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Foreword

The transition toward Industry 4.0 and the emerging vision of Industry 5.0 has profoundly
transformed decision-making environments across industrial and societal systems. The
increasing integration of digital technologies, intelligent automation, and human-centered
design principles has amplified the complexity, uncertainty, and multidimensionality of
contemporary decision problems. In this context, Multi-Criteria Decision Making (MCDM)
provides a rigorous and systematic framework for evaluating alternatives involving conflicting
objectives and diverse stakeholder perspectives.

While Industry 4.0 emphasizes data-driven efficiency and technological integration, Industry
5.0 extends this paradigm by highlighting sustainability, resilience, and human-centric values.
Addressing such intertwined technological and societal challenges requires advanced decision
models capable of combining quantitative data, expert knowledge, and qualitative judgments.
MCDM methodologies, including classical, fuzzy, hybrid, and Al-enhanced approaches, play a
critical role in supporting transparent, robust, and informed decisions within these evolving
industrial landscapes.

This book offers a concise yet comprehensive perspective on the theoretical foundations,
applications, and emerging technologies of MCDM in the age of Industry 4.0 and 5.0. It is
intended to serve as a valuable reference for researchers, practitioners, and decision-makers
seeking to design intelligent, sustainable, and human-oriented systems for the next generation
of industry.
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CHAPTER 1

DAIRY CATTLE SELECTION WITH THE
PICTURE FUZZY INTERACTIONAL
BONFERRONI MEAN METHOD

HALIL SEN!
Introduction

In dairy farming, selecting the right breed is a strategic
decision that determines not only the short-term milk production of
the operation but also its long-term profitability, herd sustainability,
and adaptability to environmental conditions. In the breed selection
process, criteria such as feed utilization, reproductive performance,
health indicators, and herd duration play a critical role, as well as
milk yield and milk components. However, these criteria often
interact with each other, and an improvement in one criterion may
lead to unexpected results in another. For example, the goal of high
milk yield requires evaluation in conjunction with indirect effects
such as increased metabolic load, decreased fertility, or increased
health problems. Therefore, selecting the right breed is not a choice
based on a single performance indicator, but rather a multi-criteria
decision-making problem in which numerous criteria are considered

! Assistant Professor, Burdur Mehmet Akif Ersoy University, Industrial

Engineering Department, Orcid: 0000-0003-4062-5366
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simultaneously. Comparative studies in the literature on Holstein-
Friesian, Jersey, and their hybrids show that the performance of the
breeds varies significantly depending on the breeding system and
farm objectives. Focusing on economic and production performance,
Ahlborn & Bryant (1992), compared Holstein-Friesian and Jersey
cows, revealing that not only production but also optimum herd
density and economic outcomes differed between breeds; they
emphasized that breed selection directly affects farm profitability.
Regarding production efficiency and energy metabolism, L’Huillier
et al. (1988) and Mackle et al. (1996) stated that energy use
dynamics, pasture uptake capacity, and feed conversion efficiency
differed in Jersey and Friesian cows during the early lactation period;
therefore, in breed comparisons, not only milk quantity but also
energy balance and productivity indicators should be included in the
decision-making process. Similarly, Thomson et al. (2001)
demonstrated the effect of the lactation phase on pasture-milk
conversion efficiency, showing that the production patterns of the
breeds differed throughout the year. These findings indicate that
limiting breed selection to a “milk yield per cow” approach may lead
to incomplete results. In determining the right breed, reproductive
performance, herd survival, and functional characteristics are just as
important as production. Dillon et al. (2003), comparing the
reproduction and survival of different breeds in pasture-based
seasonal systems, reported significant differences between breeds
and hybrids. Lucy (2001), emphasizing that fertility losses can
become a structural problem in high-yielding herds, revealed that
breed selection and breeding goals should be designed to be sensitive
not only to increased production but also to reproductive success.
Heins et al. (2008) and Auldist et al. (2007), evaluating pure Holstein
and JerseyxHolstein hybrids, showed that hybridization can provide
advantages in functional areas such as fertility and early lactation
performance. In terms of genetic structure, Ahlborn-Breier and

Hohenboken (1991) and McAllister et al. (1994) highlighted the
D



importance of additive and non-additive genetic effects on milk
production and lifetime profitability, and stated that heterosis effects
should be considered in breed selection decisions. In the health
dimension, Berry et al. (2006) and Washburn et al. (2002) showed
that indicators such as somatic cell count, mastitis, and body
condition vary depending on the breed and breeding system, making
it necessary to evaluate breed selection together with health
outcomes. Prendiville et al. (2009; 2010), who linked production
efficiency in pasture-based systems to behavior and intake capacity,
emphasized that pasture use efficiency and production strategies
differ among breeds and that breed selection should also be
considered with system-level measures such as output per hectare.
When these studies are evaluated together, it is concluded that dairy
cattle breed selection; It is observed that decision-making problems
requiring the simultaneous consideration of numerous criteria such
as production, productivity, reproduction, health, genetic makeup,
and economic outcomes, where there are significant interactions
between criteria and considerable uncertainty, are prevalent.
However, in practice, decision-makers struggle to quantify many
criteria simultaneously, and expert evaluations often appear as
linguistic expressions (such as high, medium, low) or judgments
expressing hesitation. This situation increases the need for advanced
decision support methods that can adequately represent both
uncertainty and the interactions between criteria. In this context, the
Picture Fuzzy Set (PF) approach is particularly useful in high-
uncertainty situations such as breed selection, because it allows
decision-makers to represent their evaluations not only with
"acceptance" and '"rejection" levels but also with a
"neutrality/undecided" component.

It offers a strong modeling advantage in problems where the
criteria are not independent. In addition, the Bonferroni mean
operator has a structure that can perform aggregation by considering
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interactions when the criteria are not independent. The Picture Fuzzy
Interactional Bonferroni Mean (PF-IBM) method, which integrates
these two approaches, allows both the modeling of expert hesitations
in a picture fuzzy structure and the inclusion of inter-criteria
interactions in the aggregation process. Therefore, PF-IBM offers a
suitable methodological framework for more realistically evaluating
multidimensional performance and determining the most suitable
breed for the conditions in the dairy cattle breed selection problem.
In this study, dairy cattle breeds such as Holstein-Friesian, Jersey,
and hybrid alternatives are analyzed using the PF-IBM method under
a set of criteria including production, productivity, reproduction,
health, and economic criteria, with the aim of obtaining an integrated
performance ranking of the alternatives.

Method

Decision-making problems in real-world applications are
often characterised by imprecision, hesitation, and complex
interdependencies among evaluation criteria, which limit the
effectiveness of classical and conventional fuzzy multi-criteria
decision-making (MCDM) approaches. In many practical settings,
decision makers are unable to express their preferences using precise
numerical values and instead rely on partial, hesitant, or even
conflicting judgments. Moreover, evaluation criteria frequently
interact with one another, exhibiting complementary or antagonistic
relationships that cannot be adequately captured by aggregation
operators assuming criterion independence. To address these
challenges, this study adopts the Picture Fuzzy Interactional
Bonferroni Mean (PFIBM) method, which integrates the expressive
power of picture fuzzy sets with the interaction-sensitive structure of
the Bonferroni mean. By simultaneously modelling membership,
non-membership, and abstention degrees, while explicitly
accounting for pairwise criterion interactions, PFIBM provides a
robust and realistic aggregation framework for decision-making
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under uncertainty. Consequently, the method is particularly suitable
for complex evaluation problems where uncertainty and
interdependence among criteria play a critical role.

Picture Fuzzy Sets (PFS) go beyond classical and intuitive
fuzzy approaches by modeling uncertainty through a three-
component structure. In the PFS approach, introduced by Cuong
(2014), the evaluation of an alternative according to a criterion is not
limited to '"acceptance/membership" and "rejection/non-
membership"; the abstention component, representing the decision-
maker's hesitation, is also explicitly defined. This three-component
structure provides a more realistic representation, especially in
decision problems where expert evaluations lack complete certainty
and the "neither positive nor negative" range is high. Therefore, PFS
offers an important theoretical foundation that allows for a more
detailed examination of uncertainty and indecision in the multi-
criteria decision-making (MCDM) literature (Cudng, 2014).

One of the key issues in PFS-based MCDM studies is the
development of aggregation operators that can transform evaluations
under numerous criteria into a single integrated result. In this
context, Zhang and Xu (2021) developed and applied picture-fuzzy
interactive aggregation operators to the risk assessment problem,
demonstrating that the “interaction” component significantly affects
the results when the criteria are not independent of each other.
Similarly, Liu, Chen, and Wang (2022) applied a multi-attribute
decision-making model based on interactive aggregation operators
in a PFS environment to the supplier selection problem; thus, they
revealed both the uncertainty/hesitation modeling power of PFS and
the performance of operators including interaction in practical
decision problems. These studies emphasize that in PFS-based
decision models, it is critical to include not only the representation
of wuncertainty but also the complementary or weakening
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relationships between criteria in the aggregation structure (Liu et al.,
2022; Zhang & Xu, 2021).

One of the operators that systematically handles the concept
of interaction is the Bonferroni mean family. Due to its structure that
considers the reciprocal relationship between pairs of criteria, the
Bonferroni mean provides a more flexible aggregation compared to
additive weighting approaches where the criteria are assumed to be
independent. In this context, Xu, Yager, and Liu (2019) discussed
Bonferroni mean extensions for decision-making under uncertainty,
examining the adaptability of the operator to different decision
environments and the theoretical justifications for interaction-based
aggregation. Combining the Bonferroni approach with PFS
represents a more advanced methodological line that addresses both
triple uncertainty (membership—counter-membership—abstention)
and inter-criterion interaction under the same framework (Cuong,
2014; Xu et al., 2019).

One current and powerful example of this developmental line
is the Picture Fuzzy Interaction Bonferroni Mean (PFIBM)
operators. Liu, Wu, and Chen (2023) clarified the theoretical
framework and formally presented the fundamental properties of
PFIBM operators (e.g., commutativeness, monotonicity, and
boundary conditions) by defining them under strict triangular norms.
Furthermore, by proposing weighted and normalized versions of
PFIBM, its applicability to real decision problems has been
strengthened, and the effectiveness of the method in multi-criteria
decision-making applications has been demonstrated (Liu, Wu, &
Chen, 2023). Therefore, the PFIBM literature offers an advanced
decision support framework that aims to produce more consistent
and realistic decision outcomes in problems where the criterion
independence assumption is weak, by integrating the triple
uncertainty modeling capacity of PFS with the interaction-sensitive
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structure of the Bonferroni approach (L. Liu et al., 2023; P. Liu et al.,
2022; Xu et al., 2019; Zhang & Xu, 2021).

Picture Fuzzy Interactional Bonferroni Mean (PFIBM) Method
Preliminaries and Notation:

Let A = {A;,4,, ..., Ay} denote the set of alternatives and
C = {C;, Cy, ..., C,,} the set of evaluation criteria.

In the picture fuzzy environment, the evaluation of
alternative A;with respect to criterion Cjis expressed as a picture
fuzzy number (PFN)

Xij = (ijy Vijy 0ij),
where u;;, 9;j, and m;;represent the degrees of membership, non-
membership, and abstention, respectively, satisfying

0 S.uij'i'ﬁij +7Tij <1
Let w = (wy, Wy, ..., wy,) be the criterion weight vector, where

n
WjZOand z Wj=1.
j=1

e Step 1: Normalization

The original decision matrix is normalized according to the
benefit or cost nature of the criteria to ensure comparability across
different measurement scales. After normalization, all criteria are
transformed into benefit-type values.

e Step 2: Construction of the Picture Fuzzy Decision
Matrix

Normalized values are converted into picture fuzzy numbers
using predefined linguistic scales or expert elicitation procedures,
forming the picture fuzzy decision matrix

X = [Xijlmxn-
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Step 3: Determination of Criterion Weights

Criterion weights are obtained either from subjective expert
judgments or objective methods such as the Preference Selection
Index (PSI). The resulting weight vector reflects the relative
importance of each criterion in the decision problem.

e Step 4: Aggregation Using the PFIBM Operator

The core of the methodology lies in aggregating the picture
fuzzy evaluations using the Picture Fuzzy Interactional Bonferroni
Mean (PFIBM) operator. Unlike classical aggregation operators,
PFIBM explicitly accounts for interactions among criteria, rather
than assuming their independence.

For an alternative A;, the PFIBM operator aggregates the set
of PFNs {X;1, %3, ..., Xin} by considering all pairwise criterion
combinations. The general PFIBM formulation is expressed as

1
s s 1 AN
PFIBM (X1, ..., Xin) = (mj?k(xij X Xl-k)> )

where

e and @denote interactional multiplication and
addition operators defined in the picture fuzzy
domain,

e «,f > Oare interaction parameters controlling the
strength of pairwise effects, and

o all ordered pairs (jr k), j # k, are considered.

This structure allows complementary (synergistic) or
weakening (antagonistic) relationships between criteria to influence
the aggregated result.

When criterion importance is incorporated, the weighted

PFIBM operator is defined as
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1

at+pB
W-PFIBM (%1, ..., Xin) = <j§k((wjfi,-)“ ® (WX )P ))

This formulation ensures that criteria with higher weights
exert greater influence on the aggregation outcome while preserving
the interactional structure.

To guarantee comparability across alternatives, a normalized
PFIBM formulation can be applied by scaling the aggregated PFNs
so that the resulting membership, non-membership, and abstention
degrees remain within [0’ 1]and satisfy the PFS constraint. This step
is particularly important when PFIBM is combined with different
weighting or normalization strategies.

The parameters aand [Sregulate the intensity of criterion
interactions:

e «a = f = 1: symmetric interaction, commonly used
as a neutral baseline;

e «a > f: emphasizes the dominant effect of one
criterion over another;

e [ > a: highlights secondary or moderating effects.

In practical applications, parameter values are selected based
on expert judgment, sensitivity analysis, or robustness testing to
ensure stable ranking results.

e Step 5: Ranking Using the Score Function
For each alternative, the aggregated PFN

A = (u, 9, mp)
is converted into a crisp value using the score function

S(A) = w; — ;.
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A higher score indicates superior overall performance. Alternatives
are ranked in descending order of their score values.

Application and Findings

This study applies an integrated expert-based weighting—
PFIBM decision-making framework to evaluate dairy cattle breeds
suitable for the Western Mediterranean Region, where climatic
stress, feed costs, and sustainability constraints play a decisive role
in dairy production systems. The application phase consists of three
main stages: (i) determination of criterion weights based on expert
judgment, (ii) definition of alternatives and evaluation criteria, and
(ii1) construction of picture fuzzy decision matrices for PFIBM-
based aggregation.

In contrast to objective weighting schemes (e.g., PSI), this
study adopts an expert judgment—based weighting approach to
assign the relative importance of evaluation criteria. This choice is
motivated by the fact that dairy cattle breed selection is a domain-
specific decision problem in which the practical relevance of criteria
depends strongly on regional climatic conditions, production
constraints, and sectoral priorities. Therefore, criterion weights were
determined through a structured expert consensus process
considering the definitions of the criteria, their economic and
biological implications, and their expected impact under Western
Mediterranean conditions (e.g., heat stress and feed-cost pressure).

In this study, evaluations were conducted by a panel of five
decision makers with complementary academic and practical
expertise in dairy production systems. The diversity of the decision-
making group was intended to ensure a comprehensive assessment
of both productive and environmental aspects of dairy cattle breed
selection.

The decision makers involved in the evaluation process are

defined as follows:
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e DI: Animal Science Professor, specializing in dairy
cattle breeding and production systems

o D2: Veterinarian, with expertise in animal health,
disease resistance, and udder health

e D3: Farm Manager, responsible for operational
management and on-farm performance evaluation

e D4: Feed and Nutrition Specialist, focusing on feed
efficiency and nutritional performance

o DS5: Dairy Processing and Milk Quality Specialist,
emphasizing milk composition and processing
suitability

To avoid subjective bias and to ensure neutrality among
expert opinions, all decision makers were assigned equal importance
in the aggregation process. These weights were applied during the
construction of the group picture fuzzy decision matrix.

The picture fuzzy decision matrices obtained from each
decision maker were then aggregated using these equal weights, and
the resulting group evaluations were subsequently processed using
the PFIBM operator.

This design ensures that (i) criterion importance reflects
domain knowledge and regional production realities through expert-
based weighting, while (ii) the aggregation of expert judgments
remains unbiased by treating all decision makers equally in the group
decision-making phase.

Alternatives: This study evaluates six dairy cattle breeds that
are widely used or strategically important for dairy production in the
Western Mediterranean Region of Turkiye. The selected breeds
represent both high-yield commercial types and resilient, locally
adapted genetic resources, enabling a balanced assessment of

productivity and sustainability.
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Al: Holstein: Holsteins are globally dominant due to
their high milk yield. However, they are highly sensitive
to heat stress, which can negatively affect feed intake,
fertility, and productivity in hot and humid regions unless
advanced management systems are applied.

A2: Jersey: Jersey cows produce milk with high fat and
protein content and exhibit excellent feed efficiency and
fertility. Their superior heat tolerance makes them
particularly suitable for warm climates such as the
Western Mediterranean.

A3: Brown Swiss: Brown Swiss cattle are robust, long-
lived, and environmentally adaptable. Although their
milk yield is moderate, high casein content and stable
performance make them suitable for diverse production
systems.

A4: Montbéliarde: This French dual-purpose breed is
valued for its high-protein milk, good fertility, and
calving ease. Its strong functional traits compensate for
lower milk yield compared to Holsteins.

AS: Simmental: Simmental is a dual-purpose breed
offering moderate milk yield, good adaptability, and
flexibility for combined milk—meat systems, particularly
in transitional climatic regions.

A6: Anatolian Black: Anatolian Black cattle are highly
resilient to harsh environmental conditions. Despite low
milk yield, they require minimal inputs and play an
important role in sustainable and low-input dairy
systems.

--12--



Evaluation Criteria: Ten criteria were used to assess the dairy
cattle breeds, integrating quantitative indicators with qualitative
sustainability attributes modelled using Picture Fuzzy Sets (PFS).

C1: Milk Yield (L/day) — primary economic performance
indicator.

C2: Milk Fat (%) — key quality parameter for dairy
processing.

C3: Feed Conversion Ratio (L milk/kg feed) — reflects
economic efficiency.

C4: Fertility Rate (%) — essential for herd sustainability.

C5: Disease Resistance (PFS) — indicates genetic and
health robustness.

C6: Udder Health (PFS) — critical for milk hygiene and
mastitis control.

C7: Heat Tolerance (PFS) — vital under hot and humid
climatic conditions.

C8: Calf Survival Rate (%) — reflects maternal capacity
and genetic strength.

C9: Local Climate Adaptation (PFS) — overall
adaptability to regional conditions.

C10: Milk Protein (%) — important for cheese yield and
nutritional value.

