥3

(𝑚+2)(𝑚+3)(𝑚+4)
+ (1 − 𝜇) [

3𝑥2−6𝑥3+3𝑥𝑚+1

2(𝑚+3)(𝑚+4)
+

6𝑥3−18𝑥2+6𝑥+6𝑥𝑚+1

(𝑚+2)(𝑚+3)(𝑚+4)
 

        +
3−6𝑥−15𝑥2+18𝑥𝑚+1−3(1−𝑥)𝑚+1

(𝑚−1)(𝑚+2)(𝑚+3)(𝑚+4)
] + (1 + 𝜇)𝜆 [

3𝑥2−3𝑥𝑚+1

2(𝑚+3)(𝑚+4)
+

6𝑥−3𝑥2+3𝑥𝑚+1

(𝑚+2)(𝑚+3)(𝑚+4)
  

        +
11(1−𝑥𝑚+1−(1−𝑥)𝑚+1)

2(𝑚+1)(𝑚+2)(𝑚+3)(𝑚+4)
]) +

6𝑚2𝛼2

(𝑚+𝛽)4 (𝑥2 +
2𝑥(2−3𝑥)

𝑚+3
+

6𝑥2−8𝑥+2

(𝑚+2)(𝑚+3)
  

        +(1 − 𝜇) [
𝑥−2𝑥2+𝑥𝑚+1

(𝑚+2)(𝑚+3)
−

1−2𝑥−2𝑥2+3𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚−1)(𝑚+2)(𝑚+3)
] + (1 + 𝜇)𝜆 [

𝑥−𝑥𝑚+1

(𝑚+2)(𝑚+3)
   

        −
1−𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚+1)(𝑚+2)(𝑚+3)
]) +

4𝑚𝛼2

(𝑚+𝛽)4 (𝑥 +
1−2𝑥

𝑚+2
+ (1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)
  

        +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)(𝑚+2)
) +

𝛼4

(𝑚+𝛽)4.  

 Lemma 2. (Dinlemez Kantar & Torun, 2025)   𝑚 > 1 doğal 

sayı olmak üzere 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatör dizisi için Lemma 1 

kullanılarak aşağıdaki eşitlikler elde edilir; 

i) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇

((𝑧 − 𝑥); 𝑥) =
−𝛽𝑥

𝑚+𝛽
+

𝑚

𝑚+𝛽
{

1−2𝑥

𝑚+2
+ (1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)
  

                                            +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)(𝑚+2)
} +

𝛼

𝑚+𝛽
≔ 𝜎𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥),    
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ii) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 ((𝑧 − 𝑥)2; 𝑥) =

𝛽2𝑥2

(𝑚+𝛽)2 +
𝑚2

(𝑚+𝛽)2(𝑚+3)
{2𝑥(2 − 3𝑥) +

6𝑥2−8𝑥+2

(𝑚+2)
 

                                          +(1 − 𝜇) [
1−2𝑥2+𝑥𝑚+1

(𝑚+2)
−

1−2𝑥−2𝑥2+3𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚−1)(𝑚+2)
]   

                                          +(1 + 𝜇)𝜆 [
𝑥−𝑥𝑚+1

(𝑚+2)
−

1−𝑥𝑚+1−(1−𝑥)𝑚+1

(𝑚+1)(𝑚+2)
]} +

2𝑚𝛼𝑥

(𝑚+𝛽)2  

                                          +
2𝑚𝛼

(𝑚+𝛽)2 {
1−2𝑥

𝑚+2
+ (1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)(𝑚+2)
       

                                          +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)(𝑚+2)
} −

2𝑚𝑥(1−2𝑥)

(𝑚+𝛽)(𝑚+2)
+

𝛼2

(𝑚+𝛽)2 

                                           −
2𝑚𝑥

(𝑚+2)(𝑚+𝛽)
{(1 − 𝜇)

1−2𝑥+𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚−1)
  

                                           +(1 + 𝜇)𝜆
1−𝑥𝑚+1−(1−𝑥)𝑚+1

2(𝑚+1)
} − 

2𝑚𝛼

𝑚+𝛽
≔ 𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥), 

iii) 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 ((𝑧 − 𝑥)4; 𝑥) =

𝛽4𝑥4

(𝑚+𝛽)4 +
𝑚4𝑥4(16𝑥3−20𝑥4)

(𝑚+𝛽)4(𝑚+5)
−

4𝑚3𝑥(9𝑥2−12𝑥3)

(𝑚+𝛽)3(𝑚+4)
 

                                           +
6𝑚2𝑥2(4𝑥−6𝑥2)

(𝑚+𝛽)2(𝑚+3)
−

4𝑥3𝑚(1−2𝑥)

(𝑚+𝛽)(𝑚+2)
+

𝑚4(72𝑥2−192𝑥3+120𝑥4)

(𝑚+𝛽)4(𝑚+5)(𝑚+4)
  

                                           −
4𝑚3(18𝑥2−54𝑥3+36𝑥4)

(𝑚+𝛽)3(𝑚+4)(𝑚+3)
+

6𝑚2(2𝑥2−8𝑥3+6𝑥4)

(𝑚+𝛽)2(𝑚+3)(𝑚+2)
  

                                           +(1 − 𝜇) [
𝑚4(2𝑥3−4𝑥4+2𝑥𝑚+1)

(𝑚+𝛽)4(𝑚+5)(𝑚+4)
 −

2𝑚3(3𝑥3−6𝑥4+3𝑥𝑚+2)

(𝑚+𝛽)3(𝑚+4)(𝑚+3)
 

                                           +
6𝑚2(𝑥3−2𝑥4+𝑥𝑚+3)

(𝑚+𝛽)2(𝑚+3)(𝑚+2)
−

2𝑚3(𝑥3−2𝑥4+𝑥𝑚+4−𝑥3(1−𝑥)𝑚+1)

(𝑚+𝛽)(𝑚+2)(𝑚−1)
]  

                                           +(1 + 𝜇)𝜆 [
𝑚4(2𝑥3−2𝑥𝑚+1)

(𝑚+𝛽)4(𝑚+5)(𝑚+4)
−

6𝑚3(𝑥3−𝑥𝑚+2)

(𝑚+𝛽)3(𝑚+4)(𝑚+3)
  

                                           +
6𝑚2(𝑥3−𝑥𝑚+3)

(𝑚+𝛽)2(𝑚+2)(𝑚+3)
−

2𝑚(𝑥3−𝑥𝑚+4−𝑥3(1−𝑥)𝑚+1)

(𝑚+𝛽)(𝑚+2)(𝑚−1)
] + 𝑂 (

1

𝑚
).   

 Lemma 3. (Dinlemez Kantar & Torun, 2025)   𝑚 > 1 doğal 

sayı olmak üzere 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatör dizisi için Lemma 2 

kullanılarak aşağıdaki eşitlikler elde edilir; 

i) lim
𝑚→∞

𝑚𝑈𝑚,𝛼,𝛽
𝜆,𝜇

((𝑧 − 𝑥); 𝑥) = 1 − (2 + 𝛽)𝑥 + 𝛼, 
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ii) lim
𝑚→∞

𝑚𝑈𝑚,𝛼,𝛽
𝜆,𝜇

(((𝑧 − 𝑥)2); 𝑥) = 6𝑥 − 10𝑥2, 

iii) lim
𝑚→∞

𝑚2𝑈𝑚,𝛼,𝛽
𝜆,𝜇

(((𝑧 − 𝑥)4); 𝑥) = 12𝑥2 (𝑥 − 1)2.  

 

Yaklaşım Özellikleri 

𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatörleri için Korovkin tipi  yaklaşım teoremi  

(Dinlemez Kantar & Torun, 2025) de verilmiştir. Burada önce 

süreklilik modüllerini kullanarak yakınsaklık oranlarını veren 

teoremleri vereceğiz.  

Süreklilik modülünü 

𝜔(𝑔; 𝛿): = sup
0<𝑘≤𝛿

sup
 𝑥,𝑥+𝑘∈[0,1]

|𝑔(𝑥 + 𝑘) − 𝑔(𝑥)| ,   𝑔 ∈ 𝐶[0,1]             (4) 

olarak verelim. Süreklilik modülünün  

|𝑔(𝑧) − 𝑔(𝑥)| ≤ 𝜔(𝑔; 𝛿) (1 +
|𝑧−𝑥|

𝛿
)                                                 (5) 

özelliği vardır. 

            Teorem 1.  𝑔 ∈ 𝐶1[0,1] olsun.  𝑚 > 1 doğal sayısı için  

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ |𝑔′(𝑥)| |𝜎𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥)|          

                                                 +2√𝜌𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)𝜔 (𝑔′; √𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥))               (6) 

eşitsizliği vardır. Burada 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥) ve 𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥) ler Lemma 2 nin (i) 

ve (ii) eşitlikleri ile tanımlıdır ve 𝑔′ nün süreklilik modülü 𝜔(𝑔′; 𝛿)  

 ile ifade edilmektedir.    

           İspat. 𝑔 ∈ 𝐶1[0,1] olsun. ∀ 𝑥, 𝑧 ∈ [0,1] için ortalama değer 

teoremini kullanırsak; 
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𝑔(𝑧) − 𝑔(𝑥) = 𝑔′(𝑥)(𝑧 − 𝑥) + (𝑔′(𝑧) − 𝑔′(𝑥))(𝑧 − 𝑥)                        (7) 

yazabiliriz. (7) eşitliğine (1) de tanımlanan 𝑈𝑚,𝛼,𝛽
𝜆,𝜇

 operatörünü 

uygulayıp, operatörün lineerliğini, ardından eşitliğin her iki tarafına 

mutlak değer kullanırsak; 

𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥) = 𝑔′(𝑥)𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (𝑧 − 𝑥; 𝑥)  

                                                +𝑈𝑚,𝛼,𝛽
𝜆,𝜇

((𝑔′(𝑧) − 𝑔′(𝑥))(𝑧 − 𝑥); 𝑥), 

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ |𝑔′(𝑥)| |𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (𝑧 − 𝑥; 𝑥)|  

                                      +𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (|𝑔′(𝑧) − 𝑔′(𝑥)||𝑧 − 𝑥|; 𝑥). 

Son eşitsizliğin sağ tarafındaki ikinci ifadeye (5) özelliği ve Cauchy 

Schwartz eşitsizliğini uygularsak; 

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ |𝑔′(𝑥)| |𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (𝑧 − 𝑥; 𝑥)|  

                                                       +𝜔(𝑔′; 𝛿)𝑈𝑚,𝛼,𝛽
𝜆,𝜇

(|𝑧 − 𝑥| +
|𝑧−𝑥|2

𝛿
; 𝑥), 

        ≤ |𝑔′(𝑥)| |𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑧 − 𝑥; 𝑥)|  

                +𝜔(𝑔′; 𝛿)√𝑈𝑚,𝛼,𝛽
𝜆,𝜇 ((𝑧 − 𝑥)2; 𝑥) (1 +

1

𝛿
√𝑈𝑚,𝛼,𝛽

𝜆,𝜇 ((𝑧 − 𝑥)2; 𝑥)), 

≤ |𝑔′(𝑥)| |𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)| + 𝜔(𝑔′; 𝛿)√𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥) (1 +
1

𝛿
√𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥)) 

olur. 𝛿 = √𝜌𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥) seçersek (6) eşitsizliğini elde etmiş oluruz. 

𝛿 > 0 için Peetre 𝜅 fonksiyoneli  

𝜅2(𝑔; 𝛿) ≔ inf
ℎ∈𝐶2[0,1]

{‖𝑔 − ℎ‖ + 𝛿‖ℎ′′‖},                                             (8) 

ile tanımlanır. (De Vore & Lorentz 1993, Teo. 2.4.) den 

--64--



𝜅2(𝑔; 𝛿) ≤ 𝐿𝜔2(𝑔; √𝛿)                                                                    (9) 

olacak biçimde bir 𝐿 > 0 sabit vardır. Burada 𝜔2(𝑔; √𝛿) fonksiyonu 

𝑔 nin ikinci dereceden süreklilik modülüdür ve  

𝜔2(𝑔; √𝛿) ≔ sup
0<𝑘≤√𝛿

sup
 𝑥,𝑥+𝑘,𝑥+2𝑘∈[0,1]

|𝑔(𝑥 + 2𝑘) − 2𝑔(𝑥 + 𝑘) + 𝑔(𝑥)| 

                                                                                                               (10) 

şeklinde tanımlanır. 

            Teorem 2.  𝑔 ∈ 𝐶[0,1] olsun.  𝑥 ∈ [0,1]  ve 𝑚 > 1 doğal sayısı 

için aşağıdaki eşitsizlik elde edilir; 

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ 𝐿𝜔2 (𝑔; √𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥)+(𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))

2

8
)           

                                                                    +𝜔 (𝑔; 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)) ,           (11) 

burada 𝐿 > 0 pozitif bir sabit, 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥) ve 𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥) ifadeleri Lemma 

2 de tanımlanmıştır. Ayrıca 𝜔 ve 𝜔2 fonksiyonları 𝑔 nin sırasıyla 

birinci ve ikinci süreklilik modülleridir. 

           İspat.  𝑔 ∈ 𝐶[0,1] fonksiyonu için yardımcı bir operatörü; 

𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) = 𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔 (𝑥 + 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)) + 𝑔(𝑥)        (12) 

ile tanımlayalım.  𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatör dizisinin lineerliği ve 

Lemma 1 in (i) ve (ii) özelliklerini kullanırsak 

 𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (𝑧 − 𝑥; 𝑥) = 0                                                                             (13) 

olduğunu görürüz. h∈ 𝐶2[0,1] için Taylor açılımı; 

ℎ(𝑧) = ℎ(𝑥) + ℎ′(𝑥)(𝑧 − 𝑥) + ∫ (𝑧 − 𝑢)ℎ′′(𝑢)𝑑𝑢
𝑧

𝑥
                         (14) 
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şeklindedir. (14) eşitliğinin her iki yanına 𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇

 operatör dizisini 

uygulayıp, (13) ü kullanırsak; 

𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (ℎ(𝑧); 𝑥) − ℎ(𝑥) = 𝑈̂𝑚,𝛼,𝛽

𝜆,𝜇
(∫ (𝑧 − 𝑢)ℎ′′(𝑢)𝑑𝑢; 𝑥

𝑧

𝑥

) 

olur. (12) ve Lemma 2 nin (ii) eşitliğinden 

|𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (ℎ(𝑧); 𝑥) − ℎ(𝑥)| ≤ 𝑈𝑚,𝛼,𝛽

𝜆,𝜇
(|∫ (𝑧 − 𝑢)ℎ′′(𝑢)𝑑𝑢

𝑧

𝑥

| ; 𝑥) 

                                     + ∫ |𝑥 + 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥) − 𝑢| |ℎ′′(𝑢)|𝑑𝑢

𝑥+𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)

𝑥
, 

                            ≤ ‖ℎ′′‖ (𝑈𝑚,𝛼,𝛽
𝜆,𝜇

(
(𝑧 − 𝑢)2

2
; 𝑥) +

(𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))

2

2
), 

                             ≤
‖ℎ′′‖

2
(𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥) + (𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))

2

)                           (15) 

eşitsizliğini elde ederiz. Ayrıca (1) operatörü, (12) yardımcı 

operatörü ve Lemma 1 in (i) eşitliğinden 

|𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥)| ≤ |𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (𝑔(𝑧); 𝑥)| + |𝑔 (𝑥 + 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))| + |𝑔(𝑥)| 

                               ≤ 3‖𝑔‖                                                                              (16) 

olur. (12), (15) ve (16) dan  

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ |𝑈̂𝑚,𝛼,𝛽

𝜆,𝜇 (𝑔(𝑧) − ℎ(𝑧); 𝑥) − (𝑔 − ℎ)(𝑥)| 

               + |𝑈̂𝑚,𝛼,𝛽
𝜆,𝜇 (ℎ(𝑧); 𝑥) − ℎ(𝑥)| + |𝑔 (𝑥 + 𝜎𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥)) − 𝑔(𝑥)| 

≤ 4‖𝑔 − ℎ‖ +
‖ℎ′′‖

2
(𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥) + (𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))

2

) + 𝜔 (𝑔; 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)) 

                                                                                                     (17) 
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olur. Her ℎ ∈ 𝐶2[0,1] için (17) eşitsizliğinin sağ tarafında infimum 

alırsak  

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ 4𝜅2 (𝑔;

𝜌𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥) + (𝜎𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥))
2

8
) 

                                       +𝜔 (𝑔; 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)), 

                                                      ≤ 𝐿𝜔2 (𝑔; √𝜌𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥)+(𝜎𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥))
2

8
)           

                                                                 +𝜔 (𝑔; 𝜎𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))         

eşitsizliğini elde ederiz.  

Şimdi 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatör dizisinin yakınsama oranını Lipschitz 

sınıfı fonksiyonların yardımı ile inceleyeceğiz. Eğer 𝑔 ∈ 𝐿𝑖𝑝𝑐(𝜏) ise  

|𝑔(𝑧) − 𝑔(𝑥)| ≤ 𝑀|𝑧 − 𝑥|𝜏;       𝑧, 𝑥 ∈ [0,1]                                            (18) 

dır. Burada 𝑀 > 0  ve  0 < 𝜏 ≤ 1 dir.  

            Teorem 3.  Eğer 𝑔 ∈ 𝐿𝑖𝑝𝑐(𝜏) ise 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatör 

dizisi için  

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ 𝑀 (𝜌𝑚,𝛼,𝛽

𝜆,𝜇 (𝑥))

𝜏
𝟐
 

eşitsizliği vardır.  Burada 𝜌𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥), Lemma 2 de tanımlanmıştır. 

            İspat.  𝑔 ∈ 𝐿𝑖𝑝𝑐(𝜏) olsun. 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) operatör dizisinin 

lineerliğinden  

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ 𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (|𝑔(𝑧) − 𝑔(𝑥)|; 𝑥)  
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              ≤ (m + 1) ∑ 𝑣𝑚,𝑙
𝜆,𝜇(𝑥) ∫ 𝑣𝑚,𝑙(𝑧) |𝑔 (

𝑧𝑚+α

𝑚+β
) − 𝑔(𝑥)| 𝑑𝑧

1

0
m
𝑙=0   

              ≤ 𝑀(m + 1) ∑ 𝑣𝑚,𝑙
𝜆,𝜇(𝑥) ∫ 𝑣𝑚,𝑙(𝑧) |

𝑧𝑚+α

𝑚+β
− 𝑥|

𝜏
𝑑𝑧

1

0
m
𝑙=0            (19) 

olur. 
1

𝑞
+

1

𝑝
= 1 eşitliğinde 𝑝 =

2

𝜏
  ve 𝑞 =

2

2−𝜏
 olarak alıp, (19) un sağ 

tarafında yer alan integrale Hölder eşitsizliğini uygularsak; 

|𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)| ≤ 𝑀 (𝑈𝑚,𝛼,𝛽

𝜆,𝜇 ((𝑧 − 𝑥)2; 𝑥))

𝜏

2
(𝑈𝑚,𝛼,𝛽

𝜆,𝜇 (1; 𝑥))

2−𝜏

2
  

≤ 𝑀 (𝜌𝑚,𝛼,𝛽
𝜆,𝜇 (𝑥))

𝜏
2

    

olarak elde ederiz.  

Son olarak,  𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥)  operatörlerinin asimptotik davranışını 

incelemek için Voronovskaja tip bir yaklaşım teoremi vereceğiz. 

            Teorem 4.  𝑔 ∈ 𝐶2[0,1] olsun. 𝑥 ∈ [0,1]  ve 𝑚 > 1 doğal sayısı 

için 

lim
𝑚→∞

𝑚 (𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)) = (1 − (2 + 𝛽)𝑥 + 𝛼)𝑔′(𝑥) 

                                                                                    +(3𝑥 − 5𝑥2)𝑔′′(𝑥) 

eşitsizliği elde edilir. Burada −1 ≤ 𝜆 ≤ 1 ve  0 ≤ α ≤ β  dır. 

