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ÖNSÖZ 

Matematik, insanlık tarihinin en köklü ve evrensel 

bilimlerinden biri olarak, hem kuramsal derinliği hem de geniş 

uygulama alanlarıyla bilimsel ilerlemenin temel dinamiklerinden 

biri olmayı sürdürmektedir. Diferansiyel geometri, hem modern 

matematiğin kurucu alanlarından biri hem de fizik, mühendislik ve 

veri bilimi gibi pek çok disiplin için temel bir araçtır. Bu alan, 

geometrik yapıların eğrilik, simetri ve akış özelliklerini incelemek 

için bir temel sağlar. 

Bu kitap, diferansiyel geometrinin temel kavramlarını farklı 

bakış açılarından ele alan seçilmiş çalışmaları bir araya 

getirmektedir. Alfa-kosimplektik manifoldlar, Ricci solitonlar ve 

yarı-simetrik koşullar üzerine yapılan incelemeler, modern 

geometrinin güncel araştırma alanlarına ışık tutarken; üç boyutlu 

Öklid uzayındaki eğri çiftlerine yönelik bölüm ise disiplinin klasik 

yönünü hatırlatmaktadır. Kitap, konuyla ilgilenen araştırmacılar ve 

lisansüstü öğrenciler için, farklı geometrik yapıların temel 

özelliklerine dair genel ve erişilebilir bir kaynak niteliği 

taşımaktadır. 

Bu kitabın, yeni araştırmalara ilham vermesini, mevcut 

çalışmalara katkıda bulunmasını ve okuyuculara faydalı olmasını 

dilerim. Editör olarak, bu eserin hazırlanmasında bilimsel katkı 

sunan tüm yazarlarımıza  ve yayın sürecinde emeği geçen tüm 

paydaşlara teşekkür ederim. 

 

Prof. Dr. Şükran KONCA 

İzmir Bakırçay Üniversitesi 
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ALFA-KOSİMPLEKTİK MANİFOLDLAR 

ÜZERİNDE RİCCİ SOLİTONLARLA İLGİLİ BAZI 

HATIRLATMALAR  

 

Sermin ÖZTÜRK1 

Giriş 

Bir uzayın (manifoldun) eğriliğinin ayrıntılı anlatımı, Riemann 

eğrilik tensörü 𝑅 ile ifade edilir. Ancak bu anlatım son derece 

karmaşık olup hem uzayın şekil bozukluğunu temsil eden Weyl 

konformal parçacını hem de madde-enerji dağılımının yol açtığı 

eğriliği temsil eden Ricci kısmını içerir. Matematikçiler ve 

fizikçiler, bu durumun belirli bölümlerini izole etmek istemektedir. 

Riemann eğrilik tensör alanını 𝑅 çeşitli izdüşümler ve 

dönüşümler aracılığıyla farklı geometrik yapıların ve fiziksel 

olayların incelenmesinde bazı araçlar sunar.  Bu araçların öne çıkan 

iki temsilcisi olan konformal (Weyl) eğrilik tensörü ile 

konharmonik eğrilik tensörü, eğriliğin değişik yönlerini izole eder. 

Bu da uzayın yapısal özelliklerini farklı metotlarla ortaya koyar. 

Weyl eğrilik tensör alanı, bir metrik ölçeğin keyfi olarak 

değiştirilmesine karşı değişmezliğini koruyarak konformal yapının 

özünü ve açısal bozulmaları inceler.  Konharmonik eğrilik tensör 

alanı ise, harmonik haritaların geneller. Her iki tensör alanı da  

uzayın düzlük ölçüsünü belirlemeye çalışır. Konharmonik haritalar 

bu harmonik denge durumunun bir tür esnek veya ölçekli 

genişlemesidir. Bir anlamda, harmonikliği daha geniş bir simetri 
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grubu altında korumaya çalışan haritalardır. İşte konharmonik 

eğrilik tensörü, tam da bu tür haritaların var olabilmesi için uzayın 

(manifoldun) sahip olması gereken veya engel teşkil eden eğrilik 

yapısını ölçen bir araçtır. 

Yarı-simetriyi simetrik uzayların doğal deformasyonları olarak ele 

alabiliriz. Bir simetrik uzayın homojen yapısını bozduğunuzda, 

eğrilik artık sabit kalmayacaktır. Fakat değişim belirli bir düzene 

uyacaktır. Yani, yarı-simetri, bu düzeni matematiksel olarak temsil 

eder.  Bir Riemann manifoldunun yarı-simetrik olması için, 

manifold üzerinde tanımlı herhangi 𝑋 ve 𝑌 vektör alanlarına 

karşılık, 𝑅(𝑋, 𝑌) ∙ 𝑅 =  0 eşitliğinin sağlanması gerekir. Bu 

denklemde 𝑅 eğrilik tensörü, bir cebirsel operatör gibi davranarak 

uzayın geometrik yapısını kodlar. Bu tür uzaylara yarı-simetrik 

denilmesinin nedeni, herhangi bir 𝑞 noktasında manifoldun eğrilik 

tensörünün, klasik simetrik uzaylardaki eğrilik tensörüyle 

örtüşebilmesidir. Ancak bu uyum, noktadan noktaya değişiklik 

gösterebilen bir özelliktir. Lokal simetrik uzaylar ise daha katı bir 

simetri koşulu getirir, yani; 𝛻𝑅 =  0 ile tanımlıdır. Burada 𝛻 Levi-

Civita konneksiyonunu temsil eder. Bu koşul, eğrilik tensörünün 

manifold boyunca sabit kaldığını ifade eder. Yarı-simetrik uzayların 

sistematik sınıflandırması, Szabó'nun 1982 yılındaki çalışmasında 

ortaya çıkmıştır  (Szabó, 1982). Fakat bu tanımlama Nomizu'nun 

1968 yılında kullandığı 𝑅 · 𝑅 = 0 tensörel koşulundan 

kaynaklanmaktadır (Nomizu, 1968). 

Kenmotsu manifoldları değme geometrisi ile hemen hemen 

Kaehler geometrisinin kesişiminde doğan özel yapılardır. Bu 

manifoldlar, adını Katsuei Kenmotsu'dan alır ve hemen hemen 

değme yapıların sınıflandırılmasında tamamen farklı bir 

karakter ortaya koyar (Kenmotsu, 1972). Sasakian manifoldlar 

sabit eğrilik ortaya koyarken, Kenmotsu manifoldlar sabit olmayan, 

ancak kontrollü bir şekilde değişen bir eğrilik yapısı sunarlar. 
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Esasen bir Kenmotsu manifoldu, bir hemen hemen değme metrik 

yapı ile donatılmıştır, ancak burada kritik fark, temel 2-formun 

özdeş olarak sıfır olmaması ve bunun yerine dış türevinin temel 2-

formun kendisiyle orantılı olmasıdır. Bu özellik, bu tür 

manifoldlara benzersiz bir davranış kazandırır. Lokal olarak 

bir katlı çarpım şeklinde ifade edilebilirler. Özellikle konformal 

olarak düz olanlar, bir reel doğrunun sabit eğrilikli bir manifold ile 

katlı çarpımına eşittir. Yani,  Kenmotsu yapılar değme dağılımına 

teğet yönde standart bir Sasakian benzeri yapıyı korurken, diğer 

yandan reeb vektör alanı boyunca bir üstel genişleme veya 

büzülme meydana getirirler. Hemen hemen Kenmotsu yapıların 𝛼 

parametresiyle genelleştirerek hemen hemen alfa-Kenmotsu 

manifold olarak adlandırılmasını Janssens ve Vanhecke sağlamıştır 

(Janssens & Vanhecke, 1981). Bunu takiben, Kim ve Pak bu 

gelişmeyi bir adım öteye taşıyarak, hemen hemen alfa-Kenmotsu 

yapılar ile hemen hemen kosimplektik yapıları birleştirerek yeni bir 

sınıf tanımlamışlardır (Kim & Pak, 2005). Hemen hemen alfa-

kosimplektik manifoldlar olarak adlandırılan bu yapılar, hemen 

hemen değme metrik manifoldlar ailesinin önemli bir alt sınıfını 

oluşturmaktadır.  

Ricci akışı, bir manifoldun metrik yapısının zaman içinde Ricci 

eğriliğine göre nasıl evrimleştiğini tanımlayan, doğal bir parabolik 

kısmi diferensiyel denklemdir. Fiziksel bir benzetmeyle, bu akış 

başlangıçtaki karmaşık ve düzensiz bir şekli (manifoldu) ısıyı eşit 

dağıtan bir süreç gibi onun içsel eğriliğini yavaşça yumuşatarak ve 

düzelterek daha homojen bir forma doğru değiştirir. İlk bakışta 

teknik görünse de bu akışın en büyük katkısı Poincaré hipotezinin 

ispatında kilit rol oynamasıdır. Ricci akışının özel ve dengeli 

çözümleri olan Ricci solitonları ise bu evrim sürecinde ölçek 

değişimine karşın şekli korunan adeta hareketsiz gibi 

görünen hareketlerdir. Sabit, genişleyen ve büzülen (daralan) olarak 

sınıflandırılan bu yapılar Ricci akışının sabit noktaları gibi 
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davranırlar ve akışın dinamiğini anlamak için temel yapı taşlarıdır. 

Böylece Ricci solitonları geometrinin dilinde evrimin durağan 

anlarını simgeleyen özel ve zarif nesneler olarak karşımıza çıkar. 

Ricci akışı, Richard Hamilton'ın 1982 yılındaki öncü çalışmasıyla 

matematik dünyasına kazandırılmıştır (Hamilton, 1982). 

Hamilton'un 1988 yılında yüzeyler üzerindeki Ricci akışını 

detaylıca incelemesi, sürecin temel özelliklerini ortaya çıkarmıştır 

(Hamilton, 1988). Ancak bu çalışmalar, akış sırasında ortaya çıkan 

ve eğriliğin sonsuza ıraksadığı metrik tekilliklerin varlığını da 

göstermiştir. Grigori Perelman'ın 2002 yılındaki çalışması, 3-

boyutlu manifoldlarda Ricci akışının tekilliklerini sistematik olarak 

sınıflandırarak bu sorunu aşmayı başarmıştır (Perelman, 2002). 

Bu çalışmada, Ricci solitonlu alfa-kosimplektik manifoldlar 

üzerinde bazı yarı-simetrik şartlar incelenmiştir. Özellikle, 

konformal ve konharmonik eğrilik tensör alanları yardımıyla, 𝑅 ⋅

𝐶 = 0 ve 𝐶 ⋅ 𝐻 = 0 koşulları araştırılmış ve bazı önemli sonuçlar 

elde edilmiştir. Burada farklı yarı-simetrik yapıda olan 𝐶 ⋅ 𝐻 = 0 

koşulu daha çok  önem arz etmektedir. 

Temel Kavramlar 

Bir (2𝑛 + 1)-boyutlu türevlenebilir manifold 𝑀 olsun. Her 𝑋, 𝑌 ∈

𝜒(𝑀) için; 𝜙, (1,1)-tipli bir tensör alanı, 𝜉 bir vektör alanı ve 𝜂, 1-

form olmak üzere, 

                                          𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝜉                            (1) 

                            𝜂(𝜉) = 1, 𝜙(𝜉) = 0, 𝜂 ∘ 𝜙 = 0                        (2) 

                          𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                     (3) 

                                           𝜂(𝑋) = 𝑔(𝑋, 𝜉)                                   (4) 

deklemleriyle verilen 𝑔 metrik tensörü ile donatılmış (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

yapısına bir hemen hemen değme metrik manifold denir. Burada 
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𝑔(𝜉, 𝜉) = 1 dir. Bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen değme metrik 

yapının temel 2-formu  

                                        Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌)                              (5) 

şeklinde tanımlanır (Blair, 1976). (1,3)-tipli Riemann eğrilik 

tensörü 𝑅 olmak üzere, 

                          𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑍𝑋 − 𝛻[𝑋,𝑌]𝑍               (6) 

şeklinde tanımlıdır. Bundan başka, (2𝑛 + 1)-boyutlu bir Riemann 

manifoldu üzerinde (0,2)-tipli Ricci tensörü ve Ricci operatörü, 

sırasıyla,  

                            𝑆(𝑋, 𝑌) = ∑ 𝑔(𝑅(𝐸𝑗 , 𝑋)𝑌, 𝐸𝑗)2𝑛+1
𝑗=1            (7) 

                                      𝑆(𝑋, 𝑌) = 𝑔(𝑄𝑋, 𝑌)                                 (8) 

ile verilir. Burada {𝐸₁, 𝐸₂, . . . , 𝐸𝑛} lokal ortonormal bir tabandır 

(Yano & Kon, 1984). (2𝑛 + 1)-boyutlu bir hemen hemen değme 

metrik manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) ile verilsin. Eğer manifoldu 𝑀 × ℝ 

şeklinde düşünürsek, her vektör alanı 𝑋 için, (𝑋, 𝑓
𝑑

𝑑𝑡
) yardımıyla 

𝑀 × ℝ üzerinde bir vektör alanı belirtebiliriz. Burada 𝑡, ℝ 

üzerindeki koordinat ve 𝑓, 𝑀 × ℝ üzerinde bir türevlenebilir 

fonksiyondur. Böylece 𝑀 × ℝ üzerinde 𝐽 hemen hemen kompleks 

yapısı 

                           𝐽 (𝑋, 𝑓
𝑑

𝑑𝑡
) = (𝜙𝑋 − 𝑓𝜉, 𝜂(𝑋)

𝑑

𝑑𝑡
)                        (9) 

ile verilir. Eğer 𝐽 integrallenebilirse o zaman, hemen hemen değme 

metrik (𝑀, 𝜙, 𝜉, 𝜂)-yapısı normaldir. 𝐽 kompleks yapısının 

integrallenebilmesi için gerek ve yeter şart 

                                [𝜙, 𝜙](𝑋, 𝑌) + 2𝑑𝜂(𝑋, 𝑌)𝜉 = 0                   (10) 

denkleminin sağlanmasıdır (Yano & Kon, 1984). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

hemen hemen değme metrik manifoldu 

                                          𝑑𝜂 = 0, 𝑑Φ = 0                                (11) 
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şartlarını sağlıyorsa, 𝑀 ye hemen hemen kosimplektik manifold 

denir. Eğer bir hemen hemen kosimplektik manifold normal ise bu 

manifolda kosimplektik manifold denir. 𝑀 nin bir kosimplektik 

manifold olması için gerek ve yeter şart 𝛻𝛷 ve 𝛻𝜂 kovaryant 

türevlerinin özdeş olarak sıfır olmasıdır (Olszak, 1981). Eğer 𝑀 

üzerinde ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) ve 𝛼 ∈ ℝ, 𝛼 ≠ 0 için,  

                                𝑑𝜂 = 0, 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)                           (12) 

denklemleri sağlanıyorsa, 𝑀 ye bir hemen hemen alfa-Kenmotsu 

manifold denir (Janssens & Vanhecke, 1981). Özel olarak, 𝛼 = 1 

durumu hemen hemen Kenmotsu olarak adlandırılır (Kenmotsu, 

1972). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) normal ise o zaman alfa-Kenmotsu manifold 

olarak adlandırılır. Herhangi vektör alanları ve keyfi 𝛼 reel sayısı 

için, (11) denklemleri sağlanıyorsa, 𝑀 ye hemen hemen alfa-

kosimplektik manifold denir. Özel olarak, 𝛼 = 0 için hemen hemen 

kosimplektik manifold, 𝛼 ≠ 0 için hemen hemen alfa-Kenmotsu 

manifold olarak adlandırılır. Eğer hemen hemen değme metrik yapı 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) Kaehler yapıya sahipse o zaman 𝛼 reel sayısı için 

𝑀 ye alfa-kosimplektik manifold denir. Yani, 𝛼 = 0 için 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı kosimplektik veya 𝛼 ≠ 0 için alfa-Kenmotsu 

olarak adlandırılır (Kim & Pak, 2005). 

Önerme 1. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. 𝑀 nin bir alfa-kosimplektik manifold 

olması için gerek ve yeter şart, ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                    (𝛻𝑋𝜙)𝑌 = 𝛼[𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋]                       (13) 

dir (Öztürk, 2021).  

Önerme 2. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. Bu durumda,  ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                               𝛻𝑋𝜉 = 𝛼𝑋 − 𝛼𝜂(𝑋)𝜉                                    (14) 

               𝑅(𝑋, 𝑌)𝜉 = −(𝛼² + 𝜉(𝛼))[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]               (15) 
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                   𝑅(𝑋, 𝜉)𝑌 = (𝛼² + 𝜉(𝛼))[𝑔(𝑌, 𝑋)𝜉 − 𝜂(𝑌)𝑋]          (16) 

                             𝑅(𝑋, 𝜉)𝜉 = (𝛼² + 𝜉(𝛼))𝜙²𝑋                          (17) 

  𝜂(𝑅(𝑋, 𝑌)𝑍) = (𝛼² + 𝜉(𝛼))[−𝜂(𝑋)𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝑋, 𝑍)]  (18) 

                              𝑆(𝑋, 𝜉) = −2𝑛(𝛼² + 𝜉(𝛼))𝜂(𝑋)                   (19) 

                                     𝑄𝜉 = −2(𝛼² + 𝜉(𝛼))𝑛𝜉                         (20) 

denklemleri sağlanır. Burada 𝛼, 𝑑𝛼 ∧ 𝜂 = 0 şartını sağlayan 

türevlenebilir bir fonksiyondur (Öztürk & ark., 2017). 

Tanım 1. 𝑀, (2𝑛 + 1)-boyutlu bir Riemann manifoldu olsun. Bu 

durumda, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için, 

         𝐶(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

2𝑛−1
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌         (21) 

−𝑔(𝑋, 𝑍)𝑄𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋]   +
𝑟

2𝑛(2𝑛−1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                     

ve 

                                   𝐻(𝑌, 𝑍)𝑊 = 𝑅(𝑌, 𝑍)𝑊                           (22) 

−
1

2𝑛 − 1
[𝑆(𝑍, 𝑊)𝑌 − 𝑆(𝑌, 𝑊)𝑍 + 𝑔(𝑍, 𝑊)𝑄𝑌 − 𝑔(𝑌, 𝑊)𝑄𝑍] 

şeklinde tanımlanan (1,3)-tipli 𝐶 ve 𝐻 tensör alanlarına sırasıyla, 

konformal ve konharmonik eğrilik tensör alanları denir (Yano ve 

Kon, 1984). 

Ricci Solitonlarla İlgili Temel Kavramlar 

Bu bölümde bulgular bölümünde kullanılacak temel kavramlar ve 

temel eğrilik özellikleri verilmiştir. 

Tanım 2. (𝑀, 𝑔₀) bir 𝑛-boyutlu Riemann manifoldu olsun. Bu 

durumda, 

                         
𝜕

𝜕𝑡
(𝑔(𝑡)) + 2𝑆(𝑔(𝑡)) = 0, 𝑔(0) = 𝑔₀        (23) 
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kısmi türevli diferensiyel denklemine 𝑔 metrik tensörünü eviren 

Ricci akışı denir (Hamilton, 1982). Burada 𝑡 zaman parametresidir. 

Tanım 3. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. Eğer 

𝑀 üzerinde keyfi vektör alanları 𝑋, 𝑌 ve 𝑉 için, 𝜆 gerçel bir skaler 

olmak üzere, 

                     (𝐿𝑉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0            (24) 

denklemi sağlanıyorsa, (𝑀, 𝑔) ye Ricci soliton denir. Burada 𝑉 

vektör alanı Ricci solitonun potansiyel vektör alanı ve 𝐿𝑉𝑔 de 𝑉 

yönündeki 𝑔 metriğinin Lie türevidir. Bu durumda, Ricci soliton 

(𝑀, 𝑔, 𝑉, 𝜆) ile sembolize edilir. (𝑀, 𝑔, 𝑉, 𝜆) Ricci solitonuna 𝜆 

değerinin 𝜆 < 0, 𝜆 = 0 ve 𝜆 > 0 durumları için, sırasıyla, daralan, 

değişmeyen ve genişleyen Ricci soliton adı verilir (Hamilton, 

1988). 

Tanım 4. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. 𝐿𝑉𝑔, 𝑉 

yönündeki 𝑔 metriğinin Lie türevi olmak üzere, 

                      (𝐿𝑉𝑔)(𝑋, 𝑌) = 𝑔(∇𝑋𝑉, 𝑌) + 𝑔(𝑋, 𝛻𝑌𝑉)                (25) 

dır (Yano & Kon, 1984). 

Tanım 5. (𝑀, 𝑔, 𝑉, 𝜆) bir Ricci soliton olsun. Eğer 𝑉 potansiyel 

vektör alanı Killing vektör alanı (𝐿𝑉𝑔 = 0) ise o zaman (𝑀, 𝑔, 𝑉, 𝜆) 

ye basit Ricci soliton adı verilir (Chen 2015). 

Tanım 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-kosimplektik 

manifold olsun. Eğer 𝑀 üzerinde (𝑔, 𝑉, 𝜆) Ricci solitonu mevcutsa, 

(𝑀, 𝑔, 𝑉, 𝜆) ya Ricci solitonlu alfa-kosimplektik manifold denir 

(Hamilton, 1988), (Kenmotsu, 1972). 

Önerme 3. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, Ricci eğrilik tensör alanı 
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                    𝑆(𝑋, 𝑌) = −(𝛼 + 𝜆)𝑔(𝑋, 𝑌) + 𝛼𝜂(𝑋)𝜂(𝑌)            (26) 

denklemini sağlar. Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca 

paralel olarak alınmıştır (Öztürk & Bektaş, 2023). 