Here, data related to quantitative criteria were normalized
and then converted to PFS (Picture fuzzy sets) format with the help
of scale and expert judgment, and decision matrices were created for
each decision-maker. Two of these decision matrices are given as
examples in Table 1 and Table 2.
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Table 1. D1 (Animal Science Professor) PFS Decision Matrix

Alt. C1 C2 C3 C4 C5 Cé Cc7 C8 c9 C10
Al (0.85; | (0.50; @ (0.50; = (0.30; = (0.30; | (0.30; = (0.30; = (0.50; | (0.30; | (0.50;
0.05; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10;
0.10) 0.35) 0.35) 0.55) 0.55) 0.55) 0.55) 0.35) 0.55) 0.35)
A2 (0.70; | (0.85; @ (0.85; | (0.70; = (0.50; | (0.70; = (0.85; = (0.50; | (0.50; | (0.85;
0.10; 0.05; 0.05; 0.10; 0.10; 0.10; 0.05; 0.10; 0.10; 0.05;
0.20) 0.10) 0.10) 0.20) 0.35) 0.20) 0.10) 0.35) 0.35) 0.10)
A3 (0.70, = (0.70; = (0.50; = (0.50; = (0.70; = (0.70; = (0.50; = (0.70; = (0.50; = (0.70;
0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10;
0.20) 0.20) 0.35) 0.35) 0.20) 0.20) 0.35) 0.20) 0.35) 0.20)
Ad (0.50; | (0.70; = (0.50; = (0.70; = (0.50; | (0.70; = (0.50; = (0.70; & (0.50; | (0.70;
0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10;
0.35) 0.20) 0.35) 0.20) 0.35) 0.20) 0.35) 0.20) 0.35) 0.20)
AS (0.50; | (0.70; = (0.50; | (0.50; = (0.70; | (0.50; = (0.70; = (0.70; | (0.70; | (0.50;
0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10; 0.10;
0.35) 0.20) 0.35) 0.35) 0.20) 0.35) 0.20) 0.20) 0.20) 0.35)
A6 (0.10; | (0.70; = (0.30; = (0.85; = (0.85; | (0.50; = (0.85; = (0.85; | (0.85; | (0.50;
0.10; 0.10; 0.10; 0.05; 0.05; 0.10; 0.05; 0.05; 0.05; 0.10;
0.75) 0.20) 0.55) 0.10) 0.10) 0.35) 0.10) 0.10) 0.10) 0.35)

Table 2. D3 (Farm Manager) PFS Decision Matrix
At. €1 C €3 € € Cc6 €1 €8  C9  Cl0

Al | (0.70;  (0.50; = (0.50; = (0.30; | (0.30; = (0.30; | (0.10; = (0.50; = (0.10; | (0.50;
0.10; =~ 0.0; = 0.10; = 0.10;  0.0; = 0.10; = 0.10; = 0.10; = 0.10; = 0.10;
0.20) 035 | 035 | 055 | 055 | 055 | 0.75) 035 075 | 0.35)

A2 | (0.70;  (0.85;  (0.85; (0.70; & (0.50; = (0.70; & (0.85; = (0.50; = (0.50; & (0.85;
0.10; = 0.05; = 005 = 0.10; 010, = 0.10; = 005 | 0.10; = 0.10;  0.05
0.20) | 0.10) | 0.10) = 020) = 035 | 020) 0.10) 035 = 035 | 0.10)

A3 | (0.70;  (0.70; | (0.50; = (0.50; & (0.70; = (0.70; | (0.50; = (0.70; = (0.50; & (0.70;
0.10; = 0.10; = 0.10; = 0.10;  0.10; | 0.10; = 0.10; = 0.10; = 0.10; | 0.10;
020) | 020) 035 | 035 | 020)  020) 035 = 020) 035 | 0.20)

A4 | (0.50;  (0.70; | (0.50; = (0.70; | (0.50; = (0.70; | (0.50; = (0.70; = (0.50; | (0.70;
0.10; = 0.10; = 0.10; = 0.10;  0.0; = 0.0; = 0.10; = 0.10; = 0.10; = 0.10;
0.35) | 020) 035 | 020) 035 | 020) 035  020) 035 | 0.20)

A5 | (0.50;  (0.70; | (0.50; = (0.50; & (0.70; = (0.50; & (0.85; = (0.70; = (0.85; & (0.50;
0.10; = 0.10; = 0.10; = 0.10; = 0.10; = 0.10; = 005 | 0.10; = 0.05 | 0.10;
0.35) | 020) | 035 | 035 | 020) 035 | 0.10) 020) 0.10) | 0.35)

A6 | (0.10;  (0.70; | (0.30; = (0.85; | (085, (0.50; & (0.85; = (0.85; @ (0.85; & (0.50;
0.10; = 0.10; = 0.10; = 0.05 = 005 = 0.10; 005 | 005 | 005 | 0.10;
0.75) | 0.20) | 055 | 0.10) = 0.10) = 0.35) | 0.10) 0.10) = 0.10) | 0.35)

These decision matrices were then combined to create a
decision matrix for the group as shown in Table 3.
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Alt. C1

Al (0.82;
0.06;
0.12)

A2 (0.70;
0.10;
0.20)

A3 (0.70;
0.10;
0.20)

A4 (0.50;
0.10;
0.35)

A5 (0.50;
0.10;
0.35)

A6 (0.10;
0.10;
0.75)

Criterion weights were assigned based on expert judgment,
taking into account regional climatic conditions, sustainability
considerations, and long-term productivity. In particular, heat
tolerance (C7) and local adaptability (C9) were given higher
importance due to their critical role in mitigating heat stress and
ensuring stable performance in the Western Mediterranean climate.

Table 3. Group Decision Matrix

C2 C3 C4
(0.46; | (0.46; = (0.30;
0.10; 0.10; 0.10;
0.39) 0.39) 0.55)

(0.85; | (0.85 | (0.70;
0.05; | 0.05; | 0.10;
0.10) | 0.10) | 0.20)

0.70; | (0.50; | (0.50;
0.10; | 0.10; | 0.10;
0.20) | 035) | 0.35)

(0.70; | (0.54; = (0.70;
0.10; 0.10; 0.10;
0.20) 0.32) 0.20)

0.70; | (0.54; | (0.50;
0.10; | 0.10; | 0.10;
020) | 032) | 035)

0.70; | (0.34; | (0.85;
0.10; | 0.10; | 0.05;
020) | 0.51) | 0.10)

C5
(0.26;
0.10;
0.59)

(0.50;
0.10;
0.35)

(0.70;
0.10;
0.20)

(0.50;
0.10;
0.35)

(0.70;
0.10;
0.20)

(0.85;
0.05;
0.10)

Cé6
(0.26;
0.10;
0.59)

(0.66;
0.10;
0.23)

(0.70;
0.10;
0.20)

(0.70;
0.10;
0.20)

(0.50;
0.10;
0.35)

(0.54;
0.10;
0.32)

Cc7
(0.26;
0.10;
0.59)

(0.85;
0.05;
0.10)

(0.50;
0.10;
0.35)

(0.50;
0.10;
0.35)

(0.73;
0.09;
0.18)

(0.85;
0.05;
0.10)

C8
(0.50;
0.10;
0.35)

(0.50;
0.10;
0.35)

(0.70;
0.10;
0.20)

(0.70;
0.10;
0.20)

(0.70;
0.10;
0.20)

(0.85;
0.05;
0.10)

Cc9
(0.26;
0.10;
0.59)

(0.50;
0.10;
0.35)

(0.50;
0.10;
0.35)

(0.50;
0.10;
0.35)

(0.73;
0.09;
0.18)

(0.85;
0.05;
0.10)

The resulting criterion weight vector is given in Table 4.

Code

C1
C2
C3
C4
C5
Cé6
Cc7
C8
Cc9
C10
Total

Table 4. Criteria and Their Weights

Milk Yield
Milk Fat Content

Criterion

Feed Conversion Efficiency

Fertility Rate
Disease Resistance
Udder Health

Heat Tolerance

Calf Survival Rate
Local Adaptability
Milk Protein Content
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C10
(0.46;
0.10;
0.39)

(0.85;
0.05;
0.10)

(0.73;
0.09;
0.18)

(0.73;
0.09;
0.18)

(0.50;
0.10;
0.35)

(0.50;
0.10;
0.35)

Weight

0.10
0.08
0.12
0.10
0.10
0.07
0.18
0.07
0.15
0.03
1.00



In order to obtain the final ranking of alternatives, a
Bonferroni-based interaction aggregation was employed under the
symmetric case ( p = q = 1). This procedure allows the interaction
among criteria to be taken into account rather than assuming full
independence.

For each alternative iand criterion j, the picture fuzzy number
Xij = (Wij» Mij» Vij)
was transformed into a crisp score using the score function:
Sij = Mij = Vij
where S;; € [-1,1].

This matrix is given in Table 5.

Table 5. Score Matrix

Alt C1 Cc2 C3 C4 Cs Co6 Cc7 C8 c9 C10
Al 0.70 0.07 0.07 -0.25 | -033  -0.33 | -0.33 | 0.15 -0.33 | 0.07
A2 0.50 0.75 0.75 0.50 0.15 0.43 0.75 0.15 0.15 0.75
A3 0.50 0.50 0.15 0.15 0.50 0.50 0.15 0.50 0.15 0.55
A4 0.15 0.50 0.22 0.50 0.15 0.50 0.15 0.50 0.15 0.55
AS 0.15 0.50 0.22 0.15 0.50 0.15 0.55 0.50 0.55 0.15
A6 -0.65  0.50 -0.17 | 0.75 0.75 0.22 0.75 0.75 0.75 0.15

To ensure comparability and non-negativity, the scores were
linearly transformed into the interval [0’ 1]as follows:
Sij+1
=T
This transformation preserves the ordinal information of the

scores while ensuring compatibility with the Bonferroni aggregation
operator.

Each normalized score was multiplied by its corresponding
criterion weight w;:

Yij = Wj Xij
where
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n
=1

and ndenotes the number of criteria.

Bonferroni-Based Interaction Aggregation (p = q = 1). The
overall performance score of alternative iwas calculated using the
Bonferroni mean under the symmetric condition p = q = 1:

1
2

where:

e BM,; is the integrated performance score of alternative i,

e y;; and y;; represent the weighted normalized scores of
criteria jand t,

e the interaction between all distinct pairs of criteria is
explicitly considered.

The alternatives were ranked in descending order according
to their BM;values. A higher BM;indicates superior overall
performance considering both criterion importance and inter-
criterion interactions.

Results

This study evaluated the suitability of six dairy cattle breeds
for the Western Mediterranean Region using a picture fuzzy—based
multi-criteria decision-making framework incorporating criterion
interactions through a Bonferroni aggregation mechanism.
Individual evaluations provided by five equally weighted decision
makers were aggregated into a group picture fuzzy decision matrix,
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and final rankings were obtained using a score-based
PFIBM/Bonferroni approach.

After transforming picture fuzzy evaluations into crisp scores
and applying the Bonferroni-based interaction aggregation (p = q =
1), the integrated performance scores of the alternatives were
calculated. The resulting ranking of dairy cattle breeds is as follows:
Jersey, Anatolian Black, Simmental, Brown Swiss, Montbéliarde,
and Holstein.

The results indicate that Jersey is the most suitable breed for
the Western Mediterranean region. This outcome is mainly attributed
to its strong performance in milk fat and protein content, feed
conversion efficiency, heat tolerance, and reproductive efficiency.
The Anatolian Black breed ranks second despite its relatively low
milk yield, reflecting its exceptional adaptability to local
environmental conditions, high disease resistance, and strong
resilience to heat stress. Simmental occupies the third position due
to its balanced performance across productivity- and adaptability-
related criteria. Brown Swiss and Montbéliarde demonstrate
moderate performance across most criteria, while Holstein ranks last
because its high milk production potential is offset by weaknesses in
heat tolerance and local adaptability, which are critical under
Mediterranean climatic conditions.

To assess the stability and reliability of the proposed
decision-making framework, a robustness analysis was conducted by
systematically varying the weights of the most influential criteria,
namely heat tolerance (C7) and local adaptability (C9). The weights
of these criteria were independently and jointly modified within
+10% and +20% intervals, while the remaining criteria weights were
proportionally normalized to ensure that the total weight remained
equal to one.
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The analysis demonstrates that the ranking of alternatives
remains unchanged under all moderate weight-variation scenarios.
In all tested cases, the ranking order consistently remained Jersey,
Anatolian Black, Simmental, Brown Swiss, Montbéliarde, and
Holstein.  This  finding confirms that the proposed
PFIBM/Bonferroni-based model is robust to reasonable uncertainty
in criterion weights.

Ranking changes were observed only under extreme and
unrealistic weighting scenarios, in which the weight assigned to local
adaptability (C9) was substantially increased while the weight of
heat tolerance (C7) was simultaneously reduced to very low levels.
Under such conditions, the Anatolian Black breed marginally
outperformed Jersey and ranked first. These results indicate that the
dominance of Jersey is not sensitive to moderate variations in expert
judgment and that a reversal of the ranking would require a
deliberate and disproportionate emphasis on local adaptability alone.

Overall, the robustness analysis confirms that the proposed
picture fuzzy interaction-based framework produces stable and
reliable results under realistic decision-making uncertainty. The
consistent ranking across multiple scenarios supports the
applicability of the model as a dependable decision support tool for
dairy cattle breed selection in regions exposed to climatic stress.
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CHAPTER 2

A MULTI-CRITERIA COMPARATIVE ANALYSIS
OF FOOD SECURITY PERFORMANCE IN THE
EUROPEAN UNION COUNTRIES AND TURKIYE

SELEN AVCI AZKESKIN!
MELIKE KUBRA EKiZ BOZDEMIiR?

Introduction

Food security is a complex concept that goes beyond the
mere production of sufficient quantities of food and encompasses
multidimensional aspects such as economic accessibility, stability of
food supply, nutritional quality, environmental sustainability, and
resilience to crises (Matkovski et al., 2020). At the global level,
population growth, climate change, economic fluctuations, post-
pandemic vulnerabilities, and increasing geopolitical risks have
made differences in countries’ food security performance more
visible. In this context, the comparative evaluation of countries’ food
security levels has become a critical necessity for policymakers and

! Res. Asst. Dr., Kocaeli University, Department of Industrial Engineering, Orcid:
0000-0001-7433-5696
2 Res. Asst., Kocaeli University, Department of Industrial Engineering, Orcid:

0000-0003-3340-0484
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international organizations alike (Mazzocchi, Ragona, & Zanoli,
2013).

In the literature, countries’ food security performance is most
commonly monitored through the Global Food Security Index
(GFSI) and the multidimensional indicator frameworks proposed by
the Food and Agriculture Organization of the United Nations (FAO)
(FAO, 2025a). These indices provide a comprehensive framework
covering the core dimensions of food security—such as affordability,
availability, quality and safety, and sustainability—and thus
constitute an important reference point for cross-country
comparisons (Izraelov & Silber, 2019). However, as these indices are
largely based on composite scores, the analytical disentanglement of
the relative importance of individual indicators and their specific
contributions to country rankings remains limited. Due to the
structure of composite indices, strong performance in certain
dimensions may compensate for weaknesses in others, making it
difficult to clearly identify which criteria play a more decisive role
in shaping overall country performance. From this perspective,
multidimensional evaluation problems such as food security—which
simultaneously involve economic, environmental, structural, and
governance-related dimensions—can inherently be addressed as
Multi-Criteria Decision-Making (MCDM) problems. MCDM
approaches enable the holistic evaluation of multiple and often
conflicting criteria within a single decision framework, the
systematic determination of priority relationships among criteria,
and the transparent ranking of alternatives (Ozkaya & Ozkaya,
2023). The use of MCDM methods in country-level food security
comparisons goes beyond merely identifying countries’ positions in
a ranking; it also enhances analytical consistency and interpretability
by explicitly revealing the contributions of individual criteria to the
final decision outcomes (Rouyendegh & Savalan, 2022).
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In this section, countries’ food security performance is
conceptualized as an MCDM problem, and cross-country
comparisons are conducted by taking the relative importance of
criteria into account. The Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS), one of the MCDM methods,
is employed to rank countries’ food security performance. TOPSIS
is a classical yet effective method that ranks alternatives based on
their relative distances from ideal and anti-ideal solutions and is
widely preferred in the literature due to its ease of application and
the clarity of its results (Chakraborty, 2022). The analysis covers
European Union (EU) countries, including Austria, Belgium,
Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania,
Slovakia, Slovenia, Spain, and Sweden, along with the United
Kingdom and Tiirkiye. This sample structure allows for a
comparative examination of relative performance differences among
EU countries and Tiirkiye’s position within this structure under a
unified methodological framework.

The criteria used in the analysis are designed to represent
multiple dimensions of food security. Accordingly, gross domestic
product (GDP) per capita, food supply variability, food price
anomaly indicators, net import dependency in agriculture and
livestock, the share of agriculture in government expenditures,
energy production from biofuels, organic fertilizer use, pesticide use,
the cost of a healthy diet, the proportion of the population unable to
afford a healthy diet, water stress levels, agricultural emission
intensity, the value added of the agriculture—forestry—fisheries
sector, and agricultural land area—considered through selected
ratios—are included. This set of criteria is structured to jointly reflect
the dimensions of economic accessibility, production capacity,
external dependency, public policy support, environmental
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pressures, and sustainable resource use in food security. The relative
weights of the criteria are determined based on evaluations provided
by expert decision-makers. In the first stage, all criteria are included
in the weighting process and countries are ranked accordingly. In the
second stage, several criteria representing environmental and
sustainability dimensions are excluded from the analysis, and
experts are asked to reassess the remaining criteria. The impact of
this modification on country rankings is then examined
comparatively. This two-stage structure allows for an analytical
assessment of the determining role of sustainability-related
dimensions in shaping country rankings.

In the final section of the study, the resulting country
rankings and criterion effects are evaluated through comparison with
the overall GFSI rankings. While the study is grounded in the
multidimensional food security framework proposed by the FAO, it
offers an analytical approach that more explicitly reveals the relative
importance of criteria and their effects on country rankings. In this
respect, the study serves as a complementary assessment to existing
index-based evaluations and aims to produce more interpretable and
decision-oriented outputs for policymakers.

Method

Due to its multidimensional nature, food security requires the
simultaneous consideration of criteria measured on different scales
and often exerting effects in different directions within a single
decision framework. In this respect, the TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) method, which
enables the ranking of countries based on their relative closeness to
ideal and anti-ideal solutions while explicitly incorporating criterion
weights, is adopted as an analytical tool consistent with the
objectives of this study. Owing to both the interpretability of its
results and the analytical consistency it provides in cross-country
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comparisons, TOPSIS offers a suitable decision-support framework
for evaluating food security performance. The steps of the method
are outlined below (Sharaf, 2023).

Step 1. Construction of the decision matrix: First, a decision

matrix D=[Aij] , consisting of n alternatives and m criteria, is
nxm

constructed. Here, A;; represents the value of the i-th alternative with
respect to the j-th criterion.

Step 2. Determination of criterion weights: Assuming that
not all criteria are of equal importance, weights are assigned to each
criterion. Decision-makers determine a set of weights reflecting the
relative importance of each criterion. The weight vector is defined
as W=[w;,wj,..,wy,], subject to the conditions w; >0 and

m —
j=1w =1

Step 3. Normalization of the decision matrix: Since criteria
may be measured in different units, the decision matrix must be
transformed into a dimensionless form. The normalized decision
matrix Dy is defined by Equation (1), where each normalized value
1;; 1s calculated using Equation (2):

Iy Iy 0 Tim
I'zl I'22 r2
Dy=|: & =7 (1)
I'nt Th2 0 Tym
Ass
[ = — (2)

1] 2
/ iz1 Afj

Step 4. Construction of the weighted normalized decision
matrix: At this stage, each normalized criterion value is multiplied
by its corresponding weight to obtain the weighted normalized
decision matrix, denoted as Dy and defined by Equation (3):
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For 1<i<nand1 <j < m, each element v;; is computed
as:

Vij = Wjljj 4)

Step 5. Determination of positive and negative ideal
solutions: In this step, the positive ideal solution (v*) and the
negative ideal solution (v™) are identified for each criterion. The
positive ideal solution consists of the maximum values for benefit
criteria (Cp) and the minimum values for cost criteria (C.), whereas
the negative ideal solution is defined conversely. The positive and
negative ideal solution vectors are calculated as follows:

v+={m?xvij | j€Cy; min v |jeCC}, =1,2,..,m (5
V-={miinvij | jecy; max v |jECC}, =1,2,..,m  (6)

Step 6. Calculation of distance measures: At this stage, the
distances of each alternative from the positive and negative ideal
solutions are calculated using the Euclidean distance metric. The
distance to the positive ideal solution S; and the distance to the
negative ideal solution S;” are computed using Equations (7) and (8),

respectively:
2
Sf = JZjni1(Vij ) (7
- m N2
S = \[Zj=1(Vij -V ) ()

These distances indicate how far each alternative is from the
ideal and anti-ideal solutions across all criteria.
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Step 7. Calculation of the relative closeness to the ideal
solution: The relative closeness of each alternative to the positive
ideal solution, denoted by R;, is calculated as the ratio of its distance
from the negative ideal solution to the total distance, as shown in
Equation (9):

S i=12,..,n 9)

i +,c-
S +S;

The value of R; lies between 0 and 1; values closer to 1
indicate greater proximity to the positive ideal solution, while values
closer to 0 indicate greater proximity to the negative ideal solution.

Step 8. Ranking of alternatives: In the final step, alternatives
are ranked based on their R; values. The preference order is
established by sorting alternatives in descending order of R;.

Data Set and Criteria Construction

In this study, food security is conceptualized as a
multidimensional structure that extends beyond the mere physical
availability of food to jointly encompass economic accessibility,
nutritional quality, environmental sustainability, and external
dependency. Accordingly, the constructed dataset consists of
indicators capable of reflecting both the current performance of
countries’ food systems and their medium- and long-term
vulnerabilities. All data used in the study were obtained from the
FAOSTAT database to ensure international comparability and data
consistency (FAO, 2025b).