            İspat.  𝑔 ∈ 𝐶2[0,1] olsun. 𝑔(𝑧) fonsiyonuna 𝑥 civarında 

Taylor formülünü açarsak; 

𝑔(𝑧) = 𝑔(𝑥) + 𝑔′(𝑥)(𝑧 − 𝑥) +
1

2
𝑔′′(𝑥)(𝑧 − 𝑥)2 + 𝑟(𝑧, 𝑥)(𝑧 − 𝑥)2 (20) 

yazabiliriz. Burada lim
𝑧→𝑥

𝑟(𝑧, 𝑥) = 0 dır. (20) eşitliğine 𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) 

operatör dizisini uygular ve m ile çarparsak; 

𝑚 (𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑔(𝑧); 𝑥) − 𝑔(𝑥)) = 𝑚𝑔′(𝑥)𝑈𝑚,𝛼,𝛽

𝜆,𝜇 ((𝑧 − 𝑥); 𝑥) 
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      +
𝑚

2
𝑔′′(𝑥)𝑈𝑚,𝛼,𝛽

𝜆,𝜇 ((𝑧 − 𝑥)2; 𝑥) +𝑚𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑟(𝑧, 𝑥)(𝑧 − 𝑥)2; 𝑥)  (21) 

olur. (21) in  son terimine Cauchy-Schwarz eşitsizliğini uygularsak; 

𝑚𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑟(𝑧, 𝑥)(𝑧 − 𝑥)2; 𝑥)  

                                      ≤ (𝑈𝑚,𝛼,𝛽
𝜆,𝜇

(𝑟2(𝑧, 𝑥); 𝑥))

1

2
(𝑚2𝑈𝑚,𝛼,𝛽

𝜆,𝜇
((𝑧 − 𝑥)4; 𝑥))

1

2
  

eşitsizliğini elde ederiz. 

 lim
𝑚→∞

𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑟2(𝑧, 𝑥); 𝑥) = 0 ve Lemma 3 ün (iii) eşitliğinden 𝑚 → ∞ 

için  𝑚2𝑈𝑚,𝛼,𝛽
𝜆,𝜇

((𝑧 − 𝑥)4; 𝑥)  limiti sonlu olduğundan 

lim
𝑚→∞

𝑚𝑈𝑚,𝛼,𝛽
𝜆,𝜇 (𝑟(𝑧, 𝑥)(𝑧 − 𝑥)2; 𝑥) = 0                                            (22) 

elde ederiz. Böylece (21) eşitliğinin 𝑚 → ∞ için limitini alıp, Lemma 

3 ün (i) ve (ii) eşitlikleri ve (22) yi kullanırsak Teorem 4 ün ispatını 

tamamlamış oluruz. 

 

Grafiksel Sonuçlar 

Bu çalışmada, (𝜆, 𝜇)-Bernstein-Durrmeyer-Stancu operatörlerinin 

yaklaşım özellikleri inceledik ve bu operatörlerin asimptotik 

davranışı için Voronovskaja tipi teorem verdik.  Çalışmada elde 

edilen teorik sonuçları desteklemek amacıyla,  bu operatörlerin bir 

𝑔 fonksiyonuna yakınsamasını bazı grafiksel örneklerle 

göstereceğiz.  

Örnek.  𝑔(𝑥) = 𝑥2𝑒−2𝑥 fonksiyonunun 𝑥 ∈  [0,1] için tanımlandığını 

varsayalım. İlk olarak, aşağıdaki grafik 𝑈𝑚,𝛼,𝛽
𝜇,𝜆 (𝑔; 𝑥) operatörlerinin 

𝜇 = 1, 𝜆 = 1, 𝛼 = 𝛽 = 0.01 ve farklı 𝑚 değerleri için 𝑔(𝑥) 

fonksiyonuna yakınsamasını göstermektedir (Şekil 1). 
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Şekil 1.  𝑈𝑚,0.01,0.01
1,1 (𝑔; 𝑥)  operatörlerinin 𝑔(𝑥) fonksiyonuna 

yakınsaması 

 

İkinci olarak, aşağıdaki grafik 𝑈𝑚,𝛼,𝛽
𝜇,𝜆 (𝑔; 𝑥) operatörlerinin 𝜇 = 1,

𝜆 = 1 olmak üzere 𝑚, 𝛼 ve 𝛽 'nın farklı değerleri için 

𝑔(𝑥)fonksiyonuna yakınsamasını göstermektedir (Şekil 2). 

Şekil 2.  𝑈𝑚,𝛼,𝛽
1,1 (𝑔; 𝑥)  operatörlerinin 𝑔(𝑥) fonksiyonuna 

yakınsaması 
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Son olarak, aşağıdaki grafik  𝑈𝑚,𝛼,𝛽
𝜇,𝜆 (𝑔; 𝑥) operatörlerinin 𝑚, 𝜇, 𝜆,

𝛼  ve 𝛽 'nın farklı değerleri için 𝑔(𝑥)  fonksiyonuna yakınsamasını 

göstermektedir (Şekil 3). 

Şekil 3.  𝑈𝑚,𝛼,𝛽
𝜇,𝜆 (𝑔; 𝑥)  operatörlerinin 𝑔(𝑥) fonksiyonuna 

yakınsaması 

        

 

Böylece, 𝑚 > 1 doğal sayı olmak üzere  [0,1] üzerinde  𝑈𝑚,𝛼,𝛽
𝜇,𝜆 (𝑔; 𝑥) 

operatör dizisinin  𝑚 arttıkça 𝑔 ∈ 𝐶[0,1] fonksiyonuna doğru eğilim 

gösterdiği gözlemlenmektedir.  
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SÜREKSİZLİK NOKTASI İÇEREN SINIR DEĞER 

PROBLEMİNİN GREEN FONKSİYONU AÇILIMI 

VE CARLEMAN FORMÜLÜ 

1. KADRİYE AYDEMİR1 

Giriş 

Özdeğerler ve bunlara karşılık gelen özfonksiyonları araştırmak için 

birçok neden vardır. İlk olarak, adi ve kısmi diferansiyel 

denklemlerle modellenen birçok problemin çözümleri genellikle 

özfonksiyon açılımları cinsinden açıkça verilebilir  (inceleyeceğimiz 

problemler için, bu tür özfonksiyon açılımları, bir vektörün 3-

boyutlu uzaydaki 𝑖, 𝑗 ve 𝑘 bileşenleri cinsinden gösterimine veya n-

boyutlu uzaydaki karşılık gelen gösterimlerine tamamen benzerdir). 

İkinci olarak, özdeğerler genellikle bağımsız ilgi konusudur. 

Özdeğerler, ısı iletimi, konsantrasyon analizleri, gözenekli 

ortamlarda akış vb. durumlarda ortaya çıkan çözeltilerin bozunma 

(veya büyüme) hızları hakkında net tahminler sağlamaya yardımcı 

olur. Titreşim problemlerinde ise müzik aletlerinin temel 

frekanslarını ve harmonik seslerini verirler. Özdeğerler, nükleer 

reaksiyonlar için kritik kütlenin belirlenmesinde önemlidir. Ayrıca, 

özdeğerler optimizasyonda ve varyasyon hesaplamalarında doğal 

olarak ortaya çıkar. Çoğu özdeğer problemi açıkça 

çözülemediğinden hem özdeğerlerin hem de özfonksiyonların nitel 

davranışını araştırmak oldukça önemlidir. Bu nedenle, özdeğerlerin 

 
1 Prof. Dr., Amasya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, 

Orcid: 0000-0002-8378-3949 

BÖLÜM 5
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ve karşılık gelen özfonksiyonların değerlendirmesi için etkili sayısal 

yöntemler de mevcuttur.  

 Sturm-Liouville problemleri genellikle kısmi diferansiyel bir 

denklemde değişkenlerin ayrılması yöntemi ile ortaya çıkmaktadır. 

Ancak, özdeğer problemleri, adi ve kısmi diferansiyel denklemlerin 

yanı sıra matris teorisi ve daha genel operatör içeren birçok alanda 

ortaya çıkar. Euler bir kirişin burkulmasını ele alırken ilk olarak bir 

özdeğer problemini ele almıştır (Guenther & Lee, 2018: 1). Bu 

problem için uzunluğu l olan düz bir elastik çubuk (kiriş) dikey 

olarak yukarı doğru konumlandırılsın ve tabanından sabitlensin. 

Bunun için kalın bir metal tel alınabilir. Şekil 1.1'de görüldüğü gibi, 

çubuğun serbest ucuna 𝐾  büyüklüğünde küçük bir basınç kuvveti 

dikey olarak aşağı doğru etki eder.  Çubuğun şeklini belirleyen 

denklemler  

𝐸𝐼𝑦′′ =  −𝐾𝑦, 0 <  𝑥 <  𝑙 

𝑦(0) =  0, 𝑦(𝑙)  =  0 

biçimindedir.  

 

                                          Şekil 1.1 

Burada 𝑦 =  𝑦(𝑥), çubuğun orta çizgisinin dikey denge 

konumundan enine sapmasıdır. Fiziksel sabitler 𝐸 ve 𝐼, çubuğun 

elastik ve geometrik özellikleriyle belirlenir. Bu denklemler, 
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 0 ≤  𝑥 ≤  𝑙 için her zaman 𝑦(𝑥)  =  0 çözümüne sahiptir. Örnek, 

𝐾 küçük olduğunda çubuğun şeklinin bu olduğunu, ancak 𝐾 kritik 

bir değere yükseltildiğinde çubuğun büküleceğini doğrulamaktadır. 

Bükülme, çubuğun dikeyden saparak yeni bir denge şekline 

döneceği anlamına gelir. Bu denklem basit bir Sturm-Liouville 

denklemidir ve  

𝑦′′ +  𝜆𝑦 =  0, 𝑦(0)  =  𝑦(𝑙)  =  0, 

şeklinde ifade edilebilir. Burada 𝜆 =  𝐾/𝐸𝐼 > 0 ile gösterilmiştir. 

Burkulma meydana gelirse, aşikar çözüm olan 𝑦(𝑥)  =  0 dan farklı 

bir çözüm (veya çözümler) bulmak mümkün olmalıdır. Bu 

diferansiyel denklemin genel çözümü 

𝑦 =  𝐴𝑐𝑜𝑠 (√𝜆 𝑥)  +  𝐵 𝑠𝑖𝑛 (√𝜆 𝑥) 

biçimindedir.  𝑦(0)  =  0  olduğundan, 𝐴 =  0 dır. Sıfırdan farklı 

sapmalar (çözümler) mümkünse, 

                           𝐵 ≠  0 ve 𝑦(𝑙)  =  𝐵 𝑠𝑖𝑛 (√𝜆 𝑙)  =  0   

olmalıdır. Dolayısıyla, sıfırdan farklı 𝑦 çözümleri ancak ve ancak 

𝜆 =  𝜆𝑛  =  (𝑛𝜋/𝑙)
2, 𝑛 =  1, 2, 3, . .. ise mevcuttur ve 𝑛 pozitif bir 

tam sayı ise mevcuttur. Karşılık gelen çözümler 𝑦 =  𝑦𝑛(𝑥)  =

 𝐵𝑛𝑠𝑖𝑛 (𝑛𝜋𝑥/𝑙) ve 𝐵𝑛 ≠  0 dır. Bu çözümlere karşılık 

gelen 𝜆 değerleri (dolayısıyla 𝐾) özdeğer olarak adlandırılır ve 

karşılık gelen çözümlere ise özfonksiyon denir. Bu probleme ise 

özdeğer problemi denir. Euler modeli, burkulmaların meydana 

gelebileceğini ve yalnızca 𝜆𝑛 özdeğerlerinde meydana geldiğini ve 

karşılık gelen burkulmuş denge durumlarının 𝑠𝑖𝑛 (𝑛𝜋𝑥/𝑙) 

fonksiyonunun katları olduğunu belirler. Aslında, çubuk 

burkulduğunda, fiziksel durum lineer olmadığı için yeni bir modele 

ihtiyaç duyulur. Bununla birlikte, lineer olmayan sistemde bile, 

uygun bir lineer olmayan modelin doğrusallaştırılması olan 

yukarıdaki lineer problem, burkulmaların meydana gelebileceği 

𝐾 değerlerini öngörür. Bu tür problemlere çatallanma (dallanma) 

problemleri denir çünkü lineer olmayan durumlar, lineerleştirilmiş 
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problemin özdeğerleri olan belirli kritik değerlerde, kararlı bir 

doğrusal durumdan (genellikle 𝑦 =  0) ayrılır. Dallanma noktasına 

karşılık gelen ve 𝜆𝑛 özdeğeri tarafından belirlenen 𝑦𝑛 özfonksiyonu, 

dallanma noktasının yakınında oluşan küçük genlikli lineer olmayan 

burkulmuş tepkilerin şeklini yaklaşık olarak belirler. Euler burkulma 

denklemleri, 

𝑦′′ +  𝜆𝑦 =  0, 𝑦(0)  =  𝑦(𝑙)  =  0, 

biçiminde regüler bir Sturm-Liouville özdeğer problemini oluşturur 

burada 𝜆 =  𝐾/𝐸𝐼 >  0 biçimindedir. Geçmişten günümüze kadar, 

matematiksel fizikte yeni ve ilgi çekici uygulamaların ortaya 

çıkmasıyla bağlantılı olarak Sturm-Liouville problemleri ortaya 

çıkmaktadır (bak, Burghelea, & ark., 2018:3380, Cannon & Meyer, 

1971:434,  Courant, & Hilbert, 2024:1,  Guenther & Lee,  

2018:1,  Kittel, 2005:1, Ren, 2006:1, Seitz & Johnson, 1940:1). 

 Bu çalışmada iki ayrık aralıkta tanımlı olan  

𝛯𝓌 ≔ −𝓌 ′′(𝑥) + 𝑞(𝑥)𝓌 = 𝜆 𝓌,     𝑥 ∈ [𝜉1, 𝜉2) ∪ (𝜉2, , 𝜉3]      (1) 

iki-aralıklı Sturm-Liouville denkleminden, 

                 b1𝓌 ≔ (ln𝓌)′(𝜉1) = α                                               (2) 

                 𝑏2𝓌 ≔  (𝑙𝑛𝓌)′(𝜉3) = 𝛽                                              (3)  

sınır şartlarından ve de ortak  𝜉2 uç noktasında verilen 

                 𝑡1𝓌 ≔𝓌(ξ2 + 0) = 𝛿𝓌(𝜉2 − 0)                              (4) 

                 𝑡2𝓌 ≔𝓌′(ξ2 + 0) = 𝛾𝓌′(𝜉2 − 0)                               (5) 

geçiş şartlarından oluşan iki-aralıklı bir Sturm-Liouville problemi 

araştırılmıştır. Burada 𝑞(𝑥) potansiyeli  [ξ1, 𝜉2) ve (ξ2, ξ3] 

aralıklarının her birinde sürekli olan reel değerli fonksiyondur ve 

sonlu tek taraflı  𝑞(𝜉𝑖 ± 0)= lim
𝑥→𝜉𝑖±

𝑞(𝑥) limitleri mevcuttur, α, β, 𝛿, γ 

reel sabitlerdir, λ kompleks bir spektral parametredir. Bu çalışmanın 

amacı, klasik Sturm-Liouville problemlerinin bazı temel spektral 

özelliklerini elde etmek ve genelleştirmektir. Bu bölüm de sınır 
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şartlarına ilave olarak etkileşim noktasında iletim koşulları (bu 

koşullar literatürde geçiş koşulları, süreksizlik koşulları veya 

impulsiv  koşullar olarak da adlandırılmaktadır) da içeren yeni tip iki 

aralıklı Sturm-Liouville problemlerinin bazı spektral özellikleri 

araştırılmıştır. Geçiş şartları sol aralığın sağ uç noktasında ve sağ 

aralığın sol uç noktasında verilmiştir. Çalışmada iki bilinmeyen 

çözüm için iki farklı Sturm-Liouville denklemi incelenmiştir; biri sol 

aralık [ξ1, 𝜉2) üzerinde, diğeri ise sağ aralık (ξ2, , ξ3] üzerinde 

tanımlıdır ve ortak bir uç noktası 𝑥 =  𝜉2 olan etkileşim noktasıdır 

ve bu noktaya ek iletim koşulları uygulanır. Kendi yaklaşımımızı 

kullanarak, Green fonksiyonunun bir özfonksiyon serisine açılımı, 

Parseval eşitliği ve Carleman formülü gibi önemli spektral 

özellikleri araştırılmıştır.  

  Son yıllarda geçiş şartları içeren sınır değer iletim 

problemleri literatürde çok yoğun olarak çalışılmıştır (bak, Aydemir 

& ark., 2018:921, Allahverdiev & Tuna, 2019:1, Binding & Volkmer, 

2012:477, Çavuşoğlu & Mukhtarov, 2022:98, Fu & ark., 2021:2037, 

Li & ark., 2017:189, Malathi & ark., 1998:119, Mukhtarov & ark., 

2015:1671, Mukhtarov & ark., 2020:1, Mukhtarov & ark., 2019:85.  

Olğar & ark., 2017:114, Olğar & ark., 2022:275,  Öztürk & ark., 

2023:1, Şen, 2018:6604,  Yücel & ark., 2022:90, Wang, 2012:1). 

Not: Bu çalışmada 𝛼 ≠ 0, 𝛽 ≠ 0 ve 𝛿 > 0, 𝛾 > 0 kabul 

edilecektir. 𝛼 = 𝛽, 𝛿 =  𝛾 olduğu özel durumda, incelenen 

problem klasik periyodik Sturm-Liouville problemlerine indirgenir, 

bu nedenle bu çalışmada elde edilen sonuçlar ilgili klasik sonuçları 

geliştirir ve genelleştirir. Söz konusu problem karesi integrallenebilir 

fonksiyonların klasik Hilbert uzayında genel olarak kendine eşlenik 

değildir. Bu nedenle bir çok klasik yöntem araştırdığımız  probleme 

direkt olarak uygulanamaz. Bu çalışmamızda bazı klasik yöntemleri 

daha da genelleştirerek özdeğerlerin ve özfonksiyonların bazı 

önemli özellikleri de araştırılmıştır. 
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Esas Sonuçlar 

(1) denkleminin   [ξ1, 𝜉2) sol aralığı üzerindeki  

               𝓌(𝜉1, 𝜆) =  1, 𝓌′(𝜉1, 𝜆) =  𝛼                                      (6) 

başlangıç koşullarını sağlayan çözümü  𝑦1(𝑥, 𝜆) fonksiyonu ve aynı 

denklemin sağ aralık  (ξ2, , ξ3] üzerindeki  

           𝓌(𝜉3, 𝜆) =  1, 𝓌′(𝜉3, 𝜆) = 𝛽                                           (7) 

başlangıç koşullarını sağlayan çözümü  𝑧2(𝑥, 𝜆) fonksiyonu olsun. 

𝑦1(𝑥, 𝜆) ve 𝑧2(𝑥, 𝜆) fonksiyonları her sabit x için 𝜆 parametresinin 

tam fonksiyonlardır (bak, Titchmarsh, 2011). (1) denkleminin  

(ξ2, , ξ3]  sağ aralığında  

                        𝓌(𝜉2 + 0) = 𝛿𝑦1(𝜉2 − 0)                                         (8) 

                           𝓌′(𝜉1 + 0) = 𝛾𝑦1′(𝜉2 − 0)                                        (9) 

başlangıç koşullarını sağlayan çözümünü  𝑦2(𝑥, 𝜆) fonksiyonu ile ve 

aynı denklemin sol aralık  [ξ1, 𝜉2) üzerinde tanımlı olan ve 

                            𝓌(𝜉2 − 0) =
1

𝛿
𝑧2(𝜉2 + 0)                                    (10) 

                              𝓌′(𝜉2 − 0) =
1

𝛾
𝑧2′(𝜉2 + 0)                                  (11) 

başlangıç koşullarını sağlayan çözümünü  𝑧1(𝑥, 𝜆) fonksiyonu ile 

gösterelim.  (Aydemir & Mukhtarov, 2015) çalışmasındaki yöntem 

kullanılarak 𝑦2(𝑥, 𝜆) ve 𝑧1(𝑥, 𝜆) fonksiyonlarının 𝜆 ∈ ℂ 

parametresinin tam fonksiyonları olduğu gösterilebilir. Böylece 

𝑦1(𝑥, 𝜆),  𝑦2(𝑥, 𝜆), 𝑧1(𝑥, 𝜆) ve 𝑧2(𝑥, 𝜆) fonksiyonlarının tanımından 

aşağıdaki sonuç kolayca ispatlanabilir.  

