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ONSOZ

Matematik, insanlik tarihinin en kokli ve evrensel
bilimlerinden biri olarak, hem kuramsal derinligi hem de genis
uygulama alanlariyla bilimsel ilerlemenin temel dinamiklerinden
biri olmay1 siirdiirmektedir. Diferansiyel geometri, hem modern
matematigin kurucu alanlarindan biri hem de fizik, miithendislik ve
veri bilimi gibi pek cok disiplin i¢in temel bir aractir. Bu alan,
geometrik yapilarin egrilik, simetri ve akis 6zelliklerini incelemek
icin bir temel saglar.

Bu kitap, diferansiyel geometrinin temel kavramlarini farkl
bakis acilarindan ele alan seg¢ilmis ¢aligmalart bir araya
getirmektedir. Alfa-kosimplektik manifoldlar, Ricci solitonlar ve
yari-simetrik  kosullar iizerine yapilan incelemeler, modern
geometrinin giincel arastirma alanlarina 151k tutarken; lic boyutlu
Oklid uzayindaki egri ciftlerine yonelik boliim ise disiplinin klasik
yOniinii hatirlatmaktadir. Kitap, konuyla ilgilenen arastirmacilar ve
lisanstistii  6grenciler icin, farkli geometrik yapilarin temel
ozelliklerine dair genel ve erisilebilir bir kaynak niteligi
tagimaktadir.

Bu kitabin, yeni arastirmalara ilham vermesini, mevcut
caligmalara katkida bulunmasii ve okuyuculara faydali olmasini
dilerim. Editor olarak, bu eserin hazirlanmasinda bilimsel katki
sunan tiim yazarlarimiza ve yayin siirecinde emegi gecen tiim
paydaslara tesekkiir ederim.

Prof. Dr. Siikran KONCA
[zmir Bakirgay Universitesi
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BOLUM 1

ALFA-KOSIMPLEKTIK MANIiFOLDLAR
UZERINDE RiCCi SOLITONLARLA IiLGILi BAZI
HATIRLATMALAR

Sermin OZTURK!
Giris
Bir uzayin (manifoldun) egriliginin ayrintili anlatimi, Riemann
egrilik tensorii R ile ifade edilir. Ancak bu anlatim son derece
karmagik olup hem uzayin sekil bozuklugunu temsil eden Weyl
konformal pargacint hem de madde-enerji dagiliminin yol actig
egriligi temsil eden Ricci kismini igerir. Matematikgiler ve
fizik¢iler, bu durumun belirli boliimlerini izole etmek istemektedir.
Riemann egrilik tensér alanim1 R ¢esitli izdistimler ve
doniistimler aracilifiyla farkli  geometrik yapilarin = ve  fiziksel
olaylarin incelenmesinde bazi araglar sunar. Bu araglarin 6ne ¢ikan
iki temsilcisi  olan konformal (Weyl) egrilik tensori ile
konharmonik egrilik tensorii, egriligin degisik yonlerini izole eder.
Bu da uzaym yapisal 6zelliklerini farkli metotlarla ortaya koyar.
Weyl egrilik tensoér alani, bir metrik 0Olcegin  keytfi olarak
degistirilmesine kars1 degismezligini koruyarak konformal yapinin
oziinli ve agisal bozulmalari inceler. Konharmonik egrilik tensor
alan1 ise, harmonik haritalarin geneller. Her iki tensér alami da
uzayin diizliik 6l¢iisiinii belirlemeye calisir. Konharmonik haritalar
bu harmonik denge durumunun bir tiir esnek veya Olcekli
genislemesidir. Bir anlamda, harmonikligi daha genis bir simetri
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grubu altinda korumaya calisan haritalardir. Iste konharmonik
egrilik tensorii, tam da bu tiir haritalarin var olabilmesi i¢in uzayin
(manifoldun) sahip olmasi gereken veya engel teskil eden egrilik
yapisini Ol¢en bir aragtir.

Yari-simetriyi simetrik uzaylarin dogal deformasyonlar1 olarak ele
alabiliriz. Bir simetrik uzaym homojen yapisint bozdugunuzda,
egrilik artik sabit kalmayacaktir. Fakat degisim belirli bir diizene
uyacaktir. Yani, yari-simetri, bu diizeni matematiksel olarak temsil
eder. Bir Riemann manifoldunun yari-simetrik olmasi igin,
manifold iizerinde tanimli herhangi X ve Y vektor alanlarina
karsilik, R(X,Y)-R = 0 esitliginin saglanmas1 gerekir. Bu
denklemde R egrilik tensorii, bir cebirsel operator gibi davranarak
uzaym geometrik yapisini kodlar. Bu tiir uzaylara yari-simetrik
denilmesinin nedeni, herhangi bir g noktasinda manifoldun egrilik
tensoOriiniin, klasik simetrik uzaylardaki egrilik tensdriiyle
ortiisebilmesidir. Ancak bu uyum, noktadan noktaya degisiklik
gosterebilen bir 6zelliktir. Lokal simetrik uzaylar ise daha kati bir
simetri kosulu getirir, yani; VR = 0 ile tanimlidir. Burada V Levi-
Civita konneksiyonunu temsil eder. Bu kosul, egrilik tensdriiniin
manifold boyunca sabit kaldigini ifade eder. Yari-simetrik uzaylarin
sistematik siniflandirmasi, Szabd'nun 1982 yilindaki ¢aligmasinda
ortaya cikmistir (Szabd, 1982). Fakat bu tanimlama Nomizu'nun
1968 yilinda kullandigt R-R =0 tensorel kosulundan
kaynaklanmaktadir (Nomizu, 1968).

Kenmotsu manifoldlar1 degme geometrisiile hemen hemen
Kaehler geometrisinin kesisiminde dogan o6zel yapilardir. Bu
manifoldlar, adim1 Katsuei Kenmotsu'dan alir ve hemen hemen
degme yapilarin  smiflandirilmasinda tamamen  farkli  bir
karakter ortaya koyar (Kenmotsu, 1972). Sasakian manifoldlar
sabit egrilik ortaya koyarken, Kenmotsu manifoldlar sabit olmayan,
ancak kontrollii bir sekilde degisen bir egrilik yapis1 sunarlar.



Esasen bir Kenmotsu manifoldu, bir hemen hemen degme metrik
yapt ile donatilmigtir, ancak burada kritik fark, temel 2-formun
0zdes olarak sifir olmamasi ve bunun yerine dis tiirevinin temel 2-
formun kendisiyle orantili olmasidir. Bu ozellik, bu tiir
manifoldlara benzersiz bir davranis kazandirir. Lokal olarak
bir katli ¢arpim seklinde ifade edilebilirler. Ozellikle konformal
olarak diiz olanlar, bir reel dogrunun sabit egrilikli bir manifold ile
katl1 ¢carpimina esittir. Yani, Kenmotsu yapilar degme dagilimina
teget yonde standart bir Sasakian benzeri yapiy1 korurken, diger
yandan reeb vektor alani boyunca birlistel genisleme veya
biiziilme meydana getirirler. Hemen hemen Kenmotsu yapilarin «
parametresiyle genellestirerek hemen hemen alfa-Kenmotsu
manifold olarak adlandirilmasini Janssens ve Vanhecke saglamistir
(Janssens & Vanhecke, 1981). Bunu takiben, Kim ve Pak bu
gelismeyi bir adim Gteye tasiyarak, hemen hemen alfa-Kenmotsu
yapilar ile hemen hemen kosimplektik yapilar1 birlestirerek yeni bir
siif tanimlamiglardir (Kim & Pak, 2005). Hemen hemen alfa-
kosimplektik manifoldlar olarak adlandirilan bu yapilar, hemen
hemen degme metrik manifoldlar ailesinin 6nemli bir alt sinifimi
olusturmaktadir.

Ricci akigi, bir manifoldun metrik yapisinin zaman iginde Ricci
egriligine gore nasil evrimlestigini tanimlayan, dogal bir parabolik
kismi diferensiyel denklemdir. Fiziksel bir benzetmeyle, bu akis
baslangigtaki karmasik ve diizensiz bir sekli (manifoldu) 1s1y1 esit
dagitan bir silire¢ gibi onun igsel egriligini yavasca yumusatarak ve
diizelterek daha homojen bir forma dogru degistirir. Ilk bakista
teknik goriinse de bu akisin en biiylik katkis1 Poincaré hipotezinin
ispatinda kilit rol oynamasidir. Ricci akisinin 6zel ve dengeli
¢Oziimleri olan Ricci solitonlar1 ise bu evrim siirecinde Olgek
degisimine karsin sekli korunan adeta hareketsiz  gibi
goriinen hareketlerdir. Sabit, genisleyen ve biiziilen (daralan) olarak
simiflandirilan bu yapilar Ricci akisinin sabit noktalar1 gibi
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davranirlar ve akigin dinamigini anlamak i¢in temel yap: taglaridir.
Boylece Ricci solitonlar1 geometrinin dilinde evrimin duragan
anlarin1 simgeleyen 6zel ve zarif nesneler olarak karsimiza cikar.
Ricci akisi, Richard Hamilton'in 1982 yilindaki oncii ¢calismasiyla
matematik  diinyasina  kazandirilmistir ~ (Hamilton, 1982).
Hamilton'un 1988 yilinda yiizeyler {izerindeki Ricci akigim
detaylica incelemesi, silirecin temel 6zelliklerini ortaya ¢ikarmistir
(Hamilton, 1988). Ancak bu caligmalar, akis sirasinda ortaya ¢ikan
ve egriligin sonsuza 1raksadigi metrik tekilliklerin varligim1 da
gostermistir. Grigori Perelman'in 2002 yilindaki c¢alismasi, 3-
boyutlu manifoldlarda Ricci akisinin tekilliklerini sistematik olarak
siiflandirarak bu sorunu agmay1 basarmistir (Perelman, 2002).

Bu c¢alismada, Ricci solitonlu alfa-kosimplektik manifoldlar
iizerinde baz1 yari-simetrik sartlar incelenmistir. Ozellikle,
konformal ve konharmonik egrilik tensor alanlari yardimiyla, R -
C =0 ve C-H = 0 kosullar1 arastirilmis ve bazi énemli sonuglar
elde edilmistir. Burada farkli yari-simetrik yapida olan C-H = 0
kosulu daha ¢ok Onem arz etmektedir.

Temel Kavramlar

Bir (2n + 1)-boyutlu tiirevlenebilir manifold M olsun. Her X,Y €
x(M) i¢in; ¢, (1,1)-tipli bir tensor alani, & bir vektor alant ve 7, 1-
form olmak tizere,

¢?X = —X +n(X)§ (1)
né)=1 ¢ =0,nc¢p=0 2)
9(@X,¢Y) = g(X,Y) —n(Xn(Y) 3)
nX) =g, %) “4)

deklemleriyle verilen g metrik tensorii ile donatilmis (M, ¢, €,1, 9)
yapisina bir hemen hemen degme metrik manifold denir. Burada



g(&, & =1 dir. Bir (M,¢,&,1n,g) hemen hemen degme metrik
yapinin temel 2-formu

PX,Y) = g(X, ¢Y) ()
seklinde tanimlanir (Blair, 1976). (1,3)-tipli Riemann egrilik
tensori R olmak fiizere,

R(X,Y)Z = VyVyZ — VyVzX — Viyy\Z (6)

seklinde tanimlidir. Bundan baska, (2n + 1)-boyutlu bir Riemann
manifoldu iizerinde (0,2)-tipli Ricci tensorii ve Ricci operatoril,

sirastyla,
S(X,Y) = X721 g(R(E;, X)Y, E)) (7)
SX,Y) = g(QX,Y) ®)
ile verilir. Burada {E4,E,,...,E,} lokal ortonormal bir tabandir

(Yano & Kon, 1984). (2n + 1)-boyutlu bir hemen hemen degme
metrik manifold (M, ¢, &, 1, g) ile verilsin. Eger manifoldu M X R

seklinde disiiniirsek, her vektor alam1 X i¢in, (X, f %) yardimiyla

M X R iizerinde bir vektor alani belirtebiliriz. Burada t, R
iizerindeki koordinat ve f, M X R iizerinde bir tiirevlenebilir
fonksiyondur. Boylece M X R iizerinde / hemen hemen kompleks

yapisi
J(XF5) = (@X = fEn(0 ) ©)

ile verilir. Eger ] integrallenebilirse o zaman, hemen hemen degme
metrik (M, ¢, &, n)-yapist  normaldir. | kompleks yapisinin
integrallenebilmesi i¢in gerek ve yeter sart

[¢, p1(X,Y) + 2dn(X,Y)§ = 0 (10)

denkleminin saglanmasidir (Yano & Kon, 1984). (M, ¢,¢,1n,9)
hemen hemen degme metrik manifoldu

dn=0, dd =0 (11)
--5--



sartlarin1 sagliyorsa, M ye hemen hemen kosimplektik manifold
denir. Eger bir hemen hemen kosimplektik manifold normal ise bu
manifolda kosimplektik manifold denir. M nin bir kosimplektik
manifold olmasi i¢in gerek ve yeter sart V& ve Vn kovaryant
tirevlerinin 6zdes olarak sifir olmasidir (Olszak, 1981). Eger M
tizerinde VX,Y,Z € y(M) ve @ € R, a # 0 igin,

dn =0, d® =2a(n A D) (12)

denklemleri saglaniyorsa, M ye bir hemen hemen alfa-Kenmotsu
manifold denir (Janssens & Vanhecke, 1981). Ozel olarak, a = 1
durumu hemen hemen Kenmotsu olarak adlandirilir (Kenmotsu,
1972). (M, ¢,&,1m, g) normal ise o zaman alfa-Kenmotsu manifold
olarak adlandirilir. Herhangi vektor alanlar1 ve keyfi a reel sayisi
icin, (11) denklemleri saglaniyorsa, M ye hemen hemen alfa-
kosimplektik manifold denir. Ozel olarak, @ = 0 i¢in hemen hemen
kosimplektik manifold, @ # 0 i¢cin hemen hemen alfa-Kenmotsu
manifold olarak adlandirilir. Eger hemen hemen degme metrik yapi
(M, ¢,¢&,m,g) Kaehler yapiya sahipse o zaman a reel sayisi igin
M ye alfa-kosimplektik manifold denir. Yani, a =0 igin
(M, ¢,¢&,m, g) yapist kosimplektik veya a # 0 icin alfa-Kenmotsu
olarak adlandirilir (Kim & Pak, 2005).

Onerme 1. (2n + 1)-boyutlu bir (M, ¢, &,1, g) hemen hemen alfa-
kosimplektik manifold olsun. M nin bir alfa-kosimplektik manifold
olmasi icin gerek ve yeter sart, V X, Y € y(M) i¢in,

(Vx )Y = alg($X,Y) —n(¥)PX] (13)
dir (Oztiirk, 2021).

Onerme 2. (2n + 1)-boyutlu bir (M, ¢, ,7, g) hemen hemen alfa-
kosimplektik manifold olsun. Bu durumda, V X,Y € y(M) i¢in,

Vx§ = aX —an(X)§ (14)

RX,Y)§ = —(a® + §(@)[n(NX — n(X)Y] (15)
--6--



RX, )Y = (a® + §(a)[g(¥, X)§ —n(¥)X] (16)

R(X,§)¢ = (a® + & (a)p*X (17)

NRX,Y)Z) = (@ +§(a)[-nX)g(¥,2) + n(V)g(X,Z)] (18)
S(X,§) = —2n(a® + {(@)n(X) (19)

Q¢ = —2(a® +&(a))né (20)

denklemleri saglanir. Burada a, da An =0 sartiz1 saglayan
tiirevlenebilir bir fonksiyondur (Oztiirk & ark., 2017).

Tammm 1. M, (2n + 1)-boyutlu bir Riemann manifoldu olsun. Bu
durumda, V X, Y, Z € y(M) igin,

C(X,Y)Z = R(X,Y)Z — Zn%l [S(Y,D)X —S(X,2)Y  (21)

r

—9(X,2)QY + g(¥,Z2)QX] [9(Y,2)X — g(X, Z)Y]

2n(2n-1)
Ve
H(Y,Z)W =R(Y,Z)W (22)
T 1 [SEZ W)Y =SY,W)Z+ g(Z,W)QY — g(Y,W)QZ]

seklinde tanimlanan (1,3)-tipli C ve H tensor alanlarina sirasiyla,
konformal ve konharmonik egrilik tensor alanlar1 denir (Yano ve
Kon, 1984).

Ricci Solitonlarla ilgili Temel Kavramlar

Bu boliimde bulgular boliimiinde kullanilacak temel kavramlar ve
temel egrilik 6zellikleri verilmistir.

Tammm 2. (M, go) bir n-boyutlu Riemann manifoldu olsun. Bu
durumda,

%(g(t)) +25(g(®) =0, g(0) = go (23)



kismi tiirevli diferensiyel denklemine g metrik tensoriinii eviren
Ricci akist denir (Hamilton, 1982). Burada t zaman parametresidir.

Tamim 3. (M, g) bir n-boyutlu Riemann manifoldu olsun. Eger
M tzerinde keyfi vektor alanlar1 X,Y ve V igin, A gercel bir skaler
olmak iizere,

(Lyg)(X,Y) + 2S(X,Y) + 21g(X,Y) = 0 (24)

denklemi saglaniyorsa, (M, g) ye Ricci soliton denir. Burada V
vektor alan1 Ricci solitonun potansiyel vektor alani ve Ly, g de V
yoniindeki g metriginin Lie tiirevidir. Bu durumda, Ricci soliton
(M, g,V,1) ile sembolize edilir. (M,g,V,A) Ricci solitonuna A
degerinin 41 < 0,4 = 0 ve A > 0 durumlar i¢in, sirastyla, daralan,
degismeyen ve genisleyen Ricci soliton adi verilir (Hamilton,
1988).