Önerme 4. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, aşağıdaki önermeler geçerlidir: 

                                     𝑆(𝑋, 𝜉) = −𝜆𝜂(𝑋)                                  (27) 

                                    𝑄𝑋 = 𝛼𝜂(𝑋)𝜉 − (𝛼 + 𝜆)𝑋                      (28) 

                                              𝑄𝜉 = −𝜆𝜉                                      (29) 

                                           𝑆(𝜉, 𝜉) = −𝜆                                     (30) 

                                   𝑟 = 𝛼 − (2𝑛 + 1)(𝛼 + 𝜆).                       (31) 

Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca paralel olarak 

alınmıştır (Öztürk & Bektaş, 2023). 

Ana Sonuçlar 

Bu bölümde, konformal yarı-simetrik şartı olan 𝑅 ⋅ 𝐶 = 0 ve farklı 

yarı simetrik koşulu olan 𝐶 ⋅ 𝐻 = 0 koşulları incelenmiştir. Bu 

koşullar altında Ricci solitonlu alfa-kosimplektik manifoldlar 

üzerinde bazı sonuçlar elde edilmiştir. İncelemeye başlamadan önce 

yarı-simetrik manifold tanımını verelim: 

Tanım 7. 𝑀 bir (yarı) Riemann manifoldu olsun. 𝑇₁ ve 𝑇₂ (0,4)-

tipli tensör alanları olmak üzere, eğer 𝑀 üzerinde keyfi vektör 

alanları 𝑈 ve 𝑉 için, 

                                    𝑇₁(𝑈, 𝑉) ⋅ 𝑇₂ = 0                                     (32) 

şartı sağlanıyorsa, 𝑀 ye 𝑇₂ yarı-simetrik tipli manifold denir. 

Burada 𝑇₁(𝑈, 𝑉), 𝑇₂ üzerindeki tensör cebirinin türevi olarak etki 

eder. Bu tanım genel olarak, 
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                                              𝑇₁ ⋅ 𝑇₂ = 0                                     (33) 

şeklinde yazılır. Özel olarak, 𝑇₁ = 𝑇₂ = 𝑅 olarak alınırsa, manifold 

yarı-simetrik olarak adlandırılır (Szabó 1982). 

Lemma 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı için 𝜉(𝛼) = 0 olsun. Bu durumda, 

konformal ve konharmonik eğrilik tensör alanları için, 

𝜂(𝐶(𝑈, 𝑉)𝑊) = [−
𝑟

2𝑛(2𝑛−1)
+

𝛼2

2𝑛−1
 ][𝑔(𝑉, 𝑊)𝜂(𝑈)𝑔(𝑈, 𝑊)𝜂(𝑉)]  

                    −
1

2𝑛−1
[𝑆(𝑉, 𝑊)𝜂(𝑈) − 𝑆(𝑈, 𝑊)𝜂(𝑉)]                   (34) 

ve 

𝜂(𝐻(𝑈, 𝑉)𝑊) =  
𝛼2

2𝑛 − 1
[𝑔(𝑉, 𝑊)𝜂(𝑈) − 𝑔(𝑈, 𝑊)𝜂(𝑉)] 

                               −
1

2𝑛−1
[𝑆(𝑉, 𝑊)𝜂(𝑈) − 𝑆(𝑈, 𝑊)𝜂(𝑉)]       (35) 

 

denklemleri sağlanır. 

İspat. (21) ve (22) nolu eşitlikler birlikte kullanılırsa (34) ve (35) 

nolu eşitliklerin ispatları aşikardır.  

Önerme 5. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu 𝛼-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 üzerinde 𝑅 ⋅ 𝐶 = 0 

tensörel çarpımı sağlanıyorsa, o zaman keyfi vektör alanları için, 

(𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu  

                                𝑆(𝑌, 𝑍) = [𝛼2 +
𝑟

2𝑛
]𝑔(𝑌, 𝑍)                         (36) 

ve 

                                       𝑟 = −2𝑛(2𝑛 + 1)𝛼²                             (37) 

eşitliklerini sağlar. 
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İspat. 𝑀 üzerinde alfa-kosimplektik manifoldunun 𝑅 ⋅ 𝐶 = 0 

tensörel çarpımını sağladığını kabul edelim. Bu takdirde, aşağıdaki 

eşitlikler sağlanır: 

                                      (𝑅(𝑈, 𝑉) ⋅ 𝐶)(𝑊, 𝑌)𝑍 = 0                     (38) 

 

𝑅(𝜉, 𝑉)𝐶(𝑊, 𝑌)𝑍 − 𝐶(𝑅(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝐶(𝑊, 𝑅(𝜉, 𝑉)𝑌)𝑍 − 𝐶(𝑊, 𝑌)𝑅(𝜉, 𝑉)𝑍 = 0         (39) 

 

𝜂(𝑅(𝜉, 𝑉)𝐶(𝑊, 𝑌)𝑍) − 𝜂(𝐶(𝑅(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝐶(𝑊, 𝑅(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝐶(𝑊, 𝑌)𝑅(𝜉, 𝑉)𝑍) = 0       (40) 

yazılır.  {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (36) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapılırsa,  

0=− ∑ 𝜂(𝐶(𝐸𝑗 , 𝑌)R(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝐶(𝐸𝑗 , R(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

− ∑ 𝜂(𝐶(𝑅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1 + ∑ 𝜂(𝑅(𝜉, 𝐸𝑗)𝐶(𝐸𝑗 , 𝑌)𝑍)2𝑛+1

𝑗=1  (41) 

elde edilir. (41) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (38)-(40) nolu eşitlikler kullanılarak hesap 

yapılırsa, 

            − ∑ 𝜂(𝐶(𝐸𝑗 , 𝑌)𝑅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1  

                               = 2𝑛𝛼2 [−
𝑟

2𝑛(2𝑛−1)
+

𝑛𝛼2

𝑛−2
] 𝜂(𝑌)𝜂(𝑍)          (42) 

 

            − ∑ 𝜂(𝐶(𝐸𝑗 , 𝑅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                         = −𝛼2 [−
𝑟

2𝑛(2𝑛−1)
+

𝛼2

2𝑛−1
] (𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))      
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                         +
𝛼2

2𝑛−1
[𝑆(𝑌, 𝑍) + 2𝑛𝛼²𝜂(𝑌)𝜂(𝑍)]                     (43) 

 

            − ∑ 𝜂(𝐶(𝑅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                     = −2𝑛𝛼2 [−
𝑟

2𝑛(2𝑛−1)
+

𝛼2

2𝑛−1
] (−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))     

                       −
2𝑛𝛼2

2𝑛−1
[𝑆(𝑌, 𝑍) + 2𝑛𝛼²𝜂(𝑌)𝜂(𝑍)]                       (44) 

 

                ∑ 𝜂(𝑅(𝜉, 𝐸𝑗)𝐶(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1      

                  = 𝛼2 [−
𝑟

2𝑛(2𝑛−1)
+

𝛼2

2𝑛−1
] (𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))      

              +
2𝛼2𝑟

2𝑛−1
𝑔(𝑌, 𝑍) −

𝛼2

2𝑛−1
[𝑆(𝑌, 𝑍) + 2𝑛𝛼²𝜂(𝑌)𝜂(𝑍)]        (45) 

bulunur. Son olarak, (42)-(45) nolu eşitlikler birlikte göz önüne 

alınırsa (41) nolu eşitlik 

𝑆(𝑌, 𝑍) =
𝑟

2𝑛
𝑔(𝑌, 𝑍) + 𝛼²𝑔(𝑌, 𝑍) 

haline indirgenir. Bu da (36) nolu eşitliği doğrular.  Böylece (36) 

nolu eşitliğin ispatı sonlanır. Ayrıca, bu son denklemin her iki 

tarafının 𝑌 = 𝑍 = 𝐸𝑗 için, 1 ≤ 𝑗 ≤ 2𝑛 + 1 olmak üzere, izi alınırsa,        

                           2𝑛𝑟 − 𝑟(2𝑛 + 1) = 2𝑛(2𝑛 + 1)𝛼²                     (46) 

bulunur. (46) nolu eşitlik düzenlenirse skalar eğrilik bulunur. 

Kosimplektik durumda (𝛼 = 0) kesit eğriliği de özdeş olarak sıfır 

olacaktır. Yani, 𝛼² ≠ 0 (alfa-Kenmotsu durumu) için skalar eğrilik 

değeri geçerlidir. Böylece ispat sona erer. 

 Teorem 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 üzerinde 𝑅 ⋅ 𝐶 = 0 

tensörel çarpımı sağlanıyorsa, o zaman (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu 

için, 
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    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde Ricci soliton daima 

genişleyendir, 

ifadeleri geçerlidir. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonlu alfa-kosimplektik manifold olsun. 

Bu durumda, (27) nolu eşitlik göz önüne alınarak, 

𝑆(𝑌, 𝜉) = −𝜆𝜂(𝑌) 

yazılır. Ayrıca, (36) nolu denklem 𝑍 = 𝜉 için, 

𝑆(𝑌, 𝜉) = [𝛼2 +
𝑟

2𝑛
]𝜂(𝑌) 

elde edilir. Bu son iki denklemin sağ taraflarının eşitliğinden 

                                          𝜆 = 2𝑛𝛼²                                            (47) 

sonucuna ulaşılır. Burada 𝜉(𝛼) = 0 seçildiğinden 𝛼 reel bir sabit 

olarak alınabilir. Böylece (47) nolu denklem 𝛼 = 0 ve 𝛼 ≠ 0 

durumları altında sırasıyla, 𝜆 = 0 ve 𝜆 > 0 haline dönüşür. Bu 

nedenle (a) ve (b) şıklarının ispatı Ricci soliton tanımından açıktır. 

Sonuç 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) üzerinde 𝜉(𝛼) = 0 olsun (𝑛 ≥ 1). Eğer 

𝑀 üzerinde 𝑅 ⋅ 𝐶 = 0 tensörel çarpımı sağlanıyorsa o zaman 

(𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu asla küçülen (daralan) durumda değildir.   

Önerme 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı üzerinde 𝜉(𝛼) = 0 olsun. Eğer 𝑀 

üzerinde 𝐶 ⋅ 𝐻 = 0 tensörel çarpımı mevcutsa, o zaman keyfi 

vektör alanları için, 

                          [𝑟 − 𝛼²(4𝑛² + 2𝑛 − 1)]𝑆(𝑌, 𝑍) 

                   =[(𝛼² +
𝑟

2𝑛
)𝑟 − 2𝑛𝛼⁴ + ∑ ‖𝑄𝐸𝑗‖²2𝑛+1

𝑗=1 ]𝑔(𝑌, 𝑍)       (48) 

denklemi sağlanır. 

İspat. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) alfa-kosimplektik manifoldunun 𝐶 ⋅ 𝐻 = 0 

tensörel çarpımını sağladığını kabul edelim. Bu takdirde, 
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                                 (𝐶(𝑈, 𝑉) ⋅ 𝐻)(𝑊, 𝑌)𝑍 = 0                         (49) 

 

𝐶(𝜉, 𝑉)𝐻(𝑊, 𝑌)𝑍 − 𝐻(𝐶(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝐻(𝑊, 𝐶(𝜉, 𝑉)𝑌)𝑍 − 𝐻(𝑊, 𝑌)𝐶(𝜉, 𝑉)𝑍 = 0        (50) 

 

𝜂(𝐶(𝜉, 𝑉)𝐻(𝑊, 𝑌)𝑍) − 𝜂(𝐻(𝐶(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝐻(𝑊, 𝐶(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝐻(𝑊, 𝑌)𝐶(𝜉, 𝑉)𝑍) = 0      (51) 

yazılır. {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (51) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapıldığında (toplam alınırsa), 

0=− ∑ 𝜂(𝐻(𝐸𝑗 , 𝑌)𝐶(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝐻(𝐸𝑗 , 𝐶(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

                        − ∑ 𝜂(𝐻(𝐶(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                        + ∑ 𝜂(𝐶(𝜉, 𝐸𝑗)𝐻(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1                            (52) 

elde edilir. (52) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (15)-(18) ve (35) nolu eşitlikler kullanılarak, 

     − ∑ 𝜂(𝐻(𝐸𝑗 , 𝑌)𝐶(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 = (

2𝑛𝛼²𝑟

(2𝑛−1)2) 𝜂(𝑌)𝜂(𝑍)          (53) 

 

                  − ∑ 𝜂(𝐻(𝐸𝑗 , 𝐶(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                  =
1

2𝑛−1
[𝛼²𝜂(𝐶(𝜉, 𝑍)𝑌) − 𝜂(𝐶(𝜉, 𝑄𝑍)𝑌)]                 (54) 

 

                   − ∑ 𝜂(𝐻(𝐶(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                  = − (
2𝑟

(2𝑛−1)2
) [2𝑛𝛼²𝜂(𝑌)𝜂(𝑍) + 𝑆(𝑌, 𝑍)]  
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                              −
2𝛼2𝑟

(2𝑛−1)2
(−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))                    (55) 

 

                    ∑ 𝜂(𝐶(𝜉, 𝐸𝑗)𝐻(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                = − [−
𝑟

2𝑛(2𝑛−1)
+

𝛼2

2𝑛−1
] [

𝑟

2𝑛−1
𝑔(𝑌, 𝑍) + 𝜂(𝐻(𝜉, 𝑍)𝑌)]  

                       +
1

2𝑛−1
[𝜂(𝐻(𝑄𝜉, 𝑍)𝑌) −

2𝑛+1

2𝑛−1
𝑆(𝑄𝑌, 𝑍) 

                       +
1

2𝑛−1
(∑ ‖𝑄𝐸𝑗‖²𝑔(𝑌, 𝑍)2𝑛+1

𝑗=1 + 𝑟𝑆(𝑌, 𝑍))]        (56) 

 

bulunur. (53)-(56) eşitlikleri birlikte hesaba katılırsa (52) nolu 

eşitlik 

2𝑛𝑆(𝑄𝑌, 𝑍) + (𝑟 − (2𝑛 − 1)𝛼²)𝑆(𝑌, 𝑍) 

             = [(𝛼2 +
𝑟

2𝑛
) 𝑟 − 2𝑛𝛼⁴ + ∑ ‖𝑄𝐸𝑗‖²2𝑛+1

𝑗=1 ] 𝑔(𝑌, 𝑍)        (57) 

haline indirgenir. (57) nolu eşitlikte gerekli düzenlemeler yapılırsa 

(48) denklemine ulaşılır. Bundan sonra kısalık olarak 

                  ∑ ‖𝑄𝐸𝑗‖²2𝑛+1
𝑗=1 = ∑ 𝑔(𝑄𝐸𝑗 , 𝑄𝐸𝑗)2𝑛+1

𝑗=1 = ‖𝑄‖²  

şeklinde alalım. Böylece ispat sonlanır. 

Teorem 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, (𝑛 ≥ 1) eğer 𝑀 üzerinde 

𝐶 ⋅ 𝐻 = 0 tensörel çarpımı sağlanıyorsa, o zaman (𝑔, 𝜉, 𝜆) Ricci 

solitonu için,      

    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde hem genişleyen hem daralan 

Ricci solitonlar vardır. 

önermeleri geçerlidir. 
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İspat. (𝑀, 𝑔, 𝜉, 𝜆), Ricci solitonlu alfa-kosimplektik manifold 

olsun. Hatırlatmalıyız ki, 

       𝑆(𝑄𝑌, 𝑍) = 𝑆²(𝑌, 𝑍) = 𝑆(−2𝑛𝛼²𝑌, 𝑍) = −2𝑛𝛼²𝑆(𝑌, 𝑍)    (58) 

eşitliği yazılabilir. (27)-(30), (48) ve (58) nolu eşitlikleri 

kullanılarak, 𝑌 = 𝑍 = 𝜉 olmak üzere, 

                       2𝑛(−𝜆𝑆(𝜉, 𝜉)) = [(2𝑛 − 1)𝛼² − 𝑟]𝑆(𝜉, 𝜉) 

                      +[(𝛼2 +
𝑟

2𝑛
) 𝑟 − 2𝑛𝛼⁴ + ‖𝑄‖²]                            (59) 

bulunur. (59) nolu eşitlik yardımıyla,                               

       ‖𝑄‖² = 2𝑛𝜆² + 2𝑛𝛼²𝜆 − 𝜆𝛼² − 𝑟𝜆 − 𝛼²𝑟 −
𝑟2

2𝑛
+ 2𝑛𝛼⁴     (60) 

şeklinde yazılır. Bundan başka, (48) nolu eşitliğin izi alınırsa, o 

zaman                        

                     ‖𝑄‖² = 2𝑛(2𝑛 + 1)𝛼⁴ − 4𝑛𝛼²𝑟 −
𝑟2

2𝑛
                    (61) 

elde edilir. (60) ve (61) nolu denklemler kullanılarak, 𝛼, 𝜆 ∈ 𝐼𝑅 ve 

𝑛 ≥ 1 (𝑛 ∈ ℕ) ve 𝑟 = −2𝑛(2𝑛 + 1)𝛼² olmak üzere, 

2𝑛𝜆2 + (𝛼2[2𝑛 − 1] − 𝑟)𝜆 

                             −𝛼²(𝑟[1 − 4𝑛] + 4𝑛²𝛼²) = 0                       (62) 

denklemi bulunur. Şimdi, (62) nolu denklem  ile verilen ikinci 

dereceden kuadratik denklemin reel çözümünün olup olmadığını 

araştıralım. Bu durumda, 

              𝛥 = 𝛼⁴[(4𝑛² + 4𝑛 − 1)² + 8𝑛(16𝑛³ + 8𝑛² − 2𝑛)] 

dır. Burada 𝛥 ≥ 0 olduğu görülür. O halde, (62) nolu denklemin iki 

farklı reel kökü aşağıdaki verilmiştir:                       

                                  𝜆 =
−(4𝑛²+4𝑛−1)𝛼²±𝛼²√𝛥

4𝑛
                              (63) 
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Ricci soliton sadece reel kökler varsa mevcuttur. (62) nolu denklem 

𝛼 = 0 için 𝜆 = 𝑟/2𝑛 değerini alır. Bu nedenle, 𝑟 = 0 olduğundan 

𝜆 = 0 dır. Bu durumda, Ricci soliton sabittir (metrik zamanla 

değişmez, akış sabittir). Diğer yandan, 𝛼 ≠ 0 şartı altında (63) nolu 

denklem 𝛼² ve 𝑛 ye bağlı iki farklı reel çözümü mevcuttur. Bu 

çözümlerden biri pozitif diğeri de negatiftir (simetrik çözüm). 

Manifold hem daralan hem de genişleyen Ricci soliton taşır. 

Böylece teoremin iki şıkkının da ispatı sonlanır. 

Sonuç 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-Kenmotsu 

manifold ve 𝛼, 𝜉 boyunca paralel olsun (𝑛 ≥ 1). Eğer 𝑀 üzerinde 

𝐶 ⋅ 𝐻 = 0 tensörel çarpımı sağlanıyorsa, o zaman 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu sabit değildir. 
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BAZI FARKLI YARI-SİMETRİK KOŞULLARI 

SAĞLAYAN ALFA-KOSİMPLEKTİK 

MANİFOLDLAR ÜZERİNDE RİCCİ 

SOLİTONLAR 

 

  Sermin ÖZTÜRK1 

Giriş 

Konsirküler ve konharmonik eğrilik tensörleri, Riemann eğrilik 

tensörünün konformal veya projektif dönüşümler altında ortaya 

çıkan özel bileşenleridir. Konsirküler eğrilik tensörü, bir 

Riemann manifoldunda eğrilik yapısını, sabit eğrilikli uzaydan olan 

sapmasını olduğu gibi izole edecek şekilde ölçen doğal bir tensör 

alanıdır. Konformal geometri bağlamında ortaya çıkan bu tensör, 

esasen Riemann eğrilik tensörünün içerdiği skaler kökenli ve 

homojen sabit eğrilik bileşenlerini çıkararak, uzayın gerçek 

anlamda şekil değiştirici eğrilik yapısını ortaya çıkarmayı sağlar. 

Konsirküler eğrilik tensör alanının özdeş olarak sıfır 

olması, manifoldun lokal olarak sabit eğrilikli bir uzay (uzay 

formu) olduğuna eşdeğer kabul edilir. Diğer yandan, 

konharmonik eğrilik tensörü, bir Riemann manifoldundaki eğrilik 

yapısının belirli bir geometrik dönüşüm sınıfı altında invaryant 

kalan temel bileşenini izole eden bir ölçüttür. Weyl konformal 

eğrilik tensörüne yakın bir yapıya sahip olmakla birlikte ondan 

skaler eğrilik terimiyle ayrışır. En kritik özelliği, konharmonik 
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BÖLÜM 2

--20--



dönüşümler altında tam bir değişmez olması ve her yöndeki 

ortalama eğriliği sıfır olacak şekilde izsiz olmasıdır. Bu yapısıyla 

uzayın biçimini veya büyüklüğünü değil, yalnızca iç geometrisinin 

bozulma derecesini inceler. Dolayısıyla uzayın ölçeklendirilmesiyle 

ilgisiz olan saf şekil bozukluğunu taşır. Konharmonik eğrilik 

tensörünün özdeş olarak sıfır olması, uzayın bu özel 

dönüşümler açısından düz kabul edilmesine karşılık gelir. 