Sonuç 1. [ξ1, 𝜉2) ∪ (ξ2, , ξ3]   iki- aralığı üzerinde tanımlanan  

𝑦(𝑥, 𝜆) = {
𝑦1(𝑥, 𝜆), 𝑥 𝜖 [𝜉1, 𝜉2)

 𝑦2(𝑥, 𝜆),        𝑥 𝜖 (𝜉2, , 𝜉3]
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fonksiyonu (1) denklemini, (2) sınır şartını ve (4)-(5) geçiş 

şartlarının her ikisini sağlar. Benzer şekilde [ξ1, 𝜉2) ∪ (ξ2, , ξ3]    

aralığı üzerinde tanımlanan 

𝑧(𝑥, 𝜆) = {
𝑧1(𝑥, 𝜆), 𝑥 𝜖 [𝜉1, 𝜉2)

 𝑧2(𝑥, 𝜆),        𝑥 𝜖 (𝜉2, , 𝜉3]
 

fonksiyonu (1) denklemini, (3) sınır şartını ve (4)-(5) geçiş 

şartlarının her ikisini sağlar.  Kolayca gösterilebilir ki, 

Δ1(𝜆): = 𝑊(𝑦1(𝑥, 𝜆), 𝑧1(𝑥, 𝜆)) ve  Δ2(𝜆): = 𝑊(𝑦2(𝑥, 𝜆), 𝑧2(𝑥, 𝜆)) 

fonksiyonları 𝑥 değişkeninden bağımsızdırlar 

 (𝑊(𝑦, 𝑧;  𝑥) = 𝑦(𝑥)𝑧’(𝑥)  −  𝑦’(𝑥)𝑧(𝑥), 𝑦 ve 𝑧 fonksiyonlarının 

Wronskian determinantıdır).  

Sonuç 2. Δ1(𝜆) ve Δ2(𝜆) fonksiyonları 𝜆 parametresinin tam 

fonksiyonlarıdır. 

Teorem 1. Δ2(𝜆) = 𝛿𝛾Δ1(𝜆) eşitliği sağlanır.  

İspat. 𝑊(𝑦1(𝑥, 𝜆),  𝑧1(𝑥, 𝜆))  ve  𝑊(𝑦2(𝑥, 𝜆), 𝑧2(𝑥, 𝜆)) 

fonksiyonları 𝑥 değişkeninden bağımsız olduğundan (4)-(5) geçiş 

şartları kullanılırsa  

Δ2(λ)  = W(y2(x, λ), z2(x, λ)) 

            =  W(y2(ξ2 + 0, λ), z2(ξ2 + 0, λ)) 

             = δγ W(y1(ξ2 − 0, λ), z1(ξ2 − 0, λ)) 

            = δγΔ1(λ) 

elde edilir.  

Tanım 1. 𝛥(𝜆) ≔ Δ2(𝜆) = 𝛿𝛾Δ1(𝜆) fonksiyonu (1)-(5) 

probleminin karakteristik fonksiyonu olarak adlandırılmaktadır. 

Teorem 2. 𝜆 ∈ ℂ  sayısının (1)-(5) sınır değer geçiş probleminin bir 

özdeğeri olması için gerek ve yeter şart Δ(λ) = 0 olmasıdır. 
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İspat. 𝜆 herhangi bir özdeğer ve buna karşılık gelen özfonksiyon 

𝑢(𝑥, 𝜆) olsun. Kabul edelim ki  Δ(λ) ≠ 0 olsun. Bu durumda  

(𝑎1, 𝑏1, 𝑎2, 𝑏2 ) ≠ (0, 0, 0, 0) olmak üzere 𝑢(𝑥, 𝜆) özfonksiyonu  

𝑢(𝑥, 𝜆) = {
𝑎1𝑦1(𝑥, 𝜆)  +  𝑏1𝑦2(𝑥, 𝜆), 𝑥 ∈ [𝜉1, 𝜉2 )

𝑎2𝑧1(𝑥, 𝜆)  + 𝑏2𝑧2(𝑥, 𝜆) , 𝑥 ∈ (𝜉2, 𝜉3]
 

biçiminde yazılabilir. Bu fonksiyon (2)-(5) sınır-geçiş şartlarında 

yerine yazılırsa 𝑎1, 𝑏1, 𝑎2, 𝑏2 bilinmeyen katsayılarına göre homojen 

lineer bir denklem sistemi elde edilir. Gerekli hesaplamalar yapılırsa 

bu denklem sisteminin determinantının  𝑀 ≠ 0 olmak üzere 𝑀𝛥(𝜆) 

biçiminde olduğu gösterilebilir. 𝛥(𝜆) ≠ 0  olduğundan dolayı bu 

denklem sistemi sadece (𝑎1, 𝑏1, 𝑎2, 𝑏2) = (0, 0, 0, 0) aşikar 

çözümüne sahip olur. Bu ise 𝑢(𝑥, 𝜆)  fonksiyonunun özfonksiyon 

olması ile çelişir. Şimdi  𝛥(𝜆) = 0 olsun. Karakteristik fonksiyonun 

tanımı gereği Δ2(𝜆) = Δ1(𝜆) =0 olur. Δ1(𝜆) = 0 eşitliği gereği  

𝑦1(𝑥, 𝜆) ve  𝑧1(𝑥, 𝜆) fonksiyonları lineer bağımlıdır yani, 

𝑦1(𝑥, 𝜆) = 𝑚1 𝑧1(𝑥, 𝜆), 𝑥 ∈ [𝜉1, 𝜉2 ) 

olacak şekilde  𝑚1 ≠ 0 sayısı vardır. Benzer şekilde Δ2(𝜆) = 0 

eşitliği gereği 𝑦2(𝑥, 𝜆) ve  𝑧2(𝑥, 𝜆) fonksiyonları lineer bağımlıdır 

yani, 

𝑦2(𝑥, 𝜆) = 𝑚2 𝑧2(𝑥, 𝜆), 𝑥 ∈ (𝜉2, 𝜉3] 

olacak şekilde  𝑚2 ≠ 0 sayısı vardır. Bu durumda Sonuç 1. den  

𝑢(𝑥, 𝜆) fonksiyonu, (2) sınır şartını da sağlar ve bu nedenle bu 

fonksiyon bu  𝜆  için (1)–(5) probleminin çözümüdür, dolayısıyla 

𝑢(𝑥, 𝜆) fonksiyonu 𝜆 özdeğerine karşılık gelen bir özfonksiyondur. 

Böylece, 𝛥(𝜆) fonksiyonunun her sıfırının bir özdeğer olduğu 

kanıtlanmış oldu. İspat bitti. 

Tanım 2. [ξ1, 𝜉2) ∪ (ξ2, , ξ3] iki-aralığı üzerinde tanımlı olan ve 

𝐿2[𝜉1, 𝜉2) ve 𝐿2(𝜉2, , 𝜉3] uzaylarına ait olan tüm kompleks değerli 

𝑓(𝑥) fonksiyonlar kümesi H ile gösterilsin. Bu küme üzerindeki iç 

çarpım 
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  〈𝑓, 𝑔〉𝐻 = 𝛿 ∫ 𝑓(𝑥) 𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥
𝜉2−0

𝜉1
+

1

𝛾
∫ 𝑓(𝑥) 𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥
𝜉3
𝜉2+0

              (12) 

olarak tanımlanmaktadır. 

Sonuç 3. 0 <  𝑎 <  𝑏  olmak üzere öyle 𝑎 ve 𝑏 sayıları mevcuttur 

ki 

𝑎 〈𝑓, 𝑔〉𝐿2[𝜉1,𝜉2) ⊕ 𝐿2(𝜉2,,𝜉3] ≤  〈𝑓, 𝑔〉𝐻  ≤  𝑏 〈𝑓, 𝑔〉𝐿2[𝜉1,𝜉2) ⊕ 𝐿2(𝜉2,,𝜉3] 

eşitsizlikleri sağlanır. Bu nedenle 𝐻 bir Hilbert uzayıdır. 

Teorem 3. (1)-(5) probleminin tüm özdeğerleri reeldir. 

İspat. 𝜆 herhangi bir özdeğer ve buna karşılık gelen özfonksiyon 

𝑢(𝑥, 𝜆) olsun. O halde 

                Ξu − λ u = 0,  𝑥 ∈ [ξ1, 𝜉2) ∪ (ξ2, , ξ3]                          (13) 

                               b1u − α = 0                                                  (14) 

                              𝑏2𝑢 − 𝛽 = 0                                                   (15) 

                            𝑡1𝑢 − 𝛿𝑢(𝜉2 − 0) = 0                                      (16) 

                              𝑡2𝑢 − 𝛾𝑢′(𝜉2 − 0) = 0                                    (17) 

olur. 𝑞(𝑥)  fonksiyonunun reel değerli fonksiyon ve 𝛼, 𝛽, 𝛿, 𝛾 reel 

sabitler olduğu dikkate alınıp (13)-(17) eşitliklerinin kompleks 

eşleniği alınırsa  

             Ξu − λ u = 0 ,  𝑥 ∈ [ξ1, 𝜉2) ∪ (ξ2, , ξ3]                             (18) 

                            b1u − α = 0                                                     (19) 

                           𝑏2𝑢  − 𝛽 = 0                                                      (20) 

                      𝑡1𝑢  − 𝛿𝑢 (𝜉2 − 0) = 0                                           (21) 

                    𝑡2𝑢  − 𝛾𝑢 ′(𝜉2 − 0) = 0                                            (22) 

yazılabilir. (13) ve (18) deki denklemler sırası ile u  𝑣𝑒  𝑢  ile çarpılıp 

taraf tarafa çıkarılırsa  
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𝑑

𝑑𝑥
𝑊(𝑢, u ; 𝑥) =  (λ − λ)  ∣ u (x) ∣2                                     (23) 

eşitliği bulunur. (23) eşitliği [ξ1, 𝜉2) ve  (𝜉2, 𝜉3]  aralıklarında 

integrallenirse 

(𝜆 − 𝜆) (𝛿 ∫ ∣ 𝑢(𝑥) ∣2 𝑑𝑥
𝜉2−0

𝜉1
+

1

𝛾
∫ ∣ 𝑢(𝑥) ∣2 𝑑𝑥
𝜉3
𝜉2+0

) 

      = 𝑊(𝑢, 𝑢 ; 𝑥) |𝜉2−0
𝜉1

+𝑊(𝑢, 𝑢 ; 𝑥) | 𝜉3
𝜉2+0

                                         (24)          

 eşitlıği elde edilir.  (2)-(3)  sınır şartlarından 

                 𝑊(𝑢, 𝑢 ; 𝜉1)  =  𝑊(𝑢, 𝑢 ; 𝜉3)  =  0                                   (25) 

bulunur ve (4)-(5)  iletim koşulları uygulanırsa  

                𝑊(𝑢, 𝑢 ; 𝜉2 + 0) = 𝛿𝛾𝑊(𝑢, 𝑢 ; 𝜉2 − 0) =  0                (26) 

elde edilir. (25)-(26) eşitliklerini (24) de yerine yazılırsa  

(𝜆 − 𝜆) (𝛿 ∫ ∣  𝑢 (𝑥) ∣2 𝑑𝑥
𝜉2−0

𝜉1
+

1

𝛾
∫ ∣ 𝑢 (𝑥) ∣2 𝑑𝑥) = 0
𝜉3
𝜉2+0

 

olduğu açıktır. 𝑢(𝑥, 𝜆)    bir özfonksiyon olduğu için 

𝛿 ∫ ∣  𝑢(𝑥) ∣2 𝑑𝑥

𝜉2−0

𝜉1

+
1

𝛾
∫ ∣ 𝑢(𝑥) ∣2 𝑑𝑥 ≠ 0

𝜉3

𝜉2+0

 

ve dolayısıyla 𝜆 − 𝜆 = 0 yani 𝜆 = 𝜆 bulunur. Yani (1)-(5) 

probleminin her bir 𝜆 özdeğeri reeldir. 

Sonuç 4. (1)–(5) probleminin tüm özfonksiyonları “esas itibarıyla” 

reeldir, yani her özdeğere karşılık gelen bir reel değerli özfonksiyon 

mevcuttur. 

Not. Sonuç 4 hesaba katılarak, bundan sonra (1)–(5) probleminin 

tüm özfonksiyonlarının reel değerli olduğu kabul edilebilir. 

Teorem 4. (𝜆1, 𝑢1(𝑥)) ve (𝜆2, 𝑢2(𝑥)) (1)-(5) probleminin iki 

özdeğer-özfonksiyon çifti olsun. Eğer  𝜆1 ≠ 𝜆2 ise 𝑢1(𝑥)  ve 𝑢2(𝑥) 
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özfonksiyonları (9) eşitliği ile tanımlanan iç çarpıma göre 

ortogonaldir; yani,  

𝛿 ∫ 𝑢1(𝑥, 𝜆) 𝑢2(𝑥, 𝜆)𝑑𝑥
𝜉2−0

𝜉1
+

1

𝛾
∫ 𝑢1(𝑥, 𝜆) 𝑢2(𝑥, 𝜆)𝑑𝑥
𝜉3
𝜉2+0

= 0  (27) 

eşitliği sağlanır. 

İspat.  𝑢1(𝑥) ve 𝑢2(𝑥) özfonksiyonlar oldukları için  

                   Ξ𝑢1 − λ 𝑢1 = 0,  𝑥 ∈ [ξ1, 𝜉2) ∪ (ξ2, , ξ3]                       (28) 

                                    b1𝑢1 − α = 0                                                    (29) 

                                    𝑏2𝑢1 − 𝛽 = 0                                                    (30) 

                                      𝑡1𝑢1 − 𝛿𝑢1(𝜉2 − 0) = 0                               (31) 

                                       𝑡2𝑢1 − 𝛾𝑢1′(𝜉2 − 0) = 0                             (32) 

ve  

                   Ξ𝑢2 − λ 𝑢2 = 0,  𝑥 ∈ [ξ1, 𝜉2) ∪ (ξ2, , ξ3]                         (33) 

                              b1𝑢2 − α = 0                                                           (34) 

                             𝑏2𝑢2 − 𝛽 = 0                                                           (35) 

                         𝑡1𝑢2 − 𝛿𝑢2(𝜉2 − 0) = 0                                            (36) 

                        𝑡2𝑢2 − 𝛾𝑢2′(𝜉2 − 0) = 0                                            (37) 

eşitlikleri sağlanır. (28) ve (33) deki denklemleri sırası ile 𝑢2  ve  𝑢1  

ile çarpılıp taraf tarafa çıkarılır ve ξ1 noktasından  𝜉3  noktasına 

integrallenirse 

(𝜆1 −𝜆2) (𝛿 ∫ 𝑢1(𝑥)𝑢2(𝑥) 𝑑𝑥
𝜉2−0

𝜉1
+

1

𝛾
∫ 𝑢1(𝑥)𝑢2(𝑥)𝑑𝑥
𝜉3

𝜉2+0
) 

      = 𝑊(𝑢1, 𝑢2; 𝑥) |
𝜉2−0
𝜉1

+𝑊(𝑢1, 𝑢2; 𝑥) |
𝜉3
𝜉2+0
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bulunur. Teorem 3 teki ispata benzer argümanlar kullanılarak, bu son 

eşitliğin sağ tarafının sıfıra eşit olduğu ve dolayısıyla bu eşitliğin sol 

tarafının da sıfıra eşit olduğu gösterilebilir. 𝜆1 ≠ 𝜆2 olduğundan  (24) 

eşitliği edilir. Yani  𝑢1(𝑥) ve  𝑢2(𝑥)  özfonksiyonları L2[𝜉1, 𝜉2) ⊕

L2(𝜉2, , 𝜉3] Hilbert uzayında (12) ile tanımlanan iç çarpıma göre 

ortogonal fonksiyonlardır. 

Green Fonksiyonunun Özfonksiyonlar Aracılığı İle Açılımı 

Homojen olmayan  

  −𝓌 ′′(𝑥) + (𝑞(𝑥) − 𝜆)𝓌 =  𝑓(𝑥),  𝑥 ∈ [𝜉1, 𝜉2) ∪ (𝜉2, , 𝜉3]     (38) 

Sturm-Liouville denklemini ve  (2)-(5) sınır-geçiş şartlarını alalım. 

Burada 𝑓 (𝑥), 𝑞(𝑥) fonksiyonları (1)–(5) probleminin ifadesinde 

öngörülen koşulları sağlayan reel değerli fonksiyonlardır. 𝜆 ∈  𝐶 

(1)–(5) probleminin özdeğeri olmayan herhangi bir kompleks sayı 

olsun. Böyle bir 𝜆 için 𝐺(𝑥, 𝑦;  𝜆) Green fonksiyonunun  

ℌ(𝑥, 𝑦; 𝜆)

=
1

𝛥(𝜆)

{
 
 
 
 
 

 
 
 
 
 

1

𝛿

1

𝛿
𝑦1(𝑥, 𝜆)𝑧1(𝑦, 𝜆) , 𝑥 ∈ [𝜉1, 𝜉2), 𝑦 ∈  [𝜉1, 𝑥)

1

𝛿
𝑧1(𝑦, 𝜆)𝑦1(𝑥, 𝜆) , 𝑥 ∈ [𝜉1, 𝜉2), 𝑦 ∈  [𝑥, 𝜉2)

𝑦2(𝑥, 𝜆)𝑧1(𝑦, 𝜆) , 𝑥 ∈ [𝜉1, 𝜉2), 𝑦 ∈  (𝜉2, 𝜉3]

1

𝛾

1

𝛾
𝑧1(𝑦, 𝜆)𝑦2(𝑥, 𝜆) , 𝑥 ∈ (𝜉2, 𝜉3], 𝑦 ∈  [𝜉1, 𝜉2)

𝑦2(𝑦, 𝜆)𝑧2(𝑥, 𝜆) , 𝑥 ∈ (𝜉2, 𝜉3], 𝑦 ∈  (𝜉2, 𝑥]
1

𝛾
𝑧2(𝑥, 𝜆)𝑦2(𝑦, 𝜆) , 𝑥 ∈ (𝜉2, 𝜉3], 𝑦 ∈  [𝑥, 𝜉3)

 

şeklinde olduğunu gösterebiliriz. Bu fonksiyon (1)-(5) probleminin 

Green fonksiyonu olarak adlandırılır ayrıca bu fonksiyon  𝑥 ve 𝑦 

değişkenlerine göre simetriktir yani 𝐺(𝑥, 𝑦;  𝜆)  = 𝐺(𝑦, 𝑥;  𝜆) 

sağlanır. 
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Teorem 5.  𝑓(𝑥) fonksiyonu [ξ1, 𝜉2) ve  (𝜉2, , 𝜉3]  aralıklarında 

sürekli olsun ve sonlu 𝑓 (𝜉2±) değerlerine sahip olsun. Bu taktirde 

homojen olmayan (36), (2)-(5) sınır değeri geçiş probleminin bir tek     

𝑢(𝑥, 𝜆) çözümü vardır ve bu çözüm  

𝑢(𝑥, 𝜆) = 𝛿 ∫ 𝐺(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝜉2−0

𝜉1
+

1

𝛾
∫ 𝐺(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡(39)
𝜉3
𝜉2+0

                 

biçimindedir. 