Tanmm 4. (M, g) bir n-boyutlu Riemann manifoldu olsun. L, g, V
yoniindeki g metriginin Lie tiirevi olmak iizere,

(Lyg)(X,Y) = g(VxV.Y) + g(X, V) (25)
dir (Yano & Kon, 1984).

Tanmim 5. (M, g,V,A) bir Ricci soliton olsun. Eger V potansiyel
vektor alani Killing vektor alani (L, g = 0) ise o zaman (M, g,V, 1)
ye basit Ricci soliton ad1 verilir (Chen 2015).

Tammm 6. (M, $,¢,1,9), (2n + 1)-boyutlu bir alfa-kosimplektik
manifold olsun. Eger M iizerinde (g, V, 1) Ricci solitonu mevcutsa,
(M,g,V,A) ya Ricci solitonlu alfa-kosimplektik manifold denir
(Hamilton, 1988), (Kenmotsu, 1972).

Onerme 3. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alani
¢ karakteristik vektor alani olarak secilirse yani, M {izerinde
(g, &, A) Ricci solitonu i¢in, Ricci egrilik tensor alani



SX,Y) =—(a+)gX,Y) +anX)n(¥) (26)

denklemini saglar. Burada a, ¢ karakteristik vektor alan1 boyunca
paralel olarak alinmistir (Oztiirk & Bektas, 2023).

Onerme 4. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alani
& karakteristik vektor alami olarak secilirse yani, M {izerinde
(g, &, 1) Ricci solitonu i¢in, asagidaki 6nermeler gegerlidir:

S(X,$) = —An(X) 27
QX = an(X)é — (e + )X (28)
Q¢ = -4 (29)
5,8 =-4 (30)
r=a—0C2n+1)(a+1). (€2))

Burada a, ¢ karakteristik vektor alan1 boyunca paralel olarak
almmustir (Oztiirk & Bektas, 2023).

Ana Sonuclar

Bu boliimde, konformal yari-simetrik sart1 olan R - C = 0 ve farkh
yart simetrik kosulu olan C - H = 0 kosullar1 incelenmistir. Bu
kosullar altinda Ricci solitonlu alfa-kosimplektik manifoldlar
iizerinde baz1 sonuglar elde edilmistir. Incelemeye baslamadan énce
yari-simetrik manifold tanimini verelim:

Tanmm 7. M bir (yar1) Riemann manifoldu olsun. T ve T, (0,4)-
tipli tensor alanlar1 olmak {lizere, eger M lizerinde keyfi vektor
alanlar1 U ve V i¢in,

T(U,V)-T, =0 (32)

sartt saglamiyorsa, M ye T, yari-simetrik tipli manifold denir.
Burada T1(U,V), T, lizerindeki tensor cebirinin tiirevi olarak etki
eder. Bu tanim genel olarak,



T,-T,=0 (33)
seklinde yazilir. Ozel olarak, T, = T, = R olarak alinirsa, manifold

yari-simetrik olarak adlandirilir (Szabd 1982).

Lemma 1. (M, ¢, &,1n, g) yapisi i¢in £(a) = 0 olsun. Bu durumda,
konformal ve konharmonik egrilik tensor alanlari i¢in,

gV, Win(U)gU,Win(V)]

r a?
2n(2n-1) 2n-1

n(CU, VW) =[-

1

— = [SW, Wn) - SU, Wnv)] (34)
veE
nHUVIW) = o——= gV, W)n(U) — g(U, W)n(V)]
———[S(V,W)nU) - SW,WmW)]  (35)

denklemleri saglanir.

Ispat. (21) ve (22) nolu esitlikler birlikte kullanilirsa (34) ve (35)
nolu esitliklerin ispatlar1 agikardir.

Onerme 5. (M,¢,&,1,9) bir (2n + 1)-boyutlu a-kosimplektik
manifold olsun. {(a) = 0 olmak iizere, eger M lizerinde R - C = 0
tensorel ¢arpimi saglaniyorsa, o zaman keyfi vektor alanlar igin,
(M, g,&, A) Ricci solitonu

S(v.2) = [ +319(Y,2) (36)
Ve
r=-=2n(2n + 1)a? (37)

esitliklerini saglar.

--10--



Ispat. M iizerinde alfa-kosimplektik manifoldunun R-C =0
tensorel ¢arpimint sagladigini kabul edelim. Bu takdirde, asagidaki
esitlikler saglanir:

(R(U,V)-C)(W,Y)Z=0 (38)

R(EV)C(W,Y)Z — C(R(E,VIW,Y)Z
—C(W,R(EVY)Z—CW,Y)REVIZ=0  (39)

nREVICW,Y)Z) —n(C(RE,VIW,Y)Z)
—n(CW,R(E, V)Y)Z) —n(C(W,Y)R(E,V)Z) =0 (40)
yazilr. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki

tanjant uzayinin bir ortonormal tabani olmak {izere, (36) nolu
esitlige 1<j<2n+1 ve V=W=E; i¢cin kontraksiyon

yapilirsa,
0=— 332" n(C(E;, Y)R(E, E))Z) — 232 n(C(E;,R(¢, E)Y)Z)
=255 n(C(R(S E)E;,Y)Z) + 32 n(R(8 E;)C(E;, Y)Z) (41)

elde edilir. (41) nolu denklemin sag tarafindaki dort ifadeyi ayri
ayr1 olacak sekilde (38)-(40) nolu esitlikler kullanilarak hesap
yapilirsa,

= 2i2 " n(C (B, Y)R(S E;)Z)

=ma? [~ L+ |ym@) @)

2n(2n—1)

—Zit n(C (B, R(8 E;)Y)Z)

L+ (g1, 2) — ()N (2))

- [~
2n(2n-1) 2n-1
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ZZil [S(Y,Z) + 2na®n(Y)n(2)] (43)

- 2551 n(C(R($ E)E;, Y)Z)

= —2na? [~ o+ ] (~g(V, 2) + 1 (Y n(2))

Zna

— [S(Y,2) + 2na’n(Y)n(2)] (44)

S (R ENC(E, Y)Z)
= @[~ 5 + 5| (90, 2) = (Y (2))

2n(2n—1) 2n—-1

20.’1'

g(¥,2) - —[S(Y Z) + 2na*n(Y)n(2)]  (45)

bulunur. Son olarak, (42)-(45) nolu esitlikler birlikte géz Oniine
alinirsa (41) nolu esitlik

T
S(,2) = %g(Y, Z)+ a?g(Y,2)

haline indirgenir. Bu da (36) nolu esitligi dogrular. Bdylece (36)
nolu esitligin ispati sonlanir. Ayrica, bu son denklemin her iki
tarafinn Y = Z = Ej i¢in, 1 < j < 2n + 1 olmak lizere, izi alinirsa,

2nr —r(2n+1) = 2n(2n + 1)a? (46)

bulunur. (46) nolu esitlik diizenlenirse skalar egrilik bulunur.
Kosimplektik durumda (a = 0) kesit egriligi de 6zdes olarak sifir
olacaktir. Yani, a® # 0 (alfa-Kenmotsu durumu) i¢in skalar egrilik
degeri gecerlidir. Boylece ispat sona erer.

Teorem 1. (M, ¢,¢&,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. {(a) = 0 olmak iizere, eger M iizerinde R - C = 0
tensorel carpimi saglaniyorsa, o zaman (M, g,¢,4) Ricci solitonu
i¢in,
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(a) a = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a#0 oldugunda M fizerinde Ricci soliton daima
genisleyendir,

ifadeleri gegerlidir.

Ispat. (M, g, ¢, 1) Ricci solitonlu alfa-kosimplektik manifold olsun.
Bu durumda, (27) nolu esitlik g6z 6niine alinarak,

S, 8) = —An(Y)
yazilir. Ayrica, (36) nolu denklem Z = £ igin,

r
S(Y,&) =[a? +=—]n(Y
(V,6) = [@? + 5 (¥)
elde edilir. Bu son iki denklemin sag taraflarinin esitliginden
A = 2na® (47)

sonucuna ulagilir. Burada &(a) = 0 secildiginden «a reel bir sabit
olarak alinabilir. Bdylece (47) nolu denklem a =0 ve a #0
durumlan altinda sirasiyla, A =0 ve A > 0 haline doniisiir. Bu
nedenle (a) ve (b) siklarinin ispat1 Ricci soliton tanimindan agiktir.

Sonu¢ 1. (M, ¢,¢,1n,9) tzerinde {(a) = 0 olsun (n > 1). Eger
M iizerinde R-C =0 tensorel carpimi saglaniyorsa o zaman
(M, g, &, A) Ricci solitonu asla kiigiilen (daralan) durumda degildir.

Onerme 6. (M, ¢, &,1, g) yapisi iizerinde &(a) = 0 olsun. Eger M
iizerinde C-H = 0 tensdrel carpimi mevcutsa, o zaman keyfi
vektor alanlari igin,

[r — a?(4n* + 2n — 1)]S(Y, Z)
=[(¢® + ) = 2na* + T2 QE P19 (Y, Z2)  (48)
denklemi saglanir.

Ispat. (M, ¢,&,n, g) alfa-kosimplektik manifoldunun C - H = 0

tensorel carpimini sagladigini kabul edelim. Bu takdirde,
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€U, V) -H)W,Y)Z = 0 (49)

C(E,VIH(W,Y)Z — H(C(E,VIW,Y)Z
—H(W,CEVIY)Z —HW,Y)CEV)Z=0  (50)

n(CEVIHW,Y)Z) —n(H(C(E,VIW,Y)Z)
—nHW,CEVIV)Z) —n(HW,Y)CE,V)Z) =0 (51

yazilir. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayinin bir ortonormal tabani olmak {izere, (51) nolu
esitlige 1<j<2n+1 ve V=W=E; icin kontraksiyon
yapildiginda (toplam alinirsa),

0=— X3 n(H(E;, Y)C(§, E))z) — X721 n(H(E;, C(§ E;)Y)Z)
-2 n(H(C(¢ E)E; Y)Z)
+ X3 n(C (6, E)H(E;, Y)Z) (52)

elde edilir. (52) nolu denklemin sag tarafindaki dort ifadeyi ayri
ayr1 olacak sekilde (15)-(18) ve (35) nolu esitlikler kullanilarak,

—2m(H(E, Y)C( E)Z) = (=) nmz)  (53)

—Zit n(H(E; €8, E)Y)Z)

— [a*(C(E,2)Y) = n(CE QDY)] (54)

2n

=255 n(H(C(8 E)E; Y)Z)

= — (2 Zra*n(n(@) + S, 2)
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2a0%r
(2n—-1)2

(=9, Z) +n(¥)n(2)) (55)

X2 n(C (S, EDH(E;, Y)Z)

- [_ 2n(27;l—1) + 2:—1] [an—l'g(yl Z) +nH(, Z)Y)]

2n+1

—[n(H(Q¢, 2)Y) - 2225(QY, 2)

—— (ZPTHIQE g (Y, 2) +7S(V,2)]  (56)

2n1

2n1

bulunur. (53)-(56) esitlikleri birlikte hesaba katilirsa (52) nolu
esitlik

2nS(QY, Z) + (r — 2n — 1)a?)S(Y, Z)

= [(aZ + Zr)r —2na* + 22n+1 1QE; | ]g(Y Z) (57)

haline indirgenir. (57) nolu esitlikte gerekli diizenlemeler yapilirsa
(48) denklemine ulasilir. Bundan sonra kisalik olarak

YEETHIQE N = X521 9(QE;, QE) = IQ||?
seklinde alalim. Boylece ispat sonlanir.

Teorem 2. (M,$,¢,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. {(a) = 0 olmak iizere, (n = 1) eger M {lizerinde
C - H = 0 tensorel ¢arpimi saglaniyorsa, o zaman (g,¢, 1) Ricci
solitonu ig¢in,

(a) @ = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a # 0 oldugunda M iizerinde hem genisleyen hem daralan
Ricci solitonlar vardir.

onermeleri gegerlidir.
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Ispat. (M, g,&,1), Ricci solitonlu alfa-kosimplektik manifold
olsun. Hatirlatmaliy1z ki,

S(QY,Z2) = S*(Y,Z) = S(—2na®Y,Z) = =2na*S(Y,Z) (58)
esitligi yazilabilir. (27)-(30), (48) ve (58) nolu esitlikleri
kullanilarak, Y = Z = & olmak iizere,

2n(=25(5,6) = [2n — Da* —1]S(§,§)
+[(a? + =) r — 2na* + [|Q|I?] (59)
bulunur. (59) nolu esitlik yardimiyla,

1QII” = 2n2° + 2na®A — Aa® — 1A — &*r — =+ 2na*  (60)

seklinde yazilir. Bundan baska, (48) nolu esitligin izi alinirsa, o
zaman

2

1012 = 2n(2n + 1)a* — 4na’r — ;—n (61)
elde edilir. (60) ve (61) nolu denklemler kullanilarak, a, A € IR ve
n=1(n€N)ver =-2n(2n + 1)a® olmak iizere,

2nA% + (a?[2n—1]—1)2
—a®(r[1 —4n] + 4n%a®) =0 (62)
denklemi bulunur. Simdi, (62) nolu denklem ile verilen ikinci
dereceden kuadratik denklemin reel ¢dziimiiniin olup olmadigim
arastiralim. Bu durumda,
A = a*[(4n* + 4n — 1)* + 8n(16n> + 8n® — 2n)]
dir. Burada 4 > 0 oldugu goriiliir. O halde, (62) nolu denklemin iki

farkl reel kokii asagidaki verilmistir:

_ —(an’+4n-1)a*ta’Va
- 4n

i (63)
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Ricci soliton sadece reel kokler varsa mevcuttur. (62) nolu denklem
a = 0 i¢in A = r/2n degerini alir. Bu nedenle, r = 0 oldugundan
A =0 dir. Bu durumda, Ricci soliton sabittir (metrik zamanla
degismez, akis sabittir). Diger yandan, a # 0 sart1 altinda (63) nolu
denklem a® ve nye bagh iki farkli reel ¢dziimii mevcuttur. Bu
coziimlerden biri pozitif digeri de negatiftir (simetrik ¢6ziim).
Manifold hem daralan hem de genisleyen Ricci soliton tagir.
Boylece teoremin iki sikkinin da ispati sonlanir.

Sonu¢ 2. (M,¢,¢,1n,g9), (2n+ 1)-boyutlu bir alfa-Kenmotsu
manifold ve a, £ boyunca paralel olsun (n > 1). Eger M iizerinde
C-H =0 tensorel carpim1 saglaniyorsa, o zaman M iizerinde
(g, &, ) Ricci solitonu sabit degildir.
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BOLUM 2

BAZI FARKLI YARI-SIMETRIK KOSULLARI
SAGLAYAN ALFA-KOSIMPLEKTIK
MANIFOLDLAR UZERINDE RiCCi

SOLITONLAR

Sermin OZTURK!
Giris
Konsirkiiler ve konharmonik egrilik tensorleri, Riemann egrilik
tensoriiniin konformal veya projektif donilistimler altinda ortaya
cikan 0Ozel bilesenleridir. Konsirkiiler egrilik tensorii, bir
Riemann manifoldunda egrilik yapisini, sabit egrilikli uzaydan olan
sapmasini oldugu gibi izole edecek sekilde dlgen dogal bir tensor
alanmidir. Konformal geometri baglaminda ortaya c¢ikan bu tensor,
esasen Riemann egrilik tensoriiniin igerdigi skaler kokenli ve
homojen sabit egrilik bilesenlerini  ¢ikararak, uzaymm gergek
anlamda sekil degistirici egrilik yapisini ortaya ¢ikarmayi saglar.
Konsirkiiler — egrilik  tensér alaninin  6zdes olarak  sifir
olmasi, manifoldun lokal olarak sabit egrilikli bir uzay (uzay
formu) olduguna  esdeger kabul edilir.  Diger yandan,
konharmonik egrilik tensorii, bir Riemann manifoldundaki egrilik
yapisinin belirli bir geometrik doniisiim smifi altinda invaryant
kalan temel bilesenini izole eden bir Olgiittiir. Weyl konformal
egrilik tensoriine yakin bir yapiya sahip olmakla birlikte ondan
skaler egrilik terimiyle ayrisir. En kritik 6zelligi, konharmonik

'Prof. Dr., Afyon Kocatepe Universitesi, Fen Edebiyat Fak., Matematik Bol.,
ssahin@aku.edu.tr, ORCID: 0000-0002-8535-0792
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doniistimler altinda tam bir de8ismez olmasi ve her yoOndeki
ortalama egriligi sifir olacak sekilde izsiz olmasidir. Bu yapistyla
uzayin bi¢imini veya bilylikliiglini degil, yalnizca i¢ geometrisinin
bozulma derecesini inceler. Dolayisiyla uzayin dl¢eklendirilmesiyle
ilgisiz olan saf sekil bozuklugunu tasir. Konharmonik egrilik
tensOriiniin -~ 6zdes olarak  sifir olmasi, uzaym bu 6zel
dontistimler agisindan diiz kabul edilmesine karsilik gelir.