Yarı-simetriyi simetrik uzayların doğal deformasyonları olarak ele 

alabiliriz. Bir simetrik uzayın homojen yapısını bozduğunuzda, 

eğrilik artık sabit kalmayacaktır. Fakat değişim belirli bir düzene 

uyacaktır. Yani, yarı-simetri, bu düzeni matematiksel olarak temsil 

eder. Bir Riemann manifoldunun yarı-simetrik olması için manifold 

üzerinde tanımlı herhangi 𝑋 ve 𝑌 vektör alanlarına karşılık, 

𝑅(𝑋, 𝑌) ∙ 𝑅 =  0 tensörel çarpımının sağlanması gerekir. Bu 

denklemde 𝑅 eğrilik tensörü, bir cebirsel operatör gibi davranarak 

uzayın geometrik yapısını kodlar. Bu tür uzaylara yarı-simetrik 

denilmesinin nedeni, herhangi bir 𝑞 noktasında manifoldun eğrilik 

tensörünün, klasik simetrik uzaylardaki eğrilik tensörüyle 

örtüşebilmesidir. Ancak bu uyum, noktadan noktaya değişiklik 

gösterebilen bir özelliktir. Lokal simetrik uzaylar ise daha katı bir 

simetri koşulu getirir, yani; 𝛻𝑅 =  0 ile tanımlıdır. Burada 𝛻 Levi-

Civita konneksiyonunu temsil eder ve bu koşul, eğrilik tensörünün 

manifold boyunca sabit kaldığını ifade eder. Yarı-simetrik uzayların 

sistematik sınıflandırması, Szabó'nun 1982 yılındaki çalışmasıyla 

yeni bir aşamaya ulaşmıştır  (Szabó, 1982). Fakat bu tanımlama, 

Nomizu'nun 1968 yılında ifade ettiği 𝑅 · 𝑅 = 0 tensörel çarpımına 

dayanmaktadır (Nomizu, 1968). 

Kenmotsu manifoldları değme geometrisi ile hemen hemen 

Kaehler geometrisinin kesişiminde doğan özel yapılardır 

(Kenmotsu, 1972). Sasakian manifoldlar sabit eğrilik ortaya 

koyarken, Kenmotsu manifoldlar sabit olmayan, ancak kontrollü 

bir şekilde değişen bir eğrilik yapısı sunarlar. 
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Bir Kenmotsu manifoldu, bir hemen hemen değme metrik yapı ile 

donatılmıştır, ancak burada kritik fark, temel 2-formun özdeş 

olarak sıfır olmaması ve bunun yerine dış türevinin temel 2-formun 

kendisiyle orantılı olmasıdır. Bu özellik, bu tür manifoldlara 

benzersiz bir davranış kazandırır. Lokal olarak bir katlı çarpım 

şeklinde ifade edilebilirler. Özellikle konformal olarak düz olanlar, 

bir reel doğrunun sabit eğrilikli bir manifold ile katlı çarpımına 

eşittir. Yani,  Kenmotsu yapılar değme dağılımına teğet yönde 

standart bir Sasakian benzeri yapıyı korurken, diğer yandan reeb 

vektör alanı boyunca bir üstel genişleme veya büzülme meydana 

getirirler.  

Hemen hemen Kenmotsu yapılar 𝛼 parametresiyle genelleştirerek 

hemen hemen alfa-Kenmotsu manifold olarak adlandırılmıştır 

(Janssens & Vanhecke, 1981). Ayrıca, Kim ve Pak bu gelişmeyi bir 

adım öteye taşıyarak, hemen hemen alfa-Kenmotsu yapılar ile 

hemen hemen kosimplektik yapıları birleştirerek yeni bir sınıf olan 

hemen hemen alfa-kosimplektik manifoldları tanımlamışlardır 

(Kim & Pak, 2005).  

Kosimplektik yapı, bir manifold üzerinde, hem bir simplektik 

yapı (kapalı ve dejenere olmayan 2-form) hem de uyumlu 

bir Riemann metriğini ilave eden geometrik bir yapıdır. Bilindiği 

üzere manifold teorisinde iki büyük alan vardır. Bunlar, simplektik 

ve kompleks geometridir. Kosimplektik yapı, bu iki alt disiplini 

birleştirerek, her birinin özelliklerini diğerine aktarmasını sağlar. 

Bu yapılar, sadece matematiksel fizikteki uygulamalarıyla değil, 

aynı zamanda manifoldların topolojik karakterizasyonu ve 

holonomi teorisindeki merkezi rolleriyle de dikkat çekerler. 

Kosimplektik yapının özel bir hali olan Kaehler manifoldları, 

Hodge teorisi ve cebirsel geometri ile derin bağlantılar içerir. 

Hemen hemen kosimplektik manifoldlar ise simplektik geometri ile 

değme geometri arasında köprü oluşturarak mekanik sistemlerin 

genişletilmiş bir çerçevede incelenmesine olanak tanır. 
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Ricci akışı, bir manifoldun metrik yapısının zaman içinde Ricci 

eğriliğine göre nasıl evrimleştiğini tanımlayan, doğal bir parabolik 

kısmi diferensiyel denklemdir. Fiziksel bir benzetmeyle, bu akış 

başlangıçtaki karmaşık ve düzensiz bir şekli (manifoldu) ısıyı eşit 

dağıtan bir süreç gibi onun içsel eğriliğini yavaşça yumuşatarak ve 

düzelterek daha homojen bir forma doğru değiştirir. Bu akışın en 

büyük çıktısı Poincaré hipotezinin ispatındaki önemidir. Ricci 

akışının özel ve dengeli çözümleri olan Ricci solitonları ise bu 

evrim sürecinde ölçek değişimine karşın şekli korunan adeta 

hareketsiz gibi görünen hareketlerdir. Sabit, genişleyen ve büzülen 

(daralan) olarak sınıflandırılan bu yapılar Ricci akışının sabit 

noktaları gibi davranırlar ve akışın dinamiğini anlamak için temel 

yapı taşlarıdır. Böylece Ricci solitonları geometrinin dilinde 

evrimin durağan anlarını simgeleyen özel ve zarif nesneler olarak 

karşımıza çıkar. Richard Hamilton'ın 1982 yılındaki çalışmasıyla 

matematik dünyasına hediye edilmiştir (Hamilton, 1982). 

Hamilton'un 1988 yılında yüzeyler üzerindeki Ricci akışını 

detaylıca incelemesi, sürecin temel özelliklerini ortaya çıkarmıştır 

(Hamilton, 1988). Ancak bu çalışmalar, akış sırasında ortaya çıkan 

ve eğriliğin sonsuza ıraksadığı metrik tekilliklerin varlığını da 

göstermiştir. Grigori Perelman'ın 2002 yılındaki çalışması, 3-

boyutlu manifoldlarda Ricci akışının tekilliklerini sistematik olarak 

sınıflandırarak bu sorunu aşmayı başarmıştır (Perelman, 2002). 

Bu çalışmada, Ricci solitonlu alfa-kosimplektik manifoldlar 

üzerinde bazı farklı yarı-simetrik şartlar incelenmiştir. Özellikle, 

konsirküler ve konharmonik eğrilik tensör alanları kullanılarak 𝐶̅ ⋅

𝐻 = 0 ve 𝐻 ⋅ 𝐻 = 0 koşulları araştırılmış ve bazı önemli sonuçlar 

elde edilmiştir.  
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Temel Kavramlar 

Bir (2𝑛 + 1)-boyutlu türevlenebilir manifold 𝑀 olsun. Her 𝑋, 𝑌 ∈

𝜒(𝑀) için; 𝜙, (1,1)-tipli bir tensör alanı, 𝜉 bir vektör alanı ve 𝜂, 1-

form olmak üzere, 

                                          𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝜉                            (1) 

                            𝜂(𝜉) = 1, 𝜙(𝜉) = 0, 𝜂 ∘ 𝜙 = 0                        (2) 

                          𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                     (3) 

                                           𝜂(𝑋) = 𝑔(𝑋, 𝜉)                                   (4) 

deklemleriyle verilen 𝑔 metrik tensörü ile donatılmış (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

yapısına bir hemen hemen değme metrik manifold denir. Burada 

𝑔(𝜉, 𝜉) = 1 dir. Bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen değme metrik 

yapının temel 2-formu  

                                        Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌)                              (5) 

şeklinde tanımlanır (Blair, 1976). (1,3)-tipli Riemann eğrilik 

tensörü 𝑅 olmak üzere, 

                          𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑍𝑋 − 𝛻[𝑋,𝑌]𝑍               (6) 

şeklinde tanımlıdır. Bundan başka, (2𝑛 + 1)-boyutlu bir Riemann 

manifoldu üzerinde (0,2)-tipli Ricci tensörü ve Ricci operatörü, 

sırasıyla,  

                            𝑆(𝑋, 𝑌) = ∑ 𝑔(𝑅(𝐸𝑗 , 𝑋)𝑌, 𝐸𝑗)2𝑛+1
𝑗=1            (7) 

                                      𝑆(𝑋, 𝑌) = 𝑔(𝑄𝑋, 𝑌)                                 (8) 

ile verilir. Burada {𝐸₁, 𝐸₂, . . . , 𝐸𝑛} lokal ortonormal bir tabandır 

(Yano & Kon, 1984). (2𝑛 + 1)-boyutlu bir hemen hemen değme 

metrik manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) ile verilsin. Eğer manifoldu 𝑀 × ℝ 

şeklinde düşünürsek, her vektör alanı 𝑋 için, (𝑋, 𝑓
𝑑

𝑑𝑡
) yardımıyla 

𝑀 × ℝ üzerinde bir vektör alanı belirtebiliriz. Burada 𝑡, ℝ 

üzerindeki koordinat ve 𝑓, 𝑀 × ℝ üzerinde bir türevlenebilir 
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fonksiyondur. Böylece 𝑀 × ℝ üzerinde 𝐽 hemen hemen kompleks 

yapısı 

                           𝐽 (𝑋, 𝑓
𝑑

𝑑𝑡
) = (𝜙𝑋 − 𝑓𝜉, 𝜂(𝑋)

𝑑

𝑑𝑡
)                        (9) 

ile verilir. Eğer 𝐽 integrallenebilirse o zaman, hemen hemen değme 

metrik (𝑀, 𝜙, 𝜉, 𝜂)-yapısı normaldir. 𝐽 kompleks yapısının 

integrallenebilmesi için gerek ve yeter şart 

                                [𝜙, 𝜙](𝑋, 𝑌) + 2𝑑𝜂(𝑋, 𝑌)𝜉 = 0                   (10) 

denkleminin sağlanmasıdır (Yano & Kon, 1984). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

hemen hemen değme metrik manifoldu 

                                          𝑑𝜂 = 0, 𝑑Φ = 0                                (11) 

şartlarını sağlıyorsa, 𝑀 ye hemen hemen kosimplektik manifold 

denir. Eğer bir hemen hemen kosimplektik manifold normal ise bu 

manifolda kosimplektik manifold denir. 𝑀 nin bir kosimplektik 

manifold olması için gerek ve yeter şart 𝛻𝛷 ve 𝛻𝜂 kovaryant 

türevlerinin özdeş olarak sıfır olmasıdır (Olszak, 1981). Eğer 𝑀 

üzerinde ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) ve 𝛼 ∈ ℝ, 𝛼 ≠ 0 için,  

                                𝑑𝜂 = 0, 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)                           (12) 

denklemleri sağlanıyorsa, 𝑀 ye bir hemen hemen alfa-Kenmotsu 

manifold denir (Janssens & Vanhecke, 1981). Özel olarak, 𝛼 = 1 

durumu hemen hemen Kenmotsu olarak adlandırılır (Kenmotsu, 

1972). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) normal ise o zaman alfa-Kenmotsu manifold 

olarak adlandırılır. Herhangi vektör alanları ve keyfi 𝛼 reel sayısı 

için, (11) denklemleri sağlanıyorsa, 𝑀 ye hemen hemen alfa-

kosimplektik manifold denir. Özel olarak, 𝛼 = 0 için hemen hemen 

kosimplektik manifold, 𝛼 ≠ 0 için hemen hemen alfa-Kenmotsu 

manifold olarak adlandırılır. Eğer hemen hemen değme metrik yapı 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) Kaehler yapıya sahipse o zaman 𝛼 reel sayısı için 

𝑀 ye alfa-kosimplektik manifold denir. Yani, 𝛼 = 0 için 
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(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı kosimplektik veya 𝛼 ≠ 0 için alfa-Kenmotsu 

olarak adlandırılır (Kim & Pak, 2005). 

Önerme 1. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. 𝑀 nin bir alfa-kosimplektik manifold 

olması için gerek ve yeter şart, ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                    (𝛻𝑋𝜙)𝑌 = 𝛼[𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋]                       (13) 

dir (Öztürk, 2021).  

Önerme 2. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. Bu durumda,  ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                               𝛻𝑋𝜉 = 𝛼𝑋 − 𝛼𝜂(𝑋)𝜉                                    (14) 

               𝑅(𝑋, 𝑌)𝜉 = −(𝛼² + 𝜉(𝛼))[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]               (15) 

                   𝑅(𝑋, 𝜉)𝑌 = (𝛼² + 𝜉(𝛼))[𝑔(𝑌, 𝑋)𝜉 − 𝜂(𝑌)𝑋]          (16) 

                             𝑅(𝑋, 𝜉)𝜉 = (𝛼² + 𝜉(𝛼))𝜙²𝑋                          (17) 

  𝜂(𝑅(𝑋, 𝑌)𝑍) = (𝛼² + 𝜉(𝛼))[−𝜂(𝑋)𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝑋, 𝑍)]  (18) 

                              𝑆(𝑋, 𝜉) = −2𝑛(𝛼² + 𝜉(𝛼))𝜂(𝑋)                   (19) 

                                     𝑄𝜉 = −2(𝛼² + 𝜉(𝛼))𝑛𝜉                         (20) 

denklemleri sağlanır. Burada 𝛼, 𝑑𝛼 ∧ 𝜂 = 0 şartını sağlayan 

türevlenebilir bir fonksiyondur (Öztürk & ark., 2017). 

Tanım 1. 𝑀, (2𝑛 + 1)-boyutlu bir Riemann manifoldu olsun. Bu 

durumda, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için, 

𝐶̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 

                        −
𝑟

2𝑛(2𝑛−1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                      (21)                     

ve 
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                                  𝐻(𝑌, 𝑍)𝑊 = 𝑅(𝑌, 𝑍)𝑊                             (22) 

−
1

2𝑛 − 1
[𝑆(𝑍, 𝑊)𝑌 − 𝑆(𝑌, 𝑊)𝑍 + 𝑔(𝑍, 𝑊)𝑄𝑌 − 𝑔(𝑌, 𝑊)𝑄𝑍] 

şeklinde tanımlanan (1,3)-tipli 𝐶̅ ve 𝐻 tensör alanlarına sırasıyla, 

konsirküler  ve konharmonik eğrilik tensör alanları denir (Yano ve 

Kon, 1984). 

Ricci Solitonlar 

Bu bölümde, bulgular bölümünde kullanılacak temel tanımlar ve 

eğrilik özellikleri verilmiştir. 

Tanım 2. (𝑀, 𝑔₀) bir 𝑛-boyutlu Riemann manifoldu olsun. Bu 

durumda, 

                         
𝜕

𝜕𝑡
(𝑔(𝑡)) + 2𝑆(𝑔(𝑡)) = 0, 𝑔(0) = 𝑔₀        (23) 

kısmi türevli diferensiyel denklemine 𝑔 metrik tensörünü eviren 

Ricci akışı denir (Hamilton, 1982). Burada 𝑡 zaman parametresidir. 

Tanım 3. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. Eğer 

𝑀 üzerinde keyfi vektör alanları 𝑋, 𝑌 ve 𝑉 için, 𝜆 gerçel bir skaler 

olmak üzere, 

                     (𝐿𝑉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0            (24) 

denklemi sağlanıyorsa, (𝑀, 𝑔) ye Ricci soliton denir. Burada 𝑉 

vektör alanı Ricci solitonun potansiyel vektör alanı ve 𝐿𝑉𝑔 de 𝑉 

yönündeki 𝑔 metriğinin Lie türevidir. Bu durumda, Ricci soliton 

(𝑀, 𝑔, 𝑉, 𝜆) ile sembolize edilir. (𝑀, 𝑔, 𝑉, 𝜆) Ricci solitonuna 𝜆 

değerinin 𝜆 < 0, 𝜆 = 0 ve 𝜆 > 0 durumları için, sırasıyla, daralan, 

değişmeyen ve genişleyen Ricci soliton adı verilir (Hamilton, 

1988). 

Tanım 4. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. 𝐿𝑉𝑔, 𝑉 

yönündeki 𝑔 metriğinin Lie türevi olmak üzere, 

                      (𝐿𝑉𝑔)(𝑋, 𝑌) = 𝑔(∇𝑋𝑉, 𝑌) + 𝑔(𝑋, 𝛻𝑌𝑉)                (25) 
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dır (Yano & Kon, 1984). 

Tanım 5. (𝑀, 𝑔, 𝑉, 𝜆) bir Ricci soliton olsun. Eğer 𝑉 potansiyel 

vektör alanı Killing vektör alanı (𝐿𝑉𝑔 = 0) ise o zaman (𝑀, 𝑔, 𝑉, 𝜆) 

ye basit Ricci soliton adı verilir (Chen 2015). 

Tanım 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-kosimplektik 

manifold olsun. Eğer 𝑀 üzerinde (𝑔, 𝑉, 𝜆) Ricci solitonu mevcutsa, 

(𝑀, 𝑔, 𝑉, 𝜆) ya Ricci solitonlu alfa-kosimplektik manifold denir 

(Hamilton, 1988), (Kenmotsu, 1972). 

Önerme 3. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, Ricci eğrilik tensör alanı 

                    𝑆(𝑋, 𝑌) = −(𝛼 + 𝜆)𝑔(𝑋, 𝑌) + 𝛼𝜂(𝑋)𝜂(𝑌)            (26) 

denklemini sağlar. Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca 

paralel olarak alınmıştır (Öztürk & Bektaş, 2023). 

Önerme 4. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, aşağıdaki önermeler geçerlidir: 

                                     𝑆(𝑋, 𝜉) = −𝜆𝜂(𝑋)                                  (27) 

                                    𝑄𝑋 = 𝛼𝜂(𝑋)𝜉 − (𝛼 + 𝜆)𝑋                      (28) 

                                              𝑄𝜉 = −𝜆𝜉                                      (29) 

                                           𝑆(𝜉, 𝜉) = −𝜆                                     (30) 

                                   𝑟 = 𝛼 − (2𝑛 + 1)(𝛼 + 𝜆).                       (31) 

Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca paralel olarak 

alınmıştır (Öztürk & Bektaş, 2023). 

 

--28--



Bulgular 

Bu bölümde, 𝐶̅ ⋅ 𝐻 = 0 ve 𝐻 ⋅ 𝐻 = 0 farklı yarı-simetrik tensör 

koşulları incelenmiştir. Bu koşullar altında Ricci solitonlu alfa-

kosimplektik manifoldlar üzerinde bazı sonuçlar elde edilmiştir.  

Tanım7. 𝑀 bir (yarı) Riemann manifoldu olsun. 𝑇₁ ve 𝑇₂ (0,4)-tipli 

tensör alanları olmak üzere, eğer 𝑀 üzerinde keyfi vektör alanları 

𝑈 ve 𝑉 için, 

                                    𝑇₁(𝑈, 𝑉) ⋅ 𝑇₂ = 0                                     (32) 

şartı sağlanıyorsa, 𝑀 ye 𝑇₂ yarı-simetrik tipli manifold denir. 

Burada 𝑇₁(𝑈, 𝑉), 𝑇₂ üzerindeki tensör cebirinin türevi olarak etki 

eder. Bu tanım genel olarak, 

                                              𝑇₁ ⋅ 𝑇₂ = 0                                     (33) 

şeklinde yazılır. Özel olarak, 𝑇₁ = 𝑇₂ = 𝑅 olarak alınırsa, manifold 

yarı-simetrik olarak adlandırılır (Szabó 1982). 

Lemma 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı için 𝜉(𝛼) = 0 olsun. Bu durumda, 

konformal ve konharmonik eğrilik tensör alanları için, 

𝜂(𝐶̅(𝑈, 𝑉)𝑊) = − [
𝑟

2𝑛(2𝑛 + 1)
+ 𝛼2] 

                                         [𝑔(𝑉, 𝑊)𝜂(𝑈) − 𝑔(𝑈, 𝑊)𝜂(𝑉)]       (34) 

ve 

𝜂(𝐻(𝑈, 𝑉)𝑊) =  
𝛼2

2𝑛 − 1
[𝑔(𝑉, 𝑊)𝜂(𝑈) − 𝑔(𝑈, 𝑊)𝜂(𝑉)] 

                               −
1

2𝑛−1
[𝑆(𝑉, 𝑊)𝜂(𝑈) − 𝑆(𝑈, 𝑊)𝜂(𝑉)]       (35) 

 

denklemleri sağlanır. 

İspat. (21) ve (22) nolu eşitlikler birlikte kullanılırsa (34) ve (35) 

nolu eşitliklerin ispatları aşikardır.  
--29--



Önerme 5. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold ve  𝜉(𝛼) = 0 olsun. Eğer 𝑀 üzerinde 𝐶̅ ⋅ 𝐻 = 0 tensörel 

çarpımı mevcutsa, o zaman keyfi vektör alanları için, 

                             [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] 2𝑛𝑆(𝑌, 𝑍) =  

                             [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] (2𝑛𝛼² + 𝑟)𝑔(𝑌, 𝑍)  

[−(2𝑛𝛼² + 𝑟)
𝑟

2𝑛(2𝑛 + 1)
+ 4𝑛²𝛼⁴] 𝜂(𝑌)𝜂(𝑍) 

                    + [−4𝑛²𝛼² (
𝑟

2𝑛(2𝑛+1)
+ 𝛼2)] 𝜂(𝑌)𝜂(𝑍)                  (36) 

eşitliği geçerlidir.  