İspat. 𝑦1(𝑥, 𝜆),  𝑦2(𝑥, 𝜆), 𝑧1(𝑥, 𝜆), 𝑧2(𝑥, 𝜆) çözümlerinin, 𝛥(𝜆) 

karakteristik fonksiyonunun ve 𝐺(𝑥, 𝑦;  𝜆) Green fonksiyonunun 

tanımları kullanılırsa, (39) ile tanımlanan 𝑢(𝑥, 𝜆) fonksiyonunun 

homojen olmayan (6) Sturm-Liouville denklemini ve (2)-(5) sınır 

değeri geçiş şartlarını sağladığı açıktır. Böylece genelliği 

kaybetmeden 𝜆 =  0 sayısının bir özdeğer olmadığı varsayılsın. 

Aksi takdirde, 𝛥 (𝐾)  ≠  0 olacak şekilde 𝐾 >  0 reel sayısını seçilir 

ve  

  − 𝑢 + (𝑞(𝑥)  −  𝐾)𝑢 =  𝜆𝑢, 𝑥 ∈  [𝜉1, 𝜉2) ∪ (𝜉2, , 𝜉3]     

denklemi aynı (2)-(5) sınır değeri geçiş şartlarıyla birlikte 

düşünülürse bu problem (1)–(5) problemi ile aynı özfonksiyonlara 

sahip olur ve tüm özdeğerler 𝐾 sayısı kadar sola kayar. 𝐺(𝑥, 𝑦) =

 𝐺(𝑥, 𝑦;  0)  göstererek ve (38) denklemini 

                            − 𝑢 +  𝑞(𝑥)𝑢 =  𝜆𝑢 +  𝑓                                     

şeklinde  yeniden yazarak homojen olmayan (38),  (2)-(5) problemi 

𝑢(𝑥, 𝜆) + 𝜆(𝛿 ∫ 𝐺(𝑥, 𝑡)𝑢(𝑡, 𝜆)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝐺(𝑥, 𝑡) 𝑢(𝑡, 𝜆)𝑑𝑡)

𝜉3

𝜉2+0

 

      = 𝛿 ∫ 𝐺(𝑥, 𝑡) 𝑓(𝑡)𝑑𝑡
𝜉2−0

𝜉1

1

𝛾
∫ 𝐺(𝑥, 𝑡) 𝑓(𝑡)𝑑𝑡
𝜉3
𝜉2+0

                      (40) 
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integral denklemi şeklinde yazılabilir. Sonuç olarak, karşılık gelen 

(1)-(5) homojen problemi, 

𝑢(𝑥, 𝜆) + 𝜆(𝛿 ∫ 𝐺(𝑥, 𝑡)𝑢(𝑡, 𝜆)𝑑𝑡 +
𝜉2−0

𝜉1

1

𝛾
∫ 𝐺(𝑥, 𝑡) 𝑢(𝑡, 𝜆)𝑑𝑡)
𝜉3
𝜉2+0

                                                                                                                     

   = 0                                                                                                          (41) 

 integral denklemine eşdeğerdir. Şimdi, 𝑇 integral operatörü 

(𝑇𝑢)(𝑥) ∶= 𝛿 ∫ 𝐺(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 +
𝜉2−0

𝜉1

1

𝛾
∫ 𝐺(𝑥, 𝑡;  𝜆) 𝑢(𝑡)𝑑𝑡
𝜉3
𝜉2+0

 (42) 

eşitliği ile tanımlansın. Böylece  (41) integral denklemi  𝜇 = −
1

𝜆
 

olmak üzere 

                                                  (𝑇 −  𝜇𝐼 )𝑢 =  0                                (43) 

operatör-denklem formunda yazılabilir, burada 𝐼 birim operatörü 

𝐼𝑢 =  𝑢  şeklinde tanımlıdır. 𝑇 İntegral operatörünün çekirdeği, yani 

𝐺(𝑥, 𝑡)  Green fonksiyonu simetrik ve sürekli olduğundan, ekstremal 

prensibi uygulanabilir. Böylece 𝑇 integral operatörü sonsuz sayıda 

𝜇𝑛 = −
1

𝜆𝑛
, 𝑛 = 0, 1, 2, . .. reel özdeğere sahiptir. Bu özdeğerlere 

karşılık gelen 𝑢0(𝑥), 𝑢1(𝑥), . ..  özfonksiyonları 

𝛿 ∫ 𝑢𝑛(𝑡)𝑢𝑚(𝑡)𝑑𝑡 +
𝜉2−0

𝜉1

1

𝛾
∫ 𝑢𝑛(𝑡)𝑢𝑚(𝑡)𝑑𝑡
𝜉3
𝜉2+0

= 𝛿𝑛𝑚                   (44) 

 şeklinde normalleştirilsin. 𝛿𝑛𝑚 sayıları 𝛿𝑛𝑚 = {
1, 𝑖𝑓  𝑛 = 𝑚

0,        𝑖𝑓  𝑛 ≠ 𝑚
 

şeklinde tanımlanan Kronecker δ sıdır. (Aydemir & Mukhtarov, 

2015) ye benzer şekilde, |𝜆𝑛| = 𝑂(𝑛
2) olduğunu gösterebiliriz.  

𝑢𝑛(𝑥), 𝑛 =  0, 1, . . . sınırlı ve sürekli fonksiyonlar 

olduğundan, 𝐹(𝑥, 𝑡) fonksiyonunu 

                          𝐹(𝑥, 𝑡)  =  ∑
1

𝜆𝑛

∞
𝑛=0 𝑢𝑛(𝑥)𝑢𝑛(𝑡)                                (45) 
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eşitliği ile tanımlanabilir. Eşitliğin sağ tarafı mutlak ve düzgün 

yakınsak bir seri olduğundan, 𝐹(𝑥, 𝑡) fonksiyonu süreklidir. Ayrıca, 

𝐹(𝑥, 𝑡) nin simetrik bir fonksiyon olduğu açıktır. 𝐺(𝑥, 𝑡)  =

− 𝐹(𝑥, 𝑡)  olduğunu gösterelim. Varsayalım ki  

G(𝑥, 𝑡)   + 𝐹(𝑥, 𝑡)  fonksiyonu özdeş olarak sıfır olmasın. Simetrik, 

sürekli ve sıfırdan farklı çekirdeğe sahip Fredholm tipi integral 

denklemlerin bilinen özelliğine göre (bak, Courant & Hilbert, 

2024).  

𝑢(𝑥, 𝜆) + 𝜆(𝛿 ∫ (𝐺(𝑥, 𝑡)  + +𝐹(𝑥, 𝑡))𝑢(𝑡 , 𝜆)𝑑𝑡
𝜉2−0

𝜉1
                  

+
1

𝛾
∫ (𝐺(𝑥, 𝑡)  +  𝐹(𝑥, 𝑡)) 𝑢(𝑡 , 𝜆)𝑑𝑡)
𝜉3
𝜉2+0

= 0                                 (46) 

integral denklemi 

    𝛿 ∫ (𝐺(𝑥, 𝑡) +  𝐹(𝑥, 𝑡))𝑢̃(𝑡 )𝑑𝑡

𝜉2−0

𝜉1

 

             +
1

𝛾
∫ (𝐺(𝑥, 𝑡)  +  𝐹(𝑥, 𝑡)) 𝑢̃(𝑡 )𝑑𝑡)

𝜉3

𝜉2+0

 

                = −
1

𝜆̃
𝑢̃(𝑥)                                                                           (47) 

olacak şekilde (𝜆̃, 𝑢̃(x)) bir özdeğer-özfonksiyon çiftine sahiptir. 

(40) ve (44) eşitliklerinden 

   𝛿 ∫ (𝐺(𝑥, 𝑡)  +  𝐹(𝑥, 𝑡))𝑢𝑛(𝑡)𝑑𝑡
𝜉2−0

𝜉1
 

      +
1

𝛾
∫ (𝐺(𝑥, 𝑡)  +  𝐹(𝑥, 𝑡)) 𝑢𝑛(𝑡)𝑑𝑡)

𝜉3

𝜉2+0
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        = −
1

𝜆𝑛
𝑢𝑛(𝑥) +

1

𝜆𝑛
𝑢𝑛(𝑥) 

        = 0                                                                                                   (48) 

bulunur. Dolayısıyla,  𝐺(𝑥, 𝑡)  +  𝐹(𝑥, 𝑡) fonksiyonu tüm 𝑢𝑛(𝑥),  n 

= 0, 1, 2, . . . özfonksiyonları ile ortogonal olur. O halde, (47) ve (48) 

den  

     𝛿 ∫ 𝑢̃ (𝑡)𝑢𝑛(𝑡)𝑑𝑡 +
𝜉2−0

𝜉1

1

𝛾
∫ 𝑢̃ (𝑡)𝑢𝑛(𝑡)𝑑𝑡 = 0
𝜉3
𝜉2+0

                      (49) 

𝑛 =  0, 1, 2, . .. elde edilir. Bu eşitlik gereği, 𝑢̃(𝑥) = 𝑢̃(𝑥, 𝜆̃) 

özfonksiyonu tüm 𝑢𝑛(𝑥),  𝑛 =  0, 1, 2, . .. özfonksiyonları ile 

ortogonaldir.  O halde  bu özfonksiyonun kendisine de ortogonal 

olduğu,  yani 

𝛿 ∫ |𝑢̃ (𝑡, 𝜆̃)|
2
𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ |𝑢̃ (𝑡, 𝜆̃)|

2
𝑑𝑡 = 0

𝜉3

𝜉2+0

 

elde edilir.  Buradan  𝑢̃(𝑥, 𝜆̃) özdeş olarak sıfır olur. Bu ise çelişkidir.  

İspat bitti.  

Teorem 5 in ispatında, aşağıdaki önemli sonucu da ispatladık. 

Teorem 6. 𝐺(𝑥, 𝑡) Green fonksiyonu mutlak ve düzgün yakınsak bir 

                      𝐺(𝑥, 𝑡) = −∑
1

𝜆𝑛
𝑢𝑛(𝑥)

∞

𝑛=0

𝑢𝑛(𝑡)                                  (50) 

seri şeklinde yazılabilir. 

Özfonksiyonların Tamlığı: Genelleştirilmiş Parseval Eşitliği 

Bu bölümde, önceki bölümlerin sonuçlarına dayanarak, 

özfonksiyonlar sisteminin tamlık özelliği hakkında bazı önemli 

sonuçlar verilecektir. 
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Teorem 7.  𝑓(𝑥) fonksiyonu [ξ1, 𝜉2) ve  (𝜉2, , 𝜉3] aralıklarında iki 

kez sürekli türevlenebilir olsun ve 𝑓 (𝜉2 ∓ 0), 𝑓′(𝜉2 ∓ 0), 𝑓′′(𝜉2 ∓

0) sonlu limit değerlerine sahip olsun. Ayrıca (2)–(5) sınır-geçiş 

koşullarını sağlasın. Bu durumda, 𝑓(𝑥), mutlak ve düzgün yakınsak 

olan 

𝑓(𝑥) = ∑(𝛿 ∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝜉3

𝜉2+0

)

∞

𝑛=0

𝑢𝑛(𝑥)  (51) 

serisine açılabilir.  

İspat. 𝑓’’(𝑥)  − 𝑞(𝑥)𝑓(𝑥)  =  𝑔(𝑥) olsun. (39) ve (50) göz önünde 

bulundurarak 

𝑓(𝑥) = ∑(𝛿 ∫ 𝐺(𝑥, 𝑡)𝑔(𝑡)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝐺(𝑥, 𝑡)𝑔(𝑡)𝑑𝑡

𝜉3

𝜉2+0

∞

𝑛=0

) 

         −∑
𝑢𝑛(𝑥)

𝜆𝑛
(𝛿 ∫ 𝑢𝑛(𝑡)𝑔(𝑡)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝑢𝑛(𝑡)𝑔(𝑡)𝑑𝑡

𝜉3

𝜉2+0

∞

𝑛=0

)  (52) 

elde edilir. Her iki tarafı 𝑢𝑚(𝑥) ile çarpıp integrali alınırsa 

𝛿 ∫ 𝑓(𝑡)𝑢𝑚(𝑡)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝑓(𝑡)𝑢𝑚(𝑡)𝑑𝑡

𝜉3

𝜉2+0

 

     =  −
1

𝜆𝑚
(𝛿 ∫ 𝑔(𝑡)𝑢𝑚(𝑡)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝑔(𝑡)𝑢𝑚(𝑡)𝑑𝑡
𝜉3
𝜉2+0

)            (53) 

bulunur. (53) eşitliği (52) de yerine yazılırsa (51) eşitliği elde edilir. 

İspat bitti.  
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𝑢𝑛 (𝑥), 𝑛 = 0, 1, 2, . .. özfonksiyonlarının ortogonallik özelliğini 

hesaba katarak ve iyi bilinen standart tekniği kullanarak (örneğin 

bak,  Levitan, 1950) aşağıdaki önemli sonucu elde edebiliriz. 

Sonuç 5. (Genelleştirilmiş Parseval eşitliği) 

 f ∈ 𝐿2[𝜉1, 𝜉2)  ⊕ 𝐿2(𝜉2, , 𝜉3] olsun. Bu durumda genelleştirilmiş  

𝛿 ∫ |𝑓(𝑥)|2𝑑𝑥 +
𝜉2−0

𝜉1

1

𝛾
∫ |𝑓(𝑥)|2𝑑𝑥
𝜉3
𝜉2+0

  

  = ∑ (𝛿 ∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡 +
𝜉2−0

𝜉1

1

𝛾
∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝜉3
𝜉2+0

)2∞
𝑛=0                (54) 

Parseval eşitliği sağlanır.  

Rezolvent Açılımı Ve Genelleştirilmiş Carleman Eşitliği 

Teorem 8.   𝑓(𝑥) fonksiyonu [ξ1, 𝜉2) ve  (𝜉2, , 𝜉3] aralıklarında 

sürekli olsun ve 𝑓 (𝜉2 ∓ 0) sonlu limit değerlerine sahip olsun. 

Ayrıca λ bir özdeğer olmasın. Bu durumda, (39) resolventi 

                               𝑢𝑛(𝑥, 𝜆) = ∑
1

𝜆𝑛−𝜆

∞
𝑛=0 𝑢𝑛(𝑥)                                  (55) 

biçiminde bir özfonksiyon serisine açılabilir.  

İspat.  Önceki bölümde ispat edildi ki, 𝜆 sayısı (1)-(5) homojen 

probleminin bir özdeğeri değilse bu probleme  karşılık gelen (38), 

(2)-(5) homojen olmayan problem  

𝑢(𝑥, 𝜆) = 𝛿 ∫ 𝐺(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝜉2−0

𝜉1
+

1

𝛾
∫ 𝐺(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡
𝜉3
𝜉2+0

 (56) 

çözümüne sahiptir. Bu rezolvent, 𝑢𝑛(𝑥), 𝑛 = 0, 1, … özfonksiyonlar 

sistemi aracılığı ile  bir Fourier serisine açılabilir. Her  𝑛 = 0, 1, … 

için 

     𝑐𝑛(𝑓) = 𝛿 ∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡 +
𝜉2−0

𝜉1

1

𝛾
∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡
𝜉3
𝜉2+0

                (57) 
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sayısı,  𝑓(𝑥)  fonksiyonunun 𝑢𝑛(𝑥), 𝑛 = 0, 1, …  özfonksiyonlar 

sistemine göre genelleştirilmiş Fourier katsayısı olarak adlandırılır. 

İki kez kısmi integral alarak ve (39)  rezolventinin (2)-(5)  sınır-geçiş 

koşullarını sağladığını göz önünde bulundurarak, 

𝛿 ∫ (𝑢′′(𝑡, 𝜆) − 𝑞(𝑡)𝑢(𝑡, 𝜆))𝑢𝑛(𝑡)𝑑𝑡

𝜉2−0

𝜉1

 

          +
1

𝛾
∫ (𝑢′′(𝑡, 𝜆) − 𝑞(𝑡)𝑢(𝑡, 𝜆))𝑢𝑛(𝑡)𝑑𝑡
𝜉3
𝜉2+0

 

= 𝛿 ∫ 𝑢(𝑡, 𝜆)(𝑢𝑛
′′(𝑡) − 𝑞(𝑡)𝑢𝑛(𝑡))𝑑𝑡

𝜉2−0

𝜉1

 

          +
1

𝛾
∫ 𝑢(𝑡, 𝜆)(𝑢𝑛

′′(𝑡) − 𝑞(𝑡)𝑢𝑛(𝑡))𝑑𝑡
𝜉3
𝜉2+0

 

=  𝜆𝑛(𝛿 ∫ 𝑢(𝑡, 𝜆)𝑢𝑛(𝑡)𝑑𝑡
𝜉2−0

𝜉1
 +
1

𝛾
∫ 𝑢(𝑡, 𝜆)𝑢𝑛(𝑡)𝑑𝑡
𝜉3
𝜉2+0

) 

=  𝜆𝑛𝑐𝑛(𝑢(. , 𝜆)) 

yazılabilir.  𝑢(𝑥, 𝜆)  rezolvent fonksiyonu homojen olmayan  (38)  

denklemini sağladığından (56) eşitliğinden  

𝑐𝑛(𝑓(. )) =  𝛿 ∫ (𝑢′′(𝑡, 𝜆) − 𝑞(𝑡)𝑢(𝑡, 𝜆) − 𝜆𝑢(𝑡, 𝜆))𝑢𝑛(𝑡)𝑑𝑡
𝜉2−0

𝜉1
 

                    +
1

𝛾
∫ (𝑢′′(𝑡, 𝜆) − 𝑞(𝑡)𝑢(𝑡, 𝜆) − 𝜆𝑢(𝑡, 𝜆))𝑢𝑛(𝑡)𝑑𝑡
𝜉3
𝜉2+0

 

                  =  𝜆𝑛𝑐𝑛(𝑢(. , 𝜆)) − 𝜆𝑐𝑛(𝑢(. , 𝜆)) 

bulunur. Sonuç olarak,  

𝑐𝑛(𝑢(. , 𝜆)) =
𝑐𝑛(𝑓(. ))

 𝜆𝑛 − 𝜆
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elde edilir. Bu nedenle, 𝑢(𝑥, 𝜆)  rezolventi verilen 𝑓(𝑥) fonksiyonu 

ve ( 𝜆𝑛, 𝑢𝑛(x))  özdeğer-özfonksiyon çifti aracılığı ile  

𝑢𝑛(𝑥, 𝜆) =∑
𝑐𝑛(𝑓(. ))

 𝜆𝑛 − 𝜆

∞

𝑛=0

𝑢𝑛(𝑥) 

Fourier serisi şeklinde yazılabilir. İspat bitti.  

Teorem 9.  (Genelleştirilmiş Carleman eşitliği) 𝜆 sayısı (1)–(5) 

probleminin bir özdeğeri olmasın. Bu taktirde 

𝛿 ∫ 𝐺(𝑥, 𝑥;  𝜆)𝑑𝑥

𝜉2−0

𝜉1

+
1

𝛾
∫ 𝐺(𝑥, 𝑥;  𝜆) 𝑑𝑥

𝜉3

𝜉2+0

= ∫
1

𝜆 − 𝑡

∞

0

𝑑𝑁(𝑡) 

eşitliği ağlanır. 