Yari-simetriyi simetrik uzaylarin dogal deformasyonlar1 olarak ele
alabiliriz. Bir simetrik uzayin homojen yapisini bozdugunuzda,
egrilik artik sabit kalmayacaktir. Fakat degisim belirli bir diizene
uyacaktir. Yani, yari-simetri, bu diizeni matematiksel olarak temsil
eder. Bir Riemann manifoldunun yari-simetrik olmasi i¢in manifold
iizerinde tanimli herhangi X ve Y wvektor alanlarna karsilik,
R(X,Y) R = 0 tensorel carpiminin saglanmasi gerekir. Bu
denklemde R egrilik tensorii, bir cebirsel operator gibi davranarak
uzaym geometrik yapisini kodlar. Bu tiir uzaylara yari-simetrik
denilmesinin nedeni, herhangi bir g noktasinda manifoldun egrilik
tensoOrtiniin, klasik simetrik uzaylardaki egrilik tensoriiyle
ortiisebilmesidir. Ancak bu uyum, noktadan noktaya degisiklik
gosterebilen bir 6zelliktir. Lokal simetrik uzaylar ise daha kati bir
simetri kosulu getirir, yani; VR = 0 ile tanimlidir. Burada V Levi-
Civita konneksiyonunu temsil eder ve bu kosul, egrilik tensdriiniin
manifold boyunca sabit kaldigini ifade eder. Yari-simetrik uzaylarin
sistematik smiflandirmasi, Szabd'nun 1982 yilindaki calismasiyla
yeni bir asamaya ulasmistir (Szab6, 1982). Fakat bu tanimlama,
Nomizu'nun 1968 yilinda ifade ettigi R - R = 0 tensorel carpimina
dayanmaktadir (Nomizu, 1968).

Kenmotsu manifoldlar1 degme geometrisiile hemen hemen
Kaehler geometrisinin kesisiminde dogan  6zel yapilardir
(Kenmotsu, 1972). Sasakian manifoldlar sabit egrilik ortaya
koyarken, Kenmotsu manifoldlar sabit olmayan, ancak kontrollii
bir sekilde degisen bir egrilik yapisi sunarlar.
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Bir Kenmotsu manifoldu, bir hemen hemen degme metrik yapi ile
donatilmistir, ancak burada kritik fark, temel 2-formun 0&zdes
olarak sifir olmamasi ve bunun yerine dis tiirevinin temel 2-formun
kendisiyle orantili olmasidir. Bu 0&zellik, bu tir manifoldlara
benzersiz bir davranis kazandirir. Lokal olarak bir kathh c¢arpim
seklinde ifade edilebilirler. Ozellikle konformal olarak diiz olanlar,
bir reel dogrunun sabit egrilikli bir manifold ile katli ¢arpimina
esittir. Yani, Kenmotsu yapilar degme dagilimina teget yonde
standart bir Sasakian benzeri yapiy1 korurken, diger yandan reeb
vektor alani boyunca bir iistel genisleme veya biiziilme meydana
getirirler.

Hemen hemen Kenmotsu yapilar a parametresiyle genellestirerek
hemen hemen alfa-Kenmotsu manifold olarak adlandirilmistir
(Janssens & Vanhecke, 1981). Ayrica, Kim ve Pak bu gelismeyi bir
adim Oteye tasiyarak, hemen hemen alfa-Kenmotsu yapilar ile
hemen hemen kosimplektik yapilar1 birlestirerek yeni bir sinif olan
hemen hemen alfa-kosimplektik manifoldlar1 tanimlamislardir
(Kim & Pak, 2005).

Kosimplektik yapi, bir manifold iizerinde, hem bir simplektik
yap1 (kapali ve dejenere olmayan 2-form) hem de uyumlu
bir Riemann metrigini ilave eden geometrik bir yapidir. Bilindigi
iizere manifold teorisinde iki biiyiik alan vardir. Bunlar, simplektik
ve kompleks geometridir. Kosimplektik yapi, bu iki alt disiplini
birlestirerek, her birinin 6zelliklerini digerine aktarmasini saglar.
Bu yapilar, sadece matematiksel fizikteki uygulamalariyla degil,
aynt zamanda manifoldlarin topolojik karakterizasyonu ve
holonomi teorisindeki merkezi rolleriyle de dikkat cekerler.
Kosimplektik yapimin 6zel bir hali olan Kaehler manifoldlari,
Hodge teorisi ve cebirsel geometri ile derin baglantilar igerir.
Hemen hemen kosimplektik manifoldlar ise simplektik geometri ile
degme geometri arasinda koprii olusturarak mekanik sistemlerin
genisletilmis bir ¢cercevede incelenmesine olanak tanir.
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Ricci akigi, bir manifoldun metrik yapisinin zaman ig¢inde Ricci
egriligine gore nasil evrimlestigini tanimlayan, dogal bir parabolik
kismi diferensiyel denklemdir. Fiziksel bir benzetmeyle, bu akis
baslangigtaki karmasik ve diizensiz bir sekli (manifoldu) 1s1y1 esit
dagitan bir silire¢ gibi onun igsel egriligini yavasca yumusatarak ve
diizelterek daha homojen bir forma dogru degistirir. Bu akisin en
biiyiik c¢iktisi Poincaré hipotezinin ispatindaki Snemidir. Ricci
akisinin 6zel ve dengeli ¢Oziimleri olan Ricci solitonlar1 ise bu
evrim siirecinde Ol¢ek degisimine karsin sekli korunan adeta
hareketsiz gibi goriinen hareketlerdir. Sabit, genisleyen ve biiziilen
(daralan) olarak siniflandirilan bu yapilar Ricci akisinin sabit
noktalar1 gibi davranirlar ve akisin dinamigini anlamak i¢in temel
yapt taslaridir. Bdylece Ricci solitonlart geometrinin  dilinde
evrimin duragan anlarini simgeleyen 6zel ve zarif nesneler olarak
karsimiza ¢ikar. Richard Hamilton''n 1982 yilindaki calismasiyla
matematik diinyasina hediye edilmistir (Hamilton, 1982).
Hamilton'un 1988 yilinda yiizeyler iizerindeki Ricci akigini
detaylica incelemesi, siirecin temel 6zelliklerini ortaya ¢ikarmistir
(Hamilton, 1988). Ancak bu caligmalar, akis sirasinda ortaya cikan
ve egriligin sonsuza 1raksadigi metrik tekilliklerin varligini da
gostermistir. Grigori Perelman'in 2002 yilindaki calismasi, 3-
boyutlu manifoldlarda Ricci akiginin tekilliklerini sistematik olarak
siiflandirarak bu sorunu asmay1 basarmistir (Perelman, 2002).

Bu c¢alismada, Ricci solitonlu alfa-kosimplektik manifoldlar
{izerinde baz1 farkli yari-simetrik sartlar incelenmistir. Ozellikle,
konsirkiiler ve konharmonik egrilik tensér alanlar1 kullanilarak C -
H =0 ve H - H = 0 kosullar arastirilmis ve bazi 6nemli sonuglar
elde edilmistir.
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Temel Kavramlar

Bir (2n + 1)-boyutlu tiirevlenebilir manifold M olsun. Her X,Y €
x(M) i¢in; ¢, (1,1)-tipli bir tensor alani, & bir vektor alani ve 7, 1-
form olmak iizere,

¢?X = —X +n(X)§ (1)
né)=1 ¢¢)=0,nc¢p=0 (2)
9(@X,9Y) = g(X,Y) —n(X)n(Y) A3)
nX) =gX,$) 4)

deklemleriyle verilen g metrik tensori ile donatilmis (M, ¢, €, 1, g)
yapisina bir hemen hemen degme metrik manifold denir. Burada
g€, & =1 dir. Bir (M, ¢,¢,1,g) hemen hemen degme metrik
yapinin temel 2-formu

PX,Y) = g(X,$Y) )
seklinde tanimlanir (Blair, 1976). (1,3)-tipli Riemann egrilik
tensorii R olmak iizere,

R(X, Y)Z = vayz - Vyvzx - V[X’y]Z (6)

seklinde tanimhidir. Bundan baska, (2n + 1)-boyutlu bir Riemann
manifoldu iizerinde (0,2)-tipli Ricci tensorii ve Ricci operatdri,
sirastyla,

S(X,Y) = X321 g(R(E;, X)Y, Ej) (7)

SX,Y) =g@QX,Y) ®)
ile verilir. Burada {Eq,E,,...,E,} lokal ortonormal bir tabandir
(Yano & Kon, 1984). (2n + 1)-boyutlu bir hemen hemen degme
metrik manifold (M, ¢, £, 1, g) ile verilsin. Eger manifoldu M X R
seklinde disiiniirsek, her vektor alam1 X i¢in, (X, f %) yardimiyla

M X R iizerinde bir vektor alanmi belirtebiliriz. Burada t, R

iizerindeki koordinat ve f, M X R iizerinde bir tiirevlenebilir
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fonksiyondur. Boylece M X R {izerinde /] hemen hemen kompleks
yapist

J(X.F5) = (@X = fEn(0 ) ©)

ile verilir. Eger J integrallenebilirse o zaman, hemen hemen degme
metrik (M, ¢, &,n)-yapisi  normaldir. | kompleks yapisinin
integrallenebilmesi i¢in gerek ve yeter sart

[¢, pI(X,Y) + 2dn(X,Y)§ = 0 (10)

denkleminin saglanmasidir (Yano & Kon, 1984). (M, ¢,¢,1n,9)
hemen hemen degme metrik manifoldu

dn=0, dd =0 (11)

sartlarin1 sagliyorsa, M ye hemen hemen kosimplektik manifold
denir. Eger bir hemen hemen kosimplektik manifold normal ise bu
manifolda kosimplektik manifold denir. M nin bir kosimplektik
manifold olmasi i¢in gerek ve yeter sart V@ ve I'n kovaryant
tirevlerinin 6zdes olarak sifir olmasidir (Olszak, 1981). Eger M
iizerinde VX,Y,Z € y(M) ve @ € R, a # 0 igin,

dn =0, do = 2a(n A P) (12)

denklemleri saglaniyorsa, M ye bir hemen hemen alfa-Kenmotsu
manifold denir (Janssens & Vanhecke, 1981). Ozel olarak, a = 1
durumu hemen hemen Kenmotsu olarak adlandirilir (Kenmotsu,
1972). (M, ¢,&,1m, g) normal ise o zaman alfa-Kenmotsu manifold
olarak adlandirilir. Herhangi vektor alanlar1 ve keyfi a reel sayisi
icin, (11) denklemleri saglaniyorsa, M ye hemen hemen alfa-
kosimplektik manifold denir. Ozel olarak, @ = 0 i¢in hemen hemen
kosimplektik manifold, @ # 0 i¢in hemen hemen alfa-Kenmotsu
manifold olarak adlandirilir. Eger hemen hemen degme metrik yap1
(M, ¢, &,m,g) Kaehler yapiya sahipse o zaman « reel sayisi igin
M ye alfa-kosimplektik manifold denir. Yani, a =0 igin
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(M, ¢, ¢&,m, g) yapist kosimplektik veya a # 0 icin alfa-Kenmotsu
olarak adlandirilir (Kim & Pak, 2005).

Onerme 1. (2n + 1)-boyutlu bir (M, ¢, ,7, g) hemen hemen alfa-
kosimplektik manifold olsun. M nin bir alfa-kosimplektik manifold
olmasi i¢in gerek ve yeter sart, V X, Y € y(M) i¢in,

(Vx @)Y = alg($X,¥)¢ —n(Y)PX] (13)
dir (Oztiirk, 2021).

Onerme 2. (2n + 1)-boyutlu bir (M, ¢, £,71, g) hemen hemen alfa-
kosimplektik manifold olsun. Bu durumda, V X,Y € y(M) i¢in,

Vx$ = aX —an(X)§ (14)

RX,Y)¢ = —(a® + §(@) (V)X —n(X)Y] (15)

RX, DY = (a* + §(@)[g(¥, X)¢ —n(¥)X] (16)

R(X,§)¢ = (a® + §(a@)p*X (17)

n(RX,Y)Z) = (& + §(@)[-n(X)g(¥,2) + n(V)g(X,2)] (18)
S(X,§) = —2n(a” + £(@)n(X) (19)

Q¢ = —2(a” + §(a)né (20)

denklemleri saglanir. Burada «, da An =0 sartin1 saglayan
tiirevlenebilir bir fonksiyondur (Oztiirk & ark., 2017).

Tamim 1. M, (2n + 1)-boyutlu bir Riemann manifoldu olsun. Bu
durumda, V X,Y,Z € y(M) igin,
C(X,Y)Z = R(X,Y)Z

r
2n(2n—-1)

[9(Y,2)X — g(X,Z)Y] @2y

veE
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H(Y,2)W = R(Y,2)W (22)

B [SEZ W)Y —=SY,W)Z+ g(Z,W)QY — g(Y,W)QZ]

seklinde tanimlanan (1,3)-tipli C ve H tensor alanlarina sirasiyla,

konsirkiiler ve konharmonik egrilik tensor alanlar1 denir (Yano ve
Kon, 1984).

Ricci Solitonlar

Bu boliimde, bulgular boliimiinde kullanilacak temel tanimlar ve
egrilik 6zellikleri verilmistir.

Tanmm 2. (M, go) bir n-boyutlu Riemann manifoldu olsun. Bu
durumda,

%(g(t)) +25(g(®) =0, g(0) = go (23)

kismi tiirevli diferensiyel denklemine g metrik tensoriinii eviren
Ricci akist denir (Hamilton, 1982). Burada t zaman parametresidir.

Tamim 3. (M, g) bir n-boyutlu Riemann manifoldu olsun. Eger
M tizerinde keyfi vektor alanlar1 X,Y ve V igin, A gercel bir skaler
olmak tizere,

(Lyg)(X,Y) +25(X,Y) +24g(X,Y) =0 (24)

denklemi saglaniyorsa, (M, g) ye Ricci soliton denir. Burada V
vektor alani Ricci solitonun potansiyel vektor alani ve Ly,g de V
yoniindeki g metriginin Lie tiirevidir. Bu durumda, Ricci soliton
(M, g,V,A) ile sembolize edilir. (M, g,V,A) Ricci solitonuna A
degerinin A < 0,4 = 0 ve 4 > 0 durumlan i¢in, sirastyla, daralan,
degismeyen ve genisleyen Ricci soliton adi verilir (Hamilton,
1988).

Tanim 4. (M, g) bir n-boyutlu Riemann manifoldu olsun. L, g, V
yoniindeki g metriginin Lie tiirevi olmak tizere,

(Lvg)(XY) = gV, Y) + g(X, 7,V (25)



dir (Yano & Kon, 1984).

Tanim 5. (M, g,V, ) bir Ricci soliton olsun. Eger V potansiyel
vektor alani Killing vektor alani (L, g = 0) ise o zaman (M, g,V, 1)
ye basit Ricci soliton ad1 verilir (Chen 2015).

Tammm 6. (M, $,¢,1,9), (2n + 1)-boyutlu bir alfa-kosimplektik
manifold olsun. Eger M iizerinde (g, V, A) Ricci solitonu mevcutsa,
(M,g,V,A) ya Ricci solitonlu alfa-kosimplektik manifold denir
(Hamilton, 1988), (Kenmotsu, 1972).

Onerme 3. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alani
¢ karakteristik vektor alani olarak secilirse yani, M {izerinde
(g, ¢, 4) Ricci solitonu i¢in, Ricci egrilik tensor alani

SX,Y) =—(a+)gX,Y) +anX)n(¥) (26)

denklemini saglar. Burada a, ¢ karakteristik vektér alani boyunca
paralel olarak alinmistir (Oztiirk & Bektas, 2023).

Onerme 4. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alam
¢ karakteristik vektor alani olarak secilirse yani, M {izerinde
(g, &, 4) Ricci solitonu i¢in, asagidaki onermeler gegerlidir:

SX,$) = —An(X) 27)
QX =an(X)é — (a + V)X (28)
Q¢ = -4 (29)
5¢,8) =-2 (30)
r=a—_02n+1)(a+1). 31

Burada @, ¢ karakteristik vektdr alani boyunca paralel olarak
almmustir (Oztiirk & Bektas, 2023).
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Bulgular

Bu boliimde, C-H =0 ve H-H =0 farkli yari-simetrik tensor
kosullart incelenmistir. Bu kosullar altinda Ricci solitonlu alfa-
kosimplektik manifoldlar lizerinde bazi sonuglar elde edilmistir.

Tamim7. M bir (yar1) Riemann manifoldu olsun. T'; ve T, (0,4)-tipli
tensor alanlar1 olmak iizere, eger M lizerinde keyfi vektor alanlari
U ve V i¢in,

Ti(U,V) T, =0 (32)

sarti saglaniyorsa, M ye T, yari-simetrik tipli manifold denir.
Burada T1(U,V), T, lizerindeki tensor cebirinin tiirevi olarak etki
eder. Bu tanim genel olarak,

seklinde yazilir. Ozel olarak, T, = T, = R olarak alinirsa, manifold
yari-simetrik olarak adlandirilir (Szabo 1982).

Lemma 1. (M, ¢, &,1n, g) yapisi igin £(a) = 0 olsun. Bu durumda,
konformal ve konharmonik egrilik tensor alanlari i¢in,

mauvmn=—[ﬁﬁgrﬁ+aﬂ

gV, W)n(U) —gU,W)n(V)] (34

ve

nHU,VIW) =

—— gV, Wn() - g, Wn¥)]

— [SV, W)n(U) = SU,Wn(V)] (35

2n—-1

denklemleri saglanir.

Ispat. (21) ve (22) nolu esitlikler birlikte kullamlirsa (34) ve (35)

nolu esitliklerin ispatlar asikardir.
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Onerme 5. (M, ¢,&,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold ve &(a) = 0 olsun. Eger M iizerinde C - H = 0 tensdrel
carpimi mevcutsa, o zaman keyfi vektor alanlart i¢in,

[2n(2n+1) ta ] 2nS(Y,2) =

[ e az] 2na®* +1)g(Y,Z)

2n(2n+1)

2 r 2.4
[—(Zna +T)m+4n a ]T](Y)T](Z)

2
+ [—411 a (2n(2n+1) ta )] n(¥)n(Z) (36)
esitligi gecerlidir.