İspat. 𝑀 üzerinde alfa-kosimplektik manifoldunun 𝐶̅ ⋅ 𝐻 = 0 

tensörel çarpımını sağladığını kabul edelim. Bu takdirde, aşağıdaki 

eşitlikler sağlanır: 

                                      (𝐶̅(𝑈, 𝑉) ⋅ 𝐻)(𝑊, 𝑌)𝑍 = 0                    (37) 

 

𝐶̅(𝜉, 𝑉)𝐻(𝑊, 𝑌)𝑍 − 𝐻(𝐶̅(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝐻(𝑊, 𝐶̅(𝜉, 𝑉)𝑌)𝑍 − 𝐻(𝑊, 𝑌)𝐶̅(𝜉, 𝑉)𝑍 = 0         (38) 

 

𝜂(𝐶̅(𝜉, 𝑉)𝐻(𝑊, 𝑌)𝑍) − 𝜂(𝐻(𝐶̅(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝐻(𝑊, 𝐶̅(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝐻(𝑊, 𝑌)𝐶̅(𝜉, 𝑉)𝑍) = 0       (39) 

yazılır.  {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (39) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapılırsa,  
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0=− ∑ 𝜂(𝐻(𝐸𝑗 , 𝑌)𝐶̅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝐻(𝐸𝑗 , 𝐶̅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

                               − ∑ 𝜂(𝐻(𝐶̅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                                + ∑ 𝜂(𝐶̅(𝜉, 𝐸𝑗)𝐻(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1                 (40) 

elde edilir. (40) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (37)-(39) nolu eşitlikler kullanılarak hesap 

yapılırsa, 

                              ∑ 𝜂(𝐻(𝐸𝑗 , 𝑌)𝐶̅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1  

                          = −
1

2𝑛−1
[−

𝑟

2𝑛(2𝑛+1)
(2𝑛𝛼² + 𝑟) + 4𝑛²𝛼⁴  

                              +2𝑛𝛼2 [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2]] 𝜂(𝑌)𝜂(𝑌)               (41) 

 

                         ∑ 𝜂(𝐻(𝐸𝑗 , 𝐶̅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                         =
1

2𝑛−1
[𝜂(𝐶(𝜉, 𝑄𝑍)𝑌) − 𝛼²𝜂(𝐶(𝜉, 𝑍)𝑌)]          (42) 

 

                   ∑ 𝜂(𝐻(𝐶̅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                     =
−2𝑛𝛼2

2𝑛−1
[

𝑟

2𝑛(2𝑛−1)
+ 𝛼²] (𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))     

            +
2𝑛

2𝑛−1
[

𝑟

2𝑛(2𝑛−1)
+ 𝛼²] [2𝑛𝛼²𝜂(𝑌)𝜂(𝑍) + 𝑆(𝑌, 𝑍)]        (43) 

 

                   ∑ 𝜂(𝐶̅(𝜉, 𝐸𝑗)𝐻(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1      

            = [
𝑟

2𝑛(2𝑛−1)
+ 𝛼2] [

𝑟

(2𝑛−1)
𝑔(𝑌, 𝑍) + 𝜂(𝐻(𝜉, 𝑍)𝑌)]         (44) 

bulunur. Son olarak, (41)-(44) nolu eşitlikler birlikte göz önüne 

alınırsa (36) nolu eşitliğe ulaşılır. Böylece ispat sonlanır. 
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Önerme 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold, 𝜉(𝛼) = 0 ve 𝑀 üzerinde 𝐶̅ ⋅ 𝐻 = 0 tensörel çarpımı 

mevcut olsun. Eğer 𝑟 ≠ −2𝑛(2𝑛 + 1)𝛼² ise o zaman 𝑀 bir 𝜂-

Einstein manifoldudur. 

İspat. Öncelikle 𝜂-Einstein manifold tanımını verelim: 

Tanım 8. 𝑀, (2𝑛 + 1)-boyutlu bir Riemann manifold olmak üzere, 

∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                      𝑆(𝑋, 𝑌) = 𝜇₁𝑔(𝑋, 𝑌) + 𝜇₂𝜂(𝑋)𝜂(𝑌)                     (45) 

koşulu sağlanıyorsa, 𝑀 ye bir 𝜂-Einstein manifoldu denir, burada 

𝜇₁ ve 𝜇₂, 𝑀 üzerindeki keyfi fonksiyonlardır. Özel olarak, 𝜇₂ = 0 

alındığında 𝑀 bir Einstein manifoldu olur (Blair, 1976). 

(36) nolu eşitlikte 𝑌 = 𝑍 = 𝜉 alınırsa, 

𝑟𝛼² = −2𝑛(2𝑛 + 1)𝛼⁴ 

bulunur. (45) nolu eşitlikteki (𝜂 ⊗ 𝜂) tensörel çarpım kısmının 

özdeş olarak sıfır olmaması için 𝑟 ≠ −2𝑛(2𝑛 + 1)𝛼² olmalıdır. 

Böylece ispat sonlanır. 

Teorem 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 üzerinde 𝐶̅ ⋅ 𝐻 = 0 

tensörel çarpımı sağlanıyorsa, o zaman (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu 

için, 

    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde Ricci soliton daima 

genişleyendir, 

ifadeleri geçerlidir. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitona sahip alfa-kosimplektik manifold 

olsun. Bu durumda, (27) nolu denklem yardımıyla 𝑌 = 𝑍 = 𝜉 için, 

(36) nolu denklem 
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                                [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] (4𝑛2𝛼2 − 2𝑛𝜆)  

                             = 2𝑛𝛼⁴ + 𝛼²𝑟 + 4𝑛²𝛼⁴                                  (46) 

formuna indirgenir. 𝜆 ya göre birinci dereceden denklemin          

𝑟 = −2𝑛(2𝑛 + 1)𝛼², 𝛼 ∈ 𝐼𝑅, 𝑛 ≥ 1 için çözümü 

𝜆 = 2𝑛𝛼² 

olarak bulunur. 𝛼 = 0 için 𝜆 = 0 ve 𝛼² > 0 için 𝜆 > 0 çözümleri 

geçerlidir. (a) ve (b) şıklarının ispatı Ricci soliton tanımından 

açıktır. Böylece ispat tamamlanır. 

Sonuç 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) üzerinde 𝜉(𝛼) = 0 olsun (𝑛 ≥ 1). Eğer 

𝑀 üzerinde 𝐶̅ ⋅ 𝐻 = 0 tensörel çarpımı mevcutsa o zaman 

(𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu asla küçülen (daralan) durumda değildir. 

Teorem 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-Kenmotsu 

manifold ve 𝛼, 𝜉 boyunca paralel olsun. Eğer 𝑛 ≥ 1 ve                

𝑟 ≠ −2𝑛(2𝑛 + 1)𝛼² için, 𝑀 üzerinde 𝐶̅ ⋅ 𝐻 = 0 tensörel çarpımı 

mevcutsa o zaman 𝑀 𝜂-Einstein manifoldu üzerinde (𝑔, 𝜉, 𝜆) Ricci 

solitonu daralan durumdadır. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitona sahip 𝜂-Einstein alfa-Kenmotsu 

manifold olsun. Bu durumda, (27) nolu denklem yardımıyla 𝑌 =

𝑍 = 𝜉 ve 𝑟 ≠ −2𝑛(2𝑛 + 1)𝛼² için, (36) nolu denklem 

𝜆(−𝑟 − 4𝑛²𝛼² − 2𝑛𝛼²) = 𝛼²(2𝑛𝛼² + 4𝑛²𝛼² + 𝑟) 

formuna indirgenir. 𝜆 ya göre birinci dereceden denklemin           

𝑟 ≠ −2𝑛(2𝑛 + 1)𝛼², 𝛼² > 0, 𝑛 ≥ 1 için çözümü 

𝜆 = −𝛼² 

elde edilir. Sonuç olarak, 𝜆 < 0 çözümü geçerlidir. Ricci soliton 

tanımından ispat tamamlanır. 
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Önerme 7. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı üzerinde 𝜉(𝛼) = 0 olsun. Eğer 𝑀 

üzerinde 𝐻 ⋅ 𝐻 = 0 tensörel çarpımı mevcutsa, o zaman keyfi 

vektör alanları için, 

                                −𝑆(𝑄𝑌, 𝑍) +
(2𝑛−1)𝛼2

2𝑛
𝑆(𝑌, 𝑍) 

                                     = [𝛼4 −
‖𝑄‖2

2𝑛
]𝑔(𝑌, 𝑍)                             (47) 

denklemi sağlanır. 

İspat. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) alfa-kosimplektik manifoldunun 𝐻 ⋅ 𝐻 = 0 

tensörel çarpımını sağladığını kabul edelim. Bu takdirde, 

                                 (𝐻(𝑈, 𝑉) ⋅ 𝐻)(𝑊, 𝑌)𝑍 = 0                         (48) 

 

𝐻(𝜉, 𝑉)𝐻(𝑊, 𝑌)𝑍 − 𝐻(𝐻(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝐻(𝑊, 𝐻(𝜉, 𝑉)𝑌)𝑍 − 𝐻(𝑊, 𝑌)𝐻(𝜉, 𝑉)𝑍 = 0        (49) 

 

𝜂(𝐻(𝜉, 𝑉)𝐻(𝑊, 𝑌)𝑍) − 𝜂(𝐻(𝐻(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝐻(𝑊, 𝐻(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝐻(𝑊, 𝑌)𝐻(𝜉, 𝑉)𝑍) = 0      (50) 

yazılır. {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (50) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapıldığında (toplam alınırsa), 

0=− ∑ 𝜂(𝐻(𝐸𝑗 , 𝑌)𝐻(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝐻(𝐸𝑗 , 𝐻(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

                        − ∑ 𝜂(𝐻(𝐻(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                        + ∑ 𝜂(𝐻(𝜉, 𝐸𝑗)𝐻(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1                            (51) 

elde edilir. (51) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (15)-(18) ve (35) nolu eşitlikler kullanılarak, 
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    ∑ 𝜂(𝐻(𝐸𝑗 , 𝑌)𝐻(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 = − (

𝑛𝛼²𝑟

(2𝑛−1)2
) 𝜂(𝑌)𝜂(𝑍)          (52) 

 

                  ∑ 𝜂(𝐻(𝐸𝑗 , 𝐻(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

              =
1

2𝑛−1
[𝜂(𝐻(𝜉, 𝑄𝑍)𝑌)] −

𝛼2

2𝑛−1
𝜂(𝐻(𝜉, 𝑍)𝑌)]               (53) 

 

                        ∑ 𝜂(𝐻(𝐻(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                  = (
𝑟

(2𝑛−1)2
) [2𝑛𝛼²𝜂(𝑌)𝜂(𝑍) + 𝑆(𝑌, 𝑍)]  

                             +
𝛼2𝑟

(2𝑛−1)2
(−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))                    (54) 

 

                    ∑ 𝜂(𝐻(𝜉, 𝐸𝑗)𝐻(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                       =
1

2𝑛−1
[𝜂(𝐻(𝑄𝜉, 𝑍)𝑌) −

2𝑛+1

2𝑛−1
𝑆(𝑄𝑌, 𝑍) 

                       +
1

2𝑛−1
(∑ ‖𝑄𝐸𝑗‖²𝑔(𝑌, 𝑍)2𝑛+1

𝑗=1 + 𝑟𝑆(𝑌, 𝑍))]  

                        −
𝛼²

2𝑛−1
[

𝑟

2𝑛−1
𝑔(𝑌, 𝑍) + 𝜂(𝐻(𝜉, 𝑍)𝑌)]                  (55) 

yazılır. (52)-(55) nolu eşitlikler birlikte hesaba katılırsa (51) nolu 

eşitlik 

𝑆(𝑄𝑌, 𝑍) =
(2𝑛 − 1)𝛼2

2𝑛
𝑆(𝑌, 𝑍) − [𝛼4 −

‖𝑄‖2

2𝑛
]𝑔(𝑌, 𝑍) 

haline indirgenir. Yukarıdaki eşitlik düzenlenirse (47) nolu 

denkleme ulaşılır. Burada kısalık açısından 

                  ∑ ‖𝑄𝐸𝑗‖²2𝑛+1
𝑗=1 = ∑ 𝑔(𝑄𝐸𝑗 , 𝑄𝐸𝑗)2𝑛+1

𝑗=1 = ‖𝑄‖²  

alınmıştır. Böylece ispat tamamlanır. 

--35--



Teorem 3. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, (𝑛 ≥ 1) eğer 𝑀 üzerinde 

𝐻 ⋅ 𝐻 = 0 tensörel çarpımı sağlanıyorsa, o zaman (𝑔, 𝜉, 𝜆) Ricci 

solitonu için,      

    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde genişleyen Ricci solitonlar 

vardır, 

önermeleri sağlanır. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆), Ricci solitonlu alfa-kosimplektik manifold 

olsun. Ricci operatörü tanımından 

       𝑆(𝑄𝑌, 𝑍) = 𝑆²(𝑌, 𝑍) = 𝑆(−2𝑛𝛼²𝑌, 𝑍) = −2𝑛𝛼²𝑆(𝑌, 𝑍)    (56) 

yazılabilir. (47) ve (56) nolu eşitlikler yardımıyla 

                −𝛼2 (
4𝑛²+2𝑛−1

2𝑛
) 𝑆(𝑌, 𝑍) = [−𝛼4 +

‖𝑄‖2

2𝑛
]𝑔(𝑌, 𝑍)        (57) 

yazılır. 𝑌 = 𝑍 = 𝜉 için (57) nolu eşitlik (27) ve (30) nolu 

eşitliklerle birlikte kullanılırsa,       

                                −𝛼4 +
‖𝑄‖2

2𝑛
= 𝛼²𝜆 (

4𝑛²+2𝑛−1

2𝑛
)                     (58) 

bulunur. (58) nolu eşitlik sayesinde 

                         ‖𝑄‖² = 2𝑛𝛼⁴ + 𝛼²𝜆(4𝑛² + 2𝑛 − 1)                 (59) 

elde edilir. Bundan başka, (47) nolu eşitliğin izi alınırsa, o zaman                        

                          ‖𝑄‖² = 2𝑛𝛼⁴ −
𝛼²𝑟(4𝑛²+2𝑛−1)

2𝑛+1
                           (60) 

denklemine ulaşılır. (59) ve (60) nolu denklemler kullanılarak, 

𝛼, 𝜆 ∈ 𝐼𝑅 ve 𝑛 ≥ 1 (𝑛 ∈ ℕ) ve 𝑟 = −2𝑛(2𝑛 + 1)𝛼², 𝛼² > 0 olmak 

üzere, 

𝜆 = 2𝑛𝛼² 
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denklemine ulaşılır. Burada (b) şıkkının ispatı aşikardır. Bu 

denklem tüm 𝜆 değerleri için doğrudur, ama Ricci solitonun 

geometrik yorumunu kullanarak 𝜆 = 0 alınabilir. Fakat 𝛼 = 0 

olduğunda, potansiyel vektör alanı sıfır ya da 

𝐿𝜉𝑔 = 0 

dır. Tüm hesaplamalarda potansiyel vektör alanını 𝜉 olarak 

almıştık. Dolayısıyla 𝑆 = 0 ve 𝑟 = 0 olur. Bu nedenle manifold 

üzerinde basit sabit Ricci soliton mevcuttur. Böylece teoremin 

ispatı tamamlanır. 

Sonuç 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-Kenmotsu 

manifold ve 𝛼, 𝜉 boyunca paralel olsun (𝑛 ≥ 1). Eğer 𝑀 üzerinde 

𝐻 ⋅ 𝐻 = 0 tensörel çarpımı sağlanıyorsa, o zaman 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci soliton asla daralan durumda değildir. 
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RİCCİ SOLİTONLU ALFA-KOSİMPLEKTİK 

YAPILAR ÜZERİNDE FARKLI YARI-SİMETRİK 

ÖZELLİKLER 

 

Hakan ÖZTÜRK1 

Giriş 

Riemann geometrisinin özünde, bir manifoldun şeklini ve eğriliğini 

kodlayan Riemann eğrilik tensörü 𝑅 önemli rol oynar. Bu tensörün 

diferensiyel özellikleri, uzayın simetri ve homojenlik derecesini 

kavramada çok önemlidir. 𝛻𝑅 = 0 koşulunu sağlayan lokal 

simetrik uzaylar eğriliğin paralel taşıma ile değişmediğini gösteren 

yapılardır. Bir manifoldun eğrilik tensörü 𝑅, Levi-Civita 

konneksiyonu 𝛻 ile kovaryant türevi alındığında, ortaya 

çıkan 𝛻𝑅 tensörü ile orijinal 𝑅 tensörü arasında belirli bir lineer 

ilişki varsa, bu uzaya yarı-simetrik adı verilir. Başka bir 

deyişle, eğrilik, tam sabit olmasa bile, kendi yapısıyla uyumlu bir 

şekilde değişir. 

Yarı-simetriyi simetrik uzayların doğal deformasyonları olarak göz 

önüne alabiliriz. Bir simetrik uzayın homojen yapısını 

bozduğunuzda, eğrilik artık sabit kalmayacaktır. Fakat değişim 

belirli bir düzene uyacaktır. Yani, yarı-simetri, bu düzeni 

matematiksel olarak temsil eder. Başka bir ifadeyle, eğriliğin 

değişim hızı, eğriliğin kendisi ile orantılıdır veya ondan lineer 

olarak üretilir. Bu özellik, fizikte dile getirilen öz-benzerlik 
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durumuyla açıklanabilir. O halde, uzayın her noktasındaki 

eğriliğinin kendi komşuluğuyla belirli bir lineer ilişki içerisinde 

olduğunu söyleyebiliriz. Yarı-simetrik uzaylar araştırılırken bazı 

problemler merkeze alınır. Örnek olarak, acaba hangi doğal 

geometrik yapılar (Kaehler, değme, hemen hemen değme vb.) yarı-

simetri ile uyum halindedir? Ricci tensörü 𝑆 için benzer bir 

denklem yazılacak olursa Ricci yarı-simetrik uzaylar elde edilir. 

Acaba bu iki kavram ne zaman, hangi durumlarda örtüşür? Yarı-

simetrik olup simetrik olmayan somut örnekler var mıdır? (Katlı 

çarpım ve homojen uzaylar vb.) Yarı-simetri, sabit eğrilikli veya 

Einstein manifoldlarında hangi özellikleri gösteririr. Acaba fizikteki 

genel görelilikte kullanılan çözüm uzayları yarı-simetrik bir form 

içerisinde olurlar mı? Ayrıca, Kenmotsu ve kosimplektik yapılar ile 

yarı-simetri arasındaki etkileşim, değme geometri ve Riemann 

geometrisi kesişiminde zengin bir araştırma alanı ortaya 

çıkarmıştır.  

Bir Riemann manifoldunun yarı-simetrik olarak 

nitelendirilebilmesi için, manifold üzerinde tanımlı herhangi 𝑋 ve 𝑌 

vektör alanlarına karşılık, 𝑅(𝑋, 𝑌) ∙ 𝑅 =  0 eşitliğinin sağlanması 

gerekir. Bu denklemde 𝑅 eğrilik tensörü, bir cebirsel operatör gibi 

davranarak uzayın geometrik yapısını kodlar. Bu tür uzaylara yarı-

simetrik denilmesinin nedeni, herhangi bir 𝑞 noktasında 

manifoldun eğrilik tensörünün, klasik simetrik uzaylardaki eğrilik 

tensörüyle örtüşebilmesidir. Ancak bu uyum, noktadan noktaya 

değişiklik gösterebilen bir özelliktir. Lokal simetrik uzaylar ise 

daha katı bir simetri koşulu getirir, yani; 𝛻𝑅 =  0 ile tanımlıdır. 

Burada 𝛻 Levi-Civita konneksiyonunu temsil eder ve bu koşul, 

eğrilik tensörünün manifold boyunca sabit kaldığını ifade eder. 

Yarı-simetrik uzayların sistematik sınıflandırması, Szabó'nun 1982 

yılındaki çalışmasıyla yeni bir aşamaya ulaşmıştır  (Szabó, 1982). 

Fakat bu alandaki ilk çalışma, Nomizu'nun 1968 yılında 

tanımladığı 𝑅 · 𝑅 = 0 tensörel şartında saklıdır (Nomizu, 1968). 
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Kenmotsu manifoldları, değme geometrisinin önemli bir alt sınıfını 

oluşturan, hemen hemen değme metrik manifoldların özel bir 

türüdür (Kenmotsu, 1972). Kenmotsu manifoldlarında katlı çarpım 

yapısı ile yarı-simetrinin uyumu ve eğrilik sınıflandırmaları çok 

önemli yer kaplar. Janssens ve Vanhecke, Kenmotsu yapıların 𝛼 

parametresiyle genelleştirerek hemen hemen alfa-Kenmotsu 

manifoldlar kavramını geometri literatürüne kazandırmışlardır 

(Janssens & Vanhecke, 1981). Daha sonra, Kim ve Pak bu 

gelişmeyi bir adım öteye taşıyarak, hemen hemen alfa-Kenmotsu 

yapıları ile hemen hemen kosimplektik yapıları sentezleyen yeni bir 

sınıf tanımlamışlardır (Kim & Pak, 2005). Hemen hemen alfa-

kosimplektik manifoldlar olarak adlandırılan bu yapılar, hemen 

hemen değme metrik manifoldlar ailesinin önemli bir alt sınıfını 

oluşturmaktadır. Kosimplektik manifoldlarda yarı-simetri için en 

önemli kavram paralel reeb vektörüdür. 