In selecting the criteria, widely accepted dimensions of food
security in the literature were taken into consideration, and variables
representing economic welfare, agricultural production capacity,
environmental pressures, and access to nutrition were jointly
evaluated. Within this framework, the ratio of energy production
from biofuels to agricultural production, GDP per capita, the share

of public expenditures allocated to the agricultural sector, the share
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of agricultural value added in GDP, and the ratio of agricultural land
area to population were treated as maximization-oriented indicators
reflecting countries’ production capacity and economic resilience. In
contrast, food supply variability, food price anomalies, pesticide use,
water stress levels, emission intensity per unit of agricultural
production, and indicators representing economic and social
constraints on access to healthy diets were evaluated as
minimization-oriented criteria. To eliminate scale differences among
countries and enhance comparability, ratio-based indicators were
used to a large extent instead of absolute values. Particularly in
countries with heterogeneous structures in terms of agricultural
output, land area, population, and economic size, the use of ratios
increases the representational power of indicators and allows for a
more robust interpretation of the results. For instance, the ratio of
energy production from biofuels to agricultural production reveals
the renewable energy and bioeconomy potential of the agricultural
sector, while the ratio of organic fertilizer use to agricultural land
area reflects the prevalence of sustainable agricultural practices.
Similarly, the share of agricultural value added in GDP and the ratio
of agricultural land area to population indicate the strategic
importance of agriculture within the economic structure and the
long-term food production capacity. From a food security
perspective, external dependency emerges as a critical source of
vulnerability, particularly during periods characterized by global
supply shocks and price volatility. Therefore, net import dependency
indicators for both the agricultural and livestock sectors were
additionally calculated in this study. Net import dependency was
derived by dividing the difference between imports and exports by
total supply and is formulated as shown in Equation (10). This
indicator relatively captures the capacity of domestic production to
meet internal demand and the impact of trade structures on food
security. Since higher values indicate greater reliance on imports and

thus increased exposure to external shocks, net import dependency
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in both agriculture and livestock sectors was incorporated into the

model as a minimization-oriented criterion.

net import dependency=

Imports-Exports

Total supply

(10)

Table I Criteria, Units, Optimization Directions, and Data Years

Criterion Direction | Unit Data
Year

GDP per capita Max US dollars.per capita 2023
(current prices)

Share of agrlculture.ln Max Percentage (%) 2023

government expenditure

Food price anomaly indicator | Min Index 2022

Value added (agriculture, N

forestry, and fisheries) / GDP Max Percentage (%) 2024
Purchasing power

Cost of a healthy diet Min parity (PPP) dollars | 2024
per capita per day

C . Kilocalories per

Food supply variability Min capita per day 2023

Net import dependency in Min Ratio 2023

livestock

Net. import dependency in Min Ratio 2023

agriculture

Population unable to afford a . .

healthy diet / total population Min Ratio 2024

Agrlculjcural land area / Max Hectares per capita | 2023

population

Water stress level Min Percentage (%) 2022

Organic fertilizer use / Kilograms per

agricultural land area Max hectare 2023

Pesticide use Min Kilograms per 2023
hectare

Energy production from

biofuels / agricultural Max Terajoules per ton 2023

production

Agricultural emissions / value . Kilotons per 1,000

of agricultural production Min US dollars 2023
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Finally, recognizing that food security is not limited solely to
production and trade dimensions, indicators such as the cost of a
healthy diet and the proportion of the population unable to afford a
healthy diet were included in the dataset. These variables reflect
economic and social access to nutritious and healthy food beyond
mere physical availability, thereby strengthening the human
dimension of food security. All criteria were evaluated within the
TOPSIS framework in accordance with their specified optimization
directions, and countries’ food security performance was analyzed
from a holistic perspective. The criteria used in the study, along with
their units, optimization directions, and data years, are summarized
in Table 1.

Determination of Criteria Weights

The relative importance levels of the criteria used in the study
were determined in a manner that reflects the multidimensional
nature of food security. The weighting process was conducted based
on the joint evaluations of three decision-makers with domain
expertise, and the final set of criteria weights was obtained through
consensus by reconciling individual judgments.

An examination of the weight values indicates that the
highest weights were assigned to GDP per capita (0.15), agricultural
value added as a share of GDP (0.10), and agricultural land area per
capita (0.10). This distribution suggests that economic capacity, the
relative importance of the agricultural sector within the national
economy, and per capita production resources play a decisive role in
shaping countries’ food security performance. The criteria
representing the economic access dimension—namely the cost of a
healthy diet (0.08) and the proportion of the population unable to
afford a healthy diet (0.07)—account for a substantial share of the
total weight. This finding highlights that food security is not
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determined solely by production volumes, but is also directly linked
to individuals’ effective access to healthy and balanced diets.

Table 2 Conceptual Groups of Criteria and Weight Distribution

expenditure

Criterion Group Criterion Weight
GDP per capita 0.15
Economic Welfare and
Access Cost of a healthy diet 0.08
Population unable to afford a healthy 007
diet / total population '
Food Supply and Market Food supply variability 0.08
Stability
Food price anomaly indicator 0.07
Net import dependency in agriculture 0.06
Agricultural Structure and | Net import dependency in livestock 0.05
External Dependenc
P Y Value added (agriculture, forestry, and 010
fisheries) / GDP '
Agricultural land area / population 0.10
Agricultural emissions / value of
. . 0.04
agricultural production
Pesticide use 0.04
Sustainability
Organic fertilizer use / agricultural land 0.04
area '
Energy production from biofuels /
. . 0.02
agricultural production
Resourc.e Avallajblh.t y and Water stress level 0.06
Production Continuity
Public Policies Share of agriculture in government 0.04
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Within the food supply and stability dimension, food supply
variability (0.08) and the food price anomaly indicator (0.07) reflect
the system’s vulnerability to price and supply shocks. The relatively
high weights assigned to these criteria indicate that the pressures
exerted by price fluctuations and supply uncertainties on food
security are explicitly taken into account in the analysis. In the
environmental and sustainability dimension, agricultural emission
intensity (0.04), pesticide use (0.04), and organic fertilizer use (0.04)
are represented by lower but balanced weights. This allocation
demonstrates that while environmental factors may not carry as
much weight as short-term food accessibility, they are nevertheless
integrated into the model as indispensable components for long-term
food security and the sustainability of agricultural systems. Finally,
the relatively low weight assigned to the ratio of energy production
from biofuels to agricultural production (0.02) indicates that food—
energy competition is treated as a secondary yet complementary risk
factor in the study, whereas the primary determinants of food
security performance are economic and structural variables. Overall,
the resulting weight set reflects the economic, social, environmental,
and structural dimensions of food security in a balanced manner and
is structured to prevent any single dimension from
disproportionately dominating the results. These weights are
subsequently employed in the weighting stage of the TOPSIS
method, enabling a holistic evaluation of countries’ food security
performance.

Results

Within the scope of the analysis, countries’ distances to the
positive ideal solution (S;"), distances to the negative ideal solution
(S/), and the relative closeness coefficients (R;) calculated based on
these distances were determined as presented in Table 3. Higher
values of R; indicate that the corresponding country is closer to the



ideal food security profile, and the final ranking of countries was
established accordingly based on these values.

Table 3 Food Security Performance of Countries Based on TOPSIS

Results

Countries St S; R; Ranking
Austria 0.0656 0.0969 0.5964 6
Belgium 0.0742 0.0958 0.5633 12
Bulgaria 0.0856 0.0942 0.5240 20
Croatia 0.0835 0.0867 0.5095 23
Cyprus 0.0917 0.0768 0.4557 28
Czechia 0.0753 0.0959 0.5600 13
Denmark 0.0593 0.1004 0.6289 3
Estonia 0.0713 0.1011 0.5865 8
Finland 0.0641 0.0989 0.6067 4
France 0.0688 0.0960 0.5827 9
Germany 0.0761 0.0893 0.5399 17
Greece 0.0807 0.0856 0.5149 22
Hungary 0.0842 0.0931 0.5253 19
Ireland 0.0446 0.1105 0.7123 1
Italy 0.0793 0.0859 0.5200 21
Latvia 0.0730 0.1049 0.5896 7
Lithuania 0.0747 0.1009 0.5746 10
Luxembourg 0.0578 0.1147 0.6648 2
Malta 0.1193 0.0490 0.2913 29
Netherlands 0.0657 0.1004 0.6043 5
Poland 0.0776 0.0962 0.5535 14
Portugal 0.0834 0.0810 0.4927 26
Romania 0.0945 0.0856 0.4752 27
Slovakia 0.0862 0.0838 0.4930 25
Slovenia 0.0778 0.0927 0.5438 15
Spain 0.0754 0.0877 0.5379 18
Sweden 0.0713 0.0925 0.5645 11
Tiirkiye 0.0862 0.0890 0.5078 24
United Kingdom | 0.0750 0.0894 0.5437 |16

An examination of the results presented in Table 3 reveals
pronounced differences in food security performance across
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countries. According to the findings, Ireland ranks first with the
highest relative closeness coefficient (R=0.7123), followed by
Luxembourg (0.6648) and Denmark (0.6289). The strong
performance of these countries can be attributed to their robust
economic structures, high value added in the agricultural sector,
relatively low levels of external dependency, and more favorable
conditions in terms of access to healthy diets. In particular, the fact
that Ireland and Luxembourg exhibit relatively large distances from
the negative ideal solution (S;") and relatively small distances from
the positive ideal solution (S;") indicates that these countries display
a balanced and strong performance across the selected criteria. An
analysis of the top ten countries shows a clear predominance of
Northern and Western European countries. Countries such as
Finland, the Netherlands, Austria, Estonia, Latvia, and France
exhibit comparatively favorable values in terms of economic
stability, agricultural production efficiency, and food access
indicators. This outcome can be explained by the effective allocation
of resources to agriculture and food systems within public policies,
as well as the relatively balanced performance achieved in
environmental and nutritional indicators. Countries positioned in the
middle of the ranking include Germany, Poland, Slovenia, Spain,
and the United Kingdom. Although these countries perform strongly
in certain criteria, they are unable to attain higher rankings due to
relative disadvantages in indicators such as food price stability,
environmental pressures, or net import dependency. This finding
underscores that food security performance is not determined by
success in a single dimension, but rather by the balance achieved
across multiple dimensions. An examination of the lower-ranked
countries indicates that Malta, Cyprus, Romania, Slovakia, and
Tiirkiye exhibit lower R; values. The lower performance of these
countries can be associated with structural factors such as limited
agricultural land relative to population size, higher levels of external

dependency, water stress, and food price volatility. Tiirkiye ranks
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24™ with an R; value of 0.5078 and is positioned within the lower-
middle performance group. Despite Tiirkiye’s potential in terms of
agricultural production capacity and land availability, its overall
performance is constrained by vulnerabilities observed in indicators
such as food price anomalies, water stress levels, and environmental
pressures arising from agricultural production. This suggests that, for
Tiirkiye, food security policies should prioritize price stability,
resource efficiency, and environmental sustainability rather than
focusing solely on increasing production levels.

Table 4 Updated Criteria Weights

Criterion Group Criterion Weight
GDP per capita 0.1744
Economic Welfare and
Access Cost of a healthy diet 0.0930
Population unable to afford a healthy
) . 0.0814
diet / total population
Food Supply and Market | Food supply variability 0.0930
Stability
Food price anomaly indicator 0.0814
Net import dependency in agriculture 0.0698
Agricultural Structure and | Net import dependency in livestock 0.0581
External Dependency
Value added (agriculture, forestry, and 01163
fisheries) / GDP '
Agricultural land area / population 0.1163
Resourc.e Avallajblh.t y and Water stress level 0.0698
Production Continuity
Public Policics Share of agriculture in government 0.0465

expenditure
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At this stage, an alternative scenario was constructed by
excluding sustainability-related criteria representing environmental
and long-term effects—namely pesticide use, organic fertilizer use,
agricultural emission intensity, and energy production from
biofuels—from the analysis. The primary objective of this approach
is to observe the extent to which countries’ food security
performance changes when the sustainability dimension is excluded.
Following the removal of sustainability criteria, the weights of the
remaining criteria were normalized, and the resulting values are
presented in Table 4.

The rankings obtained under this scenario are presented in
Table 5.

Graph 1 visually illustrates the ranking differences between
the two scenarios and clearly demonstrates which countries are
positively or negatively affected by this change. An examination of
Figure 1 indicates that, for the majority of countries, rankings are
either preserved or exhibit only marginal changes of one position.
This finding suggests that the food security performance model
employed in the study maintains its overall structure even when
sustainability criteria are excluded, and that the results are not
excessively sensitive to any single group of criteria. adjustments
indicate that sustainability criteria play a secondary and balancing
role in the overall food security performance of these countries,
without fundamentally altering their relative positions.

In particular, the results for top-ranked countries are highly
consistent across both scenarios. Ireland retains its first-place
position in both rankings, demonstrating that its food security
performance remains strong regardless of the inclusion of
sustainability-related criteria.
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Table 5 Food Security Rankings of Countries Excluding

Sustainability Indicators

Countries S S; R; Ranking
Austria 0.0713 0.1097 0.6060 5
Belgium 0.0833 0.1080 0.5646 13
Bulgaria 0.0948 0.1050 0.5256 21
Croatia 0.0936 0.0954 0.5046 24
Cyprus 0.1023 0.0870 0.4595 28
Czechia 0.0825 0.1082 0.5673 12
Denmark 0.0651 0.1120 0.6324 3
Estonia 0.0766 0.1144 0.5991 7
Finland 0.0692 0.1114 0.6167 4
France 0.0747 0.1083 0.5917 9
Germany 0.0848 0.1006 0.5427 17
Greece 0.0886 0.0950 0.5174 22
Hungary 0.0932 0.1042 0.5279 19
Ireland 0.0450 0.1262 0.7370 1
Italy 0.0872 0.0974 0.5274 20
Latvia 0.0793 0.1184 0.5989 8
Lithuania 0.0813 0.1136 0.5829 10
Luxembourg 0.0611 0.1308 0.6817 2
Malta 0.1335 0.0548 0.2908 29
Netherlands 0.0738 0.1118 0.6024 6
Poland 0.0862 0.1084 0.5570 14
Portugal 0.0923 0.0906 0.4953 25
Romania 0.1057 0.0944 0.4719 27
Slovakia 0.0957 0.0934 0.4938 26
Slovenia 0.0858 0.1050 0.5504 15
Spain 0.0828 0.0982 0.5424 18
Sweden 0.0778 0.1034 0.5706 11
Tiirkiye 0.0949 0.0997 0.5123 23
United Kingdom | 0.0829 0.1008 0.5489 16
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Graph 1 Comparison of Rankings
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Similarly, Luxembourg (2"%), Denmark (3*), and Finland
(4™) maintain their positions in both scenarios. The persistence of
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these countries at the top of the rankings can be attributed to their
strong economic capacity, high agricultural productivity, and stable
food supply structures, which allow them to sustain superior
performance even when environmental sustainability factors are
excluded. Changes observed among mid-ranked countries are
relatively limited and generally confined to shifts of =1 position. For
instance, Austria (6—5), Czechia (13—12), and Estonia (8—7)
move up by one position, while Belgium (12—13), Latvia (7—8),
and the Netherlands (5—6) each drop by one position. These minor
rank. A similar pattern is observed for lower-ranked countries.
Countries such as Malta (29"), Cyprus (28"), Romania (27%), and
Greece (22"%) maintain their positions across both scenarios. This
suggests that, for these countries, the primary determinants of food
security performance are factors such as economic access,
agricultural structure, and external dependency rather than
environmental sustainability. With specific reference to Tiirkiye, a
marginal improvement is observed, with the country moving from
24th to 23rd place. This finding indicates that Tiirkiye’s relative
performance improves slightly when sustainability criteria are
excluded, implying that environmental and resource-related
constraints exert a limiting effect on its overall food security
performance. However, the fact that this improvement is limited to a
single rank underscores that Tiirkiye’s food security performance is
shaped not only by environmental factors but also by structural and
economic determinants. Overall, the high degree of consistency
between the two rankings demonstrates that the study’s results are
methodologically robust, resilient to sensitivity analysis, and well
suited to generating policy-relevant insights. The inclusion or
exclusion of sustainability-related criteria does not fundamentally
alter countries’ relative positions; rather, it enhances the visibility of
the dimensions driving performance for certain countries. Similar
analyses may also be conducted for other dimensions.
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Comparison of the Results with the Overall GFSI Rankings

The country rankings obtained in this study are
comparatively evaluated against the results of the Global Food
Security Index (GFSI), one of the most widely used global indicators
in the field of food security (GFSI, 2022). However, before
conducting this comparison, it is necessary to clearly emphasize the
differences in scope and methodology between the two approaches.
The GFSI covers a total of 113 countries and does not include
Croatia, Cyprus, Estonia, Latvia, Lithuania, Luxembourg, and
Malta. In contrast, since the present study considers all European
Union member states, these countries are also included in the
analysis. The inclusion of countries that fall outside the scope of the
GFSI allows for a more comprehensive and homogeneous
assessment of food security performance, particularly with respect
to comparisons between EU countries and Tiirkiye. As shown in
Table 6, although the numerical coverage of the rankings differs, a
high degree of consistency is observed between the results obtained
in this study and the overall GFSI rankings. Although one ranking is
based on 29 countries and the other on 21 countries, the relative
positions of countries are largely preserved. This finding indicates
that the MCDM approach employed and the selected set of criteria
are capable of producing results that are consistent with a globally
recognized index. Nevertheless, the comparative assessment
highlights two countries in particular—the United Kingdom and
Portugal—as exhibiting notable discrepancies. This divergence may
stem from the inclusion of governance, policy framework, and
qualitative indicators in the GFSI methodology, whereas the present
study adopts a framework that relies more heavily on quantitative
and structural variables. Overall, the comparison with the GFSI
demonstrates that the results of this study are not arbitrary, but rather
largely aligned with a globally accepted index. At the same time, the
differences observed for certain countries illustrate that food security
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rankings may vary depending on which dimensions of food security
are emphasized, thereby confirming that this study offers a
complementary perspective to existing index-based assessments.

Table 6 Comparison of the Results with the Overall GFSI Rankings

Country TOPSIS Ranking GFSI (2022)
Austria 6 8
Belgium 12 11
Bulgaria 20 16
Croatia 23 -
Cyprus 28 _
Czechia 13 10
Denmark 3 9
Estonia 8 -
Finland 4 1
France 9 3
Germany 17 12
Greece 22 17
Hungary 19 18
Ireland 1 2
Italy 21 15
Latvia 7 -
Lithuania 10 -
Luxembourg 2 -
Malta 29 -
Netherlands 5 4
Poland 14 14
Portugal 26 7
Romania 27 20
Slovakia 25 19
Slovenia 15 -
Spain 18 13
Sweden 11 5
Tiirkiye 24 21
United Kingdom 16 6




Conclusions and Policy Implications

In this study, the food security performance of European
Union countries and Tiirkiye was comparatively evaluated using the
TOPSIS approach. Within the scope of the analysis, indicators
representing multiple dimensions—such as economic accessibility,
supply and price stability, agricultural structure, and production
capacity—were jointly considered, while the contribution of
sustainability-related criteria was examined through sensitivity
analysis. The findings reveal that country rankings are largely
consistent and that food security performance is shaped not by a
single indicator, but by a combination of interrelated structural
factors. In particular, for countries in the lower performance group,
food insecurity does not stem from a single deficiency but rather
from the combined effects of vulnerabilities related to economic
access, supply and price stability, and production structures. This
finding suggests that the focus of policy discussions should not
merely be on countries’ positions in the rankings, but rather on how
the structural weaknesses determining these positions can be
mitigated. In this context, strengthening economic accessibility
emerges as the foremost policy priority for lower-ranked countries.
The high cost of a healthy diet and the relatively large share of the
population unable to afford healthy food indicate that food insecurity
is directly linked not only to production levels, but also to income
distribution and purchasing power. Accordingly, the targeted design
of food assistance mechanisms, the implementation of subsidies to
improve access to nutritious food for low-income groups, and the
integration of social policy instruments within a food security
framework are of critical importance. The second key policy area
concerns the stabilization of food supply and prices. Food supply
variability and price anomalies emerge as direct weakening factors
of food security, particularly in lower-performing countries. This
situation indicates that agricultural production systems and supply
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chains are insufficiently resilient to climate-related, economic, and
trade-induced  shocks.  Strengthening stock management
mechanisms for strategic commodities, developing market-
balancing intervention tools, and implementing regulatory policies
aimed at reducing price volatility should therefore be prioritized.
Third, reducing external dependency represents a fundamental
structural requirement for lower-performing countries. Net import
dependency in agriculture and livestock sectors increases
vulnerability to food insecurity, especially during periods of global
crisis. In this regard, restructuring support schemes to enhance
domestic production capacity, promoting production models that
reduce input dependency, and prioritizing policies aimed at
increasing agricultural value added are essential. The primary
objective is not to achieve full self-sufficiency in the short term, but
rather to establish a production structure that enhances resilience to
external shocks for critical products. Finally, the results highlight the
guiding role of public policies as a determining factor, particularly
in lower-ranked countries. While the share of agriculture in
government expenditure alone does not guarantee high performance,
how and where these expenditures are allocated is of critical
importance for food security. Investments in infrastructure, storage,
logistics, and the support of small-scale producers stand out as policy
instruments that can indirectly yet sustainably strengthen food
security.