Ispat. M iizerinde alfa-kosimplektik manifoldunun € - H = 0
tensorel ¢arpimini sagladigini kabul edelim. Bu takdirde, asagidaki
esitlikler saglanir:

(CU,V)-H)(W,Y)Z =0 (37)

C(E,VYH(W,Y)Z — H(C(E,VI)W,Y)Z
—HW,CEWVY)Z—HW,Y)C(EVIZ=0  (38)

n(CEVIHW,Y)Z) —n(H(C(E VIW,Y)Z)
—nHW,CE VIV)Z) —n(HW,Y)C(EVIZ) =0 (39)

yazilir. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayinin bir ortonormal tabani olmak tzere, (39) nolu
esitlige 1<j<2n+1 ve V=W=E; i¢in kontraksiyon
yapilirsa,
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0=— X721 n(H (E;, Y)C (8, E;)Z) — X721 n(H(E;, C(, E;)Y)Z)
— Xt n(H(C (8 E))E;, Y)Z)
+ X2 n(C(8 E)H(E;, Y)Z) (40)

elde edilir. (40) nolu denklemin sag tarafindaki dort ifadeyi ayri

ayr1 olacak sekilde (37)-(39) nolu esitlikler kullanilarak hesap
yapilirsa,

Yattn(H(E;,Y)C(¢,E)Z)

S [— " (2na® +r) + 4n%a*
2n—1 2n(2n+1)

r

+2na? [Zn(m) + az]l n(Y)n(Y) (41)

Y2 tin(H(E;, C(¢,E)Y)Z)

1

— [n(C(£,Q2)Y) — a’n(C(§,2)Y)] (42)

i n(H(C(E E))E; Y)Z)

_ —2na? [ T

= Znt lzn@n-n T az] (9(¥,2) =n(Y)n(Z))

T [ R az] [2na’n(Y)n(Z) + S(Y,Z)] (43)

2n—112n(2n-1)

XTI n(C( EDH(E;,Y)Z)

= a9 las 9 D+t | @

bulunur. Son olarak, (41)-(44) nolu esitlikler birlikte géz Oniine
aliirsa (36) nolu esitlige ulasilir. Bdylece ispat sonlanir.
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Onerme 6. (M, ¢,&,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold, &(a) =0 ve M iizerinde C-H = 0 tensdrel carpimi
mevcut olsun. Eger r # —2n(2n + 1)a® ise o zaman M bir -
Einstein manifoldudur.

Ispat. Oncelikle n-Einstein manifold tanimini verelim:

Tamm 8. M, (2n + 1)-boyutlu bir Riemann manifold olmak iizere,
VX,Y € y(M) igin,
SXY) = mgX,Y) + uan(X)n(Y) (45)

kosulu saglantyorsa, M ye bir n-Einstein manifoldu denir, burada
[y Ve Ha, M iizerindeki keyfi fonksiyonlardir. Ozel olarak, p; = 0
alindiginda M bir Einstein manifoldu olur (Blair, 1976).

(36) nolu esitlikte Y = Z = & alinirsa,
ra®* = -2n(2n + 1)a*

bulunur. (45) nolu esitlikteki (n ® n) tensorel ¢arpim kisminin
ozdes olarak sifir olmamast i¢in r # —2n(2n + 1)a® olmalidir.
Boylece ispat sonlanir.

Teorem 1. (M, $,¢,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. &(a) = 0 olmak iizere, eger M iizerinde C - H = 0
tensorel ¢arpimi saglaniyorsa, o zaman (M, g, &, 1) Ricci solitonu
i¢in,

(a) a = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a#0 oldugunda M iizerinde Ricci soliton daima
genisleyendir,

ifadeleri gegerlidir.

Ispat. (M, g,&,1) Ricci solitona sahip alfa-kosimplektik manifold
olsun. Bu durumda, (27) nolu denklem yardimiyla Y = Z = ¢ igin,
(36) nolu denklem
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[ R az] (4n®a? — 2nd)

2n(2n+1)
= 2na* + a®r + 4n*a* (46)
formuna indirgenir. A ya gore birinci dereceden denklemin
r=-=2n(2n+ 1)a?, a € IR,n = 1 i¢in ¢dziimii
A = 2na®

olarak bulunur. @ = 0i¢in A = 0 ve a® > 0 icin A > 0 ¢dziimleri
gecerlidir. (a) ve (b) siklarinin ispati Ricci soliton tanimindan
aciktir. Boylece ispat tamamlanir.

Sonu¢ 1. (M, ,¢,n,g) lizerinde E(a) = 0 olsun (n = 1). Eger
M iizerinde C-H =0 tensérel carpimi mevcutsa o zaman
(M, g, &, A) Ricci solitonu asla kiigiilen (daralan) durumda degildir.

Teorem 2. (M,$,&,m,9), (2n+ 1)-boyutlu bir alfa-Kenmotsu
manifold ve a, & boyunca paralel olsun. Eger n>1 ve
r # —2n(2n + 1)a? igin, M iizerinde C - H = 0 tensorel garpimi
mevcutsa o zaman M 7n-Einstein manifoldu tizerinde (g, ¢, 4) Ricci
solitonu daralan durumdadir.

Ispat. (M, g,&,1) Ricci solitona sahip n-Einstein alfa-Kenmotsu
manifold olsun. Bu durumda, (27) nolu denklem yardimiyla Y =
Z =&ver # —2n(2n + 1)a? igin, (36) nolu denklem

A(—7 — 4n*a® — 2na®) = a*(2na® + 4n*a® +r)

formuna indirgenir. Aya gore birinci dereceden denklemin
r# —2n(2n + 1)a? a* > 0,n = 1 icin ¢dziimii

A= —a?

elde edilir. Sonug olarak, 4 < 0 ¢oziimii gegerlidir. Ricci soliton
tanimindan ispat tamamlanur.
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Onerme 7. (M, ¢, &,1, g) yapisi iizerinde &(a) = 0 olsun. Eger M
iizerinde H-H = 0 tensorel carpimi mevcutsa, o zaman keyfi
vektor alanlart i¢in,

(Zn 1)a

—-S(QY,Z2) + ——=—S(¥,2)

denklemi saglanir.

Ispat. (M, ¢,¢&,n, g) alfa-kosimplektik manifoldunun H - H = 0
tensorel ¢arpimini sagladigini kabul edelim. Bu takdirde,

(H(U,V) - HY(W,Y)Z = 0 (48)

H(E,VYH(W,Y)Z — H(H(E, V)W, Y)Z
—HW,HEV)Y)Z —HW,Y)HEV)Z =0  (49)

n(HEVIHW,Y)Z) —n(HH(E, VIW,Y)Z)
—nHW,H(,VIY)Z) —n(HW,Y)H(S,V)Z) =0 (50)

yazilir. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayimnin bir ortonormal tabani olmak {izere, (50) nolu
esitlige 1<j<2n+1 ve V=W=E; i¢in Kkontraksiyon
yapildiginda (toplam alinirsa),

_ 2n+177(H( Y)H(E,Ej)Z)— 2n+17)(H( H(f,Ej)Y)Z)
— Y2 n(H(H(E, E)E;, Y)Z)
S (2,5, Y)2) &

elde edilir. (51) nolu denklemin sag tarafindaki dort ifadeyi ayr
ayr1 olacak sekilde (15)-(18) ve (35) nolu esitlikler kullanilarak,



mn(H(E, Y)H(E E)Z) = - (o) 1@ (52)

2%:1117(11(15,-.11(6, E,-)Y)Z)
[n(H(E,Q2)Y)] —

] (33)

2n 1

it (H(H(E E)E;, Y)Z)
- (m) [2na®n(Y)n(Z) + S(Y,2)]

ool (—g(V,2) + n(NN(@) (54)

XiZT n(H (S, EDH(E;, Y)Z)

—[n(H(Qg 2)Y) -

2n+1

—S(QY,2)

2n 1

—— (X2 QE; 129 (Y, Z) + rS(Y, 2))]

2n 1
aZ

2n-1 [Zn 19(Y,2) +n(H(S, Z)Y)] (55)

yazilir. (52)-(55) nolu esitlikler birlikte hesaba katilirsa (51) nolu
esitlik

2n—1 2 2
sr.2) =2 D 5,2 - (ot - 10 v,2)

haline indirgenir. Yukaridaki esitlik diizenlenirse (47) nolu
denkleme ulasilir. Burada kisalik agisindan

YIETIQE N = X721 9(QE;, QE) = llQlI?

alinmistir. Boylece ispat tamamlanur.

--35--



Teorem 3. (M, $,¢,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. {(a) = 0 olmak iizere, (n = 1) eger M {izerinde
H - H = 0 tensorel ¢arpimi saglantyorsa, o zaman (g,¢&,4) Ricci
solitonu i¢in,

(a) @ = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a # 0 oldugunda M fizerinde genisleyen Ricci solitonlar
vardir,

Onermeleri saglanir.

ispat. (M, g,&,4), Ricci solitonlu alfa-kosimplektik manifold
olsun. Ricci operatorii tanimindan

S(QY,Z) = S*(Y,Z) = S(—2na®Y,Z) = —2na?S(Y,Z) (56)
yazilabilir. (47) ve (56) nolu esitlikler yardimiyla

—a? (22N 5(v,2) = [t + Lgr, ) (57)

2n
yazilir. Y =Z = igin (57) nolu esitlik (27) ve (30) nolu
esitliklerle birlikte kullanilirsa,

—a* + M = a?A (M) (58)

2n 2n

bulunur. (58) nolu esitlik sayesinde
Q> = 2na* + a?A(4n* + 2n — 1) (59)
elde edilir. Bundan baska, (47) nolu esitligin izi alinirsa, o0 zaman

a’r(4n*+2n-1)

2 __ 4
1QII? = 2na* — “rELE2

(60)

denklemine ulagilir. (59) ve (60) nolu denklemler kullanilarak,
a,A€IRven=>1(ne€N)ver =-2n(2n+ 1)a?, a* > 0 olmak
uzere,

1= 2na?
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denklemine ulasilir. Burada (b) sikkinin ispati asikardir. Bu
denklem tiim A degerleri i¢in dogrudur, ama Ricci solitonun
geometrik yorumunu kullanarak A = 0 alinabilir. Fakat o =0
oldugunda, potansiyel vektor alani sifir ya da

L§g=0

dir. Tim hesaplamalarda potansiyel vektor alanini & olarak
almigtik. Dolayisiyla S =0 ve r = 0 olur. Bu nedenle manifold
iizerinde basit sabit Ricci soliton mevcuttur. Boylece teoremin
ispat1 tamamlanur.

Sonu¢ 2. (M,¢,&,1n,9), (2n+ 1)-boyutlu bir alfa-Kenmotsu
manifold ve a, £ boyunca paralel olsun (n > 1). Eger M iizerinde
H-H =0 tensorel carpimi saglaniyorsa, o zaman M iizerinde
(g, &, 4) Ricci soliton asla daralan durumda degildir.
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BOLUM 3

RiCCi SOLITONLU ALFA-KOSIMPLEKTIK
YAPILAR UZERINDE FARKLI YARI-SIMETRIK
OZELLIKLER

Hakan OZTURK'
Giris
Riemann geometrisinin 6zilinde, bir manifoldun seklini ve egriligini
kodlayan Riemann egrilik tensorii R 6nemli rol oynar. Bu tensdriin
diferensiyel Ozellikleri, uzayin simetri ve homojenlik derecesini
kavramada c¢ok Onemlidir. VR = 0 kosulunu saglayan lokal
simetrik uzaylar egriligin paralel tasima ile degismedigini gdsteren
yapilardir. Bir manifoldun egrilik tensorii R, Levi-Civita
konneksiyonu V ile  kovaryant tirevi alindiginda, ortaya
cikan VR tensorli ile orijinal R tensorii arasinda belirli bir lineer
iliski varsa, bu uzaya yari-simetrik adi verilir. Bagka bir
deyisle, egrilik, tam sabit olmasa bile, kendi yapistyla uyumlu bir
sekilde degisir.

Yari-simetriyi simetrik uzaylarin dogal deformasyonlari olarak goz
online alabiliriz. Bir simetrik uzaym homojen yapisini
bozdugunuzda, egrilik artik sabit kalmayacaktir. Fakat degisim
belirli bir diizene uyacaktir. Yani, yari-simetri, bu diizeni
matematiksel olarak temsil eder. Bagka bir ifadeyle, egriligin
degisim hizi, egriligin kendisi ile orantilidir veya ondan lineer
olarak tretilir. Bu o0zellik, fizikte dile getirilen 6z-benzerlik

'Prof. Dr., Afyon Kocatepe Universitesi, Afyon Meslek Yiiksekokulu,
hakser23@gmail.com, ORCID: 0000-0003-1299-3153
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durumuyla aciklanabilir. O halde, uzaymm her noktasindaki
egriliginin kendi komsuluguyla belirli bir lineer iligski icerisinde
oldugunu soyleyebiliriz. Yari-simetrik uzaylar arastirilirken bazi
problemler merkeze almir. Omnek olarak, acaba hangi dogal
geometrik yapilar (Kaehler, degme, hemen hemen degme vb.) yari-
simetri ile uyum halindedir? Ricci tensorii Sigin benzer bir
denklem yazilacak olursa Ricci yari-simetrik uzaylar elde edilir.
Acaba bu iki kavram ne zaman, hangi durumlarda ortiisiir? Yari-
simetrik olup simetrik olmayan somut o6rnekler var midir? (Katlh
carpim ve homojen uzaylar vb.) Yari-simetri, sabit egrilikli veya
Einstein manifoldlarinda hangi 6zellikleri gosteririr. Acaba fizikteki
genel gorelilikte kullanilan ¢6ziim uzaylar1 yari-simetrik bir form
icerisinde olurlar m1? Ayrica, Kenmotsu ve kosimplektik yapilar ile
yari-simetri arasindaki etkilesim, degme geometri ve Riemann
geometrisi kesisiminde zengin bir arastirma alam1 ortaya
cikarmistir.

Bir Riemann manifoldunun yari-simetrik olarak
nitelendirilebilmesi i¢in, manifold tizerinde taniml1 herhangi X ve Y
vektor alanlarina karsilik, R(X,Y) R = 0 esitliginin saglanmasi
gerekir. Bu denklemde R egrilik tensorii, bir cebirsel operator gibi
davranarak uzaym geometrik yapisin1 kodlar. Bu tiir uzaylara yari-
simetrik denilmesinin nedeni, herhangi bir g noktasinda
manifoldun egrilik tensoriiniin, klasik simetrik uzaylardaki egrilik
tensoriiyle oOrtiisebilmesidir. Ancak bu uyum, noktadan noktaya
degisiklik gosterebilen bir ozelliktir. Lokal simetrik uzaylar ise
daha kat1 bir simetri kosulu getirir, yani; VR = 0 ile tanimhdir.
Burada V Levi-Civita konneksiyonunu temsil eder ve bu kosul,
egrilik tensoriiniin manifold boyunca sabit kaldigini ifade eder.
Yari-simetrik uzaylarin sistematik siniflandirmasi, Szabd'nun 1982
yilindaki ¢alismasiyla yeni bir asamaya ulasmistir (Szabo, 1982).
Fakat bu alandaki ilk c¢alisma, Nomizu'nun 1968 yilinda
tanimladigi R - R = 0 tensorel sartinda saklidir (Nomizu, 1968).
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Kenmotsu manifoldlari, degme geometrisinin 6nemli bir alt sinifim
olusturan, hemen hemen degme metrik manifoldlarin 6zel bir
tiriidiir (Kenmotsu, 1972). Kenmotsu manifoldlarinda katli ¢arpim
yapisi ile yari-simetrinin uyumu ve egrilik smiflandirmalar1 ¢ok
onemli yer kaplar. Janssens ve Vanhecke, Kenmotsu yapilarin «
parametresiyle genellestirerek hemen hemen alfa-Kenmotsu
manifoldlar kavramini geometri literatlirine kazandirmiglardir
(Janssens & Vanhecke, 1981). Daha sonra, Kim ve Pak bu
gelismeyi bir adim Gteye tagiyarak, hemen hemen alfa-Kenmotsu
yapilari ile hemen hemen kosimplektik yapilari sentezleyen yeni bir
smif tamimlamiglardir (Kim & Pak, 2005). Hemen hemen alfa-
kosimplektik manifoldlar olarak adlandirilan bu yapilar, hemen
hemen degme metrik manifoldlar ailesinin énemli bir alt sinifini
olusturmaktadir. Kosimplektik manifoldlarda yari-simetri i¢in en
Oonemli kavram paralel reeb vektoriidiir.

Calismamizda manifold {izerinde tanimlayacagimiz Ricci akisi,
Riemann manifoldlarindaki metrik yapinin zamana bagli evrimini
modelleyen giiclii bir ara¢ olarak karsimiza ¢ikmistir. Richard
Hamilton'in 1982 yilindaki 6ncii ¢calismasiyla matematik diinyasina
kazandirilan bu yontem, topolojinin en zorlu problemlerinden biri
olan Poincaré hipotezine giden yolu a¢cmustir (Hamilton, 1982).
Hamilton'un 1988 yilinda ylizeyler {lizerindeki Ricci akigini
detaylica incelemesi, siirecin temel 6zelliklerini ortaya ¢ikarmistir
(Hamilton, 1988). Ancak bu caligmalar, akis sirasinda ortaya ¢ikan
ve egriligin sonsuza 1iraksadigr metrik tekilliklerin varligin1 da
gostermistir. Grigori Perelman'in 2002 yilindaki calismasi, 3-
boyutlu manifoldlarda Ricci akisinin tekilliklerini sistematik olarak
siiflandirarak bu sorunu asmayi basarmistir (Perelman, 2002).
Perelman'm  gelistirdigi  entropi  tabanli  yaklasim, akisin
tekilliklerden arindirilmasmi saglamis ve nihayetinde Poincaré
hipotezinin ispatlanmasiyla sonug¢lanmaistir.
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Bu c¢alismada, Ricci solitonlu alfa-kosimplektik manifoldlar
iizerinde farkli yari-simetrik sartlar incelenmistir. Ozellikle,
konsirkiiler ve konharmonik egrilik tensér alanlar1 yardimiyla, C -
R=0 ve H-R=0 kosullar1 arastirllmis ve bazi sonuglar
bulunmustur.