Çalışmamızda manifold üzerinde tanımlayacağımız Ricci akışı, 

Riemann manifoldlarındaki metrik yapının zamana bağlı evrimini 

modelleyen güçlü bir araç olarak karşımıza çıkmıştır. Richard 

Hamilton'ın 1982 yılındaki öncü çalışmasıyla matematik dünyasına 

kazandırılan bu yöntem, topolojinin en zorlu problemlerinden biri 

olan Poincaré hipotezine giden yolu açmıştır (Hamilton, 1982). 

Hamilton'un 1988 yılında yüzeyler üzerindeki Ricci akışını 

detaylıca incelemesi, sürecin temel özelliklerini ortaya çıkarmıştır 

(Hamilton, 1988). Ancak bu çalışmalar, akış sırasında ortaya çıkan 

ve eğriliğin sonsuza ıraksadığı metrik tekilliklerin varlığını da 

göstermiştir. Grigori Perelman'ın 2002 yılındaki çalışması, 3-

boyutlu manifoldlarda Ricci akışının tekilliklerini sistematik olarak 

sınıflandırarak bu sorunu aşmayı başarmıştır (Perelman, 2002). 

Perelman'ın geliştirdiği entropi tabanlı yaklaşım, akışın 

tekilliklerden arındırılmasını sağlamış ve nihayetinde Poincaré 

hipotezinin ispatlanmasıyla sonuçlanmıştır.  
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Bu çalışmada, Ricci solitonlu alfa-kosimplektik manifoldlar 

üzerinde farklı yarı-simetrik şartlar incelenmiştir. Özellikle, 

konsirküler ve konharmonik eğrilik tensör alanları yardımıyla, 𝐶̅ ⋅

𝑅 = 0 ve 𝐻 ⋅ 𝑅 = 0 koşulları araştırılmış ve bazı sonuçlar 

bulunmuştur. 

Ön Hazırlık Bilgileri 

 Bir (2𝑛 + 1)-boyutlu türevlenebilir manifold 𝑀 olsun. Her 𝑋, 𝑌 ∈

𝜒(𝑀) için; 𝜙, (1,1)-tipli bir tensör alanı, 𝜉 bir vektör alanı ve 𝜂, 1-

form olmak üzere, 

                                          𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝜉                            (1) 

                            𝜂(𝜉) = 1, 𝜙(𝜉) = 0, 𝜂 ∘ 𝜙 = 0                        (2) 

                          𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                     (3) 

                                         𝑔(𝜙𝑋, 𝑌) = −𝑔(𝑋, 𝜙𝑌)                        (4) 

                                               𝜂(𝑋) = 𝑔(𝑋, 𝜉)                               (5) 

deklemleriyle verilen 𝑔 metrik tensörü ile donatılmış (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

yapısına bir hemen hemen değme metrik manifold denir. Burada 

𝑔(𝜉, 𝜉) = 1 dir. Bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen değme metrik 

yapının temel 2-formu  

                                        Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌)                              (6) 

şeklinde tanımlanır (Blair, 1976). (1,3)-tipli Riemann eğrilik 

tensörü 𝑅 olmak üzere, 

                          𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑍𝑋 − 𝛻[𝑋,𝑌]𝑍               (7) 

şeklinde tanımlıdır. Bundan başka, (2𝑛 + 1)-boyutlu bir Riemann 

manifoldu üzerinde (0,2)-tipli Ricci tensörü ve Ricci operatörü, 

sırasıyla,  

                            𝑆(𝑋, 𝑌) = ∑ 𝑔(𝑅(𝐸𝑗 , 𝑋)𝑌, 𝐸𝑗)2𝑛+1
𝑗=1            (8) 

                                      𝑆(𝑋, 𝑌) = 𝑔(𝑄𝑋, 𝑌)                                 (9) 
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ile verilir. Burada {𝐸₁, 𝐸₂, . . . , 𝐸𝑛} lokal ortonormal bir tabandır 

(Yano & Kon, 1984). (2𝑛 + 1)-boyutlu bir hemen hemen değme 

metrik manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) ile verilsin. Eğer manifoldu 𝑀 × ℝ 

şeklinde düşünürsek, her vektör alanı 𝑋 için, (𝑋, 𝑓
𝑑

𝑑𝑡
) yardımıyla 

𝑀 × ℝ üzerinde bir vektör alanı belirtebiliriz. Burada 𝑡, ℝ 

üzerindeki koordinat ve 𝑓, 𝑀 × ℝ üzerinde bir türevlenebilir 

fonksiyondur. Böylece 𝑀 × ℝ üzerinde 𝐽 hemen hemen kompleks 

yapısı 

                           𝐽 (𝑋, 𝑓
𝑑

𝑑𝑡
) = (𝜙𝑋 − 𝑓𝜉, 𝜂(𝑋)

𝑑

𝑑𝑡
)                      (10) 

ile verilir. Eğer 𝐽 integrallenebilirse o zaman, hemen hemen değme 

metrik (𝑀, 𝜙, 𝜉, 𝜂)-yapısı normaldir. 𝐽 kompleks yapısının 

integrallenebilmesi için gerek ve yeter şart 

                                [𝜙, 𝜙](𝑋, 𝑌) + 2𝑑𝜂(𝑋, 𝑌)𝜉 = 0                   (11) 

denkleminin sağlanmasıdır (Yano & Kon, 1984). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

hemen hemen değme metrik manifoldu 

                                          𝑑𝜂 = 0, 𝑑Φ = 0                                (12) 

şartlarını sağlıyorsa, 𝑀 ye hemen hemen kosimplektik manifold 

denir. Eğer bir hemen hemen kosimplektik manifold normal ise bu 

manifolda kosimplektik manifold denir. 𝑀 nin bir kosimplektik 

manifold olması için gerek ve yeter şart 𝛻𝛷 ve 𝛻𝜂 kovaryant 

türevlerinin özdeş olarak sıfır olmasıdır (Olszak, 1981). Eğer 𝑀 

üzerinde ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) ve 𝛼 ∈ ℝ, 𝛼 ≠ 0 için,  

                                𝑑𝜂 = 0, 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)                           (13) 

denklemleri sağlanıyorsa, 𝑀 ye bir hemen hemen alfa-Kenmotsu 

manifold denir (Janssens & Vanhecke, 1981). Özel olarak, 𝛼 = 1 

durumu hemen hemen Kenmotsu olarak adlandırılır (Kenmotsu, 

1972). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) normal ise o zaman alfa-Kenmotsu manifold 

olarak adlandırılır. Herhangi vektör alanları ve keyfi 𝛼 reel sayısı 

--44--



için, (11) denklemleri sağlanıyorsa, 𝑀 ye hemen hemen alfa-

kosimplektik manifold denir. Özel olarak, 𝛼 = 0 için hemen hemen 

kosimplektik manifold, 𝛼 ≠ 0 için hemen hemen alfa-Kenmotsu 

manifold olarak adlandırılır. Eğer hemen hemen değme metrik yapı 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) Kaehler yapıya sahipse o zaman 𝛼 reel sayısı için 

𝑀 ye alfa-kosimplektik manifold denir. Yani, 𝛼 = 0 için 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı kosimplektik veya 𝛼 ≠ 0 için alfa-Kenmotsu 

olarak adlandırılır (Kim & Pak, 2005). 

Önerme 1. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. 𝑀 nin bir alfa-kosimplektik manifold 

olması için gerek ve yeter şart, ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                    (𝛻𝑋𝜙)𝑌 = 𝛼[𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋]                       (14) 

dir (Öztürk, 2021).  

Önerme 2. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. Bu durumda,  ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                               𝛻𝑋𝜉 = 𝛼𝑋 − 𝛼𝜂(𝑋)𝜉                                    (15) 

                            (𝛻𝑋𝜂)𝑌 = 𝛼[𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)]                 (16) 

               𝑅(𝑋, 𝑌)𝜉 = −(𝛼² + 𝜉(𝛼))[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]               (17) 

                   𝑅(𝑋, 𝜉)𝑌 = (𝛼² + 𝜉(𝛼))[𝑔(𝑌, 𝑋)𝜉 − 𝜂(𝑌)𝑋]          (18) 

                             𝑅(𝑋, 𝜉)𝜉 = (𝛼² + 𝜉(𝛼))𝜙²𝑋                          (19) 

  𝜂(𝑅(𝑋, 𝑌)𝑍) = (𝛼² + 𝜉(𝛼))[−𝜂(𝑋)𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝑋, 𝑍)]  (20) 

                              𝑆(𝑋, 𝜉) = −2𝑛(𝛼² + 𝜉(𝛼))𝜂(𝑋)                   (21) 

                                     𝑄𝜉 = −2(𝛼² + 𝜉(𝛼))𝑛𝜉                         (22) 

denklemleri sağlanır. Burada 𝛼, 𝑑𝛼 ∧ 𝜂 = 0 şartını sağlayan 

türevlenebilir bir fonksiyondur (Öztürk & ark., 2017). 

Tanım 1. 𝑀, (2𝑛 + 1)-boyutlu bir Riemann manifoldu olsun. Bu 

durumda, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için, 
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𝐶̅(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 

                                   −
𝑟

2𝑛(2𝑛−1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]            (23) 

ve 

                                    𝐻(𝑌, 𝑍)𝑊 = 𝑅(𝑌, 𝑍)𝑊                           (24) 

−
1

2𝑛 − 1
[𝑆(𝑍, 𝑊)𝑌 − 𝑆(𝑌, 𝑊)𝑍 + 𝑔(𝑍, 𝑊)𝑄𝑌 − 𝑔(𝑌, 𝑊)𝑄𝑍] 

şeklinde tanımlanan (1,3)-tipli 𝐶̅ ve 𝐻 tensör alanlarına sırasıyla, 

konsirküler ve konharmonik eğrilik tensör alanları denir (Yano ve 

Kon 1984). 

Alfa-Kosimplektik Yapılar Üzerinde Ricci Solitonlar 

Bu bölümde bulgular bölümünde kullanılacak temel kavramlar ve 

temel eğrilik özellikleri verilmiştir. 

Tanım 2. (𝑀, 𝑔₀) bir 𝑛-boyutlu Riemann manifoldu olsun. Bu 

durumda, 

                         
𝜕

𝜕𝑡
(𝑔(𝑡)) + 2𝑆(𝑔(𝑡)) = 0, 𝑔(0) = 𝑔₀        (25) 

kısmi türevli diferensiyel denklemine 𝑔 metrik tensörünü eviren 

Ricci akışı denir (Hamilton, 1982). Burada 𝑡 zaman parametresidir. 

Tanım 3. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. Eğer 

𝑀 üzerinde keyfi vektör alanları 𝑋, 𝑌 ve 𝑉 için, 𝜆 gerçel bir skaler 

olmak üzere, 

                     (𝐿𝑉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0            (26) 

denklemi sağlanıyorsa, (𝑀, 𝑔) ye Ricci soliton denir. Burada 𝑉 

vektör alanı Ricci solitonun potansiyel vektör alanı ve 𝐿𝑉𝑔 de 𝑉 

yönündeki 𝑔 metriğinin Lie türevidir. Bu durumda, Ricci soliton 

(𝑀, 𝑔, 𝑉, 𝜆) ile sembolize edilir. (𝑀, 𝑔, 𝑉, 𝜆) Ricci solitonuna 𝜆 

değerinin 𝜆 < 0, 𝜆 = 0 ve 𝜆 > 0 durumları için, sırasıyla, daralan, 
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değişmeyen ve genişleyen Ricci soliton adı verilir (Hamilton, 

1988). 

Tanım 4. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. 𝐿𝑉𝑔, 𝑉 

yönündeki 𝑔 metriğinin Lie türevi olmak üzere, 

                      (𝐿𝑉𝑔)(𝑋, 𝑌) = 𝑔(∇𝑋𝑉, 𝑌) + 𝑔(𝑋, 𝛻𝑌𝑉)                (27) 

dır (Yano & Kon, 1984). 

Tanım 5. (𝑀, 𝑔, 𝑉, 𝜆) bir Ricci soliton olsun. Eğer 𝑉 potansiyel 

vektör alanı Killing vektör alanı (𝐿𝑉𝑔 = 0) ise o zaman (𝑀, 𝑔, 𝑉, 𝜆) 

ye basit Ricci soliton adı verilir (Chen 2015). 

Tanım 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-kosimplektik 

manifold olsun. Eğer 𝑀 üzerinde (𝑔, 𝑉, 𝜆) Ricci solitonu mevcutsa, 

(𝑀, 𝑔, 𝑉, 𝜆) ya Ricci solitonlu alfa-kosimplektik manifold denir 

(Hamilton, 1988), (Kenmotsu, 1972). 

Önerme 3. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, Ricci eğrilik tensör alanı 

                    𝑆(𝑋, 𝑌) = −(𝛼 + 𝜆)𝑔(𝑋, 𝑌) + 𝛼𝜂(𝑋)𝜂(𝑌)            (28) 

denklemini sağlar. Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca 

paralel olarak alınmıştır (Öztürk & Bektaş, 2023). 

Önerme 4. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, aşağıdaki önermeler geçerlidir: 

                                     𝑆(𝑋, 𝜉) = −𝜆𝜂(𝑋)                                  (29) 

                                    𝑄𝑋 = 𝛼𝜂(𝑋)𝜉 − (𝛼 + 𝜆)𝑋                      (30) 

                                              𝑄𝜉 = −𝜆𝜉                                      (31) 
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                                           𝑆(𝜉, 𝜉) = −𝜆                                     (32) 

                                   𝑟 = 𝛼 − (2𝑛 + 1)(𝛼 + 𝜆).                       (33) 

Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca paralel olarak 

alınmıştır (Öztürk & Bektaş, 2023). 

Bulgular 

Bu bölümde,  𝐶̅ ⋅ 𝑅 = 0 ve 𝐻 ⋅ 𝑅 = 0 koşulları incelenmiş ve Ricci 

solitonlu alfa-kosimplektik manifoldlar üzerinde bazı sonuçlar elde 

edilmiştir. Öncelikle genel anlamda yarı-simetrik manifoldu 

tanımlayalım: 

Tanım7. 𝑀 bir (yarı) Riemann manifoldu olsun. 𝑇₁ ve 𝑇₂ (0,4)-tipli 

tensör alanları olmak üzere, eğer 𝑀 üzerinde keyfi vektör alanları 

𝑈 ve 𝑉 için, 

                                    𝑇₁(𝑈, 𝑉) ⋅ 𝑇₂ = 0                                     (34) 

şartı sağlanıyorsa, 𝑀 ye 𝑇₂ yarı-simetrik tipli manifold denir. 

Burada 𝑇₁(𝑈, 𝑉), 𝑇₂ üzerindeki tensör cebirinin türevi olarak etki 

eder. Bu tanım genel olarak, 

                                              𝑇₁ ⋅ 𝑇₂ = 0                                     (35) 

şeklinde yazılır. Özel olarak, 𝑇₁ = 𝑇₂ = 𝑅 olarak alınırsa, manifold 

yarı-simetrik olarak adlandırılır (Szabó 1982). Yarı-simetrik uzaylar 

ve farklı yarı-simetrik özellikler hakkında daha fazla bilgi sahibi 

olmak için Özgür ve Tripathi (2007), Shaikh ve Baishya (2005), 

Shaikh ve Kundu (2014) ve Szabó (1984) referanslarına 

bakabilirsiniz. 

Yardımcı Teorem 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı için 𝜉(𝛼) = 0 olsun. Bu 

durumda, konsirküler ve konharmonik eğrilik tensör alanları için, 
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𝜂(𝐶̅(𝑈, 𝑉)𝑊) = − [
𝑟

2𝑛(2𝑛 + 1)
+ 𝛼2] 

                                         [𝑔(𝑉, 𝑊)𝜂(𝑈) − 𝑔(𝑈, 𝑊)𝜂(𝑉)]        (36) 

ve 

𝜂(𝐻(𝑈, 𝑉)𝑊) =  
𝛼2

2𝑛 − 1
[𝑔(𝑉, 𝑊)𝜂(𝑈) − 𝑔(𝑈, 𝑊)𝜂(𝑉)] 

                               −
1

2𝑛−1
[𝑆(𝑉, 𝑊)𝜂(𝑈) − 𝑆(𝑈, 𝑊)𝜂(𝑉)]       (37) 

 

denklemleri sağlanır. 

İspat. (23) ve (24) nolu eşitlikler birlikte hesaba katılırsa (36) ve 

(37) nolu eşitliklerin ispatları açıktır.  

Önerme 5. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu 𝛼-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 üzerinde 𝐶̅ ⋅ 𝑅 = 0 

tensörel çarpımı sağlanıyorsa, o zaman keyfi vektör alanları için, 

(𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu  

                                    𝑆(𝑌, 𝑍) = −2𝑛𝛼²𝑔(𝑌, 𝑍)                         (38) 

ve 

                                       𝑟 = −2𝑛(2𝑛 + 1)𝛼²                             (39) 

eşitliklerini sağlar. 

İspat. 𝑀 üzerinde alfa-kosimplektik manifoldunun 𝐶̅ ⋅ 𝑅 = 0 

tensörel çarpımını sağladığını kabul edelim. Bu takdirde, aşağıdaki 

eşitlikler sağlanır: 

                                      (𝐶̅(𝑈, 𝑉) ⋅ 𝑅)(𝑊, 𝑌)𝑍 = 0                     (40) 

 

𝐶̅(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍 − 𝑅(𝐶̅(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝑅(𝑊, 𝐶̅(𝜉, 𝑉)𝑌)𝑍 − 𝑅(𝑊, 𝑌)𝐶̅(𝜉, 𝑉)𝑍 = 0         (41) 
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𝜂(𝐶̅(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍) − 𝜂(𝑅(𝐶̅(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝑅(𝑊, 𝐶̅(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝑅(𝑊, 𝑌)𝐶̅(𝜉, 𝑉)𝑍) = 0       (42) 

yazılır.  {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (36) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapılırsa,  

0=− ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝐶̅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝑅(𝐸𝑗 , 𝐶̅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

− ∑ 𝜂(𝑅(𝐶̅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1 + ∑ 𝜂(𝐶̅(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1

𝑗=1  (43) 

elde edilir. (43) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (40)-(42) nolu eşitlikler kullanılarak hesap 

yapılırsa, 

        − ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝐶̅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1  

                               = −2𝑛𝛼2 [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] 𝜂(𝑌)𝜂(𝑍)            (44) 

 

            − ∑ 𝜂(𝑅(𝐸𝑗 , 𝐶̅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                         = 𝛼2 [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] (𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))     (45) 

 

 

            − ∑ 𝜂(𝑅(𝐶̅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                     = 2𝑛𝛼2 [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] (−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))    (46) 
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                ∑ 𝜂(𝐶̅(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1    

   = [
𝑟

2𝑛(2𝑛+1)
+ 𝛼2] [−𝑆(𝑌, 𝑍) − 𝛼²(𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))]      (47) 

bulunur. Son olarak, (44)-(47) nolu eşitlikler birlikte göz önüne 

alınırsa (43) nolu eşitlik 

𝑆(𝑌, 𝑍) = −2𝑛𝛼²𝑔(𝑌, 𝑍) 

haline dönüşür. Böylece (38) nolu eşitliğin ispatı tamamlanır. 

Ayrıca, bu son denklemin her iki tarafının 𝑌 = 𝑍 = 𝐸𝑗 için, 1 ≤

𝑗 ≤ 2𝑛 + 1 olmak üzere, izi alınırsa (39) nolu eşitliğinin ispatına 

ulaşılır. 

Teorem 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 üzerinde 𝐶̅ ⋅ 𝑅 = 0 

tensörel çarpımı sağlanıyorsa, o zaman (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu 

için, 

    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde Ricci soliton daima 

genişleyendir, 

ifadeleri geçerlidir. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonlu alfa-kosimplektik manifold olsun. 

Bu durumda, (29) nolu denklem yardımıyla 

𝑆(𝑌, 𝜉) = −𝜆𝜂(𝑌) 

yazılır. Ayrıca, (32) nolu denklem 𝑍 = 𝜉 için, 

𝑆(𝑌, 𝜉) = −2𝛼²𝑛𝜂(𝑌) 

elde edilir. Bu son iki denklemin sağ taraflarının eşitliğinden 

                                          𝜆 = 2𝑛𝛼²                                            (48) 

sonucuna ulaşılır. Burada 𝜉(𝛼) = 0 seçildiğinden 𝛼 reel bir sabit 

olarak alınabilir. Böylece (48) nolu denklem 𝛼 = 0 ve 𝛼 ≠ 0 
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durumları altında sırasıyla, 𝜆 = 0 ve 𝜆 > 0 haline dönüşür. Bu 

nedenle (a) ve (b) şıklarının ispatı Ricci soliton tanımından açıktır. 

Sonuç 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) üzerinde 𝜉(𝛼) = 0 olsun (𝑛 ≥ 1). Eğer 

𝑀 üzerinde 𝐶̅ ⋅ 𝑅 = 0 tensörel çarpımı sağlanıyorsa o zaman 

(𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu asla daralan durumda değildir.  

Önerme 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı üzerinde 𝜉(𝛼) = 0 olsun. Eğer 𝑀 

üzerinde 𝐻 ⋅ 𝑅 = 0 tensörel çarpımı mevcutsa, o zaman keyfi 

vektör alanları için, 

                                        𝑆(𝑄𝑌, 𝑍) = 2𝛼²𝑆(𝑌, 𝑍) 

                                       −𝛼²(−2𝑛𝛼² + 𝑟)𝑔(𝑌, 𝑍)                      (49) 

ve 

𝑟 = −2𝑛(2𝑛 + 1)𝛼² 

denklemleri geçerlidir. 