For future research, incorporating qualitative dimensions
such as governance quality, institutional capacity, and food system
resilience into the evaluation framework may contribute to
deepening the analysis. Moreover, introducing a temporal dimension
through dynamic analyses and monitoring the long-term impacts of
policy interventions would enable more comprehensive assessments
of food security performance. Overall, this study demonstrates that
findings derived from MCDM approaches provide policymakers not
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only with an answer to the question “Which country ranks where?”,
but more importantly with analytical and holistic insights into “Why
does it rank there, and how can its performance be improved?”
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CHAPTER 3

A FRAMEWORK TO EVALUATE THE BARRIERS
OF AUTONOMOUS VEHICLES APPLICATIONS
IN INDUSTRY 5.0 THROUGH MCDM

NIHAN CAGLAYAN!

Introduction

Industry 5.0 requires human-machine collaboration with
technological advances; however, it should be consisted with ethical,
social, and environmental dimensions. This approach requires
autonomous systems to consider not only their technical
performance but also the human factor, ethical decision-making
processes, and sustainability. Autonomous vehicles, in particular,
play an important role in Industry 5.0's human-centered production
vision, and multiple criteria must be balanced in the decision-making
processes of these vehicles. The widespread use of autonomous
vehicles in industrial applications requires overcoming numerous
obstacles, such as safety, ethics, energy efficiency, human-machine
interaction, and cybersecurity. These barriers are shaped not only by
technological and human factors, but also by external factors such as
public policies and regulatory frameworks. In this context, the
integration of autonomous systems will lead to significant changes
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in both industrial processes and daily life. To manage these
obstacles, MCDM (Multi-Criteria Decision Making) methods offer
the opportunity to comprehensively evaluate the expectations of
different stakeholders and multi-dimensional performance criteria.
MCDM methods make decision-making processes more transparent
and, at the same time, have the potential to increase the effectiveness
of human-machine collaboration thanks to their ability to balance
various criteria (Yilmaz and Ecemis Yilmaz, 2024). Therefore, the
effective use of these methods is critical for the successful
implementation of Industry 5.0.

Autonomous vehicles have emerged as a continuation of the
automation and digitalization processes that began with Industry 4.0.
Autonomous vehicles are preferred in wide range of application in
states and private sectors (Ecemis Yilmaz, 2023). Industry 4.0 has
revolutionized the manufacturing and service sectors with
technologies such as cyber-physical systems, the Internet of Things
(IoT), artificial intelligence (Al), and big data analytics. However,
these technological advances have greatly affected the human factor,
leading to unemployment in the labor market and negative
consequences in the employee ecosystem. Autonomous vehicles
have emerged as a continuation of the automation and digitization
processes that began with Industry 4.0. AUlndustry 4.0 has
revolutionized the manufacturing and service sectors with
technologies such as cyber-physical systems, the Internet of Things
(IoT), artificial intelligence (Al), and big data analytics. However,
these technological advances have greatly affected the human factor,
leading to unemployment in the labor market and negative
consequences in the employee ecosystem (dos Santos Ramos Xavier
et al., 2024a). Industry 5.0, on the other hand, focuses on human
intellectual and cognitive abilities, aiming to use technology in a way
that is compatible with humans and sustainable.
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The role of autonomous vehicles in Industry 5.0 applications
is considered not only as a technical innovation but also as a tool for
social and economic transformation. Autonomous vehicles are
particularly important in developing countries due to their potential
to reduce traffic accidents caused by human error (dos Santos Ramos
Xavier et al., 2024a). A study found that in countries with high rates
of traffic accidents caused by human error, significant improvements
in traffic safety are expected with the widespread adoption of
autonomous vehicles. However, there are various obstacles to
implementing this technology, including the inadequacy of obstacle
detection technologies, users' perceptions of the technology,
interaction problems between pedestrians and drivers, the cost
competitiveness of vehicles, and road safety. These obstacles are not
only technical but also involve social, economic, and cultural
dimensions (dos Santos Ramos Xavier et al., 2024).

Another obstacle faced by autonomous vehicles in Industry 5.0
applications is the management of uncertainty and multiple criteria
in decision-making processes. Naciri et al. (Gilidek, 2023) note that
decision-making processes become complex when they involve
multi-criteria evaluation and uncertainty. The authors emphasize the
importance of using MCDM methods in such complex decision-
making processes, stating, “The decision-making process becomes
quite complex when it involves multi-criteria evaluation and
uncertainty, this is the most common situation encountered in the
industrial field.” (Naciri et al., 2024). Additionally, it has been stated
that MCDM methods provide a systematic framework for comparing
different decision-making methods and selecting the most
appropriate one.

The philosophy of Industry 5.0 aims to maximize the
opportunities offered by technology while highlighting the creative
contributions of people. This human-centered approach increases
workforce participation, ensuring the best possible integration of
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both employees and technology. Furthermore, taking the human
factor into account in this process enables complex problems to be
solved more effectively through collaboration between various
disciplines. As a result, it becomes possible to develop more flexible
and adaptable systems in industrial environments. Industry 5.0
stands out as a new industrial paradigm that emphasizes human-
centered approaches, sustainability, and human-machine
collaboration. This transformation has increased the need to evaluate
the role of autonomous vehicles in industrial applications and the
obstacles they face using multi-criteria decision-making (MCDM)
methods. Autonomous vehicles require advanced decision support
systems and multidimensional evaluation approaches to respond to
the human-machine interaction, ethical, safety, and flexibility
requirements brought about by Industry 5.0. Therefore, MCDM
methods play a critical role in managing the complex, multi-criteria
decision-making processes that autonomous vehicles encounter in
industrial environments. This study aims to prioritize the
fundamental barriers to the widespread adoption of autonomous
vehicles within the framework of the Industry 5.0 approach using the
MACBETH (Measuring Attractiveness by a Categorical Based
Evaluation Technique) method.

Literature

The human-centered, sustainable, and adaptable production
vision of Industry 5.0 heavily relies on autonomous vehicles.
Industry 5.0 is a transformation process that emphasizes human-
machine collaboration, ethical responsibilities, sustainability, and
social benefit, in contrast to Industry 4.0's automation and
digitalization-focused paradigms. Studies in the literature
demonstrate that although the widespread use of autonomous
vehicles presents benefits like productivity, adaptability, and
customization in manufacturing procedures, it also encounters a
variety of challenges. An interdisciplinary analysis encompassing
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technological, ethical, human-machine interaction, environmental,
economic, and legal aspects is necessary to enumerate these
challenges. The human-centered, sustainable, and adaptable
production vision of Industry 5.0 heavily relies on autonomous
vehicles. Industry 5.0 is a transformation process that emphasizes
human-machine collaboration, ethical responsibilities,
sustainability, and social benefit, in contrast to Industry 4.0's
automation and digitalization-focused paradigms. Studies in the
literature show that although the widespread use of autonomous
vehicles presents benefits like productivity, adaptability, and
customization in manufacturing processes, it also encounters a
number of challenges. An interdisciplinary examination of the
technological, ethical, human-machine interaction, environmental,
economic, and legal aspects is necessary to enumerate these
challenges (Gtidek, 2023).

Industry 5.0 is a transformation process that emphasizes
human-machine collaboration, ethical responsibilities,
sustainability, and social benefit, in contrast to Industry 4.0's
automation and digitalization-focused paradigms. Studies in the
literature show that although the widespread use of autonomous
vehicles presents benefits like productivity, adaptability, and
customization in manufacturing processes, it also encounters a
number of challenges. An interdisciplinary examination of the
technological, ethical, human-machine interaction, environmental,
economic, and legal aspects is necessary to enumerate these
challenges (Glidek, 2023). There are numerous obstacles to the
widespread adoption of these technologies in production
environments (Kiris¢i & Simsek, 2023). Additionally, it is crucial to
overcome the operational and technical obstacles that arise when
integrating autonomous vehicles into industrial applications. These
challenges can occasionally be caused by inadequate infrastructure
or by users' difficulties adjusting to new technologies. Consequently,
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the application of MCDM techniques improves both technological
efficiency and the caliber of human-machine cooperation (Hamad et
al., 2025). Because improved decision-making processes allow for
more efficient resource use and lessen environmental effects, this

strategy also helps achieve sustainability goals (Fourastier et al.,
2020).

In addition to technological advancements, Industry 5.0 is
shaped by a human-centered approach that promotes worker
participation and human creativity, allowing for deeper and more
significant interaction in production processes. It is crucial to create
particular decision-making procedures to guarantee user safety and
respect moral principles in order for autonomous vehicles to operate
efficiently. For instance, putting user experience and human safety
first when operating autonomous systems requires the application of
MCDM techniques. By facilitating the methodical assessment of
various decision options and criteria, MCDM makes it possible to
use autonomous vehicles more effectively and efficiently
(Claussmann et al., 2018).

The primary challenges that autonomous vehicles face when
making decisions are data uncertainty, which leads to technical
difficulties; conflicting performance standards; cybersecurity risks;
moral quandaries; and the intricacy of human-machine interaction.
In the technical domain, data uncertainty results from incomplete,
erroneous, or deceptive data that autonomous systems need to make
the right decisions. Simultaneously, systems struggle to decide
which parameters to prioritize due to conflicting and multiple
performance criteria. Another challenge in the technical domain is
cybersecurity threats, which can jeopardize autonomous vehicles'
interactions with their environment and thus undermine their
dependability. Additionally, ethical conundrums make it challenging
for autonomous systems to make the best choices in certain
circumstances, which complicates human-machine interaction and
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increases uncertainty. Therefore, taking these factors into account is
essential for autonomous cars to engage in the Industry 5.0
ecosystem in an efficient and moral manner.

Technological Obstacles The suitability of the technology
infrastructure and integration issues are two major obstacles to the
broad use of autonomous vehicles in Industry 5.0 applications. For
autonomous cars to operate efficiently, technologies like digital
twins, the Internet of Things, artificial intelligence, and big data are
essential (Stogia et al., 2025). But these technologies' scalability,
interoperability, energy efficiency, and cybersecurity continue to be
major obstacles. Specifically, while real-time data integration and
predictive analytics are expected to optimize production processes
through digital twins, it is difficult to develop and implement these
systems in a way that is compatible with heterogeneous production
technologies (Asranov et al., 2024). In the context of Industry 5.0,
digital twins must also be integrated with human-centered design
principles. Currently, new approaches are required to incorporate the
human element into procedures (Biondani et al., 2025).

Cybersecurity is another technological barrier to the
widespread use of autonomous vehicles. By facilitating the
sustainable delivery of customized goods and services, Industry 5.0
represents a new stage in the digital transformation process.
However, the cybersecurity risks that emerge during this process
pose serious risks to businesses. Effective cybersecurity provision is
closely linked to the policies these nations adopt, particularly in
newly industrialized nations. For these nations, organizational
measures are the most important cybersecurity indicator. Data
security, network integrity, and operational security are all at risk as
autonomous vehicles proliferate on production lines (Duran, 2024)

According to Claussmann et al. (Claussmann et al., 2018) the multi-
criteria decision-making processes of autonomous vehicles must

optimize factors like safety, legal requirements, passenger comfort,
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and energy consumption. This study proposes an MCDM framework
for assessing uncertain sensor data that combines fuzzy logic and
Dempster-Shafer theory. In the risk assessment and decision-making
processes of autonomous vehicles, this method guarantees the
thorough management of various criteria and uncertainty. "This
study presents a new framework for multi-criteria decision-making,"
the authors write. The suggested method emphasizes the significance
of MCDM in autonomous vehicle decision-making processes by
using Dempster-Shafer theory to assess uncertain sensor data and
fuzzy logic theory to handle heterogeneous criteria.

Ensuring safety and security in decision-making processes is
another challenge for autonomous vehicles in Industry 5.0
applications. According to Fourastier et al. (Fourastier et al., 2020)
autonomous intelligent systems' ability to make local decisions
based on gathering environmental data determines their safety and
security. Particularly in cyber-physical systems involved in safety-
critical activities, the validity and scope of the decision function
should be evaluated in light of underlying assumptions, uncertainty,
and safety constraints. The authors emphasize that "the safety and
security of autonomous intelligent systems depend on their local
decision-making capabilities based on collected environmental
information." This highlights that security and safety are crucial
concerns that must be considered when making decisions,
particularly for cyber-physical systems involved in safety-critical
tasks. It is claimed that MCDM techniques offer a useful instrument
for assessing security and safety standards in addition to other
performance standards.

Another significant technical challenge faced by autonomous
vehicles in Industry 5.0 applications is cybersecurity threats. Hamad
et al. (Hamad et al., 2025) point out that as autonomous systems
become more autonomous, cybersecurity risks also rise, and these
risks need to be addressed at all architectural levels. In particular,
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sophisticated cybersecurity measures must be put in place at every
level, from the physical layer to the inter-system layer, in order for
autonomous vehicles to function safely and securely. "As autonomy
increases, the risk of cybersecurity threats increases proportionally,
requiring the development of advanced methods across all
architectural layers of autonomous systems," the authors write,
emphasizing that cybersecurity is a fundamental challenge for
autonomous vehicles. As a result, MCDM techniques are crucial to
the thorough evaluation of cybersecurity risks in conjunction with
other factors.

Another significant obstacle for autonomous vehicles in
Industry 5.0 applications is the complexity of human-machine
cooperation. Even though Industry 5.0 emphasizes human-machine
collaboration and human-centered approaches, the human element
must be taken into account in autonomous vehicle decision-making
processes. According to Stogia et al. (Stogia et al., 2025) Industry
5.0 places a strong emphasis on ethical Al, sustainability, and
human-machine cooperation. The authors stress that "Industry 5.0
represents a significant transformation in industrial ecosystems that
prioritize human-machine collaboration, sustainability, and ethical
artificial  intelligence," emphasizing that human-machine
collaboration is an essential component that autonomous systems'
decision-making processes must take into account. As a result,
MCDM techniques guarantee that ethical standards and the human
element are thoroughly considered during the decision-making
process.

The significance of human-robot interaction and human-
machine collaboration concepts should be highlighted when
analyzing the challenges of autonomous vehicles in Industry 5.0
applications. Industry 5.0 deals with human-machine cooperation in
a framework that combines the accuracy and efficiency of machines
with human creativity and intuition (Pawar et al., 2025). In this
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regard, human-robot interaction should be taken into consideration
when designing user interfaces for autonomous vehicles. According
to Amanatidis et al. (Amanatidis et al., 2018) user interfaces for
autonomous vehicles should vary based on the degree of automation,
and they should get smarter and more autonomous as the level of
automation rises. This method signifies a change from conventional
"master-slave" interaction to "equal-level" interaction, in which
robots and humans work together on an equal basis.

Ergonomic Barriers and Human-Machine Interaction
Industry 5.0 is centered on human-machine cooperation. The
inability to create safe, effective, and ergonomic human-machine
interaction is one of the main obstacles to the widespread adoption
of autonomous vehicles. Industry 5.0 addresses this shortcoming by
providing a human-centered paradigm, as discussed in the literature,
whereas Industry 4.0's automation-focused approach resulted in the
exclusion of human labor from production environments (Teoman,
2024). However, there are still issues with ergonomics, usability, and
accessibility that must be resolved when integrating human-machine
collaboration into production processes (Palazhchenko et al., 2024).
In particular, issues such as perception, trust, explainability, and
ethical responsibilities come to the fore in human-robot interaction
(Demircioglu & Canbay, 2021). One major barrier to social
acceptance is how moral and ethical obligations will be upheld in
intelligent autonomous systems' decision-making processes
(Demircioglu & Canbay, 2021).

In the context of Industry 5.0 applications, there are
numerous moral and legal obstacles to the widespread use of
autonomous vehicles. To understand these challenges, one must
consider not only technological advancements but also social, legal,
and ethical norms. In the process of integrating autonomous vehicles
into society, concerns like safety, responsibility sharing, legal
regulations, and ethical decision-making processes are closely
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related to the human-centered and collaborative vision of Industry
5.0. According to Wang et al.'s study, autonomous vehicles' ethical
decision-making processes are primarily caused by the challenges of
translating existing ethical theories into practical applications.
Despite decades of research in the field of machine ethics, the study
claims that ethical decision-making processes in autonomous driving
present more complex and distinct challenges. Additionally, it is said
that researchers, legislators, and the automotive sector continue to
work together to find a consistent and all-encompassing solution in
this field (Wang et al., 2022). The human-centered and ethics-based
technological transformation that Industry 5.0 envisions is directly
related to this situation because giving machines the authority to
make moral decisions presents a significant barrier to social
acceptance and trust.

A major barrier to Industry 5.0's goal of improving human-
machine interaction is the social acceptance of autonomous vehicles'
moral behavior and its incorporation into the legal framework. Evans
et al. (Evans et al., 2020) developed the "Ethical Valence Theory" to
evaluate whether ethical choices made by autonomous cars are
socially acceptable. This theory holds that when a vehicle makes
decisions about its environment, it tries to lessen the moral demands
that various road users place on it. The goal of ethical practice is to
be consistent with reality by quantitatively evaluating the harm
caused by decisions and the uncertainties associated with them. This
approach offers a flexible calculation method that permits the
evaluation of various moral positions and social expectations, rather
than providing a definitive solution for how ethical theories should
be reflected in vehicle behavior. Although this flexibility aligns with
the diversity and inclusivity ideals of Industry 5.0, a major barrier to
standardization and regulation is the diversity of ethical choices
based on social and cultural context.
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Another major challenge in Industry 5.0 applications is the
legal status and liability sharing of autonomous vehicles. The study
by Ilkova and Ilka's (Ilkova & Ilka, 2017) highlights the necessity of
amending current traffic laws to permit the use of autonomous
vehicles on public roads by comparing the legal regulations of
autonomous vehicles in Europe and the US. Additionally, it was
mentioned that legal regulations present serious difficulties for
insurance companies, automakers, drivers, and consumers. To put it
another way, in order to discuss the applicability of various legal
provisions, technical professionals must also be aware of legal
regulations. The integration of technical and legal fields is necessary
for the interdisciplinary collaboration and holistic approach that
Industry 5.0 envisions, but the current legal framework is not flexible
enough to facilitate this integration, which presents a major
challenge.

Regulatory and legal obstacles the absence of legal and
regulatory frameworks is another major obstacle to the widespread
use of autonomous vehicles in Industry 5.0 applications. New laws
pertaining to data security, personal data protection, liability sharing,
and occupational health and safety are necessary due to the extensive
use of autonomous systems in production processes (Aksoy et al.,
2024). To guarantee human safety in production settings, specific
legal requirements must be set for the development and application
of Al-supported systems. The approach of Industry 5.0, which places
a high priority on worker health and human safety, calls for the
creation of new regulations and the updating of current legal
frameworks (Aksoy et al., 2024).

Organizational and financial obstacles Economic and
organizational factors are another obstacle to the widespread use of
autonomous vehicles in Industry 5.0 applications. For small and
medium-sized businesses, the technological infrastructure
investments mandated by Industry 5.0 represent a substantial cost
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factor (Dossou & Nshokano, 2024). SMEs encounter financial,
technical, and human resource obstacles to this transition, whereas
large corporations can more readily integrate digital twins and
autonomous systems (Dossou & Nshokano, 2024). Furthermore,
current organizational structures and business models must be
redesigned in accordance with the core tenets of Industry 5.0, such
as sustainability and human-centeredness (Giidek, 2023). During
this transformation process, businesses must adapt to strategic and
technological requirements, develop new skill sets, and ensure that
employees adapt to the transformation (Pinzone et al., 2024).