İspat. (55)-(57) eşitliklerini kullanarak  

𝛿 ∫ 𝐺(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡

𝜉2−0

𝜉1

+
1

𝛾
∫ 𝐺(𝑥, 𝑡;  𝜆) 𝑓(𝑡)𝑑𝑡

𝜉3

𝜉2+0

 

= ∑
1

 𝜆𝑛 − 𝜆

∞

𝑛=0

(𝛿 ∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ 𝑓(𝑡)𝑢𝑛(𝑡)𝑑𝑡

𝜉3

𝜉2+0

)𝑢𝑛(𝑥) 

   = (𝛿 ∫ ∑
𝑢𝑛(𝑥)𝑢𝑛(𝑡)

 𝜆𝑛−𝜆
∞
𝑛=0 𝑑𝑡 +

𝜉2−0

𝜉1

1

𝛾
∫ ∑

𝑢𝑛(𝑥)𝑢𝑛(𝑡)

 𝜆𝑛−𝜆
∞
𝑛=0 𝑑𝑡

𝜉3
𝜉2+0

) 𝑓(𝑡) 

elde edilir. 𝑓(𝑥) keyfi olduğundan, son denklem Green 

fonksiyonunun 

𝐺(𝑥, 𝑡;  𝜆) = ∑
𝑢𝑛(𝑥)𝑢𝑛(𝑡)

 𝜆𝑛 − 𝜆

∞

𝑛=0
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şeklindeki açılımını verir. 𝜉 =  𝑥 alıp integral alınarak ve (44) 

denklemi kullanılarak 

𝛿 ∫ 𝐺(𝑥, 𝑥;  𝜆)𝑑𝑥
𝜉2−0

𝜉1
+

1

𝛾
∫ 𝐺(𝑥, 𝑥;  𝜆) 𝑑𝑥 = ∑

1

 𝜆𝑛−𝜆
∞
𝑛=0

𝜉3
𝜉2+0

      (58) 

bulunur. t den büyük olmayan  𝜆𝑛 özdeğer sayısı 𝑁(𝑡) ile gösterilsin. 

Yani 𝑁(𝑡)  = ∑ 1 𝜆𝑛≤𝑡  olsun. O halde (58) eşitliği Carleman 

formülünün 

𝛿 ∫ 𝐺(𝑥, 𝑥;  𝜆)𝑑𝑥

𝜉2−0

𝜉1

+
1

𝛾
∫ 𝐺(𝑥, 𝑥;  𝜆) 𝑑𝑥 = ∫

1

𝜆 − 𝑡
𝑑𝑁(𝑡)

∞

0

𝜉3

𝜉2+0

 

şeklindeki Carleman   genellemesini ifade eder. 
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ELİPTİK SINIF KISMİ DİFERANSİYEL 

DENKLEMLERİN SONLU FARK ŞEMASI VE 

ÇİFT LAPLACE METODU İLE ÇÖZÜMÜ 

Harun ÇİÇEK1 

Hasan GÖKBAŞ2 

Giriş 

Kısmi diferansiyel denklemler, gerek matematiksel modelleme 

gerekse fiziksel, biyomekanik ve jeofiziksel süreçlerin 

çözümlemesinde temel nitelikteki analitik araçlardan biri olarak 

kabul edilmektedir. Özellikle çok değişkenli sistem davranışlarının 

tanımlanmasında merkezi bir rol oynayan bu denklemler, 

termodinamik sistemlerin denge analizinden elastisite kuramındaki 

gerilme-şekil değiştirme ilişkilerine, akışkanlar mekaniğinde 

türbülans çözümlemelerinden biyolojik difüzyon modellerine kadar 

uzanan geniş bir uygulama spektrumuna sahiptir. Hilbert uzayında 

tanımlanan, öz-eşlenik ve pozitif tanımlı operatör yapısı içeren 

üçüncü mertebe diferansiyel denklemler için ele alınan yerel 

olmayan sınır değer problemleri, matematiksel fiziğin soyut 

 
1 Doktor Öğretim Üyesi, Bitlis Eren Üniversitesi, Matematik Bölümü, Orcid: 

0000-0003-3018-3015 
2 Doktor Öğretim Üyesi, Bitlis Eren Üniversitesi, Matematik Bölümü, Orcid: 

0000-0002-3323-8205 
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düzeydeki uygunluk koşullarının incelenmesi bağlamında önemli bir 

çözüm sınıfı sunmaktadır (Nayfeh, 1970). 

Bu bağlamda, kısmi diferansiyel denklemlerin (KDD) kuramsal ve 

hesaplamalı çözüm yöntemlerinin geliştirilmesi, uygulamalı 

matematik disiplininin tarihsel ve metodolojik çerçevede en temel 

amaçlarından biri olarak öne çıkmaktadır. KDD’lerin çözümünde 

kullanılan sayısal yöntem ailesi; sonlu eleman metodu, sınır 

elemanları yaklaşımı, sonlu hacim yöntemi ve spektral teknikler 

şeklinde kategorize edilmekte olup, söz konusu yöntemlerin her biri 

çözüm uzayının yapısal özelliklerine göre güçlü ve zayıf form 

ifadelerine ayrılmaktadır. Zayıf formülasyonlar, çözüm alanının 

değişmeli integral yapıları çerçevesinde cebirsel sistemlere 

indirgenmesini sağlamakta ve polinom tabanlı fonksiyonların 

süreklilik koşullarının gevşetilmesine imkân tanıyarak temsil 

gücünü artırmaktadır. Buna karşın güçlü form teknikleri, algoritmik 

sadelikleri ve doğrudan türevsel tanımlamalarıyla dikkat çekmekle 

birlikte, ağsız yaklaşımların kötü koşullanmış sistem matrisleri 

nedeniyle istikrarsızlık üretmesi, uygulama açısından belirgin 

sınırlılıklar doğurmaktadır. 

Fiziksel süreçlerin deterministik, stokastik veya yarı-deterministik 

doğalarının matematiksel temsilinde, kısmi diferansiyel 

denklemlerin ortaya çıkışı kaçınılmazdır. Bu çerçevede 

değişkenlerin ayrılması, süperpozisyon ilkesi, integral dönüşümleri 

ve yansıma yöntemleri gibi analitik araçlar kullanılarak elde edilen 

kapalı form çözümler, yalnızca sınırlı sayıdaki idealize edilmiş 

problem sınıfı için geçerliliğini korumaktadır. Çoğu gerçek yaşam 

modelinde tam çözüm erişilebilirliği mümkün olmadığından, 

pertürbasyon yöntemleri (Van Dyke, 1975; Kevorkian ve Cole, 

1981; Parlange, 1971), ardışık yaklaşım algoritmaları (Tsang, 1960) 

ve ortogonal fonksiyon tabanlarının kullanıldığı özel çözüm 

mekanizmaları (Assarı ve Dehghan, 2017) yaklaşık çözüm elde etme 

sürecinde vazgeçilmez hale gelmiştir. Logaritmik çekirdek temelli 
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sayısal yaklaşımların, ikinci tür iki boyutlu Fredholm integral 

denklemlerinin çözümüne uygulanması ise yerel ağsız yöntemlerin 

geçerlilik ve performans alanını ciddi şekilde genişletmiştir (Bayona 

ve ark., 2017). 

Özellikle son yıllarda, eliptik tipte kısmi diferansiyel denklemlerin 

yaklaşık çözümlerine yönelik araştırmalar giderek daha sofistike 

hâle gelmiştir. Radyal tabanlı fonksiyonlar aracılığıyla oluşturulan 

sonlu fark şemaları (RBF-FD), hem geometrik uyumluluk hem de 

yüksek dereceli doğruluk kabiliyeti nedeniyle eliptik denklemlerin 

nümerik çözümünde öne çıkan yöntemlerden biridir. Khoromskij ve 

çalışma arkadaşları (2017), düzensiz veya çok bağlantılı bölgelerde 

poliharmonik eğrilerin çok değişkenli polinom temsiliyle hibrit 

yaklaşımının, doğruluk, algoritmik sadelik ve hesaplama verimliliği 

bakımından dikkate değer bir sinerji sunduğunu göstermiştir. Çok 

parametreli eliptik denklemlerin rank-1 tensörlerin sonlu toplamları 

ile temsil edilmesine bağlı yakınsama hızı analizi ise Babuska ve 

diğerleri (2017) tarafından ayrıntılı biçimde incelenmiştir. Ayrıca 

stokastik katsayılar ve homojen Dirichlet sınır koşulları içeren 

doğrusal eliptik problemlerin iki farklı nümerik teknikle 

yorumlanması Gorial (2011) tarafından matematiksel doğruluk ve 

kararlılık teorisi bağlamında değerlendirilmiştir. 

Diferansiyel denklemlerin kavramsal sınıflandırmasında, 

bilinmeyen fonksiyonun türevlerine ilişkin bağımlılığın varlığı 

temel belirleyici ölçüttür. Tek bağımsız değişken içeren ifadeler adi 

diferansiyel denklem, iki veya daha fazla bağımsız değişken 

içerenler ise kısmi diferansiyel denklem olarak adlandırılmaktadır. 

Bu bağlamda diferansiyel denklemin genel çözümü, çözüm ailesinin 

tüm potansiyel elemanlarını içeren bir üst kümeyi temsil ederken, 

belirli başlangıç veya sınır koşullarını karşılayan özgül çözüm türleri 

özel çözüm nitelendirmesi altında sınıflandırılmaktadır.  

Eliptik kısmi diferansiyel denklemlerin analizi, fonksiyonel analiz 

ve operatör teorisinin temel ilkeleri ışığında değerlendirildiğinde, 
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çözümün varlığı, tekliği ve kararlılığına ilişkin sonuçların elde 

edilmesinde soyut matematiksel yapıların önemi daha da belirgin 

hale gelmektedir. Eliptik operatörlerin incelenmesinde, özellikle 

Hilbert ve Sobolev uzaylarının tanımladığı fonksiyonel çerçeve, 

çözümün düzenlilik özelliklerinin belirlenmesi bakımından 

vazgeçilmezdir. Bu bağlamda, eliptik operatörlerin zayıf çözüm 

kavramı üzerinden ele alınması, klasik anlamda 

diferansiyellenebilirlik koşullarını sağlayamayan fonksiyon 

sınıflarının da çözüm uzayına dahil edilmesine imkân tanımaktadır. 

Eliptik operatör ℒ’nin 𝐻0
1(𝛺) gibi Sobolev uzaylarında tanımlanan 

zayıf çözüm yaklaşımı, diferansiyel denklem problemine karşılık 

gelen varyasyonel formun, uygun iç çarpım yapıları altında 

tanımlanmasıyla oluşturulmaktadır. Bu çerçevede, eliptik tip KDD 

ℒ𝑢 = 𝑓 ∈ 𝛺 

𝑢 = 0  𝑜𝑛 𝛺 

koşulları altında, klasik türev kavramı yerine zayıf türevler 

kullanılarak ifade edilen problem, uygun test fonksiyonları 𝑣 ∈

𝐻0
1(𝛺) için 

𝑎(𝑢; 𝑣) =< 𝑓, 𝑣 > 

biçimindeki soyut forma indirgenmektedir. Burada  𝑎(. ; . ), eliptik 

operatöre karşılık gelen iki terimli bilinear fonksiyonel, 

 ⟨⋅,⋅⟩ ise dualite çarpımıdır. Eliptiklik koşulu bu bilinear formun 

coercive (zorlayıcı) ve sürekli olmasını gerektirmekte olup, söz 

konusu özellikler fonksiyon uzayında tanımlanan iç çarpım 

yapılarına bağlıdır. Bu nedenle eliptik operatör kuramı, varlık-teklik 

çözüm koşullarını garanti altına alan Lax–Milgram teoremi ile güçlü 

bir yapısal ilişki içerisindedir. 

Lax–Milgram teoremi, soyut Hilbert uzayı bağlamında tanımlanan 

bilinear formun coercivity ve boundedness koşullarını sağlaması 
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halinde, zayıf çözümün varlığını ve tekliğini güvence altına alır. 

Böylece eliptik diferansiyel denklemler, klasik çözüm çerçevesinde 

analiz edilemeyen durumlarda dahi, variasyonel yöntemler 

yardımıyla tanımlanabilir bir çözüm sınıfı ortaya koymaktadır. Daha 

açık bir anlatımla, eliptik operatörün sahip olduğu pozitif tanımlılık 

ve öz-adjointlik (self-adjointness) koşulları, çözümün yalnızca var 

olmasını değil aynı zamanda norm eşdeğerliği altında kararlı 

olmasını da temin etmektedir. 

Operatör kuramı perspektifinden bakıldığında, eliptik diferansiyel 

operatörün spektral karakteristikleri, çözümün davranış biçimini, 

düzgünlük derecesini ve sınır koşullarına bağlı olarak ortaya 

çıkabilecek öz-değer yapısını belirleyici rol üstlenmektedir. 

Fredholm alternatifi, kompakt operatör yaklaşımı ve Riesz temsili 

teoremi bu bağlamda çözüm uzayının tamamlayıcılığını sağlayan 

soyut matematiksel bağlantıları oluşturmaktadır. Özellikle Fredholm 

operatör yapısı, çözümün varlığının özvektör uzayları üzerinden 

incelenmesine olanak sağlamakta ve aynı zamanda sınır değer 

problemlerinin parametrik hassasiyet analizinde kritik bir rol 

oynamaktadır. 

Sobolev gömülmeleri ve düzenlilik teoremleri, eliptik tip denklemin 

çözümünün yalnızca varlığını değil, aynı zamanda 𝐻2(𝛺) gibi daha 

yüksek mertebe Sobolev uzaylarına ait olabileceğini de 

göstermektedir. Böylece eliptik operatörün düzenlilik parametreleri, 

çözümün diferansiyellenebilirlik derecesini doğrudan belirlemekte; 

sınır koşullarının türüne bağlı olarak çözümün global veya lokal 

anlamda ne ölçüde düzgünleşeceğini ortaya koymaktadır. 

Bu kuramsal altyapı, eliptik denklemlerin sayısal analizine geçişte 

de temel nitelik arz eder. Zayıf formun varlığı sayesinde elde edilen 

varyasyonel çerçeve, sonlu eleman yöntemleri, spectral teknikler, 

RBF tabanlı ayrıklaştırma stratejileri ve diferansiyel operatör tabanlı 

meshfree yaklaşımların uygulanabilirliğini garanti altına almaktadır. 

Nitekim nümerik kararlılık, yakınsama hızı, hata normları ve çözüm 
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doğruluk analizleri, eliptik operatörün fonksiyonel özellikleriyle 

doğrudan ilişkili olup, çözüm uzayının seçimi ile ayrıklaştırma 

yönteminin yapısal uyumluluğu bu bağlamda kritik belirleyicilerdir. 

Temel Kavramlar 

Tanım 𝑓(𝑡), [0,∞) aralığında tanımlı bir fonksiyon olsun. 𝑓 

fonksiyonunun Laplace dönüşümü 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑡
∞

0
𝑓(𝑡)𝑑𝑡      

 integrali ile tanımlanan F fonksiyonu olup; 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) 

ile gösterilir. İntegralin mevcut olduğu bütün s değerleri 

F fonksiyonunun tanım kümesini oluşturur”  (Podlubny, 1999). 

Tanım (Türevin Laplace Dönüşümü): “Bir fonksiyonun 𝑛. 

mertebeden türevinin Laplace dönüşümü:  

 

 𝑓(𝑡),  𝑓′(𝑡), … 𝑓(𝑛−1)(𝑡) fonksiyonları [0,∞) aralığında sürekli, 

𝑓𝑛(𝑡),  [0,∞) aralığında parçalı sürekli ve bu fonksiyonların tümü 

α üstel mertebeden olsunlar. ”  Bu durumda 𝑠 > 𝛼 için 

ℒ{𝑓𝑛(𝑡)} = 𝑠𝑛 ℒ {𝑓(𝑡)} − 𝑠𝑛−1 𝑓(0) − 𝑠𝑛−2 𝑓′(0) − ⋯ 

                           − 𝑓(𝑛−1)(0)                

olur.  Özel olarak 𝑛 = 2 olması durumunda  
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ℒ{𝑓′′(𝑡)} = 𝑠2 ℒ {𝑓(𝑡)} − 𝑠 𝑓(0)   − 𝑓′(0)                                                             

ve 𝑛 = 3  için ise 

ℒ{𝑓′′′(𝑡)} = 𝑠3 ℒ {𝑓(𝑡)} − 𝑠2 ℒ {𝑓(0)} − 𝑠 𝑓′(0)   − 𝑓′′(0)                                   

bağıntınları kolayca elde edilebilir” (Podlubny, 1999). 

Tanım “𝑓(𝑡), [0,∞) aralığında sürekli ve  ℒ {𝑓(𝑡)} = 𝐹(𝑠) olsun. 

𝑓(𝑡) fonksiyonuna 𝐹(𝑠) nin ters Laplace dönüşümü denir. Ters 

Laplace dönüşümü 

 ℒ−1{𝐹(𝑠)} = 𝑓(𝑡)                                                                                                   

 ile gösterilir olarak tanımlanır” (Podlubny, 1999).  

Tanım  “ 𝑥𝑦 düzleminin pozitif çeyreğinde, iki değişkenli bir 𝑢(𝑥, 𝑡) 

fonksiyonu tanımlansın. 𝑢(𝑥, 𝑡) fonksiyonu için çift  Laplace 

dönüşümü  

ℒ 𝑥ℒ 𝑡{𝑢(𝑥, 𝑡)} = 𝑢̅(𝑠, 𝑝) = ∫ ∫ 𝑒−𝑝𝑥−𝑠𝑡𝑢(𝑥, 𝑡)𝑑𝑥𝑑𝑡
∞

0

∞

0
                                         

olarak tanımlanır (Dhunde ve Waghmare,2016).  Burada  𝑝 ve 𝑠  

kompleks sayılardır. Bu tanım  

ℒ 𝑥ℒ 𝑡{𝑈(𝑥)𝑔(𝑡)} = 𝑢̅(𝑝)𝑔̅(𝑠) = ℒ 𝑥{(𝑢(𝑥)}ℒ 𝑡{𝑔(𝑡)}                                            

formunda da yazılabilir”. 

Tanım “Kompleks çift integral formülü ters çift Laplace 

dönüşümünü tanımlamak için  

ℒ 𝑥
−1ℒ 𝑡

−1{𝑢̅(𝑠, 𝑝)} = 𝑢(𝑥, 𝑡) 
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formülü kullanılır (Debnath,2016).  Bu formül de 

ℒ 𝑥
−1ℒ 𝑡

−1{𝑢(𝑠, 𝑝)} = 𝑢(𝑥, 𝑡) 

                                     =
1

2𝑖𝜋
[∫ 𝑒𝑝𝑥𝑑𝑝
𝑐+𝑖∞

𝑐−𝑖∞
∫ 𝑒𝑠𝑡𝑢(𝑠,𝑝) 𝑑𝑠
𝑑+𝑖∞

𝑑−𝑖∞
]                      

şeklinde tanımlanır. Burada 𝑐 ve 𝑑 bilinen reel sabitler ve 𝑢̅(𝑠, 𝑝), 

𝑅𝑒(𝑝) ≥ 𝑐 ile 𝑅𝑒(𝑠) ≥ 𝑑 eşitsizlikleri ile gösterilen bölgede  her bir 

𝑝 ve 𝑠 için analitik fonksiyonlar olmalıdır. 