On Hazirhk Bilgileri

Bir (2n + 1)-boyutlu tiirevlenebilir manifold M olsun. Her X,Y €
x(M) icin; ¢, (1,1)-tipli bir tensor alani, & bir vektor alan1 ve 7, 1-
form olmak iizere,

¢?X = —X + n(X)§ (1)
n€)=1 ¢ =0,nc¢p=0 2)
g(@X,¢Y) = g(X,Y) —n(X)n(Y) A3)
9(@X,Y) = —g(X, ¢Y) 4)

nX) =g9X,%) (%)

deklemleriyle verilen g metrik tensorii ile donatilmis (M, ¢, €, 1, g)
yapisina bir hemen hemen degme metrik manifold denir. Burada
g(&, & =1 dir. Bir (M, ¢,¢,1n,g) hemen hemen degme metrik
yapinin temel 2-formu

DX, Y) = g(X,¢Y) (6)
seklinde tanimlanir (Blair, 1976). (1,3)-tipli Riemann egrilik
tensorii R olmak fiizere,

R(X, Y)Z == VvaZ - VyVZX - V[X,y]Z (7)

seklinde tanimhidir. Bundan baska, (2n + 1)-boyutlu bir Riemann
manifoldu iizerinde (0,2)-tipli Ricci tensorii ve Ricci operatdri,
sirastyla,

S(X,Y) = X321 g(R(E;, X)Y, Ej) (8)

SX,Y) = g(QX,Y) ©)



ile verilir. Burada {Eq,E,,..., E,} lokal ortonormal bir tabandir
(Yano & Kon, 1984). (2n + 1)-boyutlu bir hemen hemen degme
metrik manifold (M, ¢, £, 1, g) ile verilsin. Eger manifoldu M X R

seklinde diisiiniirsek, her vektor alan1 X i¢in, (X, f %) yardimiyla
M X R izerinde bir vektéor alami belirtebiliriz. Burada ¢, R

iizerindeki koordinat ve f, M X R {izerinde bir tiirevlenebilir
fonksiyondur. Boylece M X R iizerinde /] hemen hemen kompleks

yapisi
J(X.f5) = @X = fEn(0 D) (10)

ile verilir. Eger ] integrallenebilirse o zaman, hemen hemen degme
metrik (M, ¢, &, n)-yapist  normaldir. | kompleks yapisinin
integrallenebilmesi icin gerek ve yeter sart

[¢, p1(X,Y) + 2dn(X,Y)§ = 0 )

denkleminin saglanmasidir (Yano & Kon, 1984). (M, ¢,&,1n,9)
hemen hemen degme metrik manifoldu

dn=0, dd =0 (12)

sartlarini sagliyorsa, M ye hemen hemen kosimplektik manifold
denir. Eger bir hemen hemen kosimplektik manifold normal ise bu
manifolda kosimplektik manifold denir. M nin bir kosimplektik
manifold olmasit i¢in gerek ve yeter sart V@ ve Vn kovaryant
tirevlerinin 6zdes olarak sifir olmasidir (Olszak, 1981). Eger M
lizerinde V X,Y,Z € y(M) ve ¢ € R, a # 0 igin,

dn =0, d® =2a(n A P) (13)
denklemleri saglaniyorsa, M ye bir hemen hemen alfa-Kenmotsu
manifold denir (Janssens & Vanhecke, 1981). Ozel olarak, a = 1
durumu hemen hemen Kenmotsu olarak adlandirilir (Kenmotsu,

1972). (M, ¢,&,1n, g) normal ise o zaman alfa-Kenmotsu manifold
olarak adlandirilir. Herhangi vektor alanlari ve keyfi a reel sayisi
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icin, (11) denklemleri saglaniyorsa, M ye hemen hemen alfa-
kosimplektik manifold denir. Ozel olarak, @ = 0 igin hemen hemen
kosimplektik manifold, @ # 0 i¢cin hemen hemen alfa-Kenmotsu
manifold olarak adlandirilir. Eger hemen hemen degme metrik yap1
(M, ¢,&,1m,g) Kaehler yapiya sahipse o zaman « reel sayisi i¢in
M ye alfa-kosimplektik manifold denir. Yani, a =0 igin
(M, ¢, &,m, g) yapist kosimplektik veya a # 0 icin alfa-Kenmotsu
olarak adlandirilir (Kim & Pak, 2005).

Onerme 1. (2n + 1)-boyutlu bir (M, ¢, £,71, g) hemen hemen alfa-
kosimplektik manifold olsun. M nin bir alfa-kosimplektik manifold
olmas1 i¢in gerek ve yeter sart, V X, Y € y(M) icin,

(Vx @)Y = alg(¢X,Y)$ —n(Y)pX] (14)
dir (Oztiirk, 2021).

Onerme 2. (2n + 1)-boyutlu bir (M, ¢, £,71, g) hemen hemen alfa-
kosimplektik manifold olsun. Bu durumda, V X,Y € y(M) i¢in,

Vx§ = aX — an(X)§ (15)

(Vxm)Y = alg(X,Y) —n(X)n(Y)] (16)

R(X,Y)¢ = —(a* + §(@)n(M)X — n(X)Y] (17)
R(X, Y = (a® +&(a)[g(Y, X)) — n(Y)X] (13)

R(X,§)§ = (a® + §(@)¢p*X (19)

n(RX,Y)Z) = (@ + §(@)[-n(X)g(¥,Z) + n(Y)g(X,Z)] (20)
S(X,§) = —2n(a® + §(a)n(X) 21

Q¢ = —2(a® + §(a))ng (22)

denklemleri saglanir. Burada a, daAn =0 sartin1 saglayan
tiirevlenebilir bir fonksiyondur (Oztiirk & ark., 2017).

Tamim 1. M, (2n + 1)-boyutlu bir Riemann manifoldu olsun. Bu
durumda, V X, Y, Z € y(M) igin,
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C(X,Y)Z = R(X,Y)Z

r

sl DX —gX, DYl (23)
A\
H(Y,Z)W = R(Y,Z)W (24)
B [SEZ W)Y =SY,W)Z+ g(Z,W)QY — g(Y,W)QZ]

seklinde tanimlanan (1,3)-tipli C ve H tensor alanlarina sirasiyla,
konsirkiiler ve konharmonik egrilik tensor alanlar1 denir (Yano ve
Kon 1984).

Alfa-Kosimplektik Yapilar Uzerinde Ricci Solitonlar

Bu boliimde bulgular boliimiinde kullanilacak temel kavramlar ve
temel egrilik o6zellikleri verilmistir.

Tamim 2. (M, go) bir n-boyutlu Riemann manifoldu olsun. Bu
durumda,

2 (9(0) +25(g(1)) =0, g(0) = go 25)

kismi tiirevli diferensiyel denklemine g metrik tensoriinii eviren
Ricci akist denir (Hamilton, 1982). Burada t zaman parametresidir.

Tammm 3. (M, g) bir n-boyutlu Riemann manifoldu olsun. Eger
M tizerinde keyfi vektor alanlart X,Y ve V i¢in, A gergel bir skaler
olmak tzere,

(Lyg)(X,Y) + 25(X,Y) + 2Ag(X,Y) = 0 (26)

denklemi saglaniyorsa, (M, g) ye Ricci soliton denir. Burada V
vektor alan1 Ricci solitonun potansiyel vektor alani ve Lyg de V
yoniindeki g metriginin Lie tlirevidir. Bu durumda, Ricci soliton
(M, g,V,A) ile sembolize edilir. (M,g,V,A) Ricci solitonuna A
degerinin A < 0,4 = 0 ve 4 > 0 durumlan i¢in, sirastyla, daralan,
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degismeyen ve genisleyen Ricci soliton adi verilir (Hamilton,
1988).

Tamim 4. (M, g) bir n-boyutlu Riemann manifoldu olsun. Ly g, V
yoniindeki g metriginin Lie tiirevi olmak iizere,

(Lyg)(X,Y) = g(VxV.Y) + g(X, V) 27)
dir (Yano & Kon, 1984).

Tanim 5. (M, g,V,A) bir Ricci soliton olsun. Eger V potansiyel
vektor alani Killing vektor alani (L, g = 0) ise o zaman (M, g,V, 1)
ye basit Ricci soliton ad1 verilir (Chen 2015).

Tammm 6. (M, $,¢,1,9), (2n + 1)-boyutlu bir alfa-kosimplektik
manifold olsun. Eger M iizerinde (g, V, 1) Ricci solitonu mevcutsa,
(M,g,V,1) ya Ricci solitonlu alfa-kosimplektik manifold denir
(Hamilton, 1988), (Kenmotsu, 1972).

Onerme 3. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alam
¢ karakteristik vektor alani olarak secilirse yani, M {izerinde
(g, &, 4) Ricci solitonu i¢in, Ricci egrilik tensor alani

SX,Y)=—(a+)gX,Y) +anX)n(¥) (28)

denklemini saglar. Burada a, ¢ karakteristik vektor alani boyunca
paralel olarak alinmistir (Oztiirk & Bektas, 2023).

Onerme 4. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alani
¢ karakteristik vektor alani olarak segilirse yani, M iizerinde
(g, &, 4) Ricci solitonu i¢in, asagidaki onermeler gegerlidir:

S(X,&) = —n(X) (29)
QX =an(X)é — (a + V)X (30)
Q¢ = —A¢ 31)
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S8 =-4 (32)
r=a—_2n+1(a+1). (33)

Burada a, ¢ karakteristik vektdr alani boyunca paralel olarak
alinmustir (Oztiirk & Bektas, 2023).

Bulgular

Bu béliimde, C - R = 0 ve H - R = 0 kosullar1 incelenmis ve Ricci
solitonlu alfa-kosimplektik manifoldlar iizerinde bazi sonuglar elde
edilmistir. Oncelikle genel anlamda yari-simetrik manifoldu
tanimlayalim:

Tanim7. M bir (yar1) Riemann manifoldu olsun. T4 ve T (0,4)-tipli
tensor alanlar1 olmak iizere, eger M lizerinde keyfi vektor alanlar
U veV igin,

sarti saglamiyorsa, M ye T, yari-simetrik tipli manifold denir.
Burada T1(U,V), T, lizerindeki tensdr cebirinin tiirevi olarak etki
eder. Bu tanim genel olarak,

T,-T,=0 (35)

seklinde yazilir. Ozel olarak, T, = T, = R olarak alimirsa, manifold
yari-simetrik olarak adlandirilir (Szabo 1982). Yari-simetrik uzaylar
ve farkli yari-simetrik 6zellikler hakkinda daha fazla bilgi sahibi
olmak i¢in Ozgiir ve Tripathi (2007), Shaikh ve Baishya (2005),
Shaikh ve Kundu (2014) ve Szabd (1984) referanslarina
bakabilirsiniz.

Yardimer Teorem 1. (M, ¢, ¢, 7, g) yapist i¢in {(a) = 0 olsun. Bu
durumda, konsirkiiler ve konharmonik egrilik tensor alanlari i¢in,



n(CW, VW) = - [zn@,: ey “2]

gV, W)n(U) —gU,W)n()]  (36)

ve

nHU,VIW) = gV, W)n(U) — g(U,W)n(V)]

2n—1
— [S(V,W)n(U) = SU, W] (37)

2n-1

denklemleri saglanir.

Ispat. (23) ve (24) nolu esitlikler birlikte hesaba katilirsa (36) ve
(37) nolu esitliklerin ispatlar1 agiktr.

Onerme 5. (M,¢,&,1,9) bir (2n + 1)-boyutlu a-kosimplektik
manifold olsun. &(a) = 0 olmak iizere, eger M iizerinde C - R = 0
tensorel carpimi saglaniyorsa, o zaman keyfi vektor alanlari igin,
(M, g, &, A) Ricci solitonu

S(Y,Z) = —2na*g(Y,Z) (38)
ve
r=-=2n(2n + 1)a? (39)
esitliklerini saglar.

Ispat. M iizerinde alfa-kosimplektik manifoldunun C-R =0
tensorel carpimini sagladigini kabul edelim. Bu takdirde, asagidaki
esitlikler saglanir:

€W, V)-R)Y(W,Y)Z =0 (40)

C(E VIR(W,Y)Z — R(C(EVIW,Y)Z
—R(W,C(EVIV)Z—RW,Y)CEVIZ=0  (41)
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n(CE VIRW,Y)Z) = n(R(C(E,VIW,Y)Z)
—NRW,CEVIVIZ) —n(RW,Y)CEV)IZ) =0 (42)

yazilir. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayimin bir ortonormal tabani olmak iizere, (36) nolu

esitlige 1<j<2n+1 ve V=W=E; i¢cin Kkontraksiyon
yapilirsa,

0=—2i2 n(R(E;,Y)C(S, B)Z) - X721 n(R(E;, C(8, E;)Y)Z)
=255 n(R(C(¢ E)E;Y)Z) + 32 n(C (8, B R(E;, Y)Z) (43)
elde edilir. (43) nolu denklemin sag tarafindaki dort ifadeyi ayr

ayr1 olacak sekilde (40)-(42) nolu esitlikler kullanilarak hesap
yapilirsa,

— ¥ n(R(E;, Y)C(&,E)Z)

= —2na? [

+a?nn@ @

2n(2n+1)

= ZiE n(R(E;, C(§, E;)Y)Z)

+a2| (g, 2) =n(¥)n(@) (45)

e
2n(2n+1)

— ¥ n(R(C(¢,E)E;, Y)Z)

+a?| (—g(V,2) + n(M(@) (46)

= Zna [2n(2n+ 1)
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S n(C(E EDR(E;,Y)Z)

= [ + ] =50V, 2) - (g (¥, 2) = (V)] @)

bulunur. Son olarak, (44)-(47) nolu esitlikler birlikte g6z Oniine
almirsa (43) nolu esitlik

S(Y,Z) = —2na*g(Y,Z)

haline doniisiir. Boylece (38) nolu esitligin ispati tamamlanir.
Ayrica, bu son denklemin her iki tarafinin Y = Z = Ej i¢in, 1 <

Jj < 2n+ 1 olmak tizere, izi alinirsa (39) nolu esitliginin ispatina
ulasilir.

Teorem 1. (M, ¢,&,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. &(a) = 0 olmak iizere, eger M iizerinde C - R = 0
tensorel ¢arpimi saglaniyorsa, o zaman (M, g, &, 1) Ricci solitonu
i¢in,

(a) a = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a#0 oldugunda M iizerinde Ricci soliton daima
genisleyendir,

ifadeleri gegerlidir.

Ispat. (M, g, ¢, 1) Ricci solitonlu alfa-kosimplektik manifold olsun.
Bu durumda, (29) nolu denklem yardimiyla

S, 8) = —An(Y)
yazilir. Ayrica, (32) nolu denklem Z = £ i¢in,
S(Y,§) = —2a*nn(Y)
elde edilir. Bu son iki denklemin sag taraflarinin esitliginden
A = 2na® (48)

sonucuna ulasilir. Burada ¢(a) = 0 secildiginden « reel bir sabit
olarak alinabilir. Bdylece (48) nolu denklem a =0 ve a #0
--5]--



durumlan altinda sirasiyla, A =0 ve 4> 0 haline doniisiir. Bu
nedenle (a) ve (b) siklarinin ispati Ricci soliton tanimindan agiktir.

Sonu¢ 1. (M, ¢,¢&,n,g) tzerinde {(a) =0 olsun (n > 1). Eger
M iizerinde C-R =0 tensdrel carpimi saglaniyorsa o zaman
(M, g, &, A) Ricci solitonu asla daralan durumda degildir.

Onerme 6. (M, ¢, &,1, g) yapisi iizerinde &(a) = 0 olsun. Eger M
iizerinde H-R = 0 tensOrel carpimi mevcutsa, o zaman keyfi
vektor alanlari i¢in,

S(QY,Z2) = 2a?S(Y,Z)
—a*(—2na*+1)g(Y,2) (49)
ve
r=-=2n(2n + 1)a?
denklemleri gecerlidir.

Ispat. Alfa-kosimplektik manifold M asagidaki tensorel carpim ile
verilsin. Bu durumda,

(H(U,V)-R)(W,Y)Z =0 (50)

H(,V)R(W,Y)Z — R(H(E,VIW,Y)Z
—R(W,H(V)Y)Z —RW,V)H(EV)Z=0  (51)

nH(EVIRW,Y)Z) —n(R(H(E, VIW,Y)Z)
—nRW,H(E,V)Y)Z) —n(R(W,Y)H(E,V)Z) =0 (52)

yazilir. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayinin bir ortonormal tabani olmak {izere, (52) nolu
esitlige 1<j<2n+1 ve V=W=E; i¢in Kkontraksiyon
yapildiginda (toplam alinirsa),
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0= Z?l‘fln(R(Eu VH(E,B)2) - St n(R(E, H(E E)Y)Z)
ntn (R(H(E B, Y)2)
+z%:rln(H(e,Ej>R(E,-,Y>z) 53)

elde edilir. (53) nolu denklemin sag tarafindaki dort ifadeyi ayri
ayr1 olacak sekilde (17)-(19) ve (37) nolu esitlikler kullanilarak,

- 33 n(R(E;, Y)H(E E)Z) = — =0V )n(2) (54)
—-Y3t n(R(E;, H(E,E;)Y)Z)
= [Zn 1Y, 2) —n(Y)n(2))
+ﬁ [2na®*n(Y)n(Z) + S, 2)] (55)
-2 n(R(H(E E))E;, Y)Z)
= L7 (—g(¥,2) + n(V)n(2) (56)

XTI n(H(E, EDR(E;, Y)Z)

1(=a?[—g(¥,2) + n(")(D)] - S(Y, Z))

=
+ m [2na®(g(Y,Z) + n(Y)n(2)) - SQY,2)]  (57)
elde edilir. (54)-(57) esitlikleri birlikte hesaba katilirsa (53) esitligi
S(QY,Z2) =2a%S(Y,Z) + a*(2na® —r)g(Y,Z)
formuna doniisiir. Burada hatirlatalim ki,
S(QY,Z) = S*(Y,Z) = S(—2na?Y,Z) = —2na®*S(Y,Z) (58)
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ve
QY = —2na?Y

esitlikleri saglanir. Boylece (49) nolu denklemin ispatina ulagilir.
Son olarak, (49) nolu esitlikte Y = Z = £ segilirse,

4n*aq* = —4na* + 2na* — ra? (59)

bulunur. (59) nolu esitligin diizenlenmesiyle istenen skalar egrilik
bulunur. Kosimplektik durumda (a = 0) kesit egriligi de 6zdes
olarak sifir olacaktir. Yani, a®* # 0 (alfa-Kenmotsu durumu) igin
skalar egrilik degeri gecerlidir. Bu ispat1 sonlandirir.