The effectiveness of human resources in digital
transformation processes is another organizational barrier to the
widespread adoption of autonomous vehicles. Industry 5.0 suggests
giving workers' and society's needs and welfare top priority
(Teoman, 2024). Beyond financial considerations, though, the
creation, design, and adaptation of new technologies necessitate
improving workers' competencies and giving them new skills
(Pinzone et al., 2024).

One of the main factors directly influencing the widespread
adoption of autonomous vehicles in Industry 5.0 applications is
economic barriers. Raj et al. (Raj et al., 2020) discovered that a lack
of consumer acceptance is the biggest barrier to the adoption of
autonomous vehicles in their study that used a multi-criteria
decision-making approach. More tangible organizational and
economic obstacles, like the absence of industry standards and
insufficient regulatory frameworks, must be addressed in order to get
past this obstacle. To put it another way, high investment costs
economically restrict the technology's commercialization and
widespread adoption, while organizational standards and regulations
hinder the sector's ability to undergo a thorough transformation.

Industry 5.0 is a new paradigm that emphasizes technological

innovation, sustainability, and a human-centered approach in
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industrial transformation. This includes changes in organizational
and economic processes in addition to technological advancements.
In the context of Industry 5.0, the spread of sophisticated automation
applications like driverless cars necessitates a more intricate and
multifaceted approach to overcoming organizational and financial
obstacles. In this regard, it is crucial from an academic and industrial
standpoint to investigate the organizational and financial obstacles
of autonomous vehicles in Industry 5.0 applications from an
interdisciplinary standpoint. Increasing operational effectiveness
and employee satisfaction through improved human-machine
collaboration is one of Industry 5.0's core objectives. However, in
order to accomplish these objectives, organizational and financial
obstacles must be removed in addition to technological
advancements. Adoption of high-tech applications, like self-driving
cars, in industrial settings necessitates not only technical proficiency
but also organizational flexibility and economic viability. Currently,
Industry 5.0's human-centered approach aims to create new
organizational structures and business models while balancing the
social and economic effects of technological advancements. Yaqot et
al. (Yaqot et al., 2024) emphasizes that in order to maximize human-
machine collaboration in Industry 5.0, workforce competencies must
be developed and digital governance issues must be resolved. Along
with organizational challenges like workforce loss, skill gaps, and
ethical dilemmas, economic sustainability stands out as a major
barrier in this context. One of the most notable applications of
Industry 5.0 is autonomous vehicles. The extensive use of
autonomous vehicle technology has several benefits, including
lowering transportation-related accidents brought on by human
error, boosting productivity, and guaranteeing sustainability (dos
Santos Ramos Xavier et al., 2024b).

One of the main factors directly influencing the widespread
adoption of autonomous vehicles in Industry 5.0 applications is
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economic barriers. A lack of consumer acceptance is the biggest
barrier to the adoption of autonomous vehicles, according to a study
by Alok Raj et al. (Raj et al., 2020) that used a multi-criteria
decision-making approach. More tangible organizational and
economic obstacles, like the absence of industry standards and
insufficient regulatory frameworks, must be addressed in order to get
past this obstacle. To put it another way, high investment costs
economically restrict the technology's commercialization and
widespread adoption, while organizational standards and regulations
hinder the sector's ability to undergo a thorough transformation.

Organizational obstacles in digital transformation processes
are another significant factor impacting the spread of autonomous
vehicles in Industry 5.0 applications. When integrating digital
technologies, factors like organizational culture, leadership style,
and employee motivation are crucial, especially in large-scale
industrial enterprises. According to Syversen et al., the company's
leadership style and strategic orientation have a direct impact on
employee skill development and motivation during the shift from
Operator 4.0 to Operator 5.0. The failure of technological
applications can be caused by leaders who do not adequately support
change or by an organizational culture that is closed off to
innovation. Similar circumstances also occur when autonomous
vehicles are incorporated into manufacturing and transportation
procedures.

One of the most significant multidisciplinary research areas
in the context of autonomous vehicles and Industry 5.0 applications
today is sustainability and environmental challenges. As industrial
revolutions have progressed, industrial applications have shifted
from an emphasis on efficiency and automation to a new paradigm
known as Industry 5.0, which is based on sustainability, people, and
the environment.
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Industry 5.0 presents a paradigm centered on sustainability
and environmental awareness (Glidek, 2023). While the proliferation
of autonomous vehicles offers new opportunities in terms of energy
efficiency, resource utilization, and environmental impact, it also
faces various obstacles in achieving sustainability goals. In
particular, issues such as the energy consumption of digital twin and
IoT-based systems, the carbon footprint of data centers, and
electronic waste management are important obstacles that must be
considered in sustainable Industry 5.0 applications (Stogia et al.,
2025). Furthermore, the widespread use of autonomous vehicles in
production processes must be designed in line with green production
and circular economy principles (Giidek, 2023).

In the context of sustainability, urban logistics and last-mile
delivery procedures represent another significant application area for
autonomous vehicles. In response to rising delivery demands,
especially during the COVID-19 pandemic, the integration of
electric and autonomous vehicles into logistics networks has gained
prominence. In addition to lowering emissions, electric and
driverless cars improve delivery effectiveness and bolster the
robustness of logistics networks. Electric car fleets and autonomous
delivery robots lower labor costs, ease traffic, and lessen carbon
emissions. However, inadequate charging infrastructure, range
restrictions, and technological maturity are the main barriers to these
technologies' widespread adoption. Overcoming these challenges is
essential for effective and sustainable urban logistics (Alsaleh &
Alsaleh, 2025).

Sustainability in Industry 5.0 applications is not just about
lessening environmental effects; it also strives for social and
economic change by implementing circular economy concepts.
Industry 5.0 accelerates economic transformation in areas like green
jobs, eco-innovation, and green patents by integrating with circular
economy activities, according to research done in the European

--64--



Union. Through technological innovation, this integration promotes
economic growth and makes it easier to apply sustainable
development principles in a variety of sectors (Sulich, 2024).

Using MCDM techniques to manage the challenges
autonomous vehicles face in Industry 5.0 applications guarantees
that ethical, social, and environmental factors are taken into
consideration in addition to technical performance requirements. In
order to create moral decision-making procedures in ERP systems,
Wankhade et al. compare fuzzy MCDM and OWA operators. "Fuzzy
MCDM techniques allow for the consideration of multiple criteria
and stakeholder perspectives, while OWA operators provide a robust
framework for gathering uncertain and imprecise information," the
authors say, highlighting the importance of MCDM in ethical
decision-making processes (Wankhade et al., 2025). This method
makes sure that when autonomous vehicles make decisions, social
and ethical factors are taken into account in addition to technical
ones.

In conclusion, the role of autonomous vehicles in Industry
5.0 applications necessitates striking a balance between a number of
competing factors in a setting where ethics, sustainability, human-
machine cooperation, and many other factors are important.
Overcoming challenges calls for a comprehensive plan and an
interdisciplinary approach. To achieve the human-centered,
sustainable, and flexible production vision of Industry 5.0, a
thorough examination of each challenge is essential. In this regard,
MCDM techniques guarantee the comprehensive management of
multifaceted challenges that autonomous vehicles encounter,
including safety, cybersecurity, ethics, energy efficiency, and
human-machine interaction. MCDM techniques must be
successfully applied in decision-making processes in order to
successfully integrate autonomous vehicles in Industry 5.0
applications.

--65--



MACBETH Method

The MACBETH method was created to provide a
quantitative approach to decision-making based on the qualitative
assessments of decision-makers. How to create a scale that would
enable decision makers to express their degree of preference
between options without requiring them to express their preferences
in numerical form was the question on the minds of the researchers
who created the method. As a result, the MACBETH method which
relies only on semantic judgments like "weak" and "strong" in
pairwise comparisons was developed. Pairwise comparisons based
on the qualitative values of the criteria can also be used in this
method to determine the relative weights of the criteria (Bana E
Costa et al., 2012).

Pairwise comparisons based on the qualitative values of the
criteria can also be used in this method to determine the relative
weights of the criteria. The MACBETH method employs an interval
scale, but it is comparable to MCDM techniques like AHP that rely
on pairwise comparison results. Additionally, the MACBETH
approach is different from other AHP techniques in that it bases
comparisons on qualitative rather than quantitative values. Only
semantic judgments like "weak" and "strong" are employed in
pairwise comparisons using this method.

Step 1: A decision problem is defined.
C ={cy, ¢y, ..., Cp} Set Of criteria

The objective is to determine the relative importance weights
of the criteria.

n
w = (W, Wy, ., W) if w; = O,ZWL- =
i=1

Step 2: Defining reference levels of criteria.
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v(c°™t) = 0,v(cle") = 100

Step 3: The difference in attractiveness between the pairs of criteria
is qualitatively expressed by the decision maker. As shown in Table
1, the decision-maker uses one of the semantic categories to convey
this difference.

Ajj= v(c;) — v(c)
Aij: {01112)3I4P5)6}

Table 1 Semantic Categories

Semantic Categories Scale
No 0
Very strong 1
Weak 2
Moderate 3
Strong 4
Very strong 5
Extreme 6

Step 4: Consistency constraint
T)(Ci) — 'U(C]') = 6”

where §;; is the minimum difference in attractiveness specified by
the decision maker.
Step 5: Transitivity constraint

lf U(Ci) - U(Cj) = 61]

and v(cj) —v(ck) = G

then v(c;) —v(c) = ;5 + 6jx
Step 6: Creating the Linear Programming Model

v(cy), v(cy), ..., v(c,) where the decision parameters
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Z” The objective function
max v(c;)
i=1

v(Cworse) = 0 Pairvise comparison constraint
v(cbest) =100 . .
v(c;) = v(cj) if ¢; = ¢ Ranking constraint
v(c) =0 Non-positivity restriction

Step 7: Calculation of the criteria weights and ranking of the criteria
are as follows.

v(c;)

Wi=Sn 0
Ci > Cj > W; > W]
Numerical analysis

This study uses the MACBETH method to prioritize the basic
obstacles to the widespread adoption of autonomous vehicles within
the Industry 5.0 approach. In keeping with Industry 5.0's human-
centered, sustainable, and resilient production philosophy, the
assessment has taken into account ethical, social, environmental, and
legal factors in addition to technological ones.

Table 2 lists the study's evaluation criteria, which include
technological barriers, ergonomics and human-machine interaction,
ethical and social barriers, organizational and economic barriers,
legal and regulatory barriers, sustainability, and environmental

barriers.
Table 2 The list of criteria
Criteria Description
C1 Technological barriers
C2 Legal and regulatory barriers
C3 Economic and organizational barriers
C4 Human-machine interaction and ergonomics
C5 Ethical and social barriers
Cé6 Sustainability and environmental barriers
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The pairwise comparison according to the semantic categories is
demonstrated in Table 3.

Table 3 Attractiveness between the pairs of criteria

Cl C2 (C3 (C4 C5 C6
Cl1 0 4 5 3 4 4

C2 0 3 2 3 2
C3 0 2 3 3
C4 0 2 3
G5 0 2
Cé6 0

The normalized criterion weights obtained because of the
MACBETH linear programming solution are listed in Table 4 below.

Table 4 Weights of criteria

Weight
Cl 024
C5 020
C4 0.18
c2 0.15
C3 0.13
Co6 0.10

Conclusion

There are multidimensional barriers to the widespread adoption of
autonomous vehicles in Industry 5.0 applications. Overcoming these
barriers requires comprehensive approaches based on technical,
social, ethical, legal, and security considerations. In order to realize
Industry 5.0's human-centered and sustainable production vision,
autonomous vehicle technologies must be designed and
implemented in a way that overcomes these barriers. The results of
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the multi-criteria decision analysis conducted using the MACBETH
method in this study reveal the technological barriers to the
widespread adoption of autonomous vehicles within the scope of
Industry 5.0, legal and regulatory barriers, economic and
organizational barriers, human-machine interaction and ergonomics,
ethical and social barriers, and sustainability and environmental
barriers. Especially in decision problems where uncertainty,
subjective evaluation, and qualitative judgments prevail, such as
human-centered production systems, the MACBETH method
enables the transformation of qualitative expert opinions into a
systematic, consistent, and mathematically expressible structure.

The recommended method, based on the analysis results, indicates
that technological barriers have the highest priority, suggesting that
autonomous vehicle systems have not yet fully achieved the
flexibility, reliability, interoperability, and cyber-physical integration
capabilities required by Industry 5.0. The legal and regulatory
barriers in second place clearly reflect the time lag between
technological developments and regulatory frameworks. The fact
that economic and organizational barriers rank third highlights that
autonomous vehicle investments are not only a technological process
but also one that requires strategic and organizational
transformation. The human-machine interaction and ergonomics
criterion, ranked fourth, has been considered a secondary obstacle
by decision-makers compared to technological and legal factors,
despite the human-centered production approach that is the
fundamental philosophy of Industry 5.0. The relatively lower
priority given to ethical and social barriers indicates that, in the short
term, businesses prioritize operational and regulatory risks over
long-term social impacts. Sustainability and environmental barriers,
which rank last, show that despite the environmental dimension of
Industry 5.0 vision, they are still perceived as an indirect and
secondary benefit area in autonomous vehicle applications. This
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finding reveals that environmental gains are often assumed to be a
natural outcome of technological developments but are not
sufficiently internalized as an independent priority criterion in
decision-making processes.
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CHAPTER 4

EU AND TURKIYE’S
NATURAL GAS TARIFFS CONSIDERING
UNDERGROUND GAS STORAGE SYSTEMS

1. Cetin Onder INCEKARA!

Introduction

Gas storage plays a vital role in the global gas market, serving
as a stabilizing buffer against imbalances caused by seasonal demand
patterns and unexpected supply disruptions. Storage also helps
mitigate market volatility during periods of price swings driven by
external shocks, such as geopolitical events or natural disasters, by
ensuring continuous and reliable gas supplies. Maintaining an
adequate level of gas storage allows both consumers and suppliers
to navigate periods of uncertainty, enhancing stability and resilience
across the energy sector.

About one-quarter of all energy used in the EU comes from
natural gas. Maintaining a secure supply is therefore essential to
ensuring energy security for EU. Gas supply disruptions may result
from technical or human failures, natural disasters, cyber-attacks and
other emerging risks or geopolitical disputes. Many EU countries

1 Assoc. Prof. Dr., BOTAS, Head of Department, Industrial Engineering,

Orcid:0000-0003-1927-8208
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import nearly all their supplies and some are, or have been, also
heavily reliant on a single source, meaning that disruptions along a
single transport route can threaten the certainty of their gas supply.
Since May 2022, the EU has taken a range of actions to eliminate its
reliance on Russian fossil fuel imports by saving energy, diversifying
supplies and accelerating the roll-out of renewable energy
production in Europe.

Key progress on security of EU gas supply measures are
taken in the first 3 years since the adoption of the REPowerEU
Plan in May 2022 have reduced the volumes of imported Russian gas
from 150 billion cubic meters (bcm) in 2021 to 52 bem in 2024
which are:

-45% Share of EU gas imports from Russia in 2021
-19% Share of EU gas imports from Russia in 2024
-17% EU gas demand reduction August 2022 - January 2025

Although LNG imports from Russia increased by 2 bcm
between 2023 and 2024, the end of the transit of Russian gas via
Ukraine decreased the imports of pipeline gas from Russia by 15
bcem per year.

Reducing gas demand was a key part of the EU’s successful
response to the energy crisis and phase-out of its reliance on Russian
fossil fuels under the REPowerEU plan of May 2022. EU emergency
measures are:

-Emergency measures winter 2022/23

In response to EU unilateral supply cuts from Russia in the first half
of 2022, in August 2022, the Council adopted an emergency
Regulation on Coordinated Demand Reduction Measures for Gas
(EU/2022/1369), introducing a voluntary reduction of natural gas
demand for EU countries by 15% for winter 2022-2023. The

regulation was proposed by EU Commission in July 2022 and also
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included the possibility for EU Council to trigger a ‘Union alert’ to
trigger mandatory gas demand reductions in case voluntary measures
were not enough to meet supply.

Along with its proposal of July 2022, EU Commission published EU
Communication 'Save gas for a safe winter' (COM/2022/360), which
included a European gas demand reduction plan to prepare the EU
for supply cuts. EU Communication and its annex listed good
practice measures to reduce demand and offered EU countries
criteria to identify essential which were not already protected under
EU Gas Security of Supply Regulation. In December 2022, EU
Council also adopted a proposal from EU Commission on the
temporary emergency Solidarity Regulation (EU/2022/2576),
establishing among others default solidarity rules, extra safeguards
for cross-border flows and critical gas volumes needed for gas-fired
electricity generation.

-Emergency measures winter 2023/24

On 30 March 2023, amid persisting risks and challenges on the
energy market, the Council adopted EU Commission’s proposal to
prolong the coordinated gas demand reduction measures for a further
12 months to help avoid security of supply issues for winter 2023-
2024 and fully compensate for the permanent decrease in Russian
gas. The extension of the proposal also encouraged EU Commission
and EU countries to monitor and report the data on savings per sector
every month, rather than total gas demand every 2 months.

-Continued gas demand reductions

In February 2024, EU Commission published a report on the

functioning of the Gas Demand Reduction Regulation. It showed

that between August 2022 and December 2023, EU countries

collectively reduced gas demand by over 100 billion cubic meters

compared to the 5-year average, demonstrating the effectiveness of

the voluntary measures. On this basis, EU Commission proposed a
--79--



continuation of the voluntary gas demand reduction measures to help
sustain and improve market stability and support the EU’s
decarbonisation efforts.

In March 2024, a Council Recommendation was adopted
encouraging EU countries to continue taking voluntary measures
until March 2025 to maintain a collective 15% gas demand
reduction, compared to the average demand between April 2017 and
March 2022.

Improved information exchange, regional cooperation and
solidarity underpin the EU’s framework for emergency preparedness
and resilience to gas disruptions, as set out in the Regulation on
measures to safeguard the security of gas supply (EU/2017/1938).

The framework legislates for

- cooperation between EU countries in regional groups to assess
common supply risks (through common risk assessments) and to
develop joint preventive and emergency measures

-the facilitation of permanent bi-directional capacity on all cross-
border interconnections between EU countries by transmission
service operators, unless an exemption is granted, the granting of
exemptions are closely monitored by the Commission that can adopt
decisions to request modifications to them

-the preparation of EU-wide simulations of gas supply and
infrastructure disruptions, carried out by the European Network for
Transmission System Operators for Gas (ENTSOG) to provide a
high-level overview of the major supply risks for the EU

In line with the Regulation on Conditions for Access to the
Natural Gas Transmission Networks (EC/715/2009), ENTSOG is
also required to undertake seasonal supply outlooks investigating, at
the pan-European level, the security of gas supply ahead of each
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winter and summer period. These seasonal supply outlooks help the
Commission in its monitoring work.

On 5 September 2012, the EU Agency for Cooperation of
Energy Regulators (the ‘Agency’) launched a public consultation on
the draft Framework Guidelines rules regarding harmonised
transmission tariff structures for gas. The purpose of this
consultation was to collect the views of the stakeholders in order to
develop the Framework Guidelines (the “FG”) pursuant to Articles
6(2) and 8(6)(k) of Regulation (EC) No 715/2009 (the “Gas
Regulation™).

The public consultation launched by the Agency solicited
feedback from various stakeholders on the draft Framework
Guidelines as published on 5 September 2012 on the Agency’s
website. The public consultation closed on 5 November 2012. In
addition to the consultation, an Open House was conducted on 4
February 2013. Annex 2 contains stakeholders’ views from the Open
House submissions and the Agency’s summary of the additional
comments received in writing. Annex 3 provides the list of
respondents to the Open House.

The Energy Code empowers the Energy Regulation
Commission (CRE) to define the methodology for establishing
tariffs for the use of natural gas transmission networks, gas storage
facilities and LNG terminals. CRE can make changes to the tariff
levels and structure deemed justified in light of operators’ accounts
and any expected changes in operating or investment expenses.

Natural gas network tariffs are calculated using income and
expense assumptions for the different elements covered by tariffs.
An ex-post adjustment mechanism, the expenses and revenue claw-
back account, helps to resolve differences between actual expenses
and income and projected expenses and income for elements which
are difficult for gas system operators to predict and control. To
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encourage operators to control energy expenses (gas and electricity)
and CO2 allowances, only 80% of the differences of those costs
compared to the previous year's updated energy expenses trajectory
are covered by this mechanism. The remaining 20% of this
difference is for the benefit or at the expense of the operator to
encourage them to stay below the defined trajectory.