İspat. Alfa-kosimplektik manifold 𝑀 aşağıdaki tensörel çarpım ile 

verilsin. Bu durumda, 

                                 (𝐻(𝑈, 𝑉) ⋅ 𝑅)(𝑊, 𝑌)𝑍 = 0                         (50) 

 

𝐻(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍 − 𝑅(𝐻(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝑅(𝑊, 𝐻(𝜉, 𝑉)𝑌)𝑍 − 𝑅(𝑊, 𝑌)𝐻(𝜉, 𝑉)𝑍 = 0        (51) 

 

𝜂(𝐻(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍) − 𝜂(𝑅(𝐻(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝑅(𝑊, 𝐻(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝑅(𝑊, 𝑌)𝐻(𝜉, 𝑉)𝑍) = 0      (52) 

yazılır. {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (52) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapıldığında (toplam alınırsa), 

--52--



0=− ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝐻(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝑅(𝐸𝑗 , 𝐻(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

                        − ∑ 𝜂(𝑅(𝐻(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                        + ∑ 𝜂(𝐻(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1                            (53) 

elde edilir. (53) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (17)-(19) ve (37) nolu eşitlikler kullanılarak, 

       − ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝐻(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 = −

𝛼2𝑟

2𝑛−1
𝜂(𝑌)𝜂(𝑍)            (54) 

 

            − ∑ 𝜂(𝑅(𝐸𝑗 , 𝐻(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                  = −[
𝛼4

2𝑛−1
](𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))      

                      +
𝛼2

2𝑛−1
[2𝑛𝛼²𝜂(𝑌)𝜂(𝑍) + 𝑆(𝑌, 𝑍)]                        (55) 

 

            − ∑ 𝜂(𝑅(𝐻(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                                      =
𝛼2𝑟

2𝑛−1
(−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))                 (56) 

 

                ∑ 𝜂(𝐻(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

          = [
𝛼2

2𝑛−1
](−𝛼2[−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍)] − 𝑆(𝑌, 𝑍))    

              +
1

2𝑛−1
[2𝑛𝛼⁴(𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍)) − 𝑆(𝑄𝑌, 𝑍)]         (57) 

elde edilir. (54)-(57) eşitlikleri birlikte hesaba katılırsa (53) eşitliği 

𝑆(𝑄𝑌, 𝑍) = 2𝛼2𝑆(𝑌, 𝑍) + 𝛼²(2𝑛𝛼2 − r)𝑔(𝑌, 𝑍) 

formuna dönüşür. Burada hatırlatalım ki, 

      𝑆(𝑄𝑌, 𝑍) = 𝑆²(𝑌, 𝑍) = 𝑆(−2𝑛𝛼²𝑌, 𝑍) = −2𝑛𝛼²𝑆(𝑌, 𝑍)     (58) 

--53--



ve 

𝑄𝑌 = −2𝑛𝛼²𝑌 

eşitlikleri sağlanır. Böylece (49) nolu denklemin ispatına ulaşılır. 

Son olarak, (49) nolu eşitlikte 𝑌 = 𝑍 = 𝜉 seçilirse, 

                                  4𝑛²𝛼⁴ = −4𝑛𝛼⁴ + 2𝑛𝛼⁴ − 𝑟𝛼²                 (59) 

bulunur. (59) nolu eşitliğin düzenlenmesiyle istenen skalar eğrilik 

bulunur. Kosimplektik durumda (𝛼 = 0) kesit eğriliği de özdeş 

olarak sıfır olacaktır. Yani, 𝛼² ≠ 0 (alfa-Kenmotsu durumu) için 

skalar eğrilik değeri geçerlidir. Bu ispatı sonlandırır. 

Teorem 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, (𝑛 ≥ 1) eğer 𝑀 üzerinde 

𝐻 ⋅ 𝑅 = 0 tensörel çarpımı sağlanıyorsa, o zaman (𝑔, 𝜉, 𝜆) Ricci 

solitonu için,      

    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde hem genişleyen hem daralan 

Ricci solitonlar vardır. 

önermeleri geçerlidir. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆), Ricci solitona sahip alfa-kosimplektik manifold 

olsun. (29), (32), (49) ve (58) nolu eşitlikler yardımıyla, 

2𝛼²𝑆(𝑌, 𝜉) + 𝛼²(2𝑛𝛼² − 𝑟)𝑔(𝑌, 𝜉) 

                         = 𝛼𝜂(𝑌)𝑆(𝜉, 𝜉) − (𝛼 + 𝜆)𝑆(𝑌, 𝜉)                      (60) 

ve 

                                  𝜆² + 2𝛼²𝜆 − 𝛼²(2𝑛𝛼² − 𝑟) = 0                (61) 

denklemleri yazılır. (61) nolu eşitlik 𝑟 = −2𝑛(2𝑛 + 1)𝛼² için 

düzenlenirse, 

                               𝜆² + 2𝛼²𝜆 − 4𝑛𝛼⁴(𝑛 + 1) = 0                     
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denklemi elde edilir. Burada 𝛼, 𝜆 ∈ 𝐼𝑅 ve 𝑛 ≥ 1 (𝑛 ∈ ℕ) dir. 

Şimdi, (61) nolu denklem  ile verilen ikinci dereceden kuadratik 

denklemin reel çözümünün olup olmadığını araştıralım. Bu 

durumda, 

𝛥 = 𝛼⁴(16𝑛² + 16𝑛 + 4) 

ve 

                                𝜆 = 𝛼²(−1 ± √4𝑛² + 4𝑛 + 1)                   (62) 

elde edilir. Denklemin reel köklerinin olması için 𝛥 ≥ 0 olmalıdır. 

Bu durumda,  

                                𝜆1 = 2𝑛𝛼2, 𝜆₂ = −2(𝑛 + 1)𝛼²                   (63) 

reel kökleri bulunur. Şimdi, bu köklerin Ricci soliton bağlamında 

ne anlama geldiğini açıklamaya çalışalım. (63) denklemi 𝛼 = 0 

için 𝜆 = 0 değerini alır. Bu durumda, Ricci soliton sabittir. Diğer 

yandan, 𝛼 ≠ 0 şartı altında (63) denkleminin 𝛼 ve 𝑛 ye bağlı iki 

farklı reel çözümü mevcuttur. O halde, 𝛼² ≠ 0 olmak üzere, (63) 

denkleminin iki farklı çözümü vardır. Yani, 

𝜆₁ = 2𝑛𝛼² > 0 

veya 

𝜆₂ = −2(𝑛 + 1)𝛼² < 0 

şeklindedir. Bunlar geometrik olarak iki farklı soliton çözümüne 

karşılık gelir. 𝜆₁ > 0 olduğunda Ricci soliton zamanla genişleyen 

bir manifold üzerindedir. Genellikle negatif Ricci eğriliğe sahip 

geometrilerle ilişkilidir. Örnek olarak, evrenin genişlemesi gibi 

süreçlerde benzer matematiksel yapılar görülür. Evrenin büyük 

patlamadan sonra genişlemesi gibi bir model olarak düşünülebilir. 

𝜆₂ < 0 şartı altında Ricci soliton zamanla hacmi küçülen (daralan) 

bir manifold üzerindedir. Örnek olarak, küresel simetriye sahip, 

başlangıçta büyük ama giderek küçülen (daralan) manifold tipleri 
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düşünülebilir. Genellikle pozitif Ricci eğriliğe sahip yerlerde 

görülür ve 𝑆 ≈ 𝜆𝑔 biçiminde Einstein metriğine yakın bir davranış 

sergiler. Sonuç olarak, aynı manifoldun iki farklı zaman skalasında 

iki farklı Ricci soliton durumu mevcut olabilir. Ayrıca, aynı metrik 

altında iki farklı potansiyel fonksiyonla tanımlanmış soliton 

çözümleri olabilir. Dolayısıyla Ricci soliton denklemlerinin çift 

köklü simetrik yapıya sahiptir. Bu çözümde 𝛼 ∈ 𝐼𝑅 olduğundan 

hem genişleyen hem daralan solitonlar mümkündür. Bu durum 

sistemin zaman içinde geri dönüşümlü (reversible) dinamiklere de 

sahip olabileceğini gösterir. 

Sonuç 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-Kenmotsu 

manifold ve 𝛼, 𝜉 boyunca paralel olsun (𝑛 ≥ 1). Eğer 𝑀 üzerinde 

𝐻 ⋅ 𝑅 = 0 tensörel çarpımı sağlanıyorsa, o zaman 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu sabit değildir. 
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BAZI YARI-SİMETRİK ŞARTLARI SAĞLAYAN 

RİCCİ SOLİTONLU ALFA-KOSİMPLEKTİK 

MANİFOLDLAR 

 

Hakan ÖZTÜRK1 

Giriş 

Her simetrik uzay, tıpkı bir sanat eseri gibi kendine has geometrik 

bir kimlik taşır. Kimi Öklid’in katıksız düzenini yansıtır, kimi 

eliptik geometrinin kıvrımlı zarafetini, kimi de hiperbolik dünyanın 

genişleyen büyüsünü gösterir. Dahası, bu uzaylar sadece güzel 

örnekler değil, aynı zamanda güçlü teorik yapılar sunar. Bir yandan 

paralel eğrilik tensörüyle donanmış Lie grupları olarak karşımıza 

çıkarken, diğer yandan her noktasında yansıma simetrisi barındıran 

geometrik mekânlar olarak da düşünülebilirler. Simetrinin bu denli 

merkezde olduğu bir dünyada, her bakış açısı yeni bir keşif kapısı 

aralayabilir. Matematiksel geometrinin ilgi çekici bir konusu olan 

yarı-simetrik uzaylar, temelde lokal simetrik uzay kavramının daha 

esnek bir versiyonu olarak düşünülebilir. Bir Riemann 

manifoldunun yarı-simetrik olarak nitelendirilebilmesi için, 

manifold üzerinde tanımlı herhangi 𝑋 ve 𝑌 vektör alanlarına 

karşılık, 𝑅(𝑋, 𝑌) ∙ 𝑅 =  0 eşitliğinin sağlanması gerekir. Bu 

denklemde 𝑅 eğrilik tensörü, bir cebirsel operatör gibi davranarak 

uzayın geometrik yapısını kodlar. Bu tür uzaylara yarı-simetrik 

denilmesinin nedeni, herhangi bir 𝑞 noktasında manifoldun eğrilik 

tensörünün, klasik simetrik uzaylardaki eğrilik tensörüyle 
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örtüşebilmesidir. Ancak bu uyum, noktadan noktaya değişiklik 

gösterebilen bir özelliktir. Lokal simetrik uzaylar ise daha katı bir 

simetri koşulu getirir, yani; 𝛻𝑅 =  0 ile tanımlıdır. Burada 𝛻 Levi-

Civita konneksiyonunu temsil eder ve bu koşul, eğrilik tensörünün 

manifold boyunca sabit kaldığını ifade eder. Bu tür uzaylar, 

matematiksel fiziğin yanı sıra sayılar teorisi ve cebirsel geometri 

gibi çeşitli alanlarda doğal olarak ortaya çıkarlar. Yarı-simetrik 

uzaylar, eğriliğin cebirsel davranışına bir kısıtlama getirirken; lokal 

simetrik uzaylar, eğriliğin uzayda nasıl değiştiğine (diferensiyel 

yapısına) bir kısıtlama getirir. Yarı-simetri cebirsel ve lokal simetri 

ise diferensiyel geometrik bir gerekliliktir. 

Matematik literatüründe yarı-simetrik uzayların sistematik 

sınıflandırması, Szabó'nun 1982 yılındaki çalışmasıyla yeni bir 

aşamaya ulaşmıştır  (Szabó, 1982). Ancak bu alandaki ilk çalışma, 

Nomizu'nun 1968 yılında ifade ettiği ve günümüzde o isimle anılan 

𝑅 · 𝑅 = 0 koşulunda gizlidir (Nomizu, 1968). 

Kenmotsu manifoldları, değme geometrisinin önemli bir alt sınıfını 

oluşturan, hemen hemen değme metrik manifoldların özel bir 

türüdür (Kenmotsu, 1972). Bunu takiben, Janssens ve Vanhecke, 

Kenmotsu yapıların 𝛼 parametresiyle genelleştirerek hemen hemen 

alfa-Kenmotsu manifoldlar kavramını geometri literatürüne 

kazandırmışlardır (Janssens & Vanhecke, 1981). Daha sonra, Kim 

ve Pak bu gelişmeyi bir adım öteye taşıyarak, hemen hemen alfa-

Kenmotsu yapıları ile hemen hemen kosimplektik yapıları 

sentezleyen yeni bir sınıf tanımlamışlardır (Kim & Pak, 2005). 

Hemen hemen alfa-kosimplektik manifoldlar olarak adlandırılan bu 

yapılar, hemen hemen değme metrik manifoldlar ailesinin önemli 

bir alt sınıfını oluşturmaktadır.  

Matematiksel fizik ve diferensiyel geometrinin kesişiminde yer 

alan Ricci akışı, Riemann manifoldlarındaki metrik yapının zamana 

bağlı evrimini modelleyen güçlü bir araç olarak karşımıza 
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çıkmıştır. Richard Hamilton'ın 1982 yılındaki öncü çalışmasıyla 

matematik dünyasına kazandırılan bu yöntem, topolojinin en zorlu 

problemlerinden biri olan Poincaré hipotezine giden yolu açmıştır 

(Hamilton, 1982). Hamilton'un 1988 yılında yüzeyler üzerindeki 

Ricci akışını detaylıca incelemesi, sürecin temel özelliklerini ortaya 

çıkarmıştır (Hamilton, 1988). Ancak bu çalışmalar, akış sırasında 

ortaya çıkan ve eğriliğin sonsuza ıraksadığı metrik tekilliklerin 

varlığını da göstermiştir. Bu kritik engel, "cerrahi operasyonlar" adı 

verilen ve manifoldun tekillik bölgelerinin kontrollü bir şekilde 

çıkarılmasını sağlayan yenilikçi tekniklerin geliştirilmesini 

gerektirmiştir. Grigori Perelman'ın 2002 yılındaki çığır açıcı 

çalışması, 3-boyutlu manifoldlarda Ricci akışının tekilliklerini 

sistematik olarak sınıflandırarak bu sorunu aşmayı başarmıştır 

(Perelman, 2002). Perelman'ın geliştirdiği entropi tabanlı yaklaşım, 

akışın tekilliklerden arındırılmasını sağlamış ve nihayetinde 

Poincaré hipotezinin ispatlanmasıyla sonuçlanmıştır. Bu başarı, 

modern geometri analizinde Ricci akışının merkezi önemini 

pekiştirmiş ve matematik tarihinde yeni bir dönüm noktası 

oluşturmuştur. 

Ricci solitonların varlığı, hem geometrik evrimin kritik noktalarını 

yansıtır hem de manifoldların sabit eğrilikli yapılara nasıl 

yakınsayabileceğine dair ipuçları verir. Bu nedenlerden dolayı, 

Ricci solitonlar konusu önemli bir araştırma alanı olarak 

görülmüştür (Yadav & Öztürk, 2019), (Öztürk & Yadav, 2023), 

(Öztürk & Bektaş, 2023), (Öztürk & Çelik, 2025),  

Bu çalışmada, 𝑅 ⋅ 𝑅 = 0 ve 𝐶 ⋅ 𝑅 = 0 eşitlikleri yardımıyla alfa-

kosimplektik manifoldlar üzerinde Ricci solitonlar araştırılmıştır. 

Özellikle, farklı yarı-simetrik yapıda olan 𝐶 ⋅ 𝑅 = 0 tensörel 

koşulunu sağlayan Ricci solitonlu alfa-kosimplektik manifoldlar 

üzerinde sonuçlar bulunmuştur. 
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Literatür Bilgisi 

 Bir (2𝑛 + 1)-boyutlu türevlenebilir manifold 𝑀 olsun. Her 𝑋, 𝑌 ∈

𝜒(𝑀) için; 𝜙, (1,1)-tipli bir tensör alanı, 𝜉 bir vektör alanı ve 𝜂 1-

form olmak üzere, 

             𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝜉,  𝜂(𝜉) = 1, 𝜙(𝜉) = 0, 𝜂 ∘ 𝜙 = 0   (1) 

                          𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                     (2) 

                      𝑔(𝜙𝑋, 𝑌) = −𝑔(𝑋, 𝜙𝑌), 𝜂(𝑋) = 𝑔(𝑋, 𝜉)                (3) 

eşitliklerini gerçekleyen 𝑔 metrik tensörü ile donatılmış 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısına bir hemen hemen değme metrik manifold 

adı verilir. Burada 𝑔(𝜉, 𝜉) = 1 dir. Bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen 

değme metrik yapının temel 2-formu  

                                        Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌)                              (4) 

şeklinde tanımlanır (Blair, 1976). (1,3)-tipli Riemann eğrilik 

tensörü 𝑅 olmak üzere, 

                          𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑍𝑋 − 𝛻[𝑋,𝑌]𝑍               (5) 

şeklinde tanımlıdır. Bundan başka, (2𝑛 + 1)-boyutlu bir Riemann 

manifoldu üzerinde (0,2)-tipli Ricci tensörü ve Ricci operatörü, 

sırasıyla,  

                            𝑆(𝑋, 𝑌) = ∑ 𝑔(𝑅(𝐸𝑗 , 𝑋)𝑌, 𝐸𝑗)2𝑛+1
𝑗=1            (6) 

                                      𝑆(𝑋, 𝑌) = 𝑔(𝑄𝑋, 𝑌)                                 (7) 

ile verilir. Burada {𝐸₁, 𝐸₂, . . . , 𝐸𝑛} lokal ortonormal bir tabandır 

(Yano & Kon, 1984). (2𝑛 + 1)-boyutlu bir hemen hemen değme 

metrik manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) ile verilsin. Eğer manifoldu 𝑀 × ℝ 

şeklinde düşünürsek, her vektör alanı 𝑋 için, (𝑋, 𝑓
𝑑

𝑑𝑡
) yardımıyla 

𝑀 × ℝ üzerinde bir vektör alanı belirtebiliriz. Burada 𝑡, ℝ 

üzerindeki koordinat ve 𝑓, 𝑀 × ℝ üzerinde bir türevlenebilir 
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fonksiyondur. Böylece 𝑀 × ℝ üzerinde 𝐽 hemen hemen kompleks 

yapısı 

                             𝐽 (𝑋, 𝑓
𝑑

𝑑𝑡
) = (𝜙𝑋 − 𝑓𝜉, 𝜂(𝑋)

𝑑

𝑑𝑡
)                      (8) 

ile verilir. Eğer 𝐽 integrallenebilirse o zaman, hemen hemen değme 

metrik (𝑀, 𝜙, 𝜉, 𝜂)-yapısı normaldir. 𝐽 kompleks yapısının 

integrallenebilmesi için gerek ve yeter şart 

                                [𝜙, 𝜙](𝑋, 𝑌) + 2𝑑𝜂(𝑋, 𝑌)𝜉 = 0                     (9) 

denkleminin sağlanmasıdır (Yano & Kon, 1984). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) 

hemen hemen değme metrik manifoldu 

                                          𝑑𝜂 = 0, 𝑑Φ = 0                                (10) 

şartlarını sağlıyorsa, 𝑀 ye hemen hemen kosimplektik manifold 

denir. Eğer bir hemen hemen kosimplektik manifold normal ise bu 

manifolda kosimplektik manifold denir. 𝑀 nin bir kosimplektik 

manifold olması için gerek ve yeter şart 𝛻𝛷 ve 𝛻𝜂 kovaryant 

türevlerinin özdeş olarak sıfır olmasıdır (Olszak, 1981). Eğer 𝑀 

üzerinde ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) ve 𝛼 ∈ ℝ, 𝛼 ≠ 0 için,  

                                𝑑𝜂 = 0, 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)                           (11) 

denklemleri sağlanıyorsa, 𝑀 ye bir hemen hemen alfa-Kenmotsu 

manifold denir (Janssens & Vanhecke, 1981). Özel olarak, 𝛼 = 1 

durumu hemen hemen Kenmotsu olarak adlandırılır (Kenmotsu, 

1972). (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) normal ise o zaman alfa-Kenmotsu manifold 

olarak adlandırılır. Herhangi vektör alanları ve keyfi 𝛼 reel sayısı 

için, (11) denklemleri sağlanıyorsa, 𝑀 ye hemen hemen alfa-

kosimplektik manifold denir. Özel olarak, 𝛼 = 0 için hemen hemen 

kosimplektik manifold, 𝛼 ≠ 0 için hemen hemen alfa-Kenmotsu 

manifold olarak adlandırılır. Eğer hemen hemen değme metrik yapı 

(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) Kaehler yapıya sahipse o zaman 𝛼 reel sayısı için 

𝑀 ye alfa-kosimplektik manifold denir. Yani, 𝛼 = 0 için 
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(𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı kosimplektik veya 𝛼 ≠ 0 için alfa-Kenmotsu 

olarak adlandırılır (Kim & Pak, 2005). 

Önerme 1. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. 𝑀 nin bir alfa-kosimplektik manifold 

olması için gerek ve yeter şart, ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                    (𝛻𝑋𝜙)𝑌 = 𝛼[𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋]                       (12) 

dir (Öztürk, 2021).  