Teorem 2. (M, ¢,¢,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. é(a) = 0 olmak iizere, (n = 1) eger M {lizerinde
H - R = 0 tensdrel carpimi saglaniyorsa, o zaman (g, ¢, 1) Ricci
solitonu i¢in,

(a) @ = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a # 0 oldugunda M iizerinde hem genisleyen hem daralan
Ricct solitonlar vardir.

onermeleri gegerlidir.

Ispat. (M, g,&, ), Ricci solitona sahip alfa-kosimplektik manifold
olsun. (29), (32), (49) ve (58) nolu esitlikler yardimiyla,

20%5(Y, &) + a*(2na® —r)g(Y,§)
=an(¥)S(, ) — (@ + DS, $) (60)
ve
A2+ 2a°A — a*(2na® —r) =0 (61)

denklemleri yazilir. (61) nolu esitlik r = —2n(2n + 1)a® igin
diizenlenirse,

A+ 20°A—4na*(in+1) =0
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denklemi elde edilir. Burada a,A €IR ve n>1(n€N)dir.
Simdi, (61) nolu denklem ile verilen ikinci dereceden kuadratik
denklemin reel ¢Oziimiiniin olup olmadigini arastirallm. Bu
durumda,

A = a*(16n® + 16n + 4)

ve

A=a?(-1++V4n®  +4n+1) (62)

elde edilir. Denklemin reel koklerinin olmasi i¢in 4 = 0 olmalidir.
Bu durumda,

A = 2na?,2; = —2(n + 1)a? (63)

reel kokleri bulunur. Simdi, bu koklerin Ricci soliton baglaminda
ne anlama geldigini agiklamaya calisalim. (63) denklemi a =0
icin A = 0 degerini alir. Bu durumda, Ricci soliton sabittir. Diger
yandan, a # 0 sart1 altinda (63) denkleminin a@ ve n ye bagl iki
farkli reel ¢oziimii mevcuttur. O halde, a® # 0 olmak iizere, (63)
denkleminin iki farkli ¢6ziimii vardir. Yani,

Al = Znaz >0
veya
Az = —Z(Tl + 1)“2 <0

seklindedir. Bunlar geometrik olarak iki farkli soliton ¢oziimiine
karsilik gelir. 4; > 0 oldugunda Ricci soliton zamanla genisleyen
bir manifold iizerindedir. Genellikle negatif Ricci egrilige sahip
geometrilerle iliskilidir. Ornek olarak, evrenin genislemesi gibi
sireclerde benzer matematiksel yapilar goriiliir. Evrenin biiyiik
patlamadan sonra genislemesi gibi bir model olarak diisiiniilebilir.
A2 < 0 sart1 altinda Ricci soliton zamanla hacmi kiiciilen (daralan)
bir manifold iizerindedir. Ornek olarak, kiiresel simetriye sahip,
baslangigta biiyiik ama giderek kiigiilen (daralan) manifold tipleri
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diistintilebilir. Genellikle pozitif Ricci egrilige sahip yerlerde
goriiliir ve S = Ag bigiminde Einstein metrigine yakin bir davranis
sergiler. Sonug olarak, ayni manifoldun iki farkli zaman skalasinda
iki farkli Ricci soliton durumu mevcut olabilir. Ayrica, ayn1 metrik
altinda iki farkli potansiyel fonksiyonla tanimlanmis soliton
coziimleri olabilir. Dolayisiyla Ricci soliton denklemlerinin g¢ift
kokli simetrik yapiya sahiptir. Bu ¢oziimde a € IR oldugundan
hem genisleyen hem daralan solitonlar miimkiindiir. Bu durum
sistemin zaman i¢inde geri donilistimli (reversible) dinamiklere de
sahip olabilecegini gosterir.

Sonu¢ 2. (M,¢,¢,n,9), (2n+ 1)-boyutlu bir alfa-Kenmotsu
manifold ve a, £ boyunca paralel olsun (n > 1). Eger M iizerinde
H-R =0 tensorel carpimi saglaniyorsa, o zaman M iizerinde
(g, &, ) Ricci solitonu sabit degildir.
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BOLUM 4

BAZI YARI-SIMETRIK SARTLARI SAGLAYAN
RiCCi SOLITONLU ALFA-KOSIMPLEKTIK
MANIFOLDLAR

Hakan OZTURK!
Giris
Her simetrik uzay, tipki bir sanat eseri gibi kendine has geometrik
bir kimlik tasir. Kimi Oklid’in katiksiz diizenini yansitir, kimi
eliptik geometrinin kivriml zarafetini, kimi de hiperbolik diinyanin
genisleyen biiyiisiinii gosterir. Dahasi, bu uzaylar sadece giizel
ornekler degil, ayn1 zamanda gii¢lii teorik yapilar sunar. Bir yandan
paralel egrilik tensoriiyle donanmis Lie gruplart olarak karsimiza
cikarken, diger yandan her noktasinda yansima simetrisi barindiran
geometrik mekanlar olarak da diisliniilebilirler. Simetrinin bu denli
merkezde oldugu bir diinyada, her bakis agis1 yeni bir kesif kapisi
aralayabilir. Matematiksel geometrinin ilgi ¢ekici bir konusu olan
yari-simetrik uzaylar, temelde lokal simetrik uzay kavraminin daha
esnek bir versiyonu olarak diisiiniilebilir. Bir Riemann
manifoldunun yari-simetrik olarak nitelendirilebilmesi i¢in,
manifold iizerinde tanimli herhangi X ve Y vektor alanlarina
karsilik, R(X,Y)-R = 0 esitliginin saglanmasi gerekir. Bu
denklemde R egrilik tensorii, bir cebirsel operator gibi davranarak
uzayin geometrik yapisini kodlar. Bu tiir uzaylara yari-simetrik
denilmesinin nedeni, herhangi bir g noktasinda manifoldun egrilik
tensorlinlin, klasik simetrik uzaylardaki egrilik tensoriiyle

'Prof. Dr., Afyon Kocatepe Universitesi, Afyon Meslek Yiiksekokulu,
hakser23@gmail.com, ORCID: 0000-0003-1299-3153
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ortiisebilmesidir. Ancak bu uyum, noktadan noktaya degisiklik
gosterebilen bir 6zelliktir. Lokal simetrik uzaylar ise daha kati bir
simetri kosulu getirir, yani; VR = 0 ile tanimlidir. Burada V Levi-
Civita konneksiyonunu temsil eder ve bu kosul, egrilik tensoriiniin
manifold boyunca sabit kaldigimi ifade eder. Bu tiir uzaylar,
matematiksel fizigin yani sira sayilar teorisi ve cebirsel geometri
gibi ¢esitli alanlarda dogal olarak ortaya cikarlar. Yari-simetrik
uzaylar, egriligin cebirsel davranisina bir kisitlama getirirken; lokal
simetrik uzaylar, egriligin uzayda nasil degistigine (diferensiyel
yapisina) bir kisitlama getirir. Yari-simetri cebirsel ve lokal simetri
ise diferensiyel geometrik bir gerekliliktir.

Matematik literatiirinde yari-simetrik uzaylarin  sistematik
siiflandirmasi, Szabomun 1982 yilindaki ¢aligmasiyla yeni bir
asamaya ulagmistir (Szabo, 1982). Ancak bu alandaki ilk ¢aligma,
Nomizu'nun 1968 yilinda ifade ettigi ve glinimiizde o isimle anilan
R - R = 0 kosulunda gizlidir (Nomizu, 1968).

Kenmotsu manifoldlari, degme geometrisinin 6nemli bir alt sinifim
olusturan, hemen hemen degme metrik manifoldlarin 6zel bir
tiriidiir (Kenmotsu, 1972). Bunu takiben, Janssens ve Vanhecke,
Kenmotsu yapilarin a parametresiyle genellestirerek hemen hemen
alfa-Kenmotsu manifoldlar kavramin1 geometri literatiiriine
kazandirmislardir (Janssens & Vanhecke, 1981). Daha sonra, Kim
ve Pak bu gelismeyi bir adim 6teye tasiyarak, hemen hemen alfa-
Kenmotsu yapilart ile hemen hemen kosimplektik yapilar
sentezleyen yeni bir smif tanimlamiglardir (Kim & Pak, 2005).
Hemen hemen alfa-kosimplektik manifoldlar olarak adlandirilan bu
yapilar, hemen hemen degme metrik manifoldlar ailesinin énemli
bir alt siifin1 olusturmaktadir.

Matematiksel fizik ve diferensiyel geometrinin kesigiminde yer
alan Ricci akisi, Riemann manifoldlarindaki metrik yapinin zamana
bagli evrimini modelleyen gii¢clii bir ara¢ olarak karsimiza
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cikmigtir. Richard Hamilton'lm 1982 yilindaki oncii ¢alismasiyla
matematik diinyasina kazandirilan bu ydntem, topolojinin en zorlu
problemlerinden biri olan Poincaré hipotezine giden yolu agmistir
(Hamilton, 1982). Hamilton'un 1988 yilinda ylizeyler {izerindeki
Ricci akisini detaylica incelemesi, siirecin temel 6zelliklerini ortaya
cikarmistir (Hamilton, 1988). Ancak bu caligsmalar, akis sirasinda
ortaya ¢ikan ve egriligin sonsuza iraksadigi metrik tekilliklerin
varligin1 da gostermistir. Bu kritik engel, "cerrahi operasyonlar" adi
verilen ve manifoldun tekillik boélgelerinin kontrollii bir sekilde
cikarilmasini  saglayan yenilik¢i tekniklerin  gelistirilmesini
gerektirmigtir.  Grigori Perelman'mm 2002 yilindaki ¢i8ir agict
caligmasi, 3-boyutlu manifoldlarda Ricci akisinin tekilliklerini
sistematik olarak siniflandirarak bu sorunu asmayr basarmigtir
(Perelman, 2002). Perelman'in gelistirdigi entropi tabanl yaklasim,
akisin tekilliklerden arindirilmasini saglamis ve nihayetinde
Poincaré hipotezinin ispatlanmasiyla sonuglanmistir. Bu basari,
modern geometri analizinde Ricci akisinin merkezi Onemini
pekistirmis ve matematik tarihinde yeni bir donliim noktasi
olusturmustur.

Ricci solitonlarin varligi, hem geometrik evrimin kritik noktalarini
yansitir hem de manifoldlarin sabit egrilikli yapilara nasil
yakinsayabilecegine dair ipuglar1 verir. Bu nedenlerden dolayi,
Ricci solitonlar konusu oOnemli bir arastirma alani olarak
goriilmiistiir (Yadav & Oztiirk, 2019), (Oztiirk & Yadav, 2023),
(Oztiirk & Bektas, 2023), (Oztiirk & Celik, 2025),

Bu calismada, R-R =0 ve C - R = 0 esitlikleri yardimiyla alfa-
kosimplektik manifoldlar iizerinde Ricci solitonlar arastirilmistir.
Ozellikle, farkli yari-simetrik yapida olan C-R =0 tensorel
kosulunu saglayan Ricci solitonlu alfa-kosimplektik manifoldlar
iizerinde sonuclar bulunmustur.
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Literatiir Bilgisi
Bir (2n + 1)-boyutlu tiirevlenebilir manifold M olsun. Her X,Y €
x(M) i¢in; ¢, (1,1)-tipli bir tensor alani, & bir vektor alant ve n 1-
form olmak tizere,
¢*X =-X+n(X)§, 1) =1, ¢(§)=0,n0¢p =0 (1)
9(9X,¢Y) = g(X,Y) —n(X)n(¥) 2)
9(@X,Y) = —g(X,¢Y),n(X) = g(X,§) 3)
esitliklerini  ger¢ekleyen g metrik tensori ile donatilmis
(M, ¢,¢,m,9) yapisina bir hemen hemen degme metrik manifold
ad1 verilir. Burada g(¢,¢) = 1 dir. Bir (M, ¢, ¢,1, g) hemen hemen
degme metrik yapinin temel 2-formu
DX, Y) = g(X, $Y) 4
seklinde tanimlanir (Blair, 1976). (1,3)-tipli Riemann egrilik
tensorii R olmak flizere,

R(X,Y)Z = VyVyZ — VyVzX — Vixy Z (5)

seklinde tanimhidir. Bundan baska, (2n + 1)-boyutlu bir Riemann
manifoldu iizerinde (0,2)-tipli Ricci tensorii ve Ricci operatdri,
sirastyla,

S(X,Y) = X721 g(R(E;, X)Y, Ej) (6)

SX,Y) =g@QX,Y) (7

ile verilir. Burada {E4,E,,..., E,} lokal ortonormal bir tabandir
(Yano & Kon, 1984). (2n + 1)-boyutlu bir hemen hemen degme
metrik manifold (M, ¢, £, 7, g) ile verilsin. Eger manifoldu M X R

seklinde diisiiniirsek, her vektor alam1 X i¢in, (X, f %) yardimiyla

M X R iizerinde bir vektor alanmi belirtebiliriz. Burada t, R
tizerindeki koordinat ve f, M X R {izerinde bir tiirevlenebilir
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fonksiyondur. Boylece M X R {izerinde /] hemen hemen kompleks
yapist

J(X.F5) = (@X = fEn(0 ) (8)

ile verilir. Eger J integrallenebilirse o zaman, hemen hemen degme
metrik (M, ¢, &,n)-yapisi  normaldir. | kompleks yapisinin
integrallenebilmesi i¢in gerek ve yeter sart

[¢, pI(X,Y) + 2dn(X,Y)§ = 0 ©)

denkleminin saglanmasidir (Yano & Kon, 1984). (M, ¢,¢,1n,9)
hemen hemen degme metrik manifoldu

dn =0, do =0 (10)

sartlarin1 sagliyorsa, M ye hemen hemen kosimplektik manifold
denir. Eger bir hemen hemen kosimplektik manifold normal ise bu
manifolda kosimplektik manifold denir. M nin bir kosimplektik
manifold olmasi i¢in gerek ve yeter sart V@ ve I'n kovaryant
tirevlerinin 6zdes olarak sifir olmasidir (Olszak, 1981). Eger M
iizerinde VX,Y,Z € y(M) ve @ € R, a # 0 igin,

dn =0, do = 2a(n A P) (11)

denklemleri saglaniyorsa, M ye bir hemen hemen alfa-Kenmotsu
manifold denir (Janssens & Vanhecke, 1981). Ozel olarak, a = 1
durumu hemen hemen Kenmotsu olarak adlandirilir (Kenmotsu,
1972). (M, ¢,&,1m, g) normal ise o zaman alfa-Kenmotsu manifold
olarak adlandirilir. Herhangi vektor alanlar1 ve keyfi a reel sayisi
icin, (11) denklemleri saglaniyorsa, M ye hemen hemen alfa-
kosimplektik manifold denir. Ozel olarak, @ = 0 i¢in hemen hemen
kosimplektik manifold, @ # 0 i¢in hemen hemen alfa-Kenmotsu
manifold olarak adlandirilir. Eger hemen hemen degme metrik yap1
(M, ¢, &,m,g) Kaehler yapiya sahipse o zaman « reel sayisi igin
M ye alfa-kosimplektik manifold denir. Yani, a =0 igin
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(M, ¢, ¢&,m, g) yapist kosimplektik veya a # 0 icin alfa-Kenmotsu
olarak adlandirilir (Kim & Pak, 2005).

Onerme 1. (2n + 1)-boyutlu bir (M, ¢, ,7, g) hemen hemen alfa-
kosimplektik manifold olsun. M nin bir alfa-kosimplektik manifold
olmasi i¢in gerek ve yeter sart, V X, Y € y(M) i¢in,

(Vx @)Y = alg($X,¥)¢ —n(Y)PX] (12)
dir (Oztiirk, 2021).

Onerme 2. (2n + 1)-boyutlu bir (M, ¢, £,71, g) hemen hemen alfa-
kosimplektik manifold olsun. Bu durumda, V X,Y € y(M) i¢in,

Vx§ = aX — an(X)§ (13)

(Vxm)Y = a[g(X,Y) —n(X)n(Y)] (14)

R(X,Y)¢ = —(a* + §(@)n(M)X — n(X)Y] (15)
R(X,§)Y = (a® +&(a)[g(¥, X)¢ — n(Y)X] (16)

R(X,§)§ = (a® + §(@)¢p*X (17)

nRX,Y)Z) = (@ + §(@)[-n(X)g(¥,2) + n(Y)g(X,2)] (18)
SX,§) = —2n(a® + §(@)n(X) (19)

Q¢ = —2(a® + §(a))né (20)

denklemleri saglanir. Burada @, da An =0 sartin1 saglayan
tiirevlenebilir bir fonksiyondur (Oztiirk & ark., 2017).