Considering EU Regulation numbered 2017/460, which
establishes a network code setting out the rules on harmonised
transmission tariff structures for gas, CRE deliberated on tariffs for
natural gas transmission systems, storage facilities and LNG
terminals. These tariffs address a number of objectives, including
proper functioning of the wholesale gas market, supporting the
energy transition by enabling biomethane injection, and ensuring
proper safety and environmental standards.

In October 2024, the Commission publicly launched the
interactive security of gas supply dashboard. It provides
comprehensive weekly data on imports, storage levels, transport and
consumption of gas in the EU, allowing national and EU decision-
makers take swift and informed actions to ensure energy security
across the EU.

On 23 March 2022, the Commission published a
Communication on security of supply and affordable energy prices
(COM/2022/138), together with a proposal for a new regulation on
gas storage. The Gas Storage Regulation (EU/2022/1032) was
adopted in June 2022 and applies until the end of 2025.

On 5 March 2025, in the context of continued volatility and
uncertainty in the global energy landscape, the Commission
proposed to prolong the regulation for 2 years (COM/2025/99), until
the end of 2027, following its report on the regulation
(COM/2025/98).
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On 5 March 2025, the Commission published a
recommendation (C/2025/1481) to EU countries to consider the
current market conditions and introduce flexibility when deciding on
measures to refill their storages next summer.

On 17 July 2025, the Commission published a 4 week call for
evidence on a draft delegated regulation updating the composition of
risk groups as foreseen in Regulation (EU) 2017/1938. It reflects the
significant changes to EU gas supply since 2021 and the evolution
of the major transnational risks to security of gas supply. The draft
delegated regulation maintains 4 risk groups but introduces
significant simplification. EU countries were consulted through the
Gas Coordination Group (GCG), and there will be a further
consultation of the GCG following the public call for evidence.

EU Parliament and the Council reached a provisional
agreement on the Commission’s proposal in June and the adopted
Regulation EU/2025/1733 was published on 10 September 2025.

Gas storage, in particular Underground Gas Storage (UGS),
is instrumental to the security of supply as it provides an additional
reserve in case of strong demand or supply disruptions. Typically,
storage provides 25-30% of gas consumed in the EU during winter.
It reduces the need to import additional gas and contributes to
absorbing supply shocks.

What is UGS Tariff?

Underground Gas Storage (UGS) tariff is based on the
specific requirements of customers and within the bandwidth of the
technical specifications of its facility. Therefore, a standard ratio
between Send In capacity, Send Out capacity and Working Gas
Volume is not applicable in the market. All services are customized
and tariffs are established through negotiations. And it affects the
natural gas tariff directly.
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EU’s gas companies publish the weighted average tariff for a
service on TTF with an average bundle ratio for relevant storage
year. The below tariff excludes energy charges and includes
transportation charges.

-The average tarift for storage year 2023 is € 14.84 Euro/MWh for
the average bundle of 0.66/1/259.

-The average tarift for storage year 2024 is € 16.13 Euro/MWh for
the average bundle of 0.75/1/341.

Around 2006 most of EU countries’ Authorities for natural
gas approved the Storage Code Resolutions. EU tariff for injection,
storage and withdrawal of gas are stated by countries’ natural gas
distribution companies.

In Turkey, Energy Market Regulatory Authority (EMRA) has
announced the storage and transmission tariffs for storage facilities,
i.e. BOTAS’s Tuz Golu Underground Natural Gas Storage Facility
and Silivri Underground Natural Gas Storage Facility.

For the year 2025, storage year, the upper limit storage fees
were set by EMRA:

- 3.080123 TL per cubic meter for capacity fees,
- 0.105722 TL per cubic meter for injection fees,
-0.010516 TL per cubic meter for withdrawal fees.

Best Practice Guidelines for the Implementation of the Pass-
Through Mechanism for gas costs, Trading Hub Europe publishes
the specific gas pass-through amount that is applicable across EU’s
countries. The gas pass-through amount is charged in addition to the
transportation tariffs at exit points to the Transmission System
Operator-TSOs’ directly connected final consumers and downstream
network operators. Exit points to storage facilities as well as cross-
border and market area interconnection points are taken into account.
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UGS plays an important role to balance the EU and Tiirkiye’s
natural gas system and to cover peak demand during winter. Gas
storages play an important role for ensuring continuity of gas supply;
it is an important source of gas flexibility during the winter and are
refilled during the summer period. The role of storages becomes
more relevant in a context where the EU indigenous gas production
consistently declines year on year, increasing the gas import
dependency from external gas producers to the EU. The UGS
inventory level on 1 October 2021 is the lowest of the past 5 years,
and it has continued below the average during the winter of 2021-
2022. This is primarily due to a low storage level at the end of winter
2020-2021, combined with a storage injection season characterised
by extremely high gas wholesale prices which did not incentivize
market participants to store gas in comparison to previous years.

EU Gas Storage Regulation

Under EU Gas Security of Supply Regulation
(EU/2017/1938), amended by the Gas Storage Regulation
(EU/2025/1733), gas storage facilities are considered critical
infrastructure and an updated certification process was introduced
for all storage operators in the EU to reduce the risks of outside
interference. This contributes to reducing the security of supply risks
and supports the EU's competitiveness by ensuring that storage
facilities are properly filled.

Operators of storage sites should report the filling levels to
national authorities and EU countries should monitor the filling
levels on a monthly basis and report to the EU Commission.

Another important element is the burden-sharing mechanism.
Some EU countries have storage larger than their own national
consumption, while others do not have any storage facilities.
However, all EU countries benefit from the guaranteed filling levels,
so the burden-sharing mechanism makes sure that not only EU
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countries with storage facilities pay for the security of supply costs
of the minimum filling target.

To ensure security of gas supply and to comply with the gas
storage target of 90% each year, EU countries with underground gas
storage facilities define the intermediate targets for the Ist of
February, May, July and September. The trajectories are based on the
filling rates of the previous 5 years, and the Commission and EU
countries regularly monitor the storage filling trajectories within the
Gas Coordination Group.

EU Gas Storage Levels

EU is the world’s second largest region in terms of
underground gas storage (UGS) capacity, behind US. EU member
states collectively operate UGS sites with a working gas capacity of
104 bcm, accounting for one quarter of the global capacity. The
importance of gas storage in the EU has grown significantly since
the 2022 energy crisis, underscoring the need for supply security and
system flexibility. Storage is especially critical given the region’s
sharp seasonal demand swing, with winter gas consumption rising
by approx. 135% compared to the summer. This contrasts with a 50%
seasonal increase in US and just 11% in China, highlighting the EU’s
heightened dependence on storage for winter supply reliability.

EU gas system reached a storage level of 83% on 1 October
2025, recording approximately 85 bem of gas in stock at the start of
the winter. This level is in the range observed in the years prior the
energy crisis and represents around 25% of the EU's annual gas
consumption. Starting from a 34% filling level on 1 April 2025, 50
bem of gas was injected into EU gas storages during the summer to
reach current levels. This is substantially more than in the previous
2 years.

In June 2022, the EU underwent a structural shift in its gas
market framework with the adoption of Regulation (EU) 2022/1032,
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aimed at ensuring stable gas supply in winter seasons. This
regulation introduced three key measures for EU member states to
enhance gas storage security. First, it set binding capacity targets for
UGS sites: storage facilities were to be filled to at least 80% by 1
November 2022, increasing to 90% by 1 November in subsequent
years. Intermediate targets were also established throughout the year,
specifically at the start of February, May, July and September.
Second, the regulation limited the required filling volume to 35% of
the member state’s average annual gas consumption over the
previous five years.

The new EU regulation prompted EU member states to inject
arecord 72 bem into UGS facilities during the 2022 summer season,
following a historically low end-of-winter level of just 26 bcm. That
enabled the region to maintain a reliable gas supply throughout the
2022/2023 winter. In both 2023 and 2024, the EU encountered fewer
challenges in meeting its intra-year storage targets, owing to a
combination of factors: milder-than-expected winter weather,
declining gas demand, robust LNG imports, and stabilised pipeline
gas imports. These conditions contributed to net gas withdrawals of
just 41 and 43 becm over the two winter seasons, the lowest levels in
over a decade. By the end of the 2023/2024 winter, gas storage
remained at an all-time high of 61 bcm. As a result, gas injection
needs during the 2024 summer season were significantly reduced,
with only 39 becm injected, marking a record low since 2012 which
is presented in Figure 1.
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Figure 1. UGS injections and withdrawals in EU
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After two consecutive winters of milder-than-average
temperatures, the 2024/2025 winter marked a return to colder
weather conditions, last seen three years ago. Net gas withdrawals
began as early as 22 October 2024, more than two weeks earlier than
in 2023, and average EU temperatures remained below historical
norms throughout the winter. During the core winter months
(November 2024 to March 2025), the average temperature in the EU
dropped to 5.6°C, significantly lower than 6.5°C in 2023/2024 and
the average of the previous six winters of 6.0°C. This is supported
by heating degree days (HDDs) data, which measure heating demand
by calculating the difference between the mean daily temperature
and a reference temperature. Over the 2024/2025 winter season, the
EU recorded a total of 1,877 HDDs, representing a 7% increase
compared to the previous winter and a 3% increase over the average
of the prior six winter seasons which is presented in Figure 2.
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Figure 2. Average EU temperatures (L) & heating degree days (R)
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Below-average temperatures during the 2024/2025 winter
posed challenges to the supply-demand balance in the regional gas
market. On the demand side, colder weather led to a significant
increase in gas consumption for heating, with the region estimated
to have consumed 16 bem more than during the previous winter.

On the supply side, the EU experienced reduced gas
availability, driven by declines in both domestic production and gas
imports. Domestic output continued its structural downward trend
due to depleting reserves, with the total domestic EU output
declining from 17 becm in the 2021/2022 winter to 12 bem in the
2024/2025 winter, hence, further intensifying the region’s
dependence on external supply. However, pipeline gas imports
during the winter season fell sharply by 42 becm over the past three
years, from 104 bem in 2021/2022 to 62 bem in 2024/2025, largely
as a result of geopolitical developments. This decline was only
partially offset by a 12 bem increase in LNG imports during the
winter season, rising from 43 bcm in 2021/2022 to 55 becm in
2024/2025. Consequently, total EU gas imports dropped to 117 bcm
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during the 2024/2025 winter, down from 121 becm in 2023/2024, 123
bem in 2022/2023 and 147 bem in 2021/2022, further aggravating
the region’s supply situation amid heightened seasonal demand.

With the supply-demand balance tightening, EU was forced
to rely on UGS withdrawals during the 2024/2025 winter as a critical
component of gas supply, with withdrawals reaching 65 bcm, a level
not seen since 2020/2021. As a result, storage levels fell to just 35
bem by the end of the winter season. While this is only slightly below
the 10-year average of 38 bcm, it is significantly lower than the
levels recorded in 2024 (61 becm) and 2023 (57 bem), making the
current gas storage situation markedly different and considerably
more complex.

By 1 November 2025, under the current gas storage
regulations, EU member states must restock approximately 60 bcm
to meet the 90% capacity target. This figure is significantly higher
than the volumes injected during the 2023 and 2024 summer
seasons, which amounted to 47 becm and 39 bem, respectively.

The common expectation is that EU will succeed in injecting
the required storage volumes, however, compliance with mandatory
storage targets is likely to lead to elevated prices, as was the case
during the 2022 energy crisis. At that time, Europe, urgently seeking
LNG to offset declining pipeline gas imports, emerged as a premium
destination for global LNG, overtaking Asia. This was reflected in
European hub prices surpassing Asian spot LNG prices, marking an
unprecedented reversal of the traditional inter-regional price
relationship. As market conditions stabilized, the NEA-TTF price
spread gradually returned to historical norms, with Asia regaining its
premium over Europe in 2023 and 2024. In 2025, as Europe once
again demands higher LNG volumes to refill UGS sites, and
therefore competes with Asia for spot LNG cargoes, TTF spot prices
are expected to remain elevated throughout the summer.
Additionally, lower-than-expected LNG demand in China and US-
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initiated tariff war may exert downward pressure on spot LNG prices
in both regions.

There is a strong correlation between gas prices and storage
dynamics in EU market. During the winter months, colder
temperatures drive up heating demand, leading to higher gas
consumption and a corresponding increase in prices. Conversely, in
the summer, heating demand declines sharply, resulting in lower
consumption and typically lower prices. This seasonal pattern
generates a winter-summer price spread, incentivizing market
operators to buy gas at lower summer prices, inject it into UGS sites,
and resell it in winter at higher prices.

Considering the maximum average monthly TTF price
during the winter months versus the minimum average monthly TTF
price during the summer months, the seasonal price spread averaged
$2.9/MMBtu between 2016 and 2020 (Figure 3). Amidst the post-
pandemic recovery and the 2022 energy crisis, the spread widened
to an unprecedented $35/MMBtu in 2021 and $14/MMBtu in 2022,
and remained at an economically effective level of $4-6/MMBtu in
2023 and 2024. However, in 2025, futures price dynamics indicate a
slightly positive winter-summer price spread of just $0.7/MMBtu, as
the EU’s gas storage regulations are expected to support high
injection demand, exerting upward pressure on prices. At the same
time, the global gas market is expected to see increased supply by
year-end, with 54 Mtpa of new liquefaction capacity coming online
throughout 2025 and production ramping up by year-end, which is
likely to suppress any significant rise in winter prices. As a result,
the narrow seasonal price spread is expected to lead to commercial
losses for gas storage operations.
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Figure 3. Spread between the peak winter prices and lowest
summer prices in the EU
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Regulation (EU) 2022/1032 was initially set to expire at the
end of 2025, but in March 2025, the European Commission proposed
a two-year extension, through the end of 2027, emphasizing its
continued importance for ensuring both gas supply security and
market stability. At the same time, the Commission is reviewing
proposals from several member states seeking greater flexibility
within the regulatory framework, particularly by allowing 10%
deviations from storage targets and compliance deadlines under
exceptional national circumstances. Looking beyond 2027, EU gas
market is expected to evolve toward a more balanced and resilient
structure, potentially reducing the need for such administrative.

The original Gas Storage Regulation, 16 in force since 1 July
2022, included the following key requirements:

* A mandatory storage filling obligation, stipulating a binding final
filling target and filling trajectories with intermediate targets as well
as storage burden-sharing mechanisms (initially codified by
amending the Security of Supply Regulation);

» mandatory certification of storage operators (codified by amending
the Gas Regulation 715 and subsequently incorporated into the
Renewable and Natural Gas and Hydrogen Regulation).

--02--



The Regulation’s requirement for EU Member States to meet
the final filling target and to adhere to filling trajectories with
intermediary targets was a highly interventionist measure, adopted
amidst the energy crisis of 2022 when fears ran high that EU gas
storage would not be filled ahead of the winter of 2022- 23. While it
ensured storage was refilled, it also contributed to a sharp increase
in gas prices in the 3Q2022, as all Member States simultaneously
scrambled for supplies to meet their targets (Figure 4).

Figure 4. TTF day-ahead and month-ahead prices, euros/MWh
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While the Regulation was set to expire at the end of 2025, it
contained a provision which envisaged the possibility of mandatory
filling targets and trajectories becoming permanent as part of the Gas
Security of Supply Regulation review, based on the EC report.

Tiirkiye’s UGS Facilities
Tiirkiye’s UGS Facilities and their capacities are listed below:

-Tuz Golu Underground Natural Gas Storage Facility: It is located
in the Aksaray province, 40 km South of Tuz Golii in the Sultanhani
district of Tiirkiye. In 2011 construction work was started and it is
aimed to reach 5.4 bcm total storage and 80 million Sm? daily
withdrawal capacity together with Gas Storage Expansion Project.
Today 1,2 billion Sm?* working gas capacity and 40 million Sm? daily
withdrawal capacity have been reached. (www.botas.gov.tr)
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-Degirmenkdy Onshore Natural Gas Storage Facility: One of the
depleted underground gas storage of Tiirkiye is Degirmenkoy field.
The Degirmenkoy is one of the two reservoirs of Silivri underground
natural gas storage facility. The field is located in the Thrace region
of Turkey. It is an onshore gas field located 16 km northern-west of
the Northern Marmara field. The storage capacity of the
Degirmenkdy Reservoir is 300.000.000 m3 (www.botas.gov.tr).

-Northern Marmara Offshore Natural Gas Storage Facility: The
Northern Marmara Gas Field was discovered in 1988 in an area 5
km west of Silivri and 2.5 km far off the coast at a depth of 1,200 m.
To determine the size of the natural gas reserve, which is the first
undersea natural gas reserve in Turkey, three offshore boreholes in
1995 and two more were drilled in 1996. Natural gas production
started in September 1997 at the five gas wells. Gas was pumped
from an offshore platform by a 3 km-long undersea pipeline to the
plant at the coast for processing. The storage capacity of the
Northern ~ Marmara  Reservoir  is 1.600.000.000 m3
(www.botas.gov.tr).

Currently, the Northern Marmara and Degirmenkdy (Silivri)
Depleted Gas Reservoir is the only underground natural gas storage
facility in Turkey. Northern Marmara-Degirmenkdy Storage
Facilities in the Silivri district of Istanbul has 3,19 billion Sm?3
storage and 28 million Sm? daily withdrawal capacity, and with the
project initiated in 2017, it aims to reach 4.6 billion Sm* storage and
75 million Sm? daily withdrawal capacity via Phase-I and Phase-II
Projects. It is planned that the total storage capacity will be 4,29
billion Sm?* working gas capacity (www.botas.gov.tr).

EU’s UGS Facilities

Eighteen EU Member States — Austria, Belgium, Bulgaria,
Czechia, Germany, Denmark, Spain, France, Croatia, Hungary, Italy,
Latvia, the Netherlands, Poland, Portugal, Romania, Sweden,
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Slovakia — have underground storage capacity. Total EU storage
capacity stands at ~105 bem in 2025 (equating to slightly less than
one third of annual EU consumption during 2020-24) but is
distributed unevenly across different Member States. Final filling
targets for 2022, 2023, and 2024 have been met by all EU Member
States, with many of them exceeding this target.

The original EU Regulation obliged EU Member States to fill
their gas storage to at least 80 per cent of capacity by 1 November
2022 and to at least 90 per cent of capacity by 1 November of 2023,
2024, and 2025, known as the ‘final filling target’. This requirement
applied to all underground storage facilities located on their national
territory and directly interconnected to a market area in their national
territory.

EU Regulation also stipulated that by 15 November of each
year while it was in force, EC had to set a filling trajectory for each
Member State for 2023, 2024, and 2025 (with intermediary targets
for 1 February, 1 May, 1 July, and 1 September) based on draft filling
trajectories, which had to be submitted by Member States to the EC
by 15 September each year. The Regulation specified that Member
States’ draft filling trajectories had to be based on the average filling
rate during the preceding five years. Given that EU filling level was
significantly elevated during the 2022-23 and the 2023-24 filling
seasons compared to pre-crisis levels, the average filling rate used
for developing the draft filling trajectory for each subsequent season
was skewed upwards.

EU Regulation allowed Member States to meet the final
target partially by counting LNG stored and available in their LNG
terminals (Art. 6a.5), if

a. such LNG storage capacity accounted for more than 4 per cent of
their average consumption over the preceding five years on an
annual basis, and
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b. an obligation on gas suppliers to store minimum volumes of gas
in underground storage facilities and/or LNG terminals was in place

with Spain and Portugal qualifying for this derogation. Application
of these derogations meant that for exempted Member States the
final filling targets for 1 November 2025 were significantly lower
than the default filling target of 90 per cent of capacity.

Several EU Member States — Estonia, Ireland, Lithuania,
Greece, Cyprus, Slovenia, Finland, Luxembourg, and Malta — do not
have any underground storage facilities. Member States without such
facilities are obliged to establish storage arrangements to store gas
in, or conclude burden-sharing agreements with, Member States
which have underground storage facilities. (Figure 5)

Figure 5. Member States: storage filling requirements, storage
arrangements, and burden sharing

Underground gas storage Member States equipped with underground
capacities (TWh) gas storage technologies
Member States that must establish storage
arrangements or burden-sharing mechanisms
200 100 50
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The EU faces a triple challenge, to ensure the security of gas
supply and, at the same time, to secure affordability and accelerate
the decarbonisation of the gas sector.

The green transition of the European gas market and the
move towards new and renewable gases is not only a challenging
undertaking but also an opportunity to:

* Ensure environmental sustainability of the European gas sector;

* Enable competitiveness and affordability by creating a more stable
supply of gas;

* Secure the autonomy of the EU from gas imports and reduce
dependencies on individual third countries.