(Modanli ve Bajjah, 2021) de tanımlanan çift Laplace dönüşüm 

formülü herhangi tamsayı mertebeden kısmi türevlerin dönüşümü 

için  

ℒ 𝑥ℒ 𝑡 {
𝜕𝑛𝑢(𝑥, 𝑡)

𝜕𝑥𝑛
} = 𝑝𝑛𝑢̅(𝑠, 𝑝) −∑ 𝑝𝑛−1−𝑖ℒ 𝑡 {

𝜕𝑖

𝜕𝑥𝑖
}

𝑛−1

𝑖=0
 

ℒ 𝑥ℒ 𝑡 {
𝜕𝑘𝑢(𝑥, 𝑡)

𝜕𝑡𝑘
} = 𝑠𝑘𝑢̅(𝑠, 𝑝) −∑ 𝑠𝑛−1−𝑖ℒ 𝑥 {

𝜕𝑗

𝜕𝑥𝑗
}

𝑘−1

𝑗=0
 

ℒ 𝑥ℒ 𝑡 {
𝜕𝑘+𝑛𝑢(𝑥, 𝑡)

𝜕𝑥𝑛𝜕𝑡𝑘
} = 

𝑝𝑛𝑠𝑘 [𝑢̅(𝑠, 𝑝) −∑ 𝑝𝑛−1−𝑖ℒ 𝑥 {
𝜕𝑖𝑢(0, 𝑡)

𝜕𝑥𝑖
} − 𝑢̅(𝑠, 𝑝)

𝑛−1

𝑖=0

−∑ 𝑠𝑛−1−𝑗ℒ 𝑥 {
𝜕𝑗𝑢(𝑥, 0)

𝜕𝑥𝑗
}

𝑘−1

𝑗=0

+∑ ∑ 𝑝−1−𝑖𝑠−1−𝑗ℒ 𝑥 {
𝜕𝑖+𝑗𝑢(0,0)

𝜕𝑥𝑖+𝑗
}

𝑘−1

𝑗=0

𝑛−1

𝑖=0
] 

formülleri ile kullanılır”. 
--104--



Bu çalışmada, aşağıdaki başlangıç-sınır değer koşullarına 

bağlı eliptik kısmi diferansiyel denkleminin yaklaşık çözümünü 

 

{
  
 

  
 
𝛼𝑢𝑡𝑡(𝑡, 𝑥) + 𝛽𝑢𝑡𝑥(𝑡, 𝑥) + 𝜆𝑢𝑥𝑥(𝑡, 𝑥) + 𝑣𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),

 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇, 𝛼, 𝛽, 𝜆, 𝑠 > 0                                       

 
𝑢(0, 𝑥) = 𝑔1(𝑥),   𝑢𝑡(0, 𝑥) = 𝑔2(𝑥), 0 ≤ 𝑥 ≤ 𝑙,                  

 
𝑢(𝑡, 0) = 𝑢(𝑡, 𝑙) = 0,   0 ≤ 𝑡 ≤ 𝑇                                            

 

(1) 

inceleyeceğiz. Burada, 𝑔1(𝑥), 𝑔2(𝑥) ve 𝑓(𝑡, 𝑥) bilinen fonksiyonlar 

𝑢(𝑡, 𝑥) çözümü bilinmeyen belirli bir fonksiyondur. (1) denkleminin 

eliptik bir kısmi diferansiyel denklem olması için 

𝛽2 − 4𝛼𝜆 < 0 

koşulu sağlanmalıdır. 

 

Sonlu Fark Şeması Oluşturulması  

 

(1) probleminin yaklaşık çözümünü hesaplamak için grid (ızgara) 

aralığı  

[0, 𝑇]𝜏={ 𝑡𝑘 =𝑘𝜏 , 0 ≤ 𝑘 ≤ 𝑁,𝑁𝜏 = 𝑇}, 

[0, 𝑙]ℎ={ 𝑥𝑛 =𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀, 𝑀ℎ = 𝐿 }, 

𝑊𝜏,ℎ =[0, 𝑇]𝜏 × [0, 𝑙]ℎ={(𝑡𝑘 , 𝑥𝑛 ) ,𝑡𝑘 ∈ [0, 𝑇]𝜏 , 𝑥𝑛 ∈ [0, 𝑙]ℎ} 
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şeklindedir. Bu aralıklar 

(𝑡𝑘, 𝑥𝑛), (𝑡𝑘+−1 , 𝑥𝑛 ) , ( 𝑡𝑘 , 𝑥𝑛+−1 ), ( 𝑡𝑘+−1 , 𝑥𝑛+−1 ) ∈ 𝑊𝜏,ℎ  

dır. 

𝑡 = 𝑡𝑘 , 𝑥 = 𝑥𝑛 alınır (2.1) denkleminde yerine yazılırsa 

𝛼𝑢𝑡𝑡(𝑡𝑘 , 𝑥𝑛 ) + 𝛽𝑢𝑡𝑥(𝑡𝑘 , 𝑥𝑛 ) + 𝜆𝑢𝑥𝑥(𝑡𝑘 , 𝑥𝑛 ) + 𝑣𝑢(𝑡𝑘 , 𝑥𝑛 )

= 𝑓(𝑡𝑘 , 𝑥𝑛 ) 

bulunur. Taylor açılımı kullanılırsa, 

𝑢𝑡𝑡(𝑡𝑘 , 𝑥𝑛 ) =
𝑢(𝑡𝑘+1 ,𝑥𝑛 ) −2𝑢(𝑡𝑘 ,𝑥𝑛 )+𝑢(𝑡𝑘−1,𝑥𝑛 )  

𝜏2
+ 𝑂(𝜏2),                   (2) 

𝑢𝑡𝑥(𝑡, 𝑥) 

=
𝑢(𝑡𝑘, 𝑥𝑛 ) − 𝑢(𝑡𝑘−1, 𝑥𝑛 ) − 𝑢(𝑡𝑘, 𝑥𝑛−1 ) + 𝑢(𝑡𝑘−1, 𝑥𝑛−1 ) 

𝜏ℎ
 

         +𝑂(𝜏2 + ℎ2),                                                                                    (3) 

𝑢𝑥𝑥(𝑡𝑘 , 𝑥𝑛 ) =
𝑢(𝑡𝑘,𝑥𝑛+1 )−2𝑢(𝑡𝑘,𝑥𝑛 )+𝑢(𝑡𝑘,𝑥𝑛−1 )

ℎ2
+ 𝑂(ℎ2)                       (4) 

 

(2), (3) ve (4) formüllerinde küçük terimler ihmal edilirse, 

 

𝑢𝑡𝑡(𝑡𝑘 , 𝑥𝑛 ) ≅
𝑢𝑛
𝑘+1 −2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1)  

𝜏2
,                                                                               

(5) 

𝑢𝑡𝑥(𝑡, 𝑥) ≅
𝑢𝑛+1
𝑘+1  −𝑢𝑛+1

𝑘−1−𝑢𝑛−1
𝑘+1+𝑢𝑛−1

𝑘−1   

𝜏ℎ
,                                                                       

(6) 

𝑢𝑥𝑥(𝑡𝑘 , 𝑥𝑛 ) ≅
𝑢𝑛+1
𝑘  −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘   

ℎ2
,                                                                               

(7) 
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yazılabilir.  (5), (6) ve (7) formülleri kullanılır, küçük terimler ihmal 

edilir (1) denkleminde yerine yazılırsa 

{
 
 
 

 
 
 𝛼

𝑢𝑛
𝑘+1 −2𝑢𝑛

𝑘+𝑢𝑛
𝑘−1)  

𝜏2
+ 𝛽

𝑢𝑛+1
𝑘+1  −𝑢𝑛+1

𝑘−1−𝑢𝑛−1
𝑘+1+𝑢𝑛−1

𝑘−1   

𝜏ℎ
               

𝜆
𝑢𝑛+1
𝑘  −2𝑢𝑛

𝑘+𝑢𝑛−1
𝑘   

ℎ2
+  𝑣

𝑢𝑛
𝑘+1+𝑢𝑛

𝑘−1

2
 =

𝑓𝑛
𝑘+1+𝑓𝑛

𝑘−1

2
,              

1 < 𝑘 < 𝑁 − 1, 1 < 𝑛 < 𝑀 − 1                                    ,

𝑢𝑛
0 = 𝑔1(𝑥𝑛 ),

𝑢𝑛
1  −𝑢𝑛

0

𝜏
= 𝑔2(𝑥𝑛 ), 0 ≤ 𝑛 ≤ 𝑀,            

𝑢0
𝑘 = 𝑢𝑀

𝑘 = 0,   0 ≤ 𝑘 ≤ 𝑁                                                

                      

(8) 

elde edilir. Bu fark şeması 

+(
−𝛽

ℎ2
)𝑢𝑛−1

𝑘+1 + (
𝛼

𝜏2
+ 
𝑣

2
)𝑢𝑛

𝑘+1 + (
𝛽

𝜏ℎ
) 𝑢𝑛+1

𝑘+1 + (
𝜆

ℎ2
) 𝑢𝑛−1

𝑘

+ (
−2

𝜏2
−
2𝜆

ℎ2
) 𝑢𝑛

𝑘 + (
𝜆

ℎ2
) 𝑢𝑛+1

𝑘 + (
𝛽

𝜏ℎ
) 𝑢𝑛−1

𝑘−1

+ (
𝛼

𝜏2
+
𝑣

2
)𝑢𝑛

𝑘−1 + (−
𝛽

𝜏ℎ
) 𝑢𝑛+1

𝑘−1 =
𝑓𝑛
𝑘+1 + 𝑓𝑛

𝑘−1

2
 

olarak da yazılabilir. 

Çift Laplace Metodu ile Çözüm 

{
  
 

  
 
𝛼𝑢𝑡𝑡(𝑡, 𝑥) + 𝛽𝑢𝑡𝑥(𝑡, 𝑥) + 𝜆𝑢𝑥𝑥(𝑡, 𝑥) + 𝑣𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥),

 
0 < 𝑥 < 𝑙, 0 < 𝑡 < 𝑇, 𝛼, 𝛽, 𝜆, 𝑣 > 0                                      

 
𝑢(0, 𝑥) = 𝑔1(𝑥),   𝑢𝑡(0, 𝑥) = 𝑔2(𝑥), 0 ≤ 𝑥 ≤ 𝑙,                 

 
𝑢(𝑡, 0) = 𝑢(𝑡, 𝑙) = 0,   0 ≤ 𝑡 ≤ 𝑇                                             

        (9) 

(9) probleminin çözümü için çift Laplace metodunu oluşturalım. 

ℒ 𝑥ℒ 𝑡{𝑢(𝑡, 𝑥)} = 𝑈(𝑠, 𝑝) 

olsun. (9) denkleminin her tarafının ℒ 𝑥ℒ 𝑡 Laplace dönüşümü 

alınırsa, 
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𝛼𝑠2𝑈(𝑠, 𝑝) − 𝛼𝑠𝑈(0, 𝑝) − 𝛼𝑈𝑡(0, 𝑝) = ℒ 𝑥ℒ 𝑡{−𝛽𝑢𝑡𝑥(𝑡, 𝑥) −

𝜆𝑢𝑥𝑥(𝑡, 𝑥) − 𝑣𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥)}                                                                        

(10) 

formülü elde edilir. (10) formülü düzenlenip yeniden yazılırsa 

𝑈(𝑠, 𝑝) =
1

𝑠
𝑈(0, 𝑝) +

1

𝑠2
𝑈𝑡(0, 𝑝) +

𝐹(𝑠,𝑝)

𝑠2
+

ℒ 𝑥ℒ 𝑡
1

𝛼𝑠2
{−𝛽𝑢𝑡𝑥(𝑡, 𝑥) − 𝜆𝑢𝑥𝑥(𝑡, 𝑥) − 𝑣𝑢(𝑡, 𝑥)}                                

(11) 

bulunur buradan da  

ℒ 𝑥ℒ 𝑡{𝑓(𝑡, 𝑥)} = 𝐹(𝑠, 𝑝) 

dır. (11) denkleminin her tarafının ℒ𝑥
−1ℒ𝑡

−1 alınır, (9) problemindeki 

başlangıç değerleri de kullanılırsa  

𝑢(𝑡, 𝑥) = ℒ𝑥
−1ℒ𝑡

−1{𝑈(𝑠, 𝑝)}= 𝛼𝑔1(𝑥) + 𝛼𝑡𝑔2(𝑥) + ℒ𝑥
−1ℒ𝑡

−1 {
𝐹(𝑠,𝑝)

𝑠2
}  

+ℒ𝑥
−1ℒ𝑡

−1 {
1

𝛼𝑠2
ℒ 𝑥ℒ 𝑡{−𝛽𝑢𝑡𝑥 (𝑡, 𝑥) − 𝜆𝑢𝑥𝑥(𝑡, 𝑥) − 𝑣𝑢(𝑡, 𝑥)       (12) 

yazılır. (12) denkleminin çözümü için  

𝑢(𝑡, 𝑥) = ∑ 𝑢𝑛(𝑡, 𝑥)
𝑎
𝑝=0                                                                       

(13) 

sonsuz serisi kullanılırsa, (13) denklemi 

∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 = ℒ𝑥

−1ℒ𝑡
−1 {

1

𝛼𝑠2
ℒ 𝑥ℒ 𝑡(−𝛽

𝜕2

𝜕𝑡𝜕𝑥
∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 −

𝜆
𝜕2

𝜕𝑥2
∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 − 𝑣∑ 𝑈𝑛(𝑡, 𝑥)

∞
𝑛=0 𝑢𝑛(𝑡, 𝑥))} + 𝛼𝑔1𝑥 +

𝛼𝑡𝑔2𝑥 + ℒ𝑥
−1ℒ𝑡

−1 {
𝐹(𝑠,𝑝)

𝑠2
}                                                                        (14) 

olarak yazılabilir. Bu durumda (9) denkleminin çözümü  

𝑢0(𝑡, 𝑥) = 𝛼𝑔1𝑥 + 𝛼𝑔2(𝑥)𝑡 + ℒ𝑥
−1ℒ𝑡

−1 {
𝐹(𝑠, 𝑝)

𝑠2
} 

ve benzer şekilde 
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𝑢𝑛+1(𝑡, 𝑥) = ℒ𝑥
−1ℒ𝑡

−1 {
1

𝛼𝑠2
(ℒ 𝑥ℒ 𝑡(−𝛽

𝜕2

𝜕𝑡𝜕𝑥
∑ 𝑢𝑛(𝑡, 𝑥)
∞
𝑛=0 −

𝜆
𝜕2

𝜕𝑥2
∑ 𝑢𝑛(𝑡, 𝑥)−𝑣 ∑ 𝑢𝑛(𝑡, 𝑥)

∞
𝑛=0 )}

∞

𝑛=0
                                           (15)        

genel formülü bulunur. 
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hastalıklara eşlik eden ve her yıl artış gösteren bir hastalık olması 

nedeniyle, bir halk sağlığı sorunu haline gelen bir hastalıktır (Borghi 

& ark., 2020: 1-11; Zhang & ark., 2022 3525). 

Bu nedenle erken teşhis ve etkin yönetim, hastalığın 

ilerlemesini yavaşlatmak ve komplikasyonları azaltmak için kritik 

öneme sahiptir. Başarılı erken teşhis metodolojileri ile bir yandan 

bireysel düzeyde sağlıklı fiziksel yapıları korunarak, diğer yandan 

da tedavisi oldukça pahalı olan hastalıkların oranı ve bireysel sağlık 

yapıları üzerindeki kalıcı etkilerinin minimize edilerek ülke sağlık 

sistemlerinin yüksek maliyetlerden korunmasına katkı sağlanmış 

olacaktır. 

Cao ve Hu, Ulusal Sağlık ve Beslenme İnceleme Araştırması 

(NHANES) veri setini kullanarak potansiyel gut riski için 

bireyselleştirilmiş müdahaleler geliştirmek amacıyla diyet lifi ve 

trigliserit-glikoz indeksini birbirine bağlamak üzere çeşitli makine 

öğrenimi modelleri geliştirmişlerdir (Cao & Hu, 2024). 

Brikman ve arkadaşları, İsrail'de ülke çapında yapılan 

retrospektif bir kohort çalışmasında, Ocak 2007 ile Aralık 2022 

arasında en az iki serum ürat ölçümü 6,8 mg/dl'yi aşan 18 yaş ve 

üzeri yetişkinleri belirlemek için 473.124 kişiden oluşan Clalit 

Sağlık Sigortası veri tabanı kullanarak, gut hastalığı geliştirme riski 

taşıyan hiperürisemik katılımcıları belirlemek için makine öğrenimi 

tabanlı bir tahmin modeli geliştirmişlerdir (Brikman & ark., 2024). 

Hou, Xiao ve Zhu, çeşitli lojistik regresyon algoritmaları ve 

rastgele ormanın tahmin performanslarını 123.968 örnek içeren bir 

tıbbi muayene veri setini analiz ederek gut hastalığının tespitini 

yapmışlardır (Hou, Xiao & Zhu, 2020: 468-503). 

Ichikawa ve arkadaşları, gradient-boosting karar ağacı, 

rastgele orman ve lojistik regresyon yaklaşımlarını eğitim veri 

kümesini kullanarak eğitmiş ve ardından test veri kümesinde 

hiperürisemiyi tahmin etmek için kullanmışlardır (Ichikawa & ark., 

2016: 20-24). 
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Kumar ve arkadaşları, tükürüğün hpcl yöntemiyle analiz 

edilmesi ürik asit konsantrasyonunun belirlenmesine yardımcı 

olduğu için hpcl kromatografisinin çıktısı grafik olduğundan, grafik 

görüntüsünü makine öğrenimi algoritması kullanarak mevcut veri 

kümeleriyle karşılaştırmışlar ve kişinin gut hastası olup olmadığını 

tayin etmişlerdir (Kumar & ark., 2022: 11-15).  

Bu çalışmada, gut hastalığının sınıflandırılması için lojistik 

regresyon (LR) ve k en yakın komşu (KNN) algoritmalarının 

performansı karşılaştırılmıştır. Her iki algoritmanın performans 

metrikleri detaylı olarak analiz edilmiş ve klinik uygulamalardaki 

etkinlikleri karşılaştırılmıştır. Bulgular, her iki algoritmanın da klinik 

karar desteği için kullanılabilme potansiyeli olduğunu 

göstermektedir. Bu araştırma, yapay zeka teknolojilerinin sağlık 

alanındaki uygulamalarını genişletme potansiyeline dikkat çekmek 

ve gut gibi yaygın sağlık sorunlarının yönetiminde yapay zekanın 

rolünü vurgulamak amacıyla sunulmuştur. 

Bir bilimsel çalışmanın sonuçlarının güvenilirliğini 

belirleyen iki temel unsur vardır: verilerin güvenilirliği ve geneli 

temsil etme potansiyeli ile verilerin geçerliliği. Bu iki unsur temel 

alınarak, İzmir Bakırçay Üniversitesi Çiğli Eğitim ve Araştırma 

Hastanesi Bilgi Yönetim Sisteminde kayıtlı 612 hastanın verileri 

kullanılmıştır. Veri kümeleri, cinsiyet, yaş ve ürik asit seviyesi gibi 

tıbbi öngörücü değişkenlerden oluşmaktadır. Araştırmada, veri seti 

üzerinde gerçekleştirilen analizlerde her iki modelde belirtilen 

özellikler kullanılarak eğitilmiştir. Modellerin performansı 

doğruluk, duyarlılık, özgüllük ve F1 skoru gibi metriklerle 

değerlendirilmiştir. 

 

Materyal ve Metod 

Bu kısımda, kullanılan veri seti, istatistikler ve makine 

öğrenmesi yöntemlerine yer verilecektir. 
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Veriler ve Yöntemler 

Bu çalışmada, İzmir Bakırçay Üniversitesi Çiğli Eğitim ve 

Araştırma Hastanesi Bilgi Yönetim Sisteminde kayıtlı hastaların yaş, 

cinsiyet ve ürik asit seviyelerini içeren veri seti kullanılmıştır. 612 

verinin %70'i eğitim seti için, %30'u test seti için kullanılmıştır. 

Makine öğrenmesi algoritmalarından ilk olarak k en yakın komşu 

algoritması (KNN) sonrasında da lojistik regresyon (LR) yöntemi 

kullanılmıştır. 

Veri Tanımı ve İstatistikler 

Bu kısımda, kullanılan veri setine ait tanımlayıcı istatistikler 

Tablo 1 ’de verilmiştir. Aşağıda Tablo 1’de yer alan tanımlayıcı 

istatistikler, gut hastalığının cinsiyete bağlı dağılımında belirgin 

farklılıklar olduğunu göstermektedir. Analize dahil edilen 612 birey 

için kadınların yaş ortalaması 36,40, ortalama ürik asit düzeyi 3,99 

ve gut hastalığı ortalaması 0,044 olarak hesaplanırken; erkeklerde bu 

değerler sırasıyla 43,88, 5,93 ve 0,1593’tür. Bu bulgular, gut 

hastalığının erkeklerde kadınlara kıyasla yaklaşık dört kat daha 

yüksek oranda görüldüğünü ortaya koymaktadır. Ayrıca, gut 

değişkenine ait standart sapma değerlerinin erkeklerde (0,3668) 

kadınlara (0,2055) göre daha yüksek olması, erkeklerde hastalığın 

daha geniş bir dağılım sergilediğine işaret etmektedir. Elde edilen 

sonuçlar, literatürde erkek cinsiyetin gut hastalığı için önemli bir risk 

faktörü olduğunu belirten çalışmalarla uyumludur. 