Tamim 1. M, (2n + 1)-boyutlu bir Riemann manifoldu olsun. Bu
durumda, V X, Y,Z € y(M) igin,

1
CX,Y)Z=R(X,Y)Z —
(X,1)Z = RX,NZ 57—

—9(X,Z)QY + g(¥, 2)QX]
[9(Y,2)X — g(X,Z)Y] 21

[S(Y,2)X — S(X,Z)Y

r
2n(2n—-1)
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seklinde tanimlanan (1,3)-tipli C ye Weyl konformal egrilik tensor
alan1 adi verilir (Yano ve Kon 1984).

Ricci Solitonlu Alfa-Kosimplektik Yapilar

Bu boliimde ana sonuglar boliimiinde kullanilacak temel kavramlar
ve temel egrilik 6zellikleri verilmistir.

Tammm 2. (M, go) bir n-boyutlu Riemann manifoldu olsun. Bu
durumda,

2 (9(®) +25(g(®) =0, g(0) = go 22)

kismi tiirevli diferensiyel denklemine g metrik tensoriinii eviren
Ricci akisi denir (Hamilton, 1982). Burada t zaman parametresidir.

Ricci akisi, Grigori Perelman'in 2002 yilinda Poincaré Sanisi'mi
cozmedeki kritik rolilyle matematik tarihine gecen olaganiistii bir
aragtir. Temelde, bir manifoldun metrik yapisinin zaman ic¢indeki
evrimini yoneten bir kismi diferansiyel denklem olarak goriilebilir.
Yani, bu akis tipki bir heykeltirasin mermeri sekillendirmesi gibi,
uzayin geometrisini Ricci egriligine gore yeniden bi¢imlendirir. Bu
denklem, g metrik tensorlinlin zamana bagh degisimini,
manifoldun egrilik o6zelliklerine goére diizenler. Siirecin temel
felsefesi, uzayin piriizli egrilik dagilimim adeta bir iiti gibi
diizlestirmektir. Ilging olan, bu diizlesme siirecinin egriligin
isaretine  gore  farkli  davranmasidir.  Pozitif  egrilikli
bolgeler (kiiresel yapilar) zamanla biiziliir (kiigiiliir), tipki sicak
havayla temas eden bir balonun kiiciilmesi gibi. Diger yandan,
negatif egrilikli bolgeler (hiperbolik yapilar) zamanla genisler
(biiytir) tipki bir kagidin burusukluklarinin ag¢ilmasinda oldugu gibi.
Ricci akis1 teorisinde 6zel bir yere sahip olan Ricci solitonlari, bu
dinamik siirecin sabit formlu ¢dziimleridir. Ornek olarak, okyanusta

seklini koruyarak ilerleyen bir dalga gibi, Ricci solitonlar1 da akis
boyunca temel geometrik karakterini muhafaza eder. Yani, ya
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tamamen degismez kalir ya da yalnizca dlgek degisikligine ugrar.
Bu yapilar, Ricci akisinin uzun vadeli davranisini analiz etmede
kilit rol oynar. Soliton terimi, ilk olarak dalga mekaniginde kendini
koruyan lokalize ¢Ozlimleri tanimlamak i¢in kullanilmistir.
Geometrik manasi ise, bir Ricci solitonu metrik tensoriin Ricci
akist altindaki 6z-benzerlik 6zelligini yansitmasidir. Bu durum,
akisin zaman evriminde adeta bir dengeli sabit nokta gibi davranan
0zel metrik konfigiirasyonlar sunar.

Tamim 3. (M, g) bir n-boyutlu Riemann manifoldu olsun. Eger
M tizerinde keyfi vektor alanlar1 X,Y ve V igin, A gercel bir skaler
olmak tizere,

(Lyg)(X,Y) + 25(X,¥) + 2Ag(X,Y) = 0 (23)

denklemi saglantyorsa, (M, g) ye Ricci soliton denir. Burada V
vektor alan1 Ricci solitonun potansiyel vektor alani ve Ly, g de V
yoniindeki g metriginin Lie tiirevidir. Bu durumda, Ricci soliton
(M, g,V,A) ile sembolize edilir. (M, g,V,A) Ricci solitonuna A
degerinin 1 < 0,4 = 0 ve A > 0 durumlar i¢in, sirastyla, daralan,
degismeyen ve genisleyen Ricci soliton adi verilir (Hamilton,
1988).

Tanim 4. (M, g) bir n-boyutlu Riemann manifoldu olsun. L, g, V
yoniindeki g metriginin Lie tiirevi olmak tizere,

(Lyg)(X,Y) = g(VxV.Y) + g(X, V) (24)
dir (Yano & Kon, 1984).

Tanim 5. (M, g,V,A) bir Ricci soliton olsun. Eger V potansiyel
vektor alani Killing vektor alani (L, g = 0) ise o zaman (M, g,V, 1)
ye basit Ricci soliton ad1 verilir (Chen 2015).

Tammm 6. (M, $,¢,1,9), (2n+ 1)-boyutlu bir alfa-kosimplektik
manifold olsun. Eger M tizerinde (g, V, 1) Ricci solitonu mevcutsa,
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(M,g,V,1) ya Ricci solitonlu alfa-kosimplektik manifold denir
(Hamilton, 1988), (Kenmotsu, 1972).

Onerme 3. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alam
¢ karakteristik vektor alanit olarak segilirse yani, M {izerinde
(g, &, 1) Ricci solitonu igin, Ricci egrilik tensor alani

SX,Y)=—(a+)gX,Y) +anX)n(¥) (25)

denklemini saglar. Burada a, ¢ karakteristik vektér alani boyunca
paralel olarak alinmistir (Oztiirk & Bektas, 2023).

Onerme 4. (M, g,V, 1), (2n + 1)-boyutlu bir Ricci solitonlu alfa-
kosimplektik manifold olsun. Eger V potansiyel vektor alani
¢ karakteristik vektor alanit olarak secilirse yani, M {izerinde
(g, &, 1) Ricci solitonu i¢in, asagidaki 6nermeler gegerlidir:

S(X,§) = —n(X) (26)
QX =an(X)é — (a + V)X (27)
Q¢ = -4 (28)

5S¢ =-2 (29)
r=a—(0(2n+1)(a+1). (30)

Burada a, ¢ karakteristik vektdr alani boyunca paralel olarak
almmustir (Oztiirk & Bektas, 2023).

Temel Sonuclar

Bu boélimde, yari-simetrik kosul ve C - R = 0 tensorel carpimi
yardimiyla verilen Ricci solitonlu alfa-kosimplektik manifoldlar
iizerinde baz1 sonuglar elde edilmistir.

Yardimei Teorem 1. (M, ¢, &,7, g) yapist i¢in £(a) = 0 olsun. Bu
durumda, Weyl konformal egrilik tensor alani
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r a?
+
2n(2n-1) 2n—1

n(CU, VW) =[-

gV, WinW)gU, Win(V)]

[SWV, W)n(U) = SWU,W)nV)] €2))

1

2n—-1
esitligi ile yazilir.
Ispat. (18) ve (21) nolu esitlikler birlikte hesaba katilirsa (31) nolu
esitligin ispat1 asikardir.

Onerme 5. (M,¢,&,1,9) bir (2n + 1)-boyutlu a-kosimplektik
manifold olsun. é(a) = 0 olmak iizere, eger M yari-simetrik ise o
zaman (M, g, &, 1) Ricci solitonu

S(Y,2) = =2a*ng(Y,Z) (32)
ve
r=-2n2n + 1)a? (33)
esitliklerini saglar.

Ispat. M {izerinde yari-simetrik olarak adlandirilan tensorel carpim
saglansin. O halde,

(R(U,V)-R)Y(W,Y)Z =0 (34)

R(E,VIR(W,Y)Z — R(R(E, V)W, Y)Z
—R(W,R(E,VIV)Z —R(W,Y)R(EVIZ=0  (35)

n(REVIRW,Y)Z) —n(R(R(S,VIW,Y)Z)
—NRW,R(E,V)Y)Z) =n(R(W,Y)R(S,V)Z) =0 (36)

yazilir. {Ej, j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayinin bir ortonormal tabani olmak {izere, (36) nolu
esitlige 1<j<2n+1 ve V=W=E; icin kontraksiyon

yapilirsa,
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0=—Y31'n(R(E;, Y)R(¢,E)Z) — X321 ' n(R(E;, R (¢, E;)Y)Z)
— Y2 n(R(R(E, EE,Y)Z) + 32 n(R(& E)R(E;, Y)Z) (37)

elde edilir. (37) nolu denklemin sag tarafindaki dort ifadeyi ayr
ayrt olacak sekilde (15)-(17) nolu esitlikler kullanilarak hesaba
yapilirsa,

— X721 n(R(E;, Y)R(E, ENZ) = —2na’n(Y)n(Z) (3%)

— > n(R(E, R(¢E))Y)Z)
= —a*(—g(¥,2) + n(¥)n(2)) (39)

=¥ n(R(R(¢E))E;,Y)Z)
= 2na*(—g(Y,2) + n(¥)n(2)) (40)

22T n(RE, EDR(E;, Y)Z)
=a’[-S(Y,2) —a*(g(Y,2) —n(n(Z)] (4D

bulunur. Son olarak, (38)-(41) nolu esitlikler birlikte géz Oniine
aliirsa (37) nolu esitlik

S(Y,Z) = —2na*g(Y,Z)
haline doniislir. Boylece (32) nolu esitligin ispati tamamlanir.
Ayrica, bu son denklemin her iki tarafinin Y = Z = E; i¢in, 1 <
Jj < 2n + 1 olmak {izere, izi alinirsa (33) nolu esitliginin ispat1 da

sonlanir.

Teorem 1. (M, ¢,&,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. é(a) = 0 olmak iizere, eger M yari-simetrik ise o
zaman (M, g, &, ) Ricci solitonu igin,
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(a) a = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a#0 oldugunda M fizerinde Ricci soliton daima
genisleyendir,

ifadeleri gegerlidir.

Ispat. (M, g, ¢, 1) Ricci solitonlu alfa-kosimplektik manifold olsun.
Bu durumda, (26) nolu denklem yardimiyla

S¥,8) = —n(Y)
yazilir. Ayrica, (32) nolu denklem Z = £ igin,
S(Y,€) = —2a?nn(¥)
elde edilir. Bu son iki denklemin sag taraflarinin esitliginden
A = 2na® (42)

sonucuna ulagilir. Burada &(a) = 0 secildiginden «a reel bir sabit
olarak alinabilir. Boylece (42) nolu denklem a =0 ve a # 0
durumlan altinda sirasiyla, A =0 ve 4> 0 haline doniisiir. Bu
nedenle (a) ve (b) siklarinin ispati Ricci soliton tanimindan
asikardir.

Sonu¢ 1. (M, ¢,¢,1n,9) tzerinde {(a) = 0 olsun (n > 1). Eger
M yari-simetrik ise o zaman (M, g, ¢, A) Ricci solitonu asla daralan
durumda olamaz.

Onerme 6. (M, ¢, &,1, g) yapisi iizerinde &(a) = 0 olsun. Eger M
lizerinde C-R = 0 tensorel ¢arpimi mevcutsa, o zaman keyfi
vektor alanlart igin,

S(QY,7) = —(% —2a%)S(Y,2)

—2a*(—na*+1)g(Y,2) (43)
ve

r=-2n2n+ 1)a?
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denklemleri gecerlidir.

Ispat. Alfa-kosimplektik manifold M asagidaki tensorel garpim ile
verilsin. Bu durumda,

cw,v)-Rm(W,Y)Z=0 (44)

C(E,VIR(W,Y)Z — R(C(E,VIW,Y)Z
—R(W,C(E,V)Y)Z—R(W,Y)C(EVIZ=0  (45)

n(CEVIRW,Y)Z) —n(R(C(S, VIW,Y)Z)
—NnRW,C(E,VIY)Z) —n(R(W,Y)C(E,V)Z) =0 (46)
yazilr. {E v j=12,..2n+ 1}, M manifoldunun her noktasindaki
tanjant uzayinin bir ortonormal tabani olmak {izere, (46) nolu
esitlige 1<j<2n+1 ve V=W=E; i¢in Kkontraksiyon
yapildiginda (toplam alinirsa),
= X35 n(R(E;,Y)C(8 E;)Z) - Zi21" n(R(E;, € (8, E))Y)Z)
- n(R(C(&EDE;LY)Z) + X221 n(C (&, E)R(E;, Y)Z) (47)
elde edilir. (47) nolu denklemin sag tarafindaki dort ifadeyi ayri

ayrt olacak sekilde (15)-(17) nolu esitlikler kullanilarak hesaba
katilirsa,

-2 n(R(E;, Y)C(8. E)Z) = - (48)
- 22 n(R(E;, (¢ E))Y)Z)
= [ - a5 0. 2) = (¥ )n(2))
— = 2ra®n(V)n(2) + S(¥, 2)] (49)
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- 272 n(R(C (¢ E)E;, Y)Z)

= 29T (g (V,2) + n()n(2)) (50)

2n—1

=1 n(C(, EDR(E;, Y)Z)

a?

2n—-1 2n(2n 1)
+——[2na*(g(Y,2) + n("N(2)) - S(QY,2)] (51

elde edilir. (48)-(51) esitlikleri birlikte hesaba katilirsa (47) esitligi

= 1(—a?[—g(¥,2) + n(")n(D)] - 5(¥, Z))

S(QY,7) = (- zr—n +2a%)S(Y, Z) + 2a°(na® — g (Y, 2)

formuna doniisiir. Burada hatirlatalim ki,
S(QY,Z) = S*(Y,Z) = S(—2na?Y,Z) = —2na®S(Y,Z) (52)
ve
QY = —2na?Y

esitlikleri saglanir. Boylece (43) nolu denklemin ispatina ulagilir.
Son olarak, (43) nolu esitlikte Y = Z = £ segilirse,

—2na*[2a* — (r/(2n)) + 2na?] = 2a*[r — na?]
bulunur. Bu son esitligin diizenlenmesiyle,
—ra® — 2na* — 4n*a* = 0

denklemi elde edilir. Bu son esitlik istenen skalar egrilik sonucunu
dogrular. Kosimplektik durumda (a = 0) kesit egriligi de 6zdes
olarak sifir olacaktir. Yani, a® # 0 (alfa-Kenmotsu durumu) igin
skalar egrilik degeri gecerlidir. Bu da ispati tamamlar.
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Teorem 2. (M, $,¢,n,g) bir (2n + 1)-boyutlu alfa-kosimplektik
manifold olsun. {(a) = 0 olmak iizere, (n = 1) eger M {izerinde
C - R = O tensorel ¢arpimi saglaniyorsa, o zaman (g,¢&, 1) Ricci
solitonu i¢in,

(a) @ = 0 oldugunda M iizerinde basit sabit Ricci soliton vardir,

(b) a # 0 oldugunda Ricci soliton tasiyan bir alfa-Kenmotsu
manifoldu yoktur,

ifadeleri gecerlidir.
Ispat. (M, g,&, ), Ricci solitona sahip alfa-kosimplektik manifold
olsun. (43) ve (52) nolu esitlikler kullanilarak,

(— % +2a%)S(Y, &) + 2a(na® — r)g(Y, &)

=an(¥)S($,¢) — (@ +)S(Y,$) (53)
bulunur. (26) ve (29) nolu esitlikler yardimiyla (53) nolu esitlik
A%+ 22a® — (r/2n)A — 2a*(na®* —r) =0 (54)

sekline indirgenir. (54) nolu esitlik 7 = —2n(2n + 1)a® icin
diizenlenirse,
A+ a*(2n+3)A+ 2na*(dn+1) =0 (55)

denklemi elde edilir. Burada a,A€IR ve n>1(n€N)dir.
Simdi, (55) nolu denklem ile verilen ikinci dereceden kuadratik
denklemin reel ¢O0ziimiiniin olup olmadigin1 arastiralim. Bu
durumda,

A= a*(—28n* +4n +9)
ve

—a?(2n+3)+a?y —-28n*+4n+9

2

1=

(56)
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elde edilir. Denklemin reel koklerinin olmasi i¢in 4 > 0 olmalidir.
Bu kuadratik fonksiyonun maksimum noktasi (tepe noktast)

B 4 1
-~ 2(-28) 14

olur. Yani, bu fonksiyon kollar1 asag1 dogru agilan bir paraboldiir.
Ayrica, en biiylik degerini n = 1/14 igin alir. n > 1 sart1 altinda

—28n*+4n+9<0

onermesi gegerlidir. Dolayisiyla (56) nolu denklem a = 0 ig¢in A =
0 degerini alir. Bu nedenle, Ricci soliton sabittir. Benzer olarak,
a # 0sart1 altinda (56) nolu denklemin reel kokleri mevcut
degildir. Boylece alfa-Kenmotsu manifoldu iizerinde bir Ricci
soliton tagimamaz.

Sonu¢ 2. (M,¢,&,1n,9), (2n+ 1)-boyutlu bir alfa-Kenmotsu
manifold ve a, £ boyunca paralel olsun (n = 1). Eger M iizerinde
C-R =0 tensorel ¢arpimi saglaniyorsa, o zaman M iizerinde
(g, ¢, 1) Ricci solitonu yoktur.
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BOLUM 5

E3 OKLIiD UZAYINDA INVOLUT-EVOLUT EGRIi
CIFTLERININ TEMEL OZELLIKLERI

Mustafa BILICI!