EU’s gas storage rules 2025-2027; the main changes to the
extended regulation are:

-A 2-month period to meet the 90% filling target every year (1
October — 1 December), replacing the 1 November deadline

-the nature of gas filling trajectories is indicative, unless decided
otherwise by EU countries

-EU countries have the flexibility to deviate from the gas filling
target in case of difficult market conditions or technical constraints

-EU Commission has the possibility to further reduce the target, if
unfavourable market conditions persist

Most gas storage capacity in EU corresponds to depleted and
aquifers fields, which are mainly used to store large volumes of gas
to balance seasonal swings of gas demand and to the extent possible
also for short-term trading and balancing. All EU but Portugal and
Sweden report having depleted and/or aquifers storage sites. In
addition, 8 EU member count with salt and hard rock caverns
storages, representing a low but varying percentage of the total
storage capacity. Caverns are primarily used to optimise gas
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portfolios in the short term as they typically allow for several gas
injection and withdrawal cycles per year. In Portugal, salt caverns
allow for multiple uses, including seasonal storage. Salt and hard
rock caverns are available in Czechia (2% of total storage capacity),
Denmark (45%), France (10%), Germany (50%), Netherlands (3%),
Poland (26%) and Portugal (100%). This information is generally
consistent with GIE data (see Table 3) which contains details on the
WGV capacity per type of storage.

As regards the responsibility for monitoring the compliance
with Gas In Storage (GIS) obligations, where applicable, there are
different models. In all cases there is regular monitoring from the
SSOs. In the case of all regulated storages and for most negotiated
storages, SSO report to public authorities (Ministries, NRAs) and in
some instances also to oil and gas national stockpiling associations
(Hungary and Spain). Most NRAs from EU countries with
negotiated storages (Austria, Denmark, Germany, Latvia,
Netherlands and Sweden) have not identified actors responsible for
compliance, as GIS obligations are not applicable. However, NRAs
with negotiated storages may also receive regular information on
storage filling levels and contracts (e.g. Austria, Germany
confirmed, and possibly others).

The availability of storage capacity products ranges from a
single standard bundled product to up to six different products. All
but one NRA reported that the storage system operators (SSO) offer
standard bundled products, while 12 NRAs responded that SSOs
were offering unbundled products. 9 NRAs selected virtual products,
5 inform of the existence of storage products delivered at the hub
(Denmark, Germany, Hungary, Netherlands, Slovakia). Pooled
storages are used also in 6 EU Countries (Austria, Czechia,
Denmark, Germany, Hungary, Slovakia) and cross-border products
are apparently only available in Austria, Germany, Hungary and
Slovakia. NRAs report that 10 EU Countries offer three or more
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types of capacity products, and all 6 type of capacity products are
available in Germany and Hungary.

Figure 6. Availability of capacity products and type of storage
regulation

Type UGS Reg

nTPA (Sum)

Cap products

B pooled storage (Sum)

M standard bundled products (Sum)
M storage products delivered at hub
unbundled products (Sum)

W virtual products (Sum)

[ cross-border products (Sum)

© 2022 Tom

Total EU gas storage capacity, or working gas volume
(‘WGV’), is 1141 TWh (approx. 100bcm), or about 27% of the EU-
27 annual gas consumption. Gas storage supplies about 25-30% of
the gas consumed in the EU during winter 207, Figure 7 shows the
allocation and size of Member States’ storage capacity and the share
of their annual gas consumption it can cover.
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Figure 7. Gas storage capacity in the EU Member States

Underground gas storage capacity in the
EU Member States

% = % of gas storage capacity from

Member State’'s annual gas consumption, 2021

Il Having storage capacity

- No storage capacity, but solidarity
agreements with other member states

NRAs from Member States which opted for a regulated
regime for storage (e.g. Belgium, France, Italy, Poland and Spain)
have a positive assessment of their national systems and note an
adequate storage filling level at the start of current winter season. In
Portugal, the filling levels were low in October (50%) but they
recovered by December 2021 (80%). In Portugal, it is not a typical
that storage levels are lower in October as gas demand for power
generation is higher during the summer. NRAs from EU Countries
with negotiated storage do not deem that regulatory intervention
would be necessary and, in some cases (Austria, Slovakia) note that
the available storage capacity is used also by gas traders and gas
suppliers of adjacent Member States, not necessarily correlating low
storage levels in their territory with a serious concern for national
gas consumers.

Gas in storage levels are subject to regular monitoring by the
SSOs, network operations and most NRAs. The majority of NRAs,
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despite noting that the vigilance over gas storage levels has
increased, and do not report that current Gas In Storage (GIS) levels
are a concern. In fact, there are limited ongoing discussions at
national level to propose to maximise the GIS levels. Only ACM (for
the Netherlands) reports current concerns focused on GIS for high
calorific value gas (H-gas) storages and ongoing political
discussions around plans for setting minimum storage obligations,
and Ei (for Sweden) makes reference to an ongoing discussion with
gas suppliers to commercially fill the storage in Sweden and the GIS
levels in neighbouring Denmark. NRAs from Member States which
opted for a regulated regime for storage (e.g. Belgium, France,
Italy,Poland and Spain) have a positive assessment of their national
systems and note an adequate storage filling level at the start of
current winter season. NRAs from MS with liberalised storage do
not deem that regulatory intervention would be necessary and, in
some cases (Austria, Slovakia) note that part of the available storage
capacity is used by gas traders and suppliers of adjacent Member
States, not necessarily correlating low storage levels in their territory
with a serious concern for national gas consumers.

Natural Gas Tariffs Elements considering UGS systems
The main elements of natural gas tariffs considering UGS are;
1) Allowed revenue (AR);
2) Operating and maintenance expenditures (OPEX);
3) Gas losses;
4) Regulated asset base (RAB) and return on the RAB;
5) Depreciation;

6) Administrative provisions (amendment of tariffs, tariff
methodology...)

7) Storage fees (capacity fees, injection fees, withdrawal fees)
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Allowed revenue (AR): AR cover prudently incurred operating
costs (incl. costs of gas losses), depreciation and amortization of the
regulatory asset base (assets used to provide the gas distribution
service) and the return on the regulatory asset base less other
revenue.

Operating and maintenance expenditures (OPEX): OPEX
consists of labor costs, material costs, gas losses, service costs.

Gas losses: In EU NRA prescribe the maximum allowed amount of
gas losses and unit price based on a benchmark comparing all DSOs.

Figure 8. The maximum allowed amount of gas losses and unit
price based on a benchmark comparing all DSOs

11
10

3 [ 2014 Y 2015
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DsSO

Regulated asset base (RAB) and return on the RAB: Asset
financed by the DSO used in the distribution activity (land,
equipment, buildings, non tangible assets) It increases with
investments and decreases due to depreciation/amortization.
Investments include those investments included in the investment
plan.

Depreciation: Depreciation and amortization calculated for assets is
used for the gas distribution activity, and it does not include assets
received free of charge financed by third parties. Depreciation and
amortization of assets is calculated using straight line depreciation
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method. Depreciation and amortization rates are calculated assuming
useful life of assets.

Administrative provisions (amendment of tariffs, tariff
methodology...): EU’s tariff methodologies are mainly diverse
methodological approaches that are listed below:

- Cost-plus: the NRA sets a tariff based on the reported operating
costs and the return on capital. No “extra profit” foreseen.

- Incentive regulation: tariff are set on a decreasing trajectory. DSOs
are incentivized to reduce their costs by being allowed by the NRA
to keep part of the savings.

Tariffs are set for regulatory periods, which last for 4-5 years (no
prescribed length) Common distribution tariff elements are; Annual
consumption, Pressure level, Used capacity, Geographic zones.

Possible natural gas tariff items are: A fixed charge expressed as
EUR / month / consumer that is constant for all the consumer or for
a class of consumers — It reflects the cost of metering, meter
maintenance and meter replacement; Variable charge expressed as
EUR/kWHh that depends upon the amount of gas distributed to each
consumer; A capacity charge expressed as EUR / kWh/h
commensurate to the amount of capacity for each consumer. It is
usual to have a combination of fixed and variable charge. The
drawback of a capacity charge as that it is not metered and it depends
on the capacity of the connection.

Storage fees (capacity fee, injection fee, withdrawal fee): The
upper limit storage fees are set by national energy regulatory
authority (NRA) via DSOs. Distribution System Operators (DSOs)
are responsible for:

-Operating, maintaining and developing (if necessary) the
distribution system and providing secure, reliable and efficient
services to the customers;
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-Liaising and working with other participants on the natural gas
market such as transmission system operators and operators of
underground gas storage facilities or LNG terminals;

-Providing open and transparent transport services to system users
i.e. to end-suppliers and to customers;

Related to distribution, the national energy regulatory
authority (NRA) is responsible for:

-Fixing or approving the methodologies for calculating and/or the
tariffs for distribution services incentivizing DSOs to increase
efficiencies, foster market integration and security of supply;

-Ensuring that DSOs operate in compliance with national and Energy
Community rules;

-Ensuring that there are no cross-subsidies between distribution and
other activities;

-Setting or approving standards related to the quality of distribution
services and monitoring time taken by DSOs for adding new
connections or carrying out repair works;

-Helping to ensure that consumer protection measures are put in
place and process customer complaints vis-avis the DSO.
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Figure 9. Distribution of gas tariff fee in EU.
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Material and Method

In the study; an integrated Fuzzy AHP-Fuzzy TOPSIS- Fuzzy
VIKOR approaches are used to assess/evaluate natural gas tariffs
elements considering UGS systems. In literature Fuzzy Multi
Criteria Decision Making Methods (FMCDM) are used in different
fields by many researchers [1-42] by using MATLAB program.

Fuzzy Multi Criteria Decision Making Methods (FMCDM)

In literature Fuzzy Multi Criteria Decision Making
Methods (FMCDM) are wused in different fields by many
researchers and fuzzy methods are also used in many sectors, i.e. to
evaluate design parameters, to evaluate models, to evaluate the
criteria for human resource for science and technology, for analyzing
customer preferences, to evaluate risk analysis in green supply chain,
and to select machine tools. In the study; an integrated Fuzzy AHP-
Fuzzy TOPSIS- Fuzzy VIKOR approaches are used to
assess/evaluate natural gas tariffs considering underground gas
storage systems.
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Fuzzy AHP Method

Since the standard AHP method does not include the
possibility of situations with ambiguity in the estimation, it is
possible to upgrade this method with fuzzy approach. This approach
is called the Fuzzy AHP method. Instead of one defined value, in the
Fuzzy AHP method full range of values that include unsafe attitudes
of decision maker should be generated. For that process it is possible
to use triangular fuzzy numbers, trapezoidal or Gaussian fuzzy
numbers. The Fuzzy AHP method suggests their application directly
in criteria pairs comparison matrix. Triangular fuzzy numbers are
used in most cases/problems by many researchers in literature
because of this reason in the study triangular fuzzy numbers method
is used in Fuzzy AHP method. A triangular fuzzy number that is
defined in R set can be described as N= (1, n, u) where 1 is the
minimum, n is the most possible and u is the maximum value of a
fuzzy case. Its triangular membership function is characterized
below which is presented in Figure 10 and in equation (1).

x-D/(n-1),1 <x<n
uN (x) = (x-u)/(n-u), n < x<u (1)
0, x < lorx >u

Figure 10. Triangular fuzzy number
udN) A

0.0
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Triangular fuzzy number N (shown in Figure 10) can be
described as an interval of real numbers where each of them has a
degree of belonging to the interval between 0 and 1. Triangular fuzzy
number is defined with three real numbers, expressed as 1, n and u.
In the study the performance of each scenario to each criterion is
introduced as a fuzzy number. And in the study the ratings of
qualitative criteria are considered as linguistic variables. These
linguistic variables can be expressed in positive triangular fuzzy
numbers as described in Table 1.

Table 1. Linguistic Variables for the Alternatives

Linguistic Terms- Linguistic Triangular Fuzzy
Abbreviation Variables Numbers
SDA Strongly Disagree (0,0,0.15)

DA Disagree (0.15,0.15, 0.15)

LDA Little Disagree (0.30, 0.15, 0.20)

NC No Comment (0.50, 0.20, 0.15)

LA Little Agree (0.65, 0.15, 0.15)

A Agree (0.80, 0.15, 0.20)
SA Strongly Agree (1, 0.20, 0)

After forming a matrix of fuzzy criteria comparison it should be
defined vector of criteria weights W. For that purpose, the following
equations/steps were used in the study.

Let X ={x1, x2,..., xm } be an object set, and G={gl, g2,....gn} be a
goal set. N extent analysis values for each object can be obtained as

1 2 n s
Ngb Ngia ceey Ngi 1= 1,2,...1’1

Step 1: The values of fuzzy extensions for the i-th object are given
in Expression (2);
n

. j m n J -1
Si= Ngl- ® [ i=1 Zj:l Ngi] @)

j=1
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In order to obtain the expression [X}%; Y7, Néi] it is necessary to

perform additional fuzzy operations with n values of the extent
analysis, which is represented in Equation (3) and (4);

n .
Z 1Néi = (Zj=a i, X, B ) 3)
]:

[ ﬁ12?=1 Néi] = (X1, X2, ni, X, ui) 4)

And it is required to calculate the inverse vector above by using
Expression (5);

171 1 1 1
m n J —
[ i=12j=1 Ngi] (2&1““2?:11 ni’zﬁlli) (5)
Step 2: While N and N are triangular fuzzy numbers, the degree of
possibility for No>N; is defined as:

V(N2 > Ni) = supy=x (min(uN; (x), N2 () (6)

It can be represented in the following manner by Expression (7):

V (N2>Ni) = hgt (N2NN1) uN2(d) (7)
1, ifn, > ny
_ 0, ifl; =1

= L-u ®)

————=—  otherwise
(nz - uZ)(ml_ll)

Where d is the ordinate of the highest intersection point D between
uNT and pN2.

To compare uN1 and uN2, values of both, V(N2 > N1) and V(N1 >
N2) are needed.

Step 3: The degree of possibility for a convex fuzzy number to be
greater than k convex numbers Ni (i=1,2,....,k) can be defined by
expression (9);
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V(N>Ni, No,..., N))=V[(N>Ni1), N>Ny), ..., (N>Ny)] (9)
=min V(N >N=1,2,3,... .k

Assume that Expression (10) is;

d’ (Ai) =min V (Si >Sk) (10)

for k=1,2,...,n; k # 1. So the weight vector is obtained by Expression

(11);

W’ =(d’(A1), d’(A2),..., ’(Am))" (11)

where, Ai (i =1,2,...,n) consists of n elements.

Step 4: Through normalization, the weight vectors are reduced to
Expression (12);
W= (d(A1), d(A2),..., d(An))" (12)

where W represents an absolute number.

Fuzzy TOPSIS Method

The fuzzy TOPSIS calculation most important step is given in
Equation (13), i.e. Creating the Decision Matrix; aggregated ratings
are calculated by using Equation (13):

~ .. 1 -~ ~ ¥
Vij=2 [7; 7 ©... %] )

where ¥;; is the performance rating value obtained from s-th decision

maker.

The basic steps of proposed fuzzy TOPSIS method can be described
as follows:

Step 1: In the first step, a panel of decision makers (DMs) who are
knowledgeable about supplier selection process is established. In a
group that has K decision-makers (i.e. D1, D2, ..., Dk) are

responsible for ranking (yjk) of each criterion (i.e. C1, C2, ..., Cn)
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in increasing order. Then, the aggregated fuzzy importance weight
for each criterion can be described as fuzzy triangular numbers Vj =
(aj,bj,cj)fork=1,2,...,Kandj=1, 2, ..., n. The aggregated fuzzy
importance weight can be determined as follows:

min 1 . max
di="" {yih b= Ti=a vik, =" dyid (14)
Then, the aggregated fuzzy importance weight for each criterion is
normalized as follows:

Vj = (aj1, by, ¢j3)

1 1 1

_ dj _ bj _ cj
whererl—ﬁ,ij—?,Vﬁ——n 1 (15)

j=1dj j=1bj j=1¢j
Then the normalized aggregated fuzzy importance weight matrix is

constructed as V = (¥1, ¥2, ..., ¥n)

Step 2: A decision matrix is formed.

x11 x12 o« xln
X =| %21 x22 .. x2n (16)
xml xm2 .. xmn

Step 3: After forming the decision matrix, normalization is applied.
The calculation is done using equations 17 and 18.

1
xij

lj = —=——= for minimization objective, where1=1, 2, ..., m and
m
A i=1xij2
j=L2,..,n (17)
Tij = —=2__ for maximization objective, wherei=1, 2, ..., m and
[T xij?

i=1,2,...,n (18)

Then, normalized decision matrix is obtained as:
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rll r12 -+ rin
R = r21 r2"2. o r2n (19)

rml rm2 .. rmn

Step 4: Considering the different weights of each criterion, the
weighted normalized decision matrix is computed by multiplying the
importance weight of evaluation criteria and the values in the
normalized decision matrix. The weighted normalized decision
matrix V for each criterion is defined as:

V=[Vijlmxn fori=1,2,...,mandj=1,2,...,n (20)
Where Vij = rij X 6;
Here Vij denotes normalized positive triangular fuzzy numbers.

Step 5: Then fuzzy positive (A”) and fuzzy negative (A") ideal
solutions are determined as follows:

A*= (@5, %", ..., %) where

V= {miax(vijl), mlax(vijZ),miem(vijS)} and

A =@, ¥, ..., %) where

Vi = {miin(vijl) , miin(vijZ) , miin(vij3)}
fori=1,2,...,mandj=1,2,...,n 21)

Step 6: Then the fuzzy distance of each alternative from fuzzy
positive and fuzzy negative ideal solutions are calculated as:

3= D@ - anda- (DL - )

i=1,2,..,m (22)

Step 7: Then the fuzzy closeness coefficient N is determined as:

i=1,2,...,m (23)
111~



The fuzzy closeness represents the distances to the fuzzy positive
ideal solution and the fuzzy negative ideal solution simultaneously.

Step 8: The fuzzy closeness coefficient defuzzified as follows:

Ni=3Ny - Ny - N (24)
Fuzzy VIKOR Method

The VIKOR method is one of the FMCDM. It was developed
by Serafim Opricovic (1990) to solve decision problems with
conflicting and non-commensurable criteria, assuming that
compromise is acceptable for conflict resolution. VIKOR ranks
alternatives and determines the compromise solution closest to the
ideal solution. The international recognition of the VIKOR method
was due to contribution of Serafim Opricovic and Gwo-Hshiung
Tzeng (2004).

In this study Fuzzy-VIKOR method is used to solve problem
in a triangular hesitant fuzzy environment. The triangular fuzzy
numbers are used to handle imprecise numerical quantities. Fuzzy-
VIKOR is based on the aggregating fuzzy merit that represents
distance of an alternative to the ideal solution (Incekara,2020). The
related steps are as follows (Incekara,2020):

Step 1: Determine the positive triangular ideal solution (PTIS) and
the negative triangular ideal solution (NTIS).

A ={f* 5t ..., fif ywhere

+_ _ L L
fii= Uiifii = Uyijctijymjc fmi (max(ygj,- > Ymj)s
M M U U
max(Yyj,- > Ymj)> MaxX(Yjs-- > Ymj))

A ={f1,fs, -, fn }Where
f}'_: n?il fl] - r]ylj € f1j...ymj € fmj (min(Y%j" i) yrlilj)’

--112--



Step 2: The aggregated fuzzy ratings of alternatives with respect to
criterion are calculated by using below Sj and Rj below equations:

=Yr 0wy (F = xij) / (F = )] (26)
Rj = miax[ w; (= xij) / (§ = §7)] 27)

S;=

—

where wi are the weights of the criteria expressing their relative
importance.

Step 3: Normalization. Compute the values Q; by using below

expressions:
$*=minS;, S™ =max§; (28)
1 1
R*= min R;, R~ =maxR; (29)
1
~ § -S* =1 D * D— D*
UG=vgzy+a- v)(Ri— R*)/(R™ - R") (30)

Step 4: Rank the alternatives by sorting the values of S, R and Q in
decreasing order which results in three ranking lists.

BNP; = [(ui — 1)+ (mi — 1)] /3 +1; (31)

Step 5: Propose as a compromise solution the alternative A’ which
is ranked the best by the measure Q(minimum) if the following two
conditions are satisfied:

CC1: Acceptable advantage:

Q(A”)-Q(A")=DQ (32)
where A” is the alternative with second position in the ranking list
by Q; DQ=1/(m-1)

DQ =1/ (m-1) (if m<5 ise DQ=0.25); where m is the number of
alternatives.