Önerme 2. (2𝑛 + 1)-boyutlu bir (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) hemen hemen alfa-

kosimplektik manifold olsun. Bu durumda,  ∀ 𝑋, 𝑌 ∈ 𝜒(𝑀) için, 

                                          𝛻𝑋𝜉 = 𝛼𝑋 − 𝛼𝜂(𝑋)𝜉                         (13) 

                            (𝛻𝑋𝜂)𝑌 = 𝛼[𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)]                 (14) 

               𝑅(𝑋, 𝑌)𝜉 = −(𝛼² + 𝜉(𝛼))[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]               (15) 

                   𝑅(𝑋, 𝜉)𝑌 = (𝛼² + 𝜉(𝛼))[𝑔(𝑌, 𝑋)𝜉 − 𝜂(𝑌)𝑋]          (16) 

                             𝑅(𝑋, 𝜉)𝜉 = (𝛼² + 𝜉(𝛼))𝜙²𝑋                          (17) 

  𝜂(𝑅(𝑋, 𝑌)𝑍) = (𝛼² + 𝜉(𝛼))[−𝜂(𝑋)𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝑋, 𝑍)]  (18) 

                              𝑆(𝑋, 𝜉) = −2𝑛(𝛼² + 𝜉(𝛼))𝜂(𝑋)                   (19) 

                                     𝑄𝜉 = −2(𝛼² + 𝜉(𝛼))𝑛𝜉                         (20) 

denklemleri sağlanır. Burada 𝛼, 𝑑𝛼 ∧ 𝜂 = 0 şartını sağlayan 

türevlenebilir bir fonksiyondur (Öztürk & ark., 2017). 

Tanım 1. 𝑀, (2𝑛 + 1)-boyutlu bir Riemann manifoldu olsun. Bu 

durumda, ∀ 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀) için, 

𝐶(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

2𝑛 − 1
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 

−𝑔(𝑋, 𝑍)𝑄𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋] 

                   +
𝑟

2𝑛(2𝑛−1)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]                            (21) 
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şeklinde tanımlanan (1,3)-tipli 𝐶 ye Weyl konformal eğrilik tensör 

alanı adı verilir (Yano ve Kon 1984). 

Ricci Solitonlu Alfa-Kosimplektik Yapılar 

Bu bölümde ana sonuçlar bölümünde kullanılacak temel kavramlar 

ve temel eğrilik özellikleri verilmiştir. 

Tanım 2. (𝑀, 𝑔₀) bir 𝑛-boyutlu Riemann manifoldu olsun. Bu 

durumda, 

                         
𝜕

𝜕𝑡
(𝑔(𝑡)) + 2𝑆(𝑔(𝑡)) = 0, 𝑔(0) = 𝑔₀        (22) 

kısmi türevli diferensiyel denklemine 𝑔 metrik tensörünü eviren 

Ricci akışı denir (Hamilton, 1982). Burada 𝑡 zaman parametresidir. 

Ricci akışı, Grigori Perelman'ın 2002 yılında Poincaré Sanısı'nı 

çözmedeki kritik rolüyle matematik tarihine geçen olağanüstü bir 

araçtır. Temelde, bir manifoldun metrik yapısının zaman içindeki 

evrimini yöneten bir kısmi diferansiyel denklem olarak görülebilir. 

Yani, bu akış tıpkı bir heykeltıraşın mermeri şekillendirmesi gibi, 

uzayın geometrisini Ricci eğriliğine göre yeniden biçimlendirir. Bu 

denklem, 𝑔 metrik tensörünün zamana bağlı değişimini, 

manifoldun eğrilik özelliklerine göre düzenler. Sürecin temel 

felsefesi, uzayın pürüzlü eğrilik dağılımını adeta bir ütü gibi 

düzleştirmektir. İlginç olan, bu düzleşme sürecinin eğriliğin 

işaretine göre farklı davranmasıdır. Pozitif eğrilikli 

bölgeler (küresel yapılar) zamanla büzülür (küçülür), tıpkı sıcak 

havayla temas eden bir balonun küçülmesi gibi. Diğer yandan, 

negatif eğrilikli bölgeler (hiperbolik yapılar) zamanla genişler 

(büyür) tıpkı bir kâğıdın buruşukluklarının açılmasında olduğu gibi. 

Ricci akışı teorisinde özel bir yere sahip olan Ricci solitonları, bu 

dinamik sürecin sabit formlu çözümleridir. Örnek olarak, okyanusta 

şeklini koruyarak ilerleyen bir dalga gibi, Ricci solitonları da akış 

boyunca temel geometrik karakterini muhafaza eder. Yani, ya 

--67--



tamamen değişmez kalır ya da yalnızca ölçek değişikliğine uğrar. 

Bu yapılar, Ricci akışının uzun vadeli davranışını analiz etmede 

kilit rol oynar. Soliton terimi, ilk olarak dalga mekaniğinde kendini 

koruyan lokalize çözümleri tanımlamak için kullanılmıştır. 

Geometrik manası ise, bir Ricci solitonu metrik tensörün Ricci 

akışı altındaki öz-benzerlik özelliğini yansıtmasıdır. Bu durum, 

akışın zaman evriminde adeta bir dengeli sabit nokta gibi davranan 

özel metrik konfigürasyonlar sunar. 

Tanım 3. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. Eğer 

𝑀 üzerinde keyfi vektör alanları 𝑋, 𝑌 ve 𝑉 için, 𝜆 gerçel bir skaler 

olmak üzere, 

                     (𝐿𝑉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0            (23) 

denklemi sağlanıyorsa, (𝑀, 𝑔) ye Ricci soliton denir. Burada 𝑉 

vektör alanı Ricci solitonun potansiyel vektör alanı ve 𝐿𝑉𝑔 de 𝑉 

yönündeki 𝑔 metriğinin Lie türevidir. Bu durumda, Ricci soliton 

(𝑀, 𝑔, 𝑉, 𝜆) ile sembolize edilir. (𝑀, 𝑔, 𝑉, 𝜆) Ricci solitonuna 𝜆 

değerinin 𝜆 < 0, 𝜆 = 0 ve 𝜆 > 0 durumları için, sırasıyla, daralan, 

değişmeyen ve genişleyen Ricci soliton adı verilir (Hamilton, 

1988). 

Tanım 4. (𝑀, 𝑔) bir 𝑛-boyutlu Riemann manifoldu olsun. 𝐿𝑉𝑔, 𝑉 

yönündeki 𝑔 metriğinin Lie türevi olmak üzere, 

                      (𝐿𝑉𝑔)(𝑋, 𝑌) = 𝑔(∇𝑋𝑉, 𝑌) + 𝑔(𝑋, 𝛻𝑌𝑉)                (24) 

dır (Yano & Kon, 1984). 

Tanım 5. (𝑀, 𝑔, 𝑉, 𝜆) bir Ricci soliton olsun. Eğer 𝑉 potansiyel 

vektör alanı Killing vektör alanı (𝐿𝑉𝑔 = 0) ise o zaman (𝑀, 𝑔, 𝑉, 𝜆) 

ye basit Ricci soliton adı verilir (Chen 2015). 

Tanım 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-kosimplektik 

manifold olsun. Eğer 𝑀 üzerinde (𝑔, 𝑉, 𝜆) Ricci solitonu mevcutsa, 
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(𝑀, 𝑔, 𝑉, 𝜆) ya Ricci solitonlu alfa-kosimplektik manifold denir 

(Hamilton, 1988), (Kenmotsu, 1972). 

Önerme 3. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, Ricci eğrilik tensör alanı 

                    𝑆(𝑋, 𝑌) = −(𝛼 + 𝜆)𝑔(𝑋, 𝑌) + 𝛼𝜂(𝑋)𝜂(𝑌)            (25) 

denklemini sağlar. Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca 

paralel olarak alınmıştır (Öztürk & Bektaş, 2023). 

Önerme 4. (𝑀, 𝑔, 𝑉, 𝜆), (2𝑛 + 1)-boyutlu bir Ricci solitonlu alfa-

kosimplektik manifold olsun. Eğer 𝑉 potansiyel vektör alanı 

𝜉 karakteristik vektör alanı olarak seçilirse yani, 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu için, aşağıdaki önermeler geçerlidir: 

                                     𝑆(𝑋, 𝜉) = −𝜆𝜂(𝑋)                                  (26) 

                                    𝑄𝑋 = 𝛼𝜂(𝑋)𝜉 − (𝛼 + 𝜆)𝑋                      (27) 

                                              𝑄𝜉 = −𝜆𝜉                                      (28) 

                                           𝑆(𝜉, 𝜉) = −𝜆                                     (29) 

                                   𝑟 = 𝛼 − (2𝑛 + 1)(𝛼 + 𝜆).                       (30) 

Burada 𝛼, 𝜉 karakteristik vektör alanı boyunca paralel olarak 

alınmıştır (Öztürk & Bektaş, 2023). 

Temel Sonuçlar 

Bu bölümde,  yarı-simetrik koşul ve 𝐶 ⋅ 𝑅 = 0 tensörel çarpımı 

yardımıyla verilen Ricci solitonlu alfa-kosimplektik manifoldlar 

üzerinde bazı sonuçlar elde edilmiştir. 

Yardımcı Teorem 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı için 𝜉(𝛼) = 0 olsun. Bu 

durumda, Weyl konformal eğrilik tensör alanı 
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𝜂(𝐶(𝑈, 𝑉)𝑊) = [−
𝑟

2𝑛(2𝑛−1)
+

𝛼2

2𝑛−1
 ][𝑔(𝑉, 𝑊)𝜂(𝑈)𝑔(𝑈, 𝑊)𝜂(𝑉)]  

                         −
1

2𝑛−1
[𝑆(𝑉, 𝑊)𝜂(𝑈) − 𝑆(𝑈, 𝑊)𝜂(𝑉)]              (31) 

eşitliği ile yazılır. 

İspat. (18) ve (21) nolu eşitlikler birlikte hesaba katılırsa (31) nolu 

eşitliğin ispatı aşikardır. 

Önerme 5. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu 𝛼-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 yarı-simetrik ise o 

zaman (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu  

                                    𝑆(𝑌, 𝑍) = −2𝛼²𝑛𝑔(𝑌, 𝑍)                         (32) 

ve 

                                       𝑟 = −2𝑛(2𝑛 + 1)𝛼²                             (33) 

eşitliklerini sağlar. 

İspat. 𝑀 üzerinde yarı-simetrik olarak adlandırılan tensörel çarpım 

sağlansın. O halde, 

                                      (𝑅(𝑈, 𝑉) ⋅ 𝑅)(𝑊, 𝑌)𝑍 = 0                     (34) 

 

𝑅(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍 − 𝑅(𝑅(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝑅(𝑊, 𝑅(𝜉, 𝑉)𝑌)𝑍 − 𝑅(𝑊, 𝑌)𝑅(𝜉, 𝑉)𝑍 = 0         (35) 

 

𝜂(𝑅(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍) − 𝜂(𝑅(𝑅(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝑅(𝑊, 𝑅(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝑅(𝑊, 𝑌)𝑅(𝜉, 𝑉)𝑍) = 0       (36) 

yazılır.  {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (36) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapılırsa, 
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0=− ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝑅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝑅(𝐸𝑗 , 𝑅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

− ∑ 𝜂(𝑅(𝑅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1 + ∑ 𝜂(𝑅(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1

𝑗=1  (37) 

elde edilir. (37) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (15)-(17) nolu eşitlikler kullanılarak hesaba 

yapılırsa, 

        − ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝑅(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 = −2𝑛𝛼⁴𝜂(𝑌)𝜂(𝑍)            (38) 

 

            − ∑ 𝜂(𝑅(𝐸𝑗 , 𝑅(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                                  = −𝛼⁴(−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))                 (39) 

 

            − ∑ 𝜂(𝑅(𝑅(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                                           = 2𝑛𝛼⁴(−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))            (40) 

 

                ∑ 𝜂(𝑅(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                      = 𝛼²[−𝑆(𝑌, 𝑍) − 𝛼²(𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))]        (41) 

bulunur. Son olarak, (38)-(41) nolu eşitlikler birlikte göz önüne 

alınırsa (37) nolu eşitlik 

𝑆(𝑌, 𝑍) = −2𝑛𝛼²𝑔(𝑌, 𝑍) 

haline dönüşür. Böylece (32) nolu eşitliğin ispatı tamamlanır. 

Ayrıca, bu son denklemin her iki tarafının 𝑌 = 𝑍 = 𝐸𝑗 için, 1 ≤

𝑗 ≤ 2𝑛 + 1 olmak üzere, izi alınırsa (33) nolu eşitliğinin ispatı da 

sonlanır. 

Teorem 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, eğer 𝑀 yarı-simetrik ise o 

zaman (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu için , 
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    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda 𝑀 üzerinde Ricci soliton daima 

genişleyendir, 

ifadeleri geçerlidir. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonlu alfa-kosimplektik manifold olsun. 

Bu durumda, (26) nolu denklem yardımıyla 

𝑆(𝑌, 𝜉) = −𝜆𝜂(𝑌) 

yazılır. Ayrıca, (32) nolu denklem 𝑍 = 𝜉 için, 

𝑆(𝑌, 𝜉) = −2𝛼²𝑛𝜂(𝑌) 

elde edilir. Bu son iki denklemin sağ taraflarının eşitliğinden 

                                          𝜆 = 2𝑛𝛼²                                            (42) 

sonucuna ulaşılır. Burada 𝜉(𝛼) = 0 seçildiğinden 𝛼 reel bir sabit 

olarak alınabilir. Böylece (42) nolu denklem 𝛼 = 0 ve 𝛼 ≠ 0 

durumları altında sırasıyla, 𝜆 = 0 ve 𝜆 > 0 haline dönüşür. Bu 

nedenle (a) ve (b) şıklarının ispatı Ricci soliton tanımından 

aşikardır. 

Sonuç 1. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) üzerinde 𝜉(𝛼) = 0 olsun (𝑛 ≥ 1). Eğer 

𝑀 yarı-simetrik ise o zaman (𝑀, 𝑔, 𝜉, 𝜆) Ricci solitonu asla daralan 

durumda olamaz. 

Önerme 6. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) yapısı üzerinde 𝜉(𝛼) = 0 olsun. Eğer 𝑀 

üzerinde 𝐶 ⋅ 𝑅 = 0 tensörel çarpımı mevcutsa, o zaman keyfi 

vektör alanları için, 

𝑆(𝑄𝑌, 𝑍) = −(
𝑟

2𝑛
− 2𝛼²)𝑆(𝑌, 𝑍) 

                                       −2𝛼²(−𝑛𝛼² + 𝑟)𝑔(𝑌, 𝑍)                      (43) 

ve 

𝑟 = −2𝑛(2𝑛 + 1)𝛼² 
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denklemleri geçerlidir. 

İspat. Alfa-kosimplektik manifold 𝑀 aşağıdaki tensörel çarpım ile 

verilsin. Bu durumda, 

                                 (𝐶(𝑈, 𝑉) ⋅ 𝑅)(𝑊, 𝑌)𝑍 = 0                          (44) 

 

𝐶(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍 − 𝑅(𝐶(𝜉, 𝑉)𝑊, 𝑌)𝑍 

                    −𝑅(𝑊, 𝐶(𝜉, 𝑉)𝑌)𝑍 − 𝑅(𝑊, 𝑌)𝐶(𝜉, 𝑉)𝑍 = 0         (45) 

 

𝜂(𝐶(𝜉, 𝑉)𝑅(𝑊, 𝑌)𝑍) − 𝜂(𝑅(𝐶(𝜉, 𝑉)𝑊, 𝑌)𝑍) 

           −𝜂(𝑅(𝑊, 𝐶(𝜉, 𝑉)𝑌)𝑍) − 𝜂(𝑅(𝑊, 𝑌)𝐶(𝜉, 𝑉)𝑍) = 0       (46) 

yazılır. {𝐸𝑗 , 𝑗 = 1,2, … ,2𝑛 + 1}, 𝑀 manifoldunun her noktasındaki 

tanjant uzayının bir ortonormal tabanı olmak üzere, (46) nolu 

eşitliğe 1 ≤ 𝑗 ≤ 2𝑛 + 1 ve 𝑉 = 𝑊 = 𝐸𝑗 için kontraksiyon 

yapıldığında (toplam alınırsa), 

0=− ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝐶(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 − ∑ 𝜂(𝑅(𝐸𝑗 , 𝐶(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1

𝑗=1  

− ∑ 𝜂(𝑅(𝐶(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1 + ∑ 𝜂(𝐶(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1

𝑗=1  (47) 

elde edilir. (47) nolu denklemin sağ tarafındaki dört ifadeyi ayrı 

ayrı olacak şekilde (15)-(17) nolu eşitlikler kullanılarak hesaba 

katılırsa, 

       − ∑ 𝜂(𝑅(𝐸𝑗 , 𝑌)𝐶(𝜉, 𝐸𝑗)𝑍)2𝑛+1
𝑗=1 = −

2𝛼2𝑟

2𝑛−1
𝜂(𝑌)𝜂(𝑍)            (48) 

 

            − ∑ 𝜂(𝑅(𝐸𝑗 , 𝐶(𝜉, 𝐸𝑗)𝑌)𝑍)2𝑛+1
𝑗=1  

                  = 𝛼²[
𝛼2

2𝑛−1
−

𝑟

2𝑛(2𝑛−1)
](𝑔(𝑌, 𝑍) − 𝜂(𝑌)𝜂(𝑍))      

                      −
𝛼2

2𝑛−1
[2𝑛𝛼²𝜂(𝑌)𝜂(𝑍) + 𝑆(𝑌, 𝑍)]                        (49) 
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            − ∑ 𝜂(𝑅(𝐶(𝜉, 𝐸𝑗)𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

                                      =
2𝛼2𝑟

2𝑛−1
(−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍))                 (50) 

 

                ∑ 𝜂(𝐶(𝜉, 𝐸𝑗)𝑅(𝐸𝑗 , 𝑌)𝑍)2𝑛+1
𝑗=1   

          = [
𝛼2

2𝑛−1
−

𝑟

2𝑛(2𝑛−1)
](−𝛼2[−𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍)] − 𝑆(𝑌, 𝑍))    

              +
1

2𝑛−1
[2𝑛𝛼⁴(𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝜂(𝑍)) − 𝑆(𝑄𝑌, 𝑍)]         (51) 

elde edilir. (48)-(51) eşitlikleri birlikte hesaba katılırsa (47) eşitliği 

𝑆(𝑄𝑌, 𝑍) = (−
𝑟

2𝑛
+ 2𝛼²)𝑆(𝑌, 𝑍) + 2𝛼²(𝑛𝛼² − 𝑟)𝑔(𝑌, 𝑍) 

formuna dönüşür. Burada hatırlatalım ki, 

      𝑆(𝑄𝑌, 𝑍) = 𝑆²(𝑌, 𝑍) = 𝑆(−2𝑛𝛼²𝑌, 𝑍) = −2𝑛𝛼²𝑆(𝑌, 𝑍)     (52) 

ve 

𝑄𝑌 = −2𝑛𝛼²𝑌 

eşitlikleri sağlanır. Böylece (43) nolu denklemin ispatına ulaşılır. 

Son olarak, (43) nolu eşitlikte 𝑌 = 𝑍 = 𝜉 seçilirse, 

−2𝑛𝛼²[2𝛼² − (𝑟/(2𝑛)) + 2𝑛𝛼²] = 2𝛼²[𝑟 − 𝑛𝛼²] 

bulunur. Bu son eşitliğin düzenlenmesiyle, 

−𝑟𝛼² − 2𝑛𝛼⁴ − 4𝑛²𝛼⁴ = 0  

denklemi elde edilir. Bu son eşitlik istenen skalar eğrilik sonucunu 

doğrular. Kosimplektik durumda (𝛼 = 0) kesit eğriliği de özdeş 

olarak sıfır olacaktır. Yani, 𝛼² ≠ 0 (alfa-Kenmotsu durumu) için 

skalar eğrilik değeri geçerlidir. Bu da ispatı tamamlar. 
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Teorem 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) bir (2𝑛 + 1)-boyutlu alfa-kosimplektik 

manifold olsun. 𝜉(𝛼) = 0 olmak üzere, (𝑛 ≥ 1) eğer 𝑀 üzerinde 

𝐶 ⋅ 𝑅 = 0 tensörel çarpımı sağlanıyorsa, o zaman (𝑔, 𝜉, 𝜆) Ricci 

solitonu için,      

    (𝒂) 𝛼 = 0 olduğunda 𝑀 üzerinde basit sabit Ricci soliton vardır, 

    (𝒃) 𝛼 ≠ 0 olduğunda Ricci soliton taşıyan bir alfa-Kenmotsu 

manifoldu yoktur, 

ifadeleri geçerlidir. 

İspat. (𝑀, 𝑔, 𝜉, 𝜆), Ricci solitona sahip alfa-kosimplektik manifold 

olsun. (43) ve (52) nolu eşitlikler kullanılarak, 

(−
𝑟

2𝑛
+ 2𝛼²)𝑆(𝑌, 𝜉) + 2𝛼²(𝑛𝛼² − 𝑟)𝑔(𝑌, 𝜉) 

                  = 𝛼𝜂(𝑌)𝑆(𝜉, 𝜉) − (𝛼 + 𝜆)𝑆(𝑌, 𝜉)                             (53) 

bulunur. (26) ve (29) nolu eşitlikler yardımıyla (53) nolu eşitlik 

                   𝜆² + 2𝜆𝛼² − (𝑟/2𝑛)𝜆 − 2𝛼²(𝑛𝛼² − 𝑟) = 0            (54) 

şekline indirgenir. (54) nolu eşitlik 𝑟 = −2𝑛(2𝑛 + 1)𝛼² için 

düzenlenirse, 

                   𝜆² + 𝛼²(2𝑛 + 3)𝜆 + 2𝑛𝛼⁴(4𝑛 + 1) = 0                 (55) 

denklemi elde edilir. Burada 𝛼, 𝜆 ∈ 𝐼𝑅 ve 𝑛 ≥ 1 (𝑛 ∈ ℕ) dir. 