Giris

Involiit—evoliit egri ¢ifti, diferansiyel geometrinin klasik fakat
giincelligini koruyan konular1 arasinda yer almaktadir. Bir egrinin
involiitii, s6z konusu egrinin tanjant dogrultusuna diklik kosulu
altinda tanimlanirken; evoliit egrisi, bu iliskinin tersini ifade eder. Bu
egriler arasindaki bag, yalnizca egrilerin konumsal iligkileriyle
smirli olmayip, Frenet catilari, egrilik—burulma fonksiyonlar1 ve
Darboux vektorleri ilizerinden daha derin geometrik anlamlar
barmdirmaktadir. Bu boliimde, Oklid uzayinda tamimli involiit—
evoliit egri ¢iftlerinin geometrik Ozellikleri biitiinclil bir bakis
acistyla ele alinmaktadir. Ozellikle, egrinin Frenet vektorlerinden
biri olan binormal vektor B ile Darboux vektorii W arasindaki aginin

! Prof. Dr., Ondokuz Mayis Universitesi Egitim Fakiiltesi, Matematik ve Fen
Bilimleri Egitimi Boliimii, Samsun, Tiirkiye, Orcid: 0000-0002-3502-5027
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varlig1 temel alinarak, s6z konusu catilar arasindaki geometrik
bagntilar farkli bir yaklagimla incelenmistir. Bu yaklasim sayesinde,
involiit ve evoliit egrilerinin birbirleriyle olan iliskileri klasik
yontemlerden farkli bir bakis agisiyla ortaya konulmus ve egri ¢iftine
iliskin ¢esitli karakterizasyonlar elde edilmistir.

Asagida verilen temel tanim ve teoremler, (Hacisalihoglu,
1983), (O’Neill, 1996), (Fenchel, 1951) kaynaklarinda sunulan
kuramsal cerceve esas alinarak ii¢ boyutlu vektor uzay: i¢cin ele
alinmustir.

Tamim 1. A bos olmayan bir cliimle ve V de K cismi Uzerinde bir
vektor uzayi olsun. Bir
v AxA->V

(P,Q) = w(P,Q)

donlistimii i¢in asagidaki iki aksiyom saglanwsa, 4 ya V ile

birlestirilmis bir afin uzay denir:

(A) VPORed y(P.R)=y(P,O+w(O.R),

(A)) VPed veV aceV igin w(P,0Q) = a olacak sekilde
bir tek O € A noktas1 vardir.

Burada P noktasina baslangic ve Q noktasina da u¢ noktasi

denir. Diger taraftan 4 nin boyutu
boyA = boyV

seklinde tanimlanir.

Tamm 2. R reel sayilar cismi ve V bir reel vektér uzayr olmak
uzere, Uzerinde
<,>:VxV > R

(P,Q)—><,>(P,Q)=<P,Q>
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bigiminde i¢ ¢arpim fonksiyonu tanimlanabilirse, V vektor uzayina
reel ig-garpim uzayi denir.
Tanim 3. V bir reel i¢-carpim uzay1 olsun. ile birlesen bir A afin
uzayma Oklid uzay1 denir ve genellikle E* ile gosterilir.
Tamim 4. E® 3-boyutlu Oklid uzay1 olsun.
d:E*xE* >R
3 2

(XY)>d(X.Y)=>(y,-%) ,1<i<3

i=1
seklinde tanmimlanan d fonksiyonuna , E® Oklid uzay: iizerinde
uzaklik fonksiyonu ve d(X,Y ):HWH reel sayisma da XY € E®

noktalar1 arasindaki uzaklik denir.

Tanmm 5. | =R bir acik aralik olmak tizere, (/,a) koordinat

komsulugu ile verilen
a:l>E°

t—a(t) =(ay(1),a,(1),a4(1))

seklinde tanimlanan diferensiyellenebilir fonksiyona E® de bir egri
denir. Burada, | ya egrinin parametre araligi denir.

Tamm 6. M c E® egrisi (/,a) koordinat komsulugu ile verilsin.

noktasindaki hiz vektorii sifirdan farkli ise de bu egriye regiiler egri

a’(t)” =1 ise M egrisine birim hizli egri denir. Eger M egrisinin her

adi verilir.
Tamm 7. Bir M c E® egrisinin a(s)eM noktasindaki Frenet 3-
ayaklis1 genellikle {7, N,B} ile gosterilir. Bu yapida T~ ye teget

vektor alani, N’ ye asli normal vektor alani, B’ ye de binormal vektor
alani denir. Ayrica M nin a(s)e M noktasindaki birinci ve ikinci
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egrilikleri « ve ¢ ile gosterilir. « ya M nin egriligi r ya da

burulmasit denir. Bu halde Frenet formiilleri

T'=x N
N'=-xkN+71B (1)
B'=—tN

seklindedir.

Tamm 8. M c E® egrisi iizerindeki bir a(s) noktas1 egriyi

cizerken T,N,B vektorleri degisirler, dolayisiyla kiiresel

gostergeler olusurlar. Egrinin Frenet 3-ayaklisinin her s aninda,
bir eksen etrafinda, bir ani helis hareketi yaptig1 kabul edilir. Bu
eksene egrinin bu s parametresine karsilik gelen «fs)

noktasindaki Darboux (ani ddnme) ekseni denir. Bu eksenin yon
ve dogrultusunu veren vektor,

W =7T+xB=NAN’ (2)

olup, egrinin a(s) noktasmdaki Darboux vektérii adini alir.
W =N AN’ oldugu,

T N B
NAN'=[0 1 O
-« 0 ¢

ifadesinden acgiktir.

B binormal vektor alani ile W Darboux vektori arasmndaki
ac1 @ ile gosterilirse,

= 0
{K’ W |cos 3

r=|W/|sind

oldugu kolayca goriiliir (Sekil 1).
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Sekil 1 Darboux vektorii

!

4

\

kB

W Darboux vektorii yoniindeki birim vektorii C ile gosterirsek,

"VV” =vKk? +7° >0 olmak iizere

C =sindT +cos¢B 4)
seklinde yazilabilir.

Tammm 9. M c E® | (1, ) koordinat komsulugu ile verilen bir egri
ve M nin Vs e/ yaXkarsilik gelen a(s)e M noktasindaki 1. ve 2.
egrilikleri « ve ¢ olsun. Bu takdirde,

H: 1 >R
K(s)
7(s)

seklinde tanimli H, fonksiyonuna, M nin 1-inci harmonik egriligi

s—>H,/(s)=

denir.
Tamm 10. M c E® egrisi (/,a) koordinat komsulugu ile verilsin.
M nin a(s)eM noktasindaki hiz vektorii a’(s) ve U da sabit bir
vektor olsun. Vs e igin a'(s) ile U arasindaki a¢1 sabit ise M ye
bir egilim cizgisi (helis), Sp{U} ya da M egilim cizgisinin egilim
ekseni denir.
Teorem 1. Bir M cE® egrisi (I,ar) koordinat komsulugu ile
verilsin. M nin bir egilim ¢izgisi (helis) olmasi i¢in gerek ve yeter
sart 1-inci harmonik egriliginin sabit olmasidir.
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Teorem 2. M < E® egrisi (I,a) koordinat komsulugu ile verilsin.
M nin a(s)e M noktasindaki Frenet 3-ayaklisi
1) Eger s €1 yay parametresi ise

T(s)=a'(s),
1
——a'(s), (5)
|| (s)

B(s)=T(s)xN(s).
2) Eger s € yay parametresi degil ise

1

T(s)=—a(s),

©) IIa'(S)Ila(S)

N(s)=B(s)xT(s), (6)
1 1 14

B(s):“a’(s)xaﬂ(s)"(a(s)xa(s)).

seklindedir.

Teorem 3. M, E° de egriligi pozitif olan birim hizl1 bir egri olsun.
M egrisinin diizlemsel bir egri olmasi igin gerek ve yeter sart z =0
olmasidir.

Teorem 4. M, E° de bir birim hizl1 egri olsun. M egrisinin bir
dogru olmasi i¢in gerek ve yeter sart x =0 olmasidir.

Tanm 11. M, , M, cE’? iki egriolsun. M, ve M, ,swasiile, (I,a)
ve (1,0) koordinat komsuluklar1 ile verilsin. «a(s) ve S(s)
noktalarinda M, ve M, nin Frenet 3-ayaklilar1, sirastile,

{T.N.B} ve {T",N",B’}
olmak Uzere

<T,T">=0
ise M, ye M, ininvolutd, M, ede M, ninevolutd denir (Sekil 2).
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Sekil 2 Involiit-evoliit egri ¢ifti

0

Teorem 5. M, ,M,cE’ egrileri (l,a) ve (I,8) koordinat
komsuluklari ile verilsin. Eger M, , M, ininvolutl ise Vsel igin
d(a(s),B(s))=(c—s), c=sabit
dir.
Teorem 6. M,, M, cE’ involiit-evoliit egrileri, (I,a), (I,8)
koordinat komsuluklar1 ile verilsin. M, ve M, nin a(s)e M, ve
P(s) e M, noktalarindaki Frenet 3-ayaklilari, sirasi ile
{T,N,B} ve {T",N",B"}
M, ve M, nin egrilik ve burulmalar1 x,z ve K7 ise
2 K> +17’ . KT —KT

K T s T T e ()

dir.
Involiit—Evoliit Egri Ciftleri ve Frenet Catilan

Bu boliimde, involiit—evoliit egri ¢iftlerinin Frenet c¢atilari
arasindaki iligkiler, binormal vektér B ile Darboux vektorii W
arasindaki 6 agisi1 esas alinarak agisal bir yaklagimla ifade edilmistir.
Teorem 7. M,,M,cCE’ egri cifti, swras1 ile, (I,a) ve (I,[)
koordinat komsuluklar1 ile verilsin. Eger M,, M, in involiiti ise,
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Sel yakarsilik gelen a(s) € M, ve S(s) € M,noktalarindaki
Frenet vektorleri arasinda

T 0 1 0 T

N" |=|-cos® 0 sinéd || N 7)

B sind 0 coséd| B
bagntist vardir. Burada /(B,W)=6 dur.
Ispat. M, , M, in involiitii oldugundan
P(s)=a(s)+AT(s),AeR (8)
yazilabilir. Teorem 5. den dolayr A =d(a(s),B(s))=c—s oldugu

g6z0niine alinarak (8) ifadesinde her iki tarafin da s ye gore tirevi
almirsa,

45 _Ga QA3 | kN ©)
ds ds ds
olur. B nim s parametresine gore tiitevini ﬂ ile gbsterelim. Diger
yandan
R dgds’ ds . ds’
ds” ds ds
yazilabilir. Bu son ifadeyi (9) ile mukayese edersek
. ds”
,B T —=AxN (10)
ds
elde edilir. Buradan
di = Ak
ds
bulunur. Bu netice (10) denkleminde yerine yazilirsa
T"=N (11)

elde edilir. (10) denkleminden A= AxN oldugundan
ﬁ = -Ax’T+(Ax —Kx )N + AxtB
ve
ﬁxﬁ: Xx’tT+A'x’B
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dir. Involiit egrisi icin S e lyay parametresi olmadigindan, (6)
denkleminden binormal vektor

B = B

T L, K
N N

olur. (4) denklemleri kullanilarak

B" =sindT +cos6B (12)
olur. N" = B" xT" oldugundan
N" =—cosdT +singB (13)

elde edilir. Bu durumda (11), (12), (13) denklemleri matris formunda
ifade edilirse ispat tamamlanir.

Involiit-Evoliit Egri Ciftlerinin Darboux vektorleri

Teorem 8. M,, M, E’ involiit-evoliit egri gifti olsun. M, ve M,

o . P . . . * .
egrilerinin Darboux vektorleri, sirasiile, W ve W olmak lizere W

.
ve W arasinda

*

:K(C_S)(W+9N)

bagintis1 vardir.
Ispat. (2) bagmtisindan
W=1I'+xB
ve
W =:T +x B
dir. Teorem 6, (11) ve (12) den

2 2 . .
W =Y T (5ingT +cosoB)+— - T
x(c—5) k(c—s)(x“+7°)

seklinde olur. (3) denklemi bu son denklem ile birlestirilirse,
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T
* T K K

B K(C—S)T+K(C—S)(K2 +72)+K(0—S)B’

= T+xB+0N
K(c—s) (T )
olur ve (2) denklemi kullanilarak
W =— (o) (14)
K(c—s)

elde edilir.
Teorem 9. M, ,M,cE’ involiit-evoliit egri ¢ifti olsun.
(M;,M,) egri ciftinin Darboux vektorleri yoniindeki birim
vektorleri C ve C” olsun. C ve C* arasinda

. 0 Vil + 77

C'=—— Nt —
VO + K7+ 77 NO? + K7+ 77

C
bagintis1 vardir.

Ispat. (4) bagmtisindan
C =sindT +coséB
ve B" ile W’ Darboux vektorii arasindaki ac1 6° olmak iizere
C' =sindT +coséd B’ (15)

dir. Simdi sin@ ve cos@ degerlerini hesaplayalm. (2)
denkleminden

Kk =|W|cose
r=|W|siné
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Ve

K = ”\N*Hcos g
T :”\N*Hsine
dir. Teorem 6 ve (14) deki neticeler (16) da yerine yazilirsa,
0
NP
VKt + 72
NO? +x? + 12
olur. (17) ve (18) denklemleri (15) denkleminde yerine yazilirsa
. 0 Nl + 77

= N+
VO + K7+ 77 NGO + k7 + 77

(16)

sing” =

(17)

(18)

cosd =

C (19)

elde edilir.

Sonug¢ 1. M,,M,cE’ involiit-evoliit egri ¢ifti olsun. Eger M,

evoliit egrisi bir helis ise

a. M, involiit egrisinin Darboux vektorii W ile binormal

vektorii B” lineer bagimlidir.
b. M,, M, E’ involiit-evoliit egri ¢iftinin Darboux
vektorleri yoniindeki birim vektorleri aynidir.

Ispat. a. Eger M, evoliit egrisi bir helis ise Teorem 3.2.2 den
T
— =sabit
K

dir. (3) denklemi gézoniine alinirsa
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(20)

tg@ =sabit
0=0

bulunur. Bu son netice (17) ve (18) denklemlerinde yerine yazilirsa,
Sind” =0, (21)
Cosd =1 (22)

olur. (21) ve (22) denklemleri birlikte diisiiniiliirse
0 =0 (23)

oldugu goriiliir. O halde W vektorii B* Frenet vektorii yoniindedir.
Yani W ile B" lineer bagimlidur.

b. (20) deki 0 = 0 neticesi (19) denkleminde yerine yazilirsa
C'=C
oldugu goriiliir.
Ozel Durum: Involiit Egrisinin Diizlemsel Olma Kosulu
Teorem 10. M,, M,cE’ involiit-evoliit egri ¢iftinin egrilik ve
burulmasy, sirastile, &,z ve ¥ ,7 olsun. k¥ # 0 olmak iizere M ;

egrisinin helis olmasi i¢in gerek ve yeter sart M, egrisinin diizlemsel

olmasidir.

Ispat. M, egrisi bir helis olsun. Teorem 1 den

L sabit
K
veE
(ij —0 (24)
K



dir. Diger taraftan Teorem 6 dan

KT—KT

*

T k(k+7)(c—5)

* b

A

(K‘2 Jrrz)E

K(c—s)

F=—— (25)

bulunur. O halde M, egrisi diizlemseldir.

Simdiye kadar verilen teorik sonuglar, secilen bir Ornek
yardimiyla uygulamaya aktarilacak ve bolim bu sekilde
tamamlanacaktir.

Ornek. Oklid 3-uzayinda s yay parametresi ile verilen asagidaki
egriyi ele alalim:

a(s)= cos(ij,sin(ij,i , s>0.
zZ) )"
L 1 g e o
Buegriigin k =7 =§ oldugundan « egrisi birim hizli bir dairesel

helistir. & egrisinin Frenet vektorlerini hesaplarsak,
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B 1 sin(ij —cos(ij 1

2 \V2) N2)7)
bulunur. Diger yandan yay parametresi ile verilen « egrisi igin
involiit tanimi1 geregi

p(s)=a(s)+(c=s)T(s)
yazilabilir. Kolaylik olsun diye ¢ =0 alirsak,
B(s)=a(s)~sT(5)

olur. O halde involiit egrisi agik bicimde

,B(s)=(cos(%],sin(%),%j—s%[—sin(%},cos[%j ,1}

ve buradan
ﬂ(s)=(cos(%j+%sin(%j,sin(%j—%cos(%)ﬂ}

seklinde elde edilir. Bu son denklemde iigiincii bilesen f;(s)=0

oldugundan involiit egrisinin diizlemsel bir egri oldugu kolaylikla
goriliir. (Sekil 3)
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Sekil 3 a helis egrisi (mavi) ve [ diizlemsel involiitii (kirmizi)

37
27
1
Z 07
_]_t
_2~
W_Z
-3 1
0
S 2 a0 1

1
Helis i¢in Darboux vektorii k¥ = 7 =— oldugundan

w=irilp
2 2

elde edilir. Ayrica

=i =
V2
olup sabit biyiikliikliidiir. Bu durum, helisin uzaydaki donme
ekseninin degismedigini gosterir. Ayrica
0=2(W,B)=45
olup sabittir. Buradan Teorem 3 yardmyla «,f c E® egrilerinin

Frenet vektorleri arasinda asagida verilen matrissel esittlik vardir.

*

0 1 0 T
Ve TN
Ve ° Vsl

*

*

w =Z -
|




Involiit egrisi diizlemsel bir egri oldugundan 7 =0 ve
involiit egrisinin Darboux vektorii
W' =xB
seklindedir. Bu durumda
Z(w",B")=0
yani involiit egrisinin Darboux vektorii yalnizca binormal vektor
dogrultusundadir. Teorem 9 un ifadesi, involiit-evoliit egri ciftinin

Darboux vektorleri yoniindeki birim vektorleri esit olup Sonug 1.
gerceklenir.

--05--



Kaynak¢a
Hacisalihoglu, H. H. (1983). Diferensiyel geometri. Inonii
Universitesi Fen-Edebiyat Fakiiltesi Yaymlari.

O’Neill, B. (1996). Elementary differential geometry. Academic
Press.

Caliskan, M., & Bilici, M. (2002). Some characterizations for the
pair of involute—evolute curves in Euclidean space E*. Bulletin of
Pure and Applied Sciences, 21(2), 289-294.

Fenchel, W. (1951). On the differential geometry of closed space
curves. Bulletin of the American Mathematical Society, 57, 44—-54.

--06--