CC2: Acceptable stability in decision: Alternative A” must also be
the best ranked by S or/and R. This compromise solution is stable
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within a decision making process, which could be “voting by
majority rule” (when v > 0.5 is needed) or by “consensus” v = 0.5 or
with ”veto” (v < 0.5). Here v is the weight of the decision making
strategy “the majority criteria” or (“maximum group utility”). If one
of the two conditions is not satisfied, then a set ofcompromise
solutions is proposed, which consists of:

- Alternatives A” and A’ if only condition CC2 is not satisfied, or

- Alternatives A’, A”... Am if condition CC1 is not satisfied, Am is
determined by the relation Q(A™) - Q(A’) < DQ for maximum m (the
positions of these alternatives are “in closeness”).

In the study Fuzzy-AHP, Fuzzy-TOPSIS and Fuzzy-VIKOR
procedures and related calculations have been coded/solved by using
MATLAB program.

Selection of Natural Gas Tariffs Elements considering UGS
systems

Natural Gas Tariffs Elements considering 7 dimensions-main
UGS systems, i.e. measuring scale, consists of 7 dimensions-main
criteria and 36 evaluation factors-sub-criteria. In the process of
prioritization of criteria, subcriteria and alternatives, the DMs used
in the selection process was consulted. A questionnaire was
developed following the methodology proposed for the below
methods, which was answered by 27 experts/DMs.

In the study 7 main criteria, i.e. Allowed revenue (AR) (C1),
Operating and maintenance expenditures (OPEX) (C2), Gas losses
(C3), Regulated asset base (RAB) and return on the RAB (C4),
Depreciation (C4), Administrative provisions (amendment of tariffs,
tarift methodology...) (C5), Storage fees (capacity fees, injection
fees, withdrawal fees) (C6) and 36 related subcriteria are
evaluated/assessed by each expert/DM. For the case of prioritization
of the criteria, after the aggregation process performed with the
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answers of the 27 experts, the comparison matrix was obtained. The
pairwise comparison matrices for subcriteria and alternatives are
calculated. Subsequently, the normalized pairwise comparison
matrix of criteria was obtained. The priority vector and the CR for
the criteria were obtained. To obtain the other priorities, the same
procedure presented for the criteria was applied. In order to facilitate
the calculations; which enters the individual judgments of the
experts and generates the local and global preferences of all levels
of the hierarchical tree (criteria and subcriteria).

Hereunder, natural gas tariffs considering underground gas
storage system’s main criteria and related sub-criteria are described:

Allowed Revenue (AR):

Allowed revenue represents the maximum income that an
underground gas storage (UGS) operator is permitted to recover
through regulated tariffs during a defined regulatory period. It is
designed to ensure full recovery of efficiently incurred costs,
including capital and operational expenditures, while providing a
reasonable return on investment and preventing excessive pricing
due to the natural monopoly nature of UGS facilities.

Operating and Maintenance Expenditures (OPEX):

Operating and maintenance expenditures include all ongoing
costs required for the safe, reliable, and efficient operation of
underground gas storage facilities. These costs typically cover labor,
energy consumption for compression and injection, routine
maintenance of wells and surface equipment, monitoring of reservoir
integrity, environmental compliance, and safety-related activities,
and they are usually subject to regulatory efficiency assessments.

Gas Losses:

Gas losses refer to the volume of natural gas that is
consumed, lost, or rendered unrecoverable during storage
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operations. In the context of UGS systems, these losses mainly arise
from fuel gas used for compressors, unavoidable leakage,
measurement discrepancies, and the technical requirements related
to cushion gas, and they are generally recognized within tariff
calculations either as physical allowances or as cost-based
compensation.

Regulated Asset Base (RAB) and Return on the RAB:

The regulated asset base represents the value of the physical
and intangible assets employed by the UGS operator to provide
storage services, including subsurface formations, wells,
compressors, and surface installations. A regulated return on the
RAB is granted to compensate investors for the capital employed,
typically calculated using a weighted average cost of capital that
reflects the risk profile, long asset lifetimes, and capital-intensive
nature of underground gas storage projects.

Depreciation:

Depreciation allows the gradual recovery of -capital
investments over the economic lifetime of underground gas storage
assets. Given the long operational life of UGS facilities, depreciation
schedules are usually extended and asset-specific, ensuring that
investment costs are recovered in a stable and predictable manner
while maintaining tariff continuity for storage users.

Administrative Provisions:

Administrative provisions define the regulatory framework
governing tariff setting, adjustment, and revision for underground
gas storage services. These provisions typically specify the tariff
methodology, procedures for periodic reviews, indexation
mechanisms, treatment of cost deviations, and rules for amendments,
thereby ensuring transparency, regulatory certainty, and consistency
with broader energy policy objectives.
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Storage Fees (Capacity, Injection, and Withdrawal Fees):

Storage fees represent the practical tariff components
through which allowed revenue is collected from storage users.
Capacity fees are charged for reserving storage volume or
deliverability, reflecting the high fixed-cost nature of UGS systems,
while injection and withdrawal fees are applied to the actual use of
the facility and are intended to reflect variable operational costs and
system utilization.

Results

In the study 7 main criteria, i.e. Allowed revenue (AR) (C1),
Operating and maintenance expenditures (OPEX) (C2), Gas losses
(C3), Regulated asset base (RAB) and return on the RAB (C4),
Depreciation (C4), Administrative provisions (amendment of tariffs,
tariff methodology...) (C5), Storage fees (capacity fees, injection
fees, withdrawal fees) (C6) and 36 related subcriteria are
evaluated/assessed by each expert/DM. For the case of prioritization
of the criteria, after the aggregation process performed with the
answers of the 27 experts, the comparison matrix was obtained. The
pairwise comparison matrices for subcriteria and alternatives are
calculated. Subsequently, the normalized pairwise comparison
matrix of criteria was obtained.

Natural gas tariffs elements considering UGS systems are
evaluated by using Fuzzy method. After acquiring the fuzzy
comparison matrices, importance weights of risk management in
internal audit’s dimensions; evaluation criteria is calculated by using
Fuzzy method. According to the calculated criteria weights for
natural gas tariffs elements’ weights; the most important evaluation
dimension/main-criteria is “Storage Fees”, the second important
evaluation dimension is “Operating and maintenance expenditures
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(OPEX)” and the third important evaluation dimension is
“Administrative provisions”.

Conclusion

The original EU Regulation obliged EU Member States to fill
their gas storage to at least 80 per cent of capacity by 1 November
2022 and to at least 90 per cent of capacity by 1 November of 2023,
2024, and 2025, known as the ‘final filling target’. This requirement
applied to all underground storage facilities located on their national
territory and directly interconnected to a market area in their national
territory.

Gas storage facilities are critical for ensuring the security of
gas supply. The mandatory certification of all gas storage system
operators was introduced in order to avoid potential risks resulting
from non-EU-country influence over storage infrastructure. The
Commission issues an opinion for each draft certification decision
submitted by the certifying authorities and publishes it. After taking
outmost account of the Commission’s opinion, the certifying
authority issues the certification decision.

EU gas supply portfolio is marked by a high import
dependency, which reached nearly 84% in 2021. For some Member
States, including the largest gas markets of Germany and Italy, the
dependence exceeds 90%. The fall of domestic production almost by
two-thirds in 2021 (up to only 17% of the total gas supply) was
increasingly filled by imports. Among the key suppliers to the EU,
in 2021 imports from Russia reached 34.4%, from Norway — 23.9%,
from Algeria — 7.4%, and 2.5% were filled by other pipeline imports
from Libya and Azerbaijan. LNG imports constituted 17.5%.

Covering around a quarter of the EU's annual gas
consumption, Underground Gas Storage (UGS) is an important
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component in the European gas system providing security of supply
and system flexibility by covering peak demand during the winter
season. Storages allow commercial price absorption as well. In the
context of steadily decreasing EU indigenous gas production and
increasing import dependency, UGS, with other gas storage options,
are becoming strategic serving as a buffer option in case of
disruption.

EU’s Gas Storage Regulation, formally Regulation (EU)
2022/1032, currently aims to enhance gas supply security by
requiring member states to fill their underground gas storage
facilities to at least 90 per cent of their capacity by 1 November each
year. This regulation, adopted in June 2022, is set to expire at the end
of 2025. EU member states with underground gas storage facilities
are required to meet specific filling targets throughout the year,
culminating in the 90 per cent target by 1 November.

On 5 March 2025 the European Commission put forward an
amendment to the regulation adopted during the 2022 energy crisis.
The amendment extends the application of the Gas Storage
Regulation by two years (until the end of 2027). This extension had
been announced as part of the Clean Industrial Deal of 26 February
2025.

A storage arrangement is understood as an obligation on a
Member State without underground storage to arrange for storing gas
in that of another Member State. In particular, the Regulation obliged
Member States without underground storage to make sure their
market participants had arrangements with storage system operators
(or other market participants) in other Member States which do have
underground storage. These arrangements had to provide by 1
November for the use of storage volumes equal to at least 15 per cent
of the Member State’s average annual consumption over the
previous five years. Where the storage capacity of a Member State

is larger than its annual gas consumption, a Member State without
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underground storage capacity which has access to it, is obliged to
ensure that by 1 November each year, storage volumes must reach
the level of its average use over the preceding five years or else
demonstrate that corresponding capacity has been booked. In case of
the latter, a Member State without underground storage capacity
must provide by 1 November for the use of storage volumes at least
at the level of 15 per cent of their average annual consumption over
the preceding five years.

Therefore UGS plays an important role to balance the
European gas system and to cover peak demand during winter. Gas
storages play an important role for ensuring continuity of gas supply;
it is an important source of gas flexibility during the winter and are
refilled during the summer period. The role of storages becomes
more relevant in a context where the EU indigenous gas production
consistently declines year on year, increasing the gas import
dependency from external gas producers to the EU. The UGS
inventory level on 1 October 2021 is the lowest of the past 5 years,
and it has continued below the average during the winter of 2021-
2022. This is primarily due to a low storage level at the end of winter
2020-2021, combined with a storage injection season characterised
by extremely high gas wholesale prices which did not incentivize
market participants to store gas in comparison to previous years.

Over the course of 2022 EU adopted a significant amount of
‘emergency’ legislation to address the consequences of the energy
crisis, which had been engulfing Europe since late 2021.

EU Gas Storage Regulation was set to expire on 31
December 2025. The Regulation obliged Member States to fill their
storage to at least 90 per cent of capacity by 1 November 2023 (and
each subsequent year) for as long as the Regulation was in force thus
making the 1 November 2025 target. The Regulation also established
a filling trajectory whereby EU Member States’ storage was to be
filled to a certain capacity by 1 February, 1 May, 1 July, and 1



September of every year the Regulation was in force (“intermediary
targets”).

In EU, ACER, i.e. Agency for the Cooperation of Energy
Regulators, published “Tariff Methodologies: Examples, Public
Consultation on Draft Framework Guidelines on rules regarding
harmonised transmission tariff structures for gas (Ref:
PC 2013 G 03)” document, in the document harmonised
transmission gas tariff methodologies in EU is explained in detail.
The aim of this document is to illustrate the cost allocation
methodologies described in the Framework Guidelines for
Harmonised Tariff Structures with a simple network situation
examples, and allow stakeholders taking part in the Public
Consultation to better understand and comment the approach
currently envisaged. In the matrix approach is used, the matrix model
is a simplified version of the entry-exit matrix model, and it is based
on the same assumptions of the capacity-weighted distance — variant
A (CWD) model, in order to favour comparability of outcomes.
Assumptions on the allowed revenue are Total Allowed revenue (€),
Capacity/commodity split, revenue to be collected from capacity
charges, revenue to be collected from commodity charges,
Entry/Exit split percentage and revenues.

Main methodology is; defining a cost driver and applying the
cost driver to network segments. When defining a cost driver
(“Normalized Transport Cost-TC”), the simplified model takes into
account the following features of each segment:

a) technical capacity (Mcm/day);
b) standard investment cost index in relation to capacity (IC);
¢) length.

Most gas storage capacity in EU corresponds to depleted and
aquifers fields, which are mainly used to store large volumes of gas
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to balance seasonal swings of gas demand and to the extent possible
also for short-term trading and balancing. All EU but Portugal and
Sweden report having depleted and/or aquifers storage sites. In
addition, 8 EU member count with salt and hard rock caverns
storages, representing a low but varying percentage of the total
storage capacity. Caverns are primarily used to optimise gas
portfolios in the short term as they typically allow for several gas
injection and withdrawal cycles per year.

Gas in storage levels are subject to regular monitoring by the
storage system operators (SSO), network operations and most
NRAs. The majority of NRAs, despite noting that the vigilance over
gas storage levels has increased, and do not report that current Gas
In Storage (GIS) levels are a concern.

In the study 7 main criteria, i.e. Allowed revenue (AR) (C1),
Operating and maintenance expenditures (OPEX) (C2), Gas losses
(C3), Regulated asset base (RAB) and return on the RAB (C4),
Depreciation (C4), Administrative provisions (amendment of tariffs,
tarift methodology...) (C5), Storage fees (capacity fees, injection
fees, withdrawal fees) (C6) and 36 related subcriteria are
evaluated/assessed by each expert/DM. For the case of prioritization
of the criteria, after the aggregation process performed with the
answers of the 27 experts, the comparison matrix was obtained. The
pairwise comparison matrices for subcriteria and alternatives are
calculated. Subsequently, the normalized pairwise comparison
matrix of criteria was obtained. The priority vector and the CR for
the criteria were obtained. To obtain the other priorities, the same
procedure presented for the criteria was applied. In order to facilitate
the calculations; which enters the individual judgments of the
experts and generates the local and global preferences of all levels
of the hierarchical tree (criteria and subcriteria).

The calculated criteria weights for risk management in

natural gas tariffs elements’ weights; the most important evaluation
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dimension/main-criteria is “Storage Fees”, the second important
evaluation dimension is “Operating and maintenance expenditures
(OPEX)” and the third important evaluation dimension is
“Administrative provisions”.

While the Storage Regulation has only been extended until
the end of 2027, it is possible that it could become a permanent
instrument as part of the ongoing review of the EU energy security
framework. Its aim is to make the EU’s energy system “more
prepared, secure and resilient to current and future crises”, and it
seeks to determine how the current energy security framework
should be amended for this purpose.
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CHAPTER 5

QUALITY MANAGEMENT IN TEXTILE
PRODUCTION: MULTIFACETED CONTROL AND
EVALUATION OF THE PRODUCTION PROCESS

Seyma EMEC!

Giris
The textile industry encompasses multi stage and complex
production processes that require high levels of quality control and
process optimization to maintain competitive strength in the global
market and to respond rapidly to market demands (Das, 2013;
Vachtsevanos et al., 1994). This complex structure, combined with
high production volumes, has made the management of various types
of defects and nonconforming products that arise throughout the

process a critical necessity for the sector (Ata et al., 2020;
Muhammad et al., 2022).

The importance of quality planning in the textile industry is
not limited to final product control, which is merely a reactive
process; it directly affects the sustainability of the company in
competitive market conditions (MUSIAD, 2025). The increasing
complexity of production processes and the use of advanced
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technologies such as high speed weaving (Vachtsevanos et al., 1994)
significantly increase the cost and impact of defects. Therefore, it is
vital to ensure quality at the design and planning stage of the process
rather than sorting out defective products after production has
started. Effective quality planning minimizes process variability
(Akyliz & Goren, 2024), reduces rework (repair) and scrap rates
(Muhammad et al., 2022), thereby lowering operational costs and
maximizing customer satisfaction. This requires the use of tools such
as Statistical Process Control (SPC) not only for monitoring but also
for proactively stabilizing the process in advance.

This study, prepared in this context, aims to statistically
evaluate the product quality obtained in a textile production line. The
study aims to examine process performance and identify possible out
of control situations by utilizing real production data from different
product groups. Within the scope of the application, the total
production quantity, number of first-grade products, number of
repaired products, and number of second grade (defective) products
for 12 different product groups were analyzed. Considering the
discrete (qualitative) nature of the process data and the different
sample sizes, two basic qualitative control charts frequently used in
the literature for such applications were applied: the number of
defective parts (np) control chart and the number of defects per unit
(u) control chart. These charts provide a robust foundation for
monitoring and improving quality performance by keeping process
variation under control on a product group basis.

Literature Review

In the textile industry, quality control has become a critical
management function due to high production volumes, multi-stage
process structures, and the diversity of defect types. For this reason,
Statistical Process Control (SPC) has found extensive application in
textile literature as a means of process variability, lower defect rates,
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and ensure production line stability. Within SPC, methods such as
Pareto analysis, control charts, root cause analysis, and experimental
design are used as fundamental tools for identifying the sources of
defects and improving process performance. This section provides a
comprehensive summary of the literature on SPC applications in the
textile sector, based on published scientific articles.

There are numerous studies on identifying and resolving
quality issues in textile processes. Vachtsevanos et al. (1994)
developed a control system suitable for the dynamic structure of
textile processes by integrating SPC techniques with fuzzy control
approaches and revealed the effects of modeling variability on
quality performance in weaving and yarn processes. The theoretical
foundations of process control play a critical role in stabilizing
textile quality assurance systems. Das (2013) emphasized the
necessity of a statistical approach in process design by
systematically establishing test methods and statistical quality
control principles in textile production. Similarly, Camargo et al.
(2008) made significant contributions to increasing the reliability of
control charts in variation estimation by developing Bayesian
process control models.

When examining studies conducted on direct production data
in the textile industry, it is evident that control charts play a critical
role in identifying quality problems arising in different processes. In
a comprehensive analysis conducted at a denim washing facility in
Turkey, Ata et al. (2020) classified quality problems using Pareto
analysis and p-control charts; they determined that a significant
portion of the defects were due to “chemical repair,” “blue ground,”
and “chemical density.” The study also noted that the Laney-p
control chart provides more reliable results in processes with
excessive variability. Similarly, Ongelen and Koksal (2024), who
examined defect distributions arising in a production line, used
Pareto analysis and control charts together to identify critical defect
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types in the process and offered recommendations for improving
quality performance.

Studies on process capability and performance improvement
also occupy an important place in the literature. Akyiliz and Goren
(2024) evaluated the production process in the conductor industry
using histograms, Pareto analysis, scatter diagrams, and control
charts to identify the critical inputs of the process and developed
solutions to improve process capability using multiple regression
analysis. Similarly, Karadag et al. (2024) optimized the process in
fiber optic cable production using the Taguchi experimental design
method, determined the most suitable parameter combinations, and
revealed the effect of the parameters with ANOVA results. These
studies show that experimental design and statistical modeling
techniques provide a systematic framework for quality improvement
processes in the textile industry.

Research on other processes affecting the quality of textile
outputs is also available in the literature. Kagar (2024), who
examined the factors affecting embroidery quality, found that fabric
type, backing selection, needle size, and pattern characteristics are
determinants for embroidery quality. Studies on yarn quality
indicators were addressed by Sengoz et al. (2025), who examined
the historical development of yarn irregularities; it was reported that
methods such as correlograms, variance length curves,
spectrograms, and image analysis were used to detect yarn defects.

Evaluating the role of quality management systems in terms
of industrial efficiency and sustainability, Aykol and Demirdogen
(2025) analyzed the relationship between waste management
practices and resource efficiency and demonstrated that ISO 14001
certification and the reduction of raw material use in production
processes increase resource efficiency. This study reveals that
quality control methods are important not only for defect reduction

but also in terms of sustainable production goals. In the MUSIAD
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report, which provides a general assessment of the textile sector and
future projections, MUSIAD (2025) emphasizes that quality
management and digitalization are critical for maintaining
competitive strength. Finally, studies in the literature show that SPC
applications are a powerful tool for evaluating the stability of
production processes, revealing that np and u control charts are
widely used in the textile industry. The capacity of Pareto analysis
and Ishikawa diagrams to systematically classify the root causes of
defects enables the identification of critical problem areas in the
process. In this context, the current study adopts these approaches
suggested in the literature, examines product based defect
distributions using Pareto analysis, evaluates process stability
through np and u control charts, and comprehensively reveals quality
deviations in the textile production line from a statistical perspective.

Case Study

The scope of this study is a textile company specializing in
areas such as fabric production, textile design, ready to wear
manufacturing, and product marketing. The company maintains a
broad product portfolio covering apparel, home textiles, and
industrial textile products. Thanks to its quality oriented production
approach and emphasis on customer satisfaction, it has a strong and
competitive position in the sector