Ayrıca Tablo 1’den çarpıklık ve basıklık değerlerinin de gut 

değişkeninin dağılım özellikleri açısından önemli olduğu 

görülmektedir. Kadınlarda gut için çarpıklık 4.4617, basıklık ise 

17.9998 olarak hesaplanmıştır. Bu oldukça yüksek değerler, 

dağılımın aşırı derecede sağa çarpık olduğunu ve yoğun uç değerler 

barındırdığını ortaya koymaktadır. 
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Tablo 1 Tanımlayıcı istatistikler tablosu 

  Kadın   Erkek  

Sayı 386 

Hasta 

Sayısı 17 Sayı 226 

Hasta 

Sayısı 36 

       Öznitelik 

 

Ölçüt Yaş Ürik asit  Gut 

     Öznitelik 

 

Ölçüt Yaş 

Ürik 

asit  Gut 

Ortalama 36,4006 3,9932 0,0440 Ortalama 43,8750 5,9255 0,1593 

Standart Hata 0,7831 0,0735 0,0105 

Standart 

Hata 1,0105 0,1049 0,0244 

Ortanca 31,8110 4,0000 0,0000 Ortanca 45,4154 5,7000 0,0000 

Kip (Mod) 60,9102 3,6000 0,0000 Kip(Mod) 56,9759 5,5000 0,0000 

Standart 

Sapma 15,3862 1,4445 0,2055 

Standart 

Sapma 15,1905 1,5771 0,3668 

Varyans 236,736 2,0866 0,0422 Varyans 230,750 2,4871 0,1345 

Basıklık -1,3903 3,1612 17,9998 Basıklık -1,2415 1,7356 1,5273 

Çarpıklık 0,3952 -0,1053 4,4617 Çarpıklık -0,3172 0,5890 1,8745 

Aralık 46,9213 10,9444 1,0000 Aralık 46,7979 11,5970 1,0000 

En Büyük 64,9869 11,1000 1,0000 En Büyük 64,8965 12,2000 1,0000 

En Küçük 18,0656 0,1556 0,0000 En Küçük 18,0985 0,6030 0,0000 

 

Bu durum, kadınlarda gut hastalığına sahip birey sayısı 

oldukça düşük olmasına rağmen, nadiren de olsa yüksek değerlere 

sahip vakaların görüldüğünü göstermektedir. Erkeklerde ise 

çarpıklık değeri 1.8745, basıklık değeri 1.5273 olup, bu değerler 

kadınlara göre daha düşük seviyelerdedir. Bu, erkeklerde dağılımın 
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görece daha dengeli olduğunu, ancak yine de sağa çarpıklık 

eğiliminin sürdüğünü göstermektedir. Standart sapma ve çarpıklık 

değerleri, erkeklerde dağılımın daha geniş bir varyasyona sahip 

olduğunu işaret etmektedir. Bu nedenle, erkeklerde gut hastalığının 

hem daha yaygın hem de daha çeşitli klinik düzeylerde gözlendiği 

söylenebilir. 

 

Şekil 1 Ürik asit histogram grafiği 

Şekil 1’de ürik asit histogram grafiği görülmektedir. Bu 

grafikten ürik asit seviyesinin genellikle ortalama etrafında 

yoğunlaştığı ve sağa çarpık bir dağılım gösterdiği tespit edilmiştir. 

Makine Öğrenmesi Yöntemleri 

Enerji ve kamu hizmetlerinden, seyahat ve otelciliğe, 

üretimden lojistiğe kadar tüm sektörlerde kullanılan makine 

öğrenmesi algoritmaları; denetimli öğrenme, denetimsiz öğrenme, 

yarı denetimli öğrenme, kendi kendini denetleyen öğrenme ve 

pekiştirmeli öğrenme olmak üzere beş kategoriye ayrılır (Chrystal, 

2025). Şekil 2’ de makine öğrenmesi algoritmalarının kategorileri 

sınıflandırılmıştır. 

0

0,05

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5 6 7 8 9 10 11 12 13

Ö
rn

ek
le

m
 i

çi
n
 O

la
sı

lı
k
 

d
ağ

ıl
ım

ı

Ürik Asit Miktarı (mg/dL)

--118--



 

Şekil 2 Makine öğrenmesi algoritmalarının kategorileri (Chrystal, 2025). 

 

 

Denetimli makine öğrenmesi algoritmalarından, 

sınıflandırma algoritmaları, girdi verilerinin parçalarını 

etiketleyerek kategorik çıktı değişkenlerini (örneğin, "hasta" veya 

"hasta değil") tahmin eder. Sınıflandırma algoritmaları arasında 

lojistik regresyon (LR), k en yakın komşular (KNN) ve destek vektör 

makineleri (SVM) bulunur (Chrystal, 2025). 

 

Bu bölümde denetimli makine öğrenme yöntemlerinden, 

sınıflandırma algoritması olan lojistik regresyon (LR) ve k en yakın 

komşuluk (KNN) algoritmaları ele alınacaktır.  

Sınıflandırma yöntemleri genel olarak parametrik ve 

parametrik olmayan problemler olarak ikiye ayrılabilir. Aslında, 

parametrik yöntemler normal dağılımlı popülasyon varsayımlarına 

dayanır ve problemi çözmek için dağılımların parametrelerini 

tahmin eder. Ancak  Berry ve Linoff ’a göre parametrik olmayan 

yöntemler, ilgili belirli dağılımlar hakkında hiçbir varsayımda 

bulunmaz ve bu nedenle dağılımdan bağımsızdır. KNN 

sınıflandırıcı, parametrik olmayan istatistiksel yaklaşımın bir örneği 

olarak hizmet eder (Berry & Linoff, 1997). 

Lojistik Regresyon (LR): Sınıflandırma modelleri, belirli 

bir girdi verisinin önceden tanımlanmış bir sınıfa ait olup olmadığını 

belirleyen algoritmalardır. İkili sınıflandırmada, çıktı iki sınıftan 

birine ait iken çok değişkenli sınıflandırmada birden fazla sınıftan 

birine aittir. Lojistik regresyon analizi, ele alınan veri setindeki 

gözlemlerin gruplara atanmasında kullanılan yöntemlerden biridir. 

Sınıf sayısı bilinen lojistik regresyon analizinde var olan veriler 
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kullanılarak sınıflandırma modeli elde edilir ve elde edilen bu model 

sayesinde veriye eklenecek yeni gözlemlerin sınıflara atanması 

sağlanabilmektedir (Hosmer & ark., 2010; Kuyucu, 2012). Lineer 

regresyon, bağımlı değişken ile bağımsız değişkenler arasındaki 

ilişkiyi modellemek için bağımsız değişkenlerin doğrusal bir 

kombinasyonunu kullanarak bağımlı değişkeni tahmin etmeye 

çalışan bir tekniktir (Zhao, Yuhuan & Schaffner, 2001: 2129-2135).  

Lojistik regresyon, iki veri faktörü arasındaki ilişkileri 

belirlemek için kullanılan yapay zekâ ve makina öğrenimi alanında 

önemli bir veri analizi ve istatistiksel yöntemdir. Bağımlı değişkenin 

iki kategoriden birine ait olduğu durumlarda, bağımsız değişkenlerin 

etkisini logit fonksiyonu ile modellemek için kullanılır. Bu yöntem, 

doğrusal regresyonun varsayımlarını karşılamayan verilerle 

çalışmak için geliştirilmiştir. Bir öğrencinin sınav sonucuna göre 

geçip geçmediğini tahmin etmek için ya da bir web sitesinde 

harcanan zaman, alışveriş sepetindeki ürün sayısı ve ziyaret sıklığı 

gibi bağımsız değişkenlere bakarak, yeni bir ziyaretçinin alışveriş 

yapma olasılığı tahmin edilebilir. Burada bağımlı değişken, 

ziyaretçinin alışveriş yapıp yapmaması (0=Hayır, 1=Evet) olacaktır. 

Ayrıca, bir hastanın belirli bir hastalığı olup olmadığını tahmin 

etmek için de kullanılabilir. Burada incelenecek hastalık tipine bağlı 

olarak değişkenlik göstermekle beraber, örneğin, diyabet hastalığını 

tahmin etmek için yaş, vücut kitle indeksi, kandaki glikoz ve insülin 

değerleri gibi bağımsız değişkenler dikkate alınabilir.  

Aynı zamanda lojistik regresyon, bağımlı değişkenin yani 

sınıf değişkeninin iki veya daha fazla kategorili olduğu durumlarda 

bağımsız değişkenlerle olan neden-sonuç ilişkisini belirlemede 

kullanılan bir yöntemdir. Lojistik regresyon analizinde bağımsız 

değişkenlerle bağımlı değişken arasındaki ilişkinin önemli olup 

olmadığı incelenerek, ilgilenilen değişkenin modelde var olup 

olmadığı durumlar için elde edilen tahmin değerleri ile gözlenen 

değerlerin karşılaştırılması yapılmaktadır. İlgilenilen değişkenin 

modelde yer aldığı durumda daha iyi, daha doğru tahminler elde 

edilmesi; o değişkenin model için önemli bir değişken olduğu 

şeklinde yorumlanır. Araştırmacıların, çalıştıkları konuda birden çok 

etkenin olması halinde, etkenlerin bağımlı değişken üzerine etkisini 
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tek tek öğrenmenin yanı sıra, bunların birlikte bağımlı değişken 

üzerindeki etkisini de bilmek ve incelemek istemeleri durumunda 

tercih ettikleri yöntemlerden biridir. Lojistik regresyon modellerinin 

özellikle tıp alanındaki uygulamalarında bağımsız değişkenler; risk 

değişkenleri ya da bir hastalığın ortaya çıkıp çıkmamasını belirleyen 

değişkenlerdir. Bu değişkenlerin tespiti, erken tanı ve hastalığa 

neden olan etkenlerle mücadelede önemli bir yer tutmaktadır 

(Özlüer, Yangın & Sarıdaş, 2021: 112-120). 

Lojistik regresyon, iki sınıflı sınıflandırma problemlerinde 

olasılıkları modelleyerek kategorik sınıfları (örneğin, 0 veya 1) 

tahmin etmek için kullanılır. Doğrusal regresyon ise sürekli sayılarla 

(örneğin fiyat tahmini) çalışır. Temel fark, lojistik regresyonun 

tahminlerini 0 ile 1 arasında sınırlayan sigmoid eğrisine dayanırken, 

doğrusal regresyonun bağımlı değişkenler arasındaki ilişkiyi 

doğrusal bir denklemle modellemesidir. Her iki yöntem de bağımlı 

ve bağımsız değişkenler arasındaki ilişkiyi modellemeye yönelik 

olup, lojistik regresyon olasılıkları, doğrusal regresyon ise sürekli 

değerleri tahmin eder (Zhao & ark., 2001: 2129-2135). 

Lojistik regresyonun kökenleri 19. yüzyıla, 1845'te Pierre 

François Verhulst'un popülasyon büyümesini modellemesine kadar 

uzanır. Modern lojistik regresyon ise 20. yüzyılın ortalarında 

gelişmeye başlamıştır. 1944'te Joseph Berkson, tıbbi araştırmalarda 

lojistik fonksiyonun kullanımını önermiş, 1970’lerde ise lojistik 

regresyon, sosyal bilimler ve biyomedikal alanda yaygınlaşmıştır 

(Şenel & Alatlı, 2014: 35-52). 1962 yılında Cornfield, diskriminant 

fonksiyon yaklaşımını kullanarak lojistik regresyonun 

popülerleşmesini sağlamıştır. Sonraki yıllarda, 1980'de Breslow ve 

Day, 1985’te Abbott, 1995’te Gardside ve Glueck, sağlık, yaşam 

analizi ve kalp hastalığı gibi alanlarda uygulamalar yapmışlardır. 

Ayrıca, Vupa ve Çelikoğlu 2006 yılında akciğer kanseri için, Ünsal 

ve Güler 2005’te Türk bankacılığı için lojistik regresyon analizi 

kullanmışlardır. Hava durumu tahminleri üzerine yapılan 

çalışmalarda ise 2004 yılında Lewis deniz sisi, Stern ve Parkyn 

1999'da Melbourne havaalanı, Fabbian ve arkadaşları 2007'de 

Canberra havaalanı, Uğur 1984'te Yeşilköy Hava Meydanı ve Tuncer 
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1991'de Esenboğa Hava Limanı için sis tahminleri yapmıştır (Aktaş 

& Erkuş, 2009: 47-59). 

Lojistik regresyon, makine öğreniminde yaygın olarak 

kullanılan basit bir tekniktir ve derin makine öğrenmesi bilgisi 

gerektirmez. Diğer yöntemlere göre avantajları yanında 

sınıflandırma yöntemlerine baz model olması yer alır. Lojistik 

regresyon, sınıflandırma sorunlarında, veri ön işleme, makine 

arızalarını tahmin etme, sağlık hizmetlerinde hastalık olasılıklarını 

değerlendirme, finansal risk analizi ve pazarlamada reklam 

tahminleri gibi pek çok alanda kullanılır. 

Regresyon analizinin temel işleyiş adımlarına bakıldığında; 

önce bir iş sorusu belirlenir. Bağımlı ve bağımsız değişkenler 

belirlenerek analiz için gerekli olan veriler toplanır, veri temizliği 

yapılır. Veri temizlemenin temel adımları, hatalı ve eksik veri 

alanlarını değiştirmeyi ve kaldırmayı, yinelenen bilgileri ve alakasız 

verileri tespit edip çıkarmayı ve biçimlendirmeyi, eksik değerleri ve 

yazım hatalarını düzeltmeyi içerir. Verilerin eğitim ve test setlerine 

ayrılması sağlanır, model eğitilir. Model, verileri matematiksel 

denklemlerle bağlar ve bilinmeyen değerler için tahminler yapar. 

Eğitilen model kullanılarak yeni veriler için olasılık tahminleri 

yapılır. Modelin performansı doğruluk, ROC eğrisi, F1 skoru gibi 

metriklerle değerlendirilir ve sonuçlar yorumlanır. Modelin 

iyileştirilmesi için gerekirse model yeniden eğitilebilir. 

Lojistik regresyon modelinin matematiksel 

formülasyonunun yapılması kısmında genellikle aşağıda verilen 

logit fonksiyonu Denklem (1) kullanılır. 

( ) 0 1 1 2 2logit ln
1

n n

p
p z X X X

p

 
= = = + + ++ 

− 
     (1) 

𝑦 =
𝑒𝑧

1+𝑒𝑧
=

1

1+𝑒−𝑧
 (2) 

 Model eğitiminde, geçmiş veriler kullanılarak modelin 

parametreleri (β) optimize edilir. β sembolü, regresyon katsayısını 

temsil eder. Bu genellikle maksimum olasılık tahmini y, Denklem (2) 
--122--

https://aws.amazon.com/what-is/machine-learning/


ile yapılır  (Kuyucu, 2012; Zhao, Yuhuan & Schaffner, 2001: 2129-

2135; Aktaş & Erkuş, 2009: 47-59). Denklem (2) ile verilen lojistik 

fonksiyon grafiği Şekil 3 ’te verilmiştir. 

 
Şekil 3 Lojistik regresyon fonksiyonu 

 

K En Yakın Komşu Algoritması (KNN): KNN algoritması, 

özellikle sınıflandırma ve regresyon problemlerinde yaygın olarak 

kullanılan bir denetimli makine öğrenme algoritması olup temelleri 

ilk olarak 1951 yılında Fix ve Hodges tarafından tanımlanmıştır (Fix 

& Hodges, 1951: 1-21; Syriopoulos, Kalampalikis & Kotsiantis, 

2023). Cover ve Hart ise 1967 yılında bu yaklaşımı genişletmiştir 

(Cover & Hart, 1967: 21-27).  

KNN, küçük veri kümeleri için basit ve doğru bir 

algoritmadır. Örüntü tanıma, veri inceleme, istatistiksel tahmin, 

özellik seçimi, kategorik problemler, tavsiye sistemleri, izinsiz giriş 

tespiti ve finansal tahminler gibi çeşitli alanlarda kullanılır. 

Uygulaması kolay ve basit olan KNN, büyük eğitim verilerinden 

olumsuz etkilenmez ve gürültülü verilere karşı dayanıklıdır. Ancak, 

k parametresinin belirlenmesi gerekliliği bir dezavantaj olarak kabul 

edilir. 

KNN algoritması, eğitiminin olmaması, 

gerçekleştirilmesinin kolay, analitik olarak izlenebilir, yerel bilgilere 

uyarlanabilir, paralel gerçekleştirmeye uygun, gürültülü eğitim 

verilerine karşı dirençli olması gibi avantajları ile sınıflandırma 

uygulamalarında özellikle tercih edilmektedir. Bu avantajlara 

rağmen, yüksek miktarda bellek alanına gereksinim duyması, veri 

seti ve öznitelik boyutu arttıkça işlem yükünün ve maliyetin önemli 
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ölçüde yükselmesi, performansın k komşu sayısı, uzaklık ölçütü ve 

öznitelik sayısı gibi parametre ve özelliklere bağlı olarak etkilenmesi 

gibi birtakım dezavantajları da beraberinde getirmektedir (Bhatia & 

Vandana, 2010: 302-305; Liu & Zhang, 2012; 1067-1074). 

KNN algoritması, büyük eğitim setlerinin varlığında, 

oldukça etkin sonuçlar verebilmektedir. KNN algoritması, ilgisiz 

özniteliklerin varlığında da sınıflandırma modeli 

oluşturabilmektedir. Böyle durumlarda eğitim için gereken süre 

oldukça artmaktadır (Aha, Kibler & Goldstone, 1991: 37-66). KNN 

algoritması basit yapısına karşın, yüksek bir hesaplama maliyetine 

sahiptir. Sınıf etiketi belirlenmek istenen örneğin, veri setinde yer 

alan örnekler ile arasındaki uzaklığın belirlenmesi, özellikle büyük 

eğitim veri setleri için oldukça maliyetli olabilmektedir. Bu maliyeti 

ortadan kaldırmak için KNN algoritması temel bileşenler analizi gibi 

boyut azaltma yöntemleri ile ya da arama ağaçları gibi daha güçlü 

veri yapıları ile kullanılabilmektedir (Shmueli, Patel & Bruce, 2010). 

Bunun yanı sıra, KNN algoritması, çok boyutlu veri setlerinde etkin 

değildir, yüksek bellek gereksinimlerine sahiptir, komşu sayısı, 

uzaklık ölçütü gibi parametrelere duyarlıdır (Duda, Hart & Stork, 

2000). KNN arama problemi, referans noktalarının k en yakın 

komşularını bulmayı içerir. Genellikle Öklid, Manhattan ve 

Minkowski uzaklıkları kullanılır, hesaplaması Denklem (3), (4), (5) 

ile yapılmaktadır.  

               (3) 

    (4) 

 (5) 

 

Ancak Chebyshev normu, Dilca uzaklığı veya Mahalanobis 

uzaklığı gibi diğer uzaklık ölçüleri de kullanılabilir. KNN 

algoritmasının sözde kodu Tablo 2’ de verilmiştir.  
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Tablo 2 KNN algoritması sözde kodu 

Adım 1. Veri kümesi yüklenir. 

Adım 2. Veri kümesi eğitim ve test setlerine bölünür. 

Adım 3: k değeri, yani en yakın kaç komşuya bakılacağı belirlenir. 

Adım 4: Test setindeki her örnek işlenirken; 

• Mesafeleri hesaplanır ve sıralanır. 

• En yakın k komşu seçilir. 

• Çoğunluk oyu ile sınıf belirlenir. 

Adım 5: Test verisi üzerinde algoritmanın doğruluğu ölçülür. 

 

Sınıflandırmanın nasıl yapıldığı k=3 için Şekil 4’de gösterilmiştir. 

Şekil 4 KNN ile 𝑘 =3 için yeni bir veri noktasının sınıflandırılması 

 

Performans Ölçütleri, Bulgular ve Tartışma 

Bu kısımda her iki algoritma ile kurulan modelin 

doğruluğunu, hassasiyetini, hızını ve verimliliğini anlamaya 

yardımcı olacak performans ölçütlerine yer verilecektir. Bu ölçütler 

sayesinde hangi algoritmanın daha iyi sonuç verdiğini veya modelin 

iyileştirilmesi gereken yönleri belirlenebilir. Bir sonraki bölüme 

geçmeden, çalışmada ele alınan performans ölçütlerinde sıklıkla 

kullanacak olan terimler bu kısımda hatırlatılacaktır. 

Gerçek değeri pozitif olup pozitif olarak tahmin edilen 

örnekler doğru pozitif (dp) olarak adlandırılır. Gerçek değeri pozitif 

olup negatif olarak tahmin edilen örnekler ise yanlış negatif (yn) 
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olarak adlandırılır. Pozitif olarak tahmin edilip, gerçekte negatif olan 

örnekler yanlış pozitif (yp) olarak adlandırılır. Negatif olarak tahmin 

edilip, gerçekte de negatif olan örnekler ise doğru negatif (dn) olarak 

adlandırılır. 

Doğruluk skoru (Accuracy): Modelin doğru sınıflandırdığı 

örneklerin, toplam tahmin sayısına oranı olarak hesaplanır. Bu 

metrik, doğru pozitifler ile doğru negatiflerin toplamını alır ve bunu 

modelin yaptığı tüm tahminlerin toplamına bölerek elde edilir. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑑𝑝 + 𝑑𝑛

(𝑑𝑝 + dn + yp + 𝑦𝑛)
 (6) 

 

Doğru Pozitif Oranı (True Positive Rate, TPR): Modelin, pozitif 

sınıfı doğru şekilde tahmin etme oranıdır ve şu formülle hesaplanır: 

𝑇𝑃𝑅 =
𝑑𝑝

(𝑑𝑝 + 𝑦𝑛)
 (7) 

 

Yanlış Pozitif Oranı (False Positive Rate, FPR): Yanlış pozitif 

oranı, modelin negatif sınıfa ait örnekleri yanlışlıkla pozitif olarak 

tahmin etme oranını ifade eder. Bu oran, bir modelin yanlış pozitif 

tahminlerinin tüm gerçek negatif örneklerine göre oranını gösterir. 

𝐹𝑃𝑅 =
𝑦𝑝

(𝑦𝑝 + 𝑑𝑛)
 (8) 

 

Performans analizi yapılırken doğru pozitif oranı ve yanlış 

pozitif oranlarının ağırlıklı ortalama sonuçları dikkate alınmıştır 

(Aydemir, 2018). 

Kesinlik (Precision): Modelin pozitif olarak tahmin ettiği 

örneklerin gerçekte pozitif olma oranını ölçen parametredir. Formül 

aşağıda belirtilmiştir (Aydemir, 2018). 

𝑝 =
𝑑𝑝

(𝑑𝑝 + y𝑝)
 (9) 
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Hassasiyet (Recall): Sınıflandırma modelinin performansını 

değerlendirmek için kullanılan hassasiyet, pozitif sınıfa ait tüm 

örneklerde ne kadarını doğru tahmin edebildiğini ölçen orandır. Bu 

formül  

𝑟 =
𝑑𝑝

(𝑑𝑝 + 𝑦𝑛)
 (10) 

 

biçimindedir (Aydemir, 2018). 

 

F1 Ölçüsü: Kesinlik ve hassasiyet, bir modelin 

performansını değerlendirmek için yaygın olarak kullanılır. Ancak, 

bu ölçütler tek başına yeterli değildir ve genellikle birlikte 

değerlendirilerek, F-ölçüsü devreye girer. F-ölçüsü, kesinlik ve 

hassasiyetin harmonik ortalamasını temsil eder ve bu sayede her iki 

ölçütü birleştirerek daha kapsamlı bir performans değerlendirmesi 

sağlar. F1 ölçüsü ise kesinlik ve hassasiyetin eşit önemde olduğu 

durumlarda kullanılır ve aşağıdaki formülle hesaplanır (Işık & 

Ulusoy, 2021). 

 𝐹1 ö𝑙çü𝑠ü = 2
𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 𝑥 𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡
= 2

𝑝𝑟

𝑝+𝑟
   (11) 

 

LR ve KNN modellerine ait karmaşıklık matrisleri sırasıyla 

Şekil 5 ve Şekil 6’ da verilmiştir. 

 

 
Şekil 5 LR modeli için karmaşıklık matrisi 
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Şekil 6 KNN modeli için karmaşıklık matrisi 

Karmaşıklık matrisi yardımıyla, ele alınan LR sınıflandırma 

modelinin performansı detaylı bir şekilde analiz edilebilir. Bu tablo, 

modelin tahmin ettiği sınıflar ile gerçek sınıflar arasındaki ilişkileri 

özetler. Yukarıdaki karmaşıklık matrisi kullanılarak, doğruluk, 

kesinlik, hassasiyet ve F1 skoru gibi önemli performans ölçütleri 

Tablo 3’te verilmiştir. 

 

Tablo 3 LR ve KNN modelleri için performans değerleri 

Model Doğruluk Kesinlik Duyarlılık F1 Skoru 

LR 0.92 1 0.12 0.21 

KNN 0.94 0.65 0.76 0.70 

 

Her iki model de %92-%94 arasında doğruluk oranına sahip 

olup, bu da modellerin genel olarak doğru tahminlerde bulunduğunu 

gösteriyor. Ancak, yalnızca doğruluk oranına bakmak yanıltıcı 

olabilir, çünkü doğruluk tek başına dengesiz veri setlerinde yeterli 

bir performans ölçütü olmayabilir. 

LR ve KNN ’nin kesinlik değerleri sırasıyla 1 ve 0.65 tir. 

Kesinlik, modelin pozitif olarak sınıflandırdığı her örneğin ne 

kadarının gerçekten pozitif olduğunu gösterir. Bu değerlerin düşük 
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olması, modelin çoğunlukla yanlış pozitif sonuçlar ürettiğini 

gösterir. LR 'nin duyarlılık değeri 0.12, KNN 'nin ise 0.76 dır. 

Duyarlılık, modelin gerçek pozitifleri doğru bir şekilde tahmin etme 

oranıdır. LR modelinin duyarlılığı özellikle daha düşük olup, bu da 

modelin çoğunlukla pozitif hastalık vakalarını tespit etmede zayıf 

olduğunu gösteriyor. LR’nin F1 skoru 0.21, KNN'ninki ise 0.70 tir. 

Bu değerler de LR modelinin pozitif sınıfları doğru şekilde 

sınıflandırma konusunda zayıf olduğunu ortaya koyuyor. F1 skoru, 

özellikle sınıf dengesizliği olan veri setlerinde daha düşük çıktığı 

zaman modelin performansının iyileştirilmesi için veri setinin 

homojen seçilmesi gerektiğini işaret eder. Her iki modelin 

performansını değerlendirmek için ROC (Receiver Operating 

Characteristic) eğrileri Şekil 7 ve Şekil 8 'da gösterilmiştir. 

 

 

Şekil 7 LR modeli ROC eğrisi 
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Şekil 8 KNN modeli ROC eğrisi 

ROC eğrisi, modelin TPR ve FPR oranlarını, değişen eşik 

değerleri ile sırasıyla y-ekseni ve x-ekseni boyunca gösterir. Bu eğri 

sayesinde, modelin çeşitli eşik değerlerinde ne kadar iyi performans 

gösterdiği gözlemlenebilir. 

Ayrıca her iki model için, ROC eğrisinin altında kalan alanı 

ifade eden ve modellerin sınıflandırma performansını özetleyen bir 

ölçüt olan AUC değerleri (Area Under the Curve) hesaplandığında; 

LR, 0.8781'lik yüksek AUC değeriyle sınıfları oldukça iyi ayırarak 

iyi bir performans sergilerken, KNN modeli de LR ’ye yakın 

0.8613'lük AUC değeriyle LR ’ye yakın bir performans gösteriyor. 

KNN modelindeki yüksek doğruluk (0.94), çoğunlukla negatif 

sınıfın (sağlıklı bireyler) doğru sınıflandırılmasından 

kaynaklanabilir, bu da modelin pozitif sınıfı (gut hastalığı) doğru 

tespit etmede LR modeline kıyasla görece zayıf olduğunu gösteriyor. 

Sonuç olarak, Lojistik Regresyon, gut hastalığının 

sınıflandırılmasında daha güvenilir bir model olarak öne 

çıkmaktadır. 

Bunlara ek olarak, Tablo 4’te cinsiyet, yaş ve ürik asit 

değişkenlerine bağlı gut hastalığı LR modelinin parametrelerine ait 

istatistikleri verilmiştir. 
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Tablo 4 Cinsiyet, yaş ve ürik asit miktarına bağlı gut hastalığı LR verileri 

Değişken Tahmin Standart Hata t İstatistiği p Değeri 

Yineleme Terimi  -7.7798      0.9742     -7.9862     1.3922e-15 

Cinsiyet (𝑥1) 0.4620      0.4348      1.0625        0.2880 

Yaş (𝑥2) 0.0560     0.0161     3.4784 0.0005 

Ürik Asit (𝑥3) 0.4641     0.1204 3.8536     0.0001 

 

Lojistik regresyon modeli sonuçlarına göre, cinsiyet, yaş ve 

ürik asit değişkenleri gut hastalığının olasılığı üzerinde farklı 

düzeylerde etkiler göstermektedir. Modelin yineleme terimi −7.7798 

oldukça anlamlı olup p değeri (p < 0.001) olduğundan gut hastalığı 

olasılığının düşük olduğunu göstermektedir. 

𝑥1 değişkeninin parametre tahmini 0.4620 olmakla birlikte, p 

değeri 0.2880 istatistiksel olarak anlamlı değildir. Bu sonuç, bu 

model kapsamında cinsiyetin gut hastalığı üzerinde birincil olarak 

belirgin ve bağımsız bir etkisinin bulunmadığını göstermektedir. 

𝑥2 değişkeninin parametre tahmini 0.0560 olup t=3.4784 ve 

p=0.0005 değerleri, yaşın gut hastalığı riskini istatistiksel olarak 

anlamlı bir biçimde artırdığını ortaya koymaktadır. Bu bulgu, ileri 

yaşın gut hastalığı için önemli bir risk faktörü olduğunu 

doğrulamaktadır. 

𝑥3 değişkeninin parametre tahmini 0.4641 olup t=3.8536 ve 

p=0.0001 değerleri, ürik asit düzeyinin gut hastalığı olasılığı 

üzerinde güçlü ve anlamlı bir etkiye sahip olduğunu göstermektedir. 

Bu analiz, ürik asit düzeyi ve yaşın modeldeki en önemli 

değişkenler olduğunu ve gelecekteki tahminler için bu değişkenlerin 

dikkate alınmasının gerekli olduğunu göstermektedir. 
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Sonuçlar ve Öneriler 

Ele alınan veri setinde cinsiyet değişkeninde kadın erkek 

sayısı arasında dengesizlik görülmektedir. Dünya genelinde gut 

hastalığına yakalanma cinsiyet oranı, (kadın/erkek) 1/3 sabit 

kalmıştır, ancak küresel gut insidansı zaman içinde her iki cinsiyette 

de artmaktadır (He & ark., 2023). Bu da veri setinin % 63 ’ünün 

kadınlardan oluştuğu göz önüne alındığında hasta sayısının az olma 

nedeni olarak açıklanabilir. 

Sonuçlar bağlamında bir değerlendirme yapılırsa, her iki 

modelin de güçlü yönleri bulunmaktadır. LR modeli yanlış pozitif 

oranını minimize ederek güvenilirlik sağlarken, KNN modeli daha 

yüksek duyarlılık ve F1 skorları ile klinik açıdan daha etkin bir 

performans sunmaktadır. Bu bulgular, gut hastalığının 

sınıflandırılmasında KNN ’nin pratik uygulamalarda daha avantajlı 

olabileceğini, ancak LR ’nin de özellikle yanlış pozitiflerin kritik 

önem taşıdığı durumlarda değerli bir alternatif olarak öne çıktığını 

göstermektedir. Model iyileştirmeleri ve daha iyi sonuçlar için 

örneklem dengesizliğini gidermek veya farklı metrikler kullanmak 

(örneğin, sınıf ağırlıklarıyla yeniden eğitim) gerekebilir. 

Tanımlayıcı istatistikler incelendiğinde, gut hastalığının 

kadınlarda düşük bir oranda, erkeklerde ise daha yüksek bir oranda 

görüldüğü saptanmıştır. Ayrıca erkek grubunda yaş ortalamasının 

kadınlara kıyasla daha yüksek olduğu, bunun yanında ürik asit 

düzeylerinin de erkeklerde belirgin şekilde daha yüksek seyrettiği 

görülmüştür. Bu literatürde gut hastalığının özellikle orta yaş ve 

üzerindeki erkeklerde yaygınlığına dair çalışmalarla örtüşmektedir. 

Lojistik regresyon analizine göre, cinsiyet değişkeninin gut 

hastalığı ile ilişkisi istatistiksel açıdan anlamlı bulunmamıştır. Buna 

karşın yaş ve ürik asit düzeyleri gut hastalığının önemli 

belirleyicileri olarak öne çıkmıştır. Özellikle ürik asit düzeyi, 

istatistiksel olarak son derece anlamlı bulunmuş ve gut hastalığının 

en güçlü biyokimyasal belirleyicisi olduğunu göstermiştir. Yaş 

değişkeni de benzer şekilde anlamlı düzeyde bir katkı sağlamış ve 

hastalığın ilerleyen yaşlarda daha sık görülme eğilimini 
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desteklemiştir. Bu sonuçlar, gut hastalığının tespitinde temel 

değişkenin ürik asit düzeyi olduğunu, yaş faktörünün ise ek bir risk 

artırıcı unsur olarak rol oynadığını ortaya koymaktadır. 

Elde edilen bulgular, literatürdeki genel kabul ile uyumludur: 

gut hastalığının en güçlü belirleyicisi hiperürisemi olup, yaş ile 

hastalık riski artmaktadır. Cinsiyet ise özellikle erkeklerde daha 

yüksek bir görülme sıklığına işaret etse de, model bazında bağımsız 

bir belirleyici olarak anlamlı bulunmamıştır. Bu sonuç, cinsiyetin 

ürik asit düzeyi üzerinden dolaylı bir etkide bulunduğunu 

düşündürmektedir. 

Sonuç olarak, çalışma kapsamında yapılan analizler, gut 

hastalığının tanı ve risk değerlendirmesinde ürik asit düzeyinin 

merkezi rolünü doğrulamaktadır. Ayrıca yaş faktörünün dikkate 

alınmasının, özellikle ileri yaş gruplarında tarama ve erken tanı 

açısından kritik öneme sahip olduğunu göstermektedir. Bu bağlamda 

geliştirilecek klinik ve epidemiyolojik modellerde ürik asit düzeyi ve 

yaş değişkenlerinin birincil öncelikli parametreler olarak 

değerlendirilmesi önerilmektedir. 

 

 

 

 

 

 

 

 

 

--133--



Kaynakça 

Aktaş, C., & Erkuş, O. (2009). Lojistik regresyon analizi ile 

Eskişehir’in sis kestiriminin incelenmesi. İstanbul Ticaret 

Üniversitesi Fen Bilimleri Dergisi, 8(16), 47–59. 

Aha, D. W., Kibler, D., & Goldstone, R. L. (1991). Instance-based 

learning algorithms. Machine Learning, 6, 37–66. 

Aydemir, E. (2018). Weka ile yapay zekâ (1. baskı). Seçkin Yayınevi. 

Başer Özlüer, B., Yangın, M., & Sarıdaş, E. S. (2021). Makine 

öğrenmesi teknikleriyle diyabet hastalığının sınıflandırılması. 

Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 

25(1), 112–120. 

Bhatia, N., & Vandana. (2010). Survey of nearest neighbor 

techniques. International Journal of Computer Science and 

Information Security, 8(2), 302–305. 

Borghi, C., Agabiti-Rosei, E., Johnson, R. J., Kielstein, J. T., Lurbe, 

E., & Mancia, G. (2020). Hyperuricaemia and gout in 

cardiovascular, metabolic and kidney disease. European Journal of 

Internal Medicine, 80, 1–11. 

Brikman, S., Serfaty, L., Abuhasira, R., Schlesinger, N., Bieber, A., 

& Rappoport, N. (2024). A machine learning-based prediction model 

for gout in hyperuricemics: A nationwide cohort study. 

Rheumatology, keae273. 

Cao, S., & Hu, Y. (2024). Interpretable machine learning framework 

to predict gout associated with dietary fiber and triglyceride-glucose 

index. Nutrition & Metabolism, 21(25). 

https://doi.org/10.1186/s12986-024-00802-2 

Chrystal, R. C. (2025). Machine learning types. IBM. 

https://www.ibm.com/think/topics/machine-learning-types 

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. 

IEEE Transactions on Information Theory, 13, 21–27. 

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. 

--134--



John Wiley & Sons. 

Fix, E., & Hodges, J. L. (1951). Discriminatory analysis, 

nonparametric discrimination: Consistency properties (Technical 

Report No. 4). USAF School of Aviation Medicine. 

He, Q., Mok, T., Sin, T., Yin, J., Li, S., Yin, Y., Ming, W., & Feng, 

B. (2023). Global, regional, and national prevalence of gout from 

1990 to 2019: Age-period-cohort analysis with future burden 

prediction. JMIR Public Health and Surveillance, 9, e45943. 

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied 

logistic regression (3rd ed.). John Wiley & Sons. 

Hou, R., Xiao, Y., & Zhu, Y. (2020). Prediction of hyperuricemia risk 

based on medical examination report analysis. Journal of Systems 

Science and Systems Engineering, 29, 468–503. 

Ichikawa, D., Saito, T., Ujita, W., & Oyama, H. (2016). How can 

machine-learning methods assist in virtual screening for 

hyperuricemia? Journal of Biomedical Informatics, 64, 20–24. 

Işık, K., & Ulusoy, S. K. (2021). Determining the factors that affect 

the production time in metal industry utilizing data mining methods. 

Journal of the Faculty of Engineering and Architecture of Gazi 

University, 36(4), 1949–1962. 

Kumar, M. S., Hudson, B., Priya, V., Kumar, V. A., Tharun, C., & 

Saran, R. S. (2022). Determination of gout disease using machine 

learning. In Proceedings of the 1st International Conference on 

Computational Science and Technology (pp. 11–15). IEEE. 

Kuyucu, Y. E. (2012). Lojistik regresyon analizi, yapay sinir ağları 

ve CART yöntemlerinin karşılaştırılması ve tıp alanında bir 

uygulama (Yüksek lisans tezi). Gaziosmanpaşa Üniversitesi. 

Liu, H., & Zhang, S. (2012). Noisy data elimination using mutual k-

nearest neighbor for classification mining. Journal of Systems and 

Software, 85(5), 1067–1074. 

Shmueli, G., Patel, N. R., & Bruce, P. C. (2010). Data mining for 

business intelligence. John Wiley & Sons. 
--135--



Syriopoulos, P. K., Kalampalikis, N. G., & Kotsiantis, S. B. (2023). 

KNN classification: A review. Annals of Mathematics and Artificial 

Intelligence. 

Zhang, Y., Chen, S., Yuan, M., Xu, Y., & Xu, H. (2022). Gout and 

diet: A comprehensive review of mechanisms and management. 

Nutrients, 14(17), 3525. https://doi.org/10.3390/nu14173525 

Zhao, L., Yuhuan, C., & Schaffner, D. W. (2001). Comparison of 

logistic regression and linear regression in modeling percentage 

data. Applied and Environmental Microbiology, 67(5), 2129–2135. 

--136--