Şimdi, (55) nolu denklem  ile verilen ikinci dereceden kuadratik 

denklemin reel çözümünün olup olmadığını araştıralım. Bu 

durumda, 

𝛥 = 𝛼⁴(−28𝑛² + 4𝑛 + 9) 

ve 

                                𝜆 =
−𝛼²(2𝑛+3)±𝛼²√−28𝑛²+4𝑛+9

2
                       (56) 
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elde edilir. Denklemin reel köklerinin olması için 𝛥 ≥ 0 olmalıdır. 

Bu kuadratik fonksiyonun maksimum noktası (tepe noktası) 

𝑛 = −
4

2(−28)
=

1

14
 

olur. Yani, bu fonksiyon kolları aşağı doğru açılan bir paraboldür. 

Ayrıca, en büyük değerini 𝑛 = 1/14 için alır. 𝑛 ≥ 1 şartı altında  

−28𝑛² + 4𝑛 + 9 < 0 

önermesi geçerlidir. Dolayısıyla (56) nolu denklem 𝛼 = 0 için 𝜆 =

0 değerini alır. Bu nedenle, Ricci soliton sabittir. Benzer olarak, 

𝛼 ≠ 0 şartı altında (56) nolu denklemin reel kökleri mevcut 

değildir.  Böylece alfa-Kenmotsu manifoldu üzerinde bir Ricci 

soliton taşınamaz. 

Sonuç 2. (𝑀, 𝜙, 𝜉, 𝜂, 𝑔), (2𝑛 + 1)-boyutlu bir alfa-Kenmotsu 

manifold ve 𝛼, 𝜉 boyunca paralel olsun (𝑛 ≥ 1). Eğer 𝑀 üzerinde 

𝐶 ⋅ 𝑅 = 0 tensörel çarpımı sağlanıyorsa, o zaman 𝑀 üzerinde 

(𝑔, 𝜉, 𝜆) Ricci solitonu yoktur. 
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E3 ÖKLİD UZAYINDA İNVOLÜT–EVOLÜT EĞRİ 

ÇİFTLERİNİN TEMEL ÖZELLİKLERİ  

Mustafa BİLİCİ1 

 

 

 

 

Giriş 

İnvolüt–evolüt eğri çifti, diferansiyel geometrinin klasik fakat 

güncelliğini koruyan konuları arasında yer almaktadır. Bir eğrinin 

involütü, söz konusu eğrinin tanjant doğrultusuna diklik koşulu 

altında tanımlanırken; evolüt eğrisi, bu ilişkinin tersini ifade eder. Bu 

eğriler arasındaki bağ, yalnızca eğrilerin konumsal ilişkileriyle 

sınırlı olmayıp, Frenet çatıları, eğrilik–burulma fonksiyonları ve 

Darboux vektörleri üzerinden daha derin geometrik anlamlar 

barındırmaktadır. Bu bölümde, Öklid uzayında tanımlı involüt–

evolüt eğri çiftlerinin geometrik özellikleri bütüncül bir bakış 

açısıyla ele alınmaktadır. Özellikle, eğrinin Frenet vektörlerinden 

biri olan binormal vektör B ile Darboux vektörü W arasındaki açının 

                                                
1 Prof. Dr., Ondokuz Mayıs Üniversitesi Eğitim Fakültesi, Matematik ve Fen 

Bilimleri Eğitimi Bölümü, Samsun, Türkiye, Orcid: 0000-0002-3502-5027  

BÖLÜM 5
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varlığı temel alınarak, söz konusu çatılar arasındaki geometrik 

bağıntılar farklı bir yaklaşımla incelenmiştir. Bu yaklaşım sayesinde, 

involüt ve evolüt eğrilerinin birbirleriyle olan ilişkileri klasik 

yöntemlerden farklı bir bakış açısıyla ortaya konulmuş ve eğri çiftine 

ilişkin çeşitli karakterizasyonlar elde edilmiştir. 

Aşağıda verilen temel tanım ve teoremler, (Hacısalihoğlu, 

1983), (O’Neill, 1996), (Fenchel, 1951)  kaynaklarında sunulan 

kuramsal çerçeve esas alınarak üç boyutlu vektör uzayı için ele 

alınmıştır. 

Tanım 1. A boş olmayan bir cümle ve V de K cismi üzerinde bir 

vektör uzayı olsun. Bir 

                                          : A A V        

                                             ( , ) ( , )P Q P Q                                                                                                                                                                                                                                                                                                            

dönüşümü için aşağıdaki iki aksiyom sağlanırsa, A ya V ile 

birleştirilmiş bir afin uzay denir: 

1( A )    P Q R A, ,     ( , ) ( , ) ( , )P R P Q Q R   , 

2( A )    P A  ve   V  için  ( , )P Q   olacak şekilde 

bir tek Q A  noktası vardır.  

Burada P  noktasına başlangıç ve Q  noktasına da uç noktası 

denir. Diğer taraftan A nın boyutu  

                                              boyA boyV  

şeklinde tanımlanır. 

Tanım 2.   reel sayılar cismi ve V bir reel vektör uzayı olmak 

üzere,  üzerinde  

                                 , :V V      

                                              ( P,Q ) , ( P,Q ) P,Q  
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biçiminde iç çarpım fonksiyonu tanımlanabilirse, V vektör uzayına 

reel iç-çarpım uzayı denir.  

Tanım 3. V bir reel iç-çarpım uzayı olsun. ile birleşen bir A afin 

uzayına Öklid uzayı denir ve genellikle 3E  ile gösterilir.              

Tanım 4. 
3E  3-boyutlu Öklid uzayı olsun. 

                     3 3d : E E   

                              
23

1

1 3


     i i

i

X ,Y d( X ,Y ) y x , i  

şeklinde tanımlanan d  fonksiyonuna , 3E  Öklid uzayı üzerinde 

uzaklık fonksiyonu ve d( X ,Y ) XY  reel sayısına da 3X ,Y E  

noktaları arasındaki uzaklık denir.    

Tanım 5. I   bir açık aralık olmak üzere, ( , )I   koordinat 

komşuluğu ile verilen 

3

1 2 3



 

: I E

t ( t ) ( ( t ), ( t ), ( t ))



   
 

şeklinde tanımlanan diferensiyellenebilir fonksiyona 
3E  de bir eğri 

denir. Burada, I  ya eğrinin parametre aralığı denir. 

Tanım 6. 
3M E  eğrisi ( , )I   koordinat komşuluğu ile verilsin. 

  ( )t 1 ise M eğrisine birim hızlı eğri denir. Eğer M eğrisinin her 

noktasındaki hız vektörü sıfırdan farklı ise de bu eğriye regüler eğri 

adı verilir. 

Tanım 7. Bir 
3M E  eğrisinin ( s ) M  noktasındaki Frenet 3-

ayaklısı genellikle  T N B, ,  ile gösterilir. Bu yapıda T’ ye teğet 

vektör alanı, N’ ye asli normal vektör alanı, B’ ye de binormal vektör 

alanı denir. Ayrıca M nin ( s ) M  noktasındaki birinci ve ikinci 
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eğrilikleri   ve   ile gösterilir.    ya M nin eğriliği   ya da 

burulması denir. Bu halde Frenet formülleri 

                                    

 

   

  









T N

N N B

B N



 



                                    (1) 

 şeklindedir.  

Tanım 8. 3M E  eğrisi üzerindeki bir  s  noktası eğriyi 

çizerken T ,N ,B  vektörleri değişirler, dolayısıyla küresel 

göstergeler oluşurlar. Eğrinin Frenet 3-ayaklısının her s anında, 

bir eksen etrafında, bir ani helis hareketi yaptığı kabul edilir. Bu 

eksene eğrinin bu s parametresine karşılık gelen  s  

noktasındaki Darboux (ani dönme) ekseni denir.  Bu eksenin yön 

ve doğrultusunu veren vektör, 

                                        W T B N N                           (2) 

olup, eğrinin  s  noktasındaki Darboux vektörü adını alır. 

W N N   olduğu, 

0 1 0

0

T N B

N N

 

 



 

ifadesinden açıktır. 

B binormal vektör alanı ile W  Darboux vektörü arasındaki 

açı   ile gösterilirse, 

                                           
 




W cos

W sin

 

 
                                    (3) 

olduğu kolayca görülür (Şekil 1).                          
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Şekil  1 Darboux vektörü                       

W Darboux vektörü yönündeki birim vektörü C ile gösterirsek,  

2 2 0W      olmak üzere    

                                      C sin T cos B                                    (4) 

şeklinde yazılabilir.                      

Tanım 9. 
3M E  , ( , )I   koordinat komşuluğu ile verilen bir eğri 

ve M nin  s I  ya karşılık gelen ( s ) M  noktasındaki 1. ve 2. 

eğrilikleri   ve   olsun. Bu takdirde,  

                               1H : I   

                                      1 
( s )

s H ( s )
( s )




   

şeklinde tanımlı 1H  fonksiyonuna, M nin 1-inci harmonik eğriliği 

denir. 

Tanım 10. 
3M E  eğrisi ( , )I   koordinat komşuluğu ile verilsin. 

M nin ( s ) M  noktasındaki hız vektörü  ( )s  ve U da sabit bir 

vektör olsun.  s I  için  ( )s  ile U arasındaki açı sabit ise M ye 

bir eğilim çizgisi (helis),  Sp U  ya da M eğilim çizgisinin eğilim 

ekseni denir. 

Teorem 1. Bir 
3M E  eğrisi ( , )I   koordinat komşuluğu ile 

verilsin. M nin bir eğilim çizgisi (helis) olması için gerek ve yeter 

şart 1-inci harmonik eğriliğinin sabit olmasıdır. 

 
W 
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Teorem 2. 
3M E  eğrisi ( , )I   koordinat komşuluğu ile verilsin. 

M nin ( s ) M  noktasındaki Frenet 3-ayaklısı  

1)  Eğer s I  yay parametresi ise  

                              
1

T( s ) ( s ),

N( s ) ( s ) ,
( s )

B( s ) T( s ) N( s ).






 






  

                                  (5) 

               2) Eğer s I  yay parametresi değil ise  

 

                             

1

1


 


 


   

 

T( s ) ( s ),
( s )

N( s ) B( s ) T( s ),

B( s ) ( ( s ) ( s )).
( s ) ( s )




 
 

         (6) 

şeklindedir.  

Teorem 3. M, E 3
 de eğriliği pozitif olan birim hızlı bir eğri olsun. 

M eğrisinin düzlemsel bir eğri olması için gerek ve yeter şart   0  

olmasıdır.  

Teorem 4. M, E 3
 de bir birim hızlı eğri olsun. M eğrisinin bir 

doğru olması için gerek ve yeter şart    0  olmasıdır.  

Tanım 11. M M E1 2

3,   iki eğri olsun. M1  ve M 2  , sırası ile, ( , )I   

ve ( , )I   koordinat komşulukları ile verilsin. ( )s  ve ( )s  

noktalarında M1  ve M 2  nin Frenet 3-ayaklıları , sırası ile ,  

                                T N B, ,   ve   T N B* * *, ,     

olmak üzere  

 T T, * 0                             

ise M 2  ye M1  in involütü, M1 e de M 2  nin evolütü denir (Şekil 2). 
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  Şekil 2 İnvolüt-evolüt eğri çifti

 

Teorem 5. M M E1 2

3,   eğrileri ( I , )  ve ( I , )  koordinat 

komşulukları ile verilsin. Eğer M 2  , M1  in involütü ise  s I  için  

                                d( ( s ), ( s )) c s , c sabit   

dır. 

Teorem 6.M M E1 2

3,   involüt–evolüt eğrileri, ( I , ) , ( I , )  

koordinat komşulukları ile verilsin. M1 ve M 2  nin 1( s ) M ve 

2( s ) M noktalarındaki Frenet 3-ayaklıları, sırası ile  

                                T N B, ,    ve    T N B* * *, ,  

M1 ve M 2  nin eğrilik ve burulmaları  ,    ve    * *,  ise  

            
 


*2

2 2

2 2(c s)





          ve         

2




 

*

2(c s)( )

 


  
                          

dir.  

İnvolüt–Evolüt Eğri Çiftleri ve Frenet Çatıları 

Bu bölümde, involüt–evolüt eğri çiftlerinin Frenet çatıları 

arasındaki ilişkiler, binormal vektör B ile Darboux vektörü W 

arasındaki θ açısı esas alınarak açısal bir yaklaşımla ifade edilmiştir. 

Teorem 7.M M E1 2

3,   eğri çifti, sırası ile, ( , )I   ve ( , )I   

koordinat komşulukları ile verilsin. Eğer 2M , 1M  in involütü ise, 

 

O  

 

 

   T 
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s I  ya karşılık gelen  ( )s  M 1  ve ( )s  M 2 noktalarındaki 

Frenet vektörleri arasında 

                            

0 1 0

0

0

     
     

      
         

*

*

*

T T

N c os s in N

B s in c os B

 

 

                      (7) 

bağıntısı vardır. Burada  B,W    dır. 

İspat. 2M , 1M in involütü olduğundan 

                             ( s ) ( s ) T( s ) ,                                 (8)                          

yazılabilir. Teorem 5. den dolayı   d( ( s ) , ( s )) c s    olduğu 

gözönüne alınarak (8) ifadesinde her iki tarafın da s ye göre türevi 

alınırsa, 

                                       
d d d

T N
ds ds ds

  
                                    (9)                          

olur.   nın s parametresine göre tütevini   ile gösterelim. Diğer 

yandan 
* *

*

*

d ds ds
T

ds ds ds


    

yazılabilir. Bu son ifadeyi (9) ile mukayese edersek 

                                        
*

* ds
T N

ds
                                  (10) 

elde edilir. Buradan  


*ds

ds
  

bulunur. Bu netice (10) denkleminde yerine yazılırsa 

                                             T N*                                             (11) 

elde edilir. (10) denkleminden  =N  olduğundan 

 ( )'        2T N B  

ve 

         2 2 2 3T B  

--87--



dir. İnvolüt eğrisi için s I yay parametresi olmadığından, (6) 

denkleminden binormal vektör 

                               
2 2 2 2

 
 

*B T B
 

   
        

olur. (4) denklemleri kullanılarak 

                                *B s in T cos B                                      (12) 

olur. N B T* * *   olduğundan 

                               *N cos T s in B                                     (13) 

elde edilir. Bu durumda (11), (12), (13) denklemleri matris formunda 

ifade edilirse ispat tamamlanır. 

İnvolüt–Evolüt Eğri Çiftlerinin Darboux vektörleri 

Teorem 8. M M E1 2

3,   involüt–evolüt eğri çifti olsun. M 1 ve M 2  

eğrilerinin Darboux vektörleri, sırası ile, W  ve W
*

 olmak üzere W  

ve W
*
 arasında 

                                        W
c s

W N*

( )





1


                           

bağıntısı vardır. 

İspat. (2) bağıntısından  

                                        W T B     

ve 

                                        W T B* * * * *    

dır. Teorem 6, (11) ve (12) den 

2 2

2 2

*W ( s in T c os B ) N
( c s ) ( c s )( )

   
 

   

 
  

  
, 

şeklinde olur. (3) denklemi bu son denklem ile birleştirilirse,  
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W
c s

T
c s c s

B*

( ) ( )( ) ( )















 













  





2

2 2 , 

 W
c s

T B N*

( )



 

1


    

olur ve (2) denklemi kullanılarak 

                             W
c s

W N*

( )





1


                                 (14) 

elde edilir. 

Teorem 9. M M E1 2

3,   involüt-evolüt eğri çifti olsun.          

 1 2M ,M  eğri çiftinin Darboux vektörleri yönündeki birim 

vektörleri C  ve C*  olsun. C  ve C*   arasında 

C N C*


 


 




 



  

 

  2 2 2

2 2

2 2 2
 

bağıntısı vardır. 

İspat. (4) bağıntısından 

                                        C sin T cos B                  

ve B
*
 ile W

*
 Darboux vektörü arasındaki açı  *  olmak üzere 

                                 * * * * *C sin T c os B                               (15) 

dır. Şimdi *s in  ve *c os  değerlerini hesaplayalım. (2) 

denkleminden 

                                          
W cos

W sin

 

 

 



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ve                                

                                           

* * *

* *

W c os

W s in

 

 

 




                             (16) 

dır. Teorem 6 ve (14) deki neticeler (16) da yerine yazılırsa, 

                                 
2 2 2

*s in ,



  


 

                              (17)                   

                              
2 2

2 2 2

*c os
 


  




 
                                 (18) 

olur. (17) ve (18) denklemleri (15) denkleminde yerine yazılırsa 

                    C N C*


 


 




 



  

 

  2 2 2

2 2

2 2 2
            (19) 

elde edilir. 

Sonuç 1. M M E1 2

3,   involüt–evolüt eğri çifti olsun. Eğer M 1

evolüt eğrisi bir helis ise 

a. M 2  involüt eğrisinin Darboux vektörü W *
 ile binormal 

vektörü B
*
 lineer bağımlıdır. 

  b. M M E1 2

3,   involüt-evolüt eğri çiftinin Darboux 

vektörleri yönündeki birim vektörleri aynıdır. 

İspat. a. Eğer M 1 evolüt eğrisi bir helis ise Teorem 3.2.2 den  

                                        



 sabit  

dir. (3) denklemi gözönüne alınırsa 
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tg sabit











 0
                                           (20)  

bulunur. Bu son netice (17) ve (18) denklemlerinde yerine yazılırsa,  

                                          Sin *  0 ,                                         (21) 

                                         1*Cos                                             (22) 

olur. (21) ve (22) denklemleri birlikte düşünülürse 

                                          *  0                                               (23) 

olduğu görülür. O halde W*
vektörü B*  Frenet vektörü yönündedir. 

Yani W*
 ile B*  lineer bağımlıdır. 

b. (20) deki   0  neticesi (19) denkleminde yerine yazılırsa 

C C*   

olduğu görülür. 

Özel Durum: İnvolüt Eğrisinin Düzlemsel Olma Koşulu  

Teorem 10. M M E1 2

3,   involüt-evolüt eğri çiftinin eğrilik ve 

burulması, sırası ile,  ,  ve  * *,  olsun.   0  olmak üzere M 1

eğrisinin helis olması için gerek ve yeter şart M 2 eğrisinin düzlemsel 

olmasıdır. 

İspat. M 1 eğrisi bir helis olsun. Teorem 1 den   




 sabit  

ve  

                                                












 

.

0                                        (24)                
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dır. Diğer taraftan Teorem 6 dan  





   

  

 



*

*

 

( )( )

( )

( )





 





2 2

2 2

1

2

c s

c s

  , 

                                             

 









 

*

*

.













2 2
3

2

                            (25) 

olur. (24), (25) de yerine yazılırsa  

 *  0  

bulunur. O halde M 2 eğrisi düzlemseldir. 

 Şimdiye kadar verilen teorik sonuçlar, seçilen bir örnek 

yardımıyla uygulamaya aktarılacak ve bölüm bu şekilde 

tamamlanacaktır. 

Örnek. Öklid 3-uzayında s yay parametresi ile verilen aşağıdaki 

eğriyi ele alalım: 

  0
2 2 2

s s s
s cos ,sin , , s .

    
     

    
 

Bu eğri için 
1

2
    olduğundan   eğrisi birim hızlı bir dairesel 

helistir.   eğrisinin Frenet vektörlerini hesaplarsak,  
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1
1

2 2 2

0
2 2

1
1

2 2 2

s s
T sin ,cos , ,

s s
N cos , sin , ,

s s
B sin , cos , .

     
      

    
     

       
    

           
     

 

bulunur. Diğer yandan yay parametresi ile verilen   eğrisi için 

involüt tanımı gereği 

       s s c s T s     

yazılabilir. Kolaylık olsun diye 0c   alırsak, 

     s s sT s    

olur. O halde involüt eğrisi açık biçimde 

 
1

1
2 2 2 2 2 2

s s s s s
s cos ,sin , s sin ,cos ,

          
            

          
 

ve buradan 

  0
2 2 2 2 2 2

s s s s s s
s cos sin ,sin cos ,

        
          

        
 

şeklinde elde edilir. Bu son denklemde üçüncü bileşen  3 0s 

olduğundan involüt eğrisinin düzlemsel bir eğri olduğu kolaylıkla 

görülür. (Şekil 3) 
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    Şekil 3   helis eğrisi (mavi) ve   düzlemsel involütü (kırmızı) 

 

Helis için Darboux vektörü 
1

2
    olduğundan 

1 1

2 2
W T B   

elde edilir. Ayrıca  

               
2 2 1

2
W      

olup sabit büyüklüklüdür. Bu durum, helisin uzaydaki dönme 

ekseninin değişmediğini gösterir. Ayrıca  

  45W,B    

olup sabittir. Buradan Teorem 3 yardımıyla 
3, E    eğrilerinin 

Frenet vektörleri arasında aşağıda verilen matrissel eşittlik vardır. 

 

 

 

 

 

  

0 1 0

1 10
2 2

1 10
2 2

*

*

*

T T

N N

B B

 
    
         
        
  

-2
-1

x

-3

-2

0
-3

-1

0z
1

y

-2

2

3

-1 10 1 2 3
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İnvolüt eğrisi düzlemsel bir eğri olduğundan 0*   ve 

involüt eğrisinin Darboux vektörü 
* * *W B  

şeklindedir. Bu durumda   

 

yani involüt eğrisinin Darboux vektörü yalnızca binormal vektör 

doğrultusundadır. Teorem 9 un ifadesi, involüt-evolüt eğri çiftinin 

Darboux vektörleri yönündeki birim vektörleri eşit olup Sonuç 1. 

gerçeklenir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  0* *W ,B 
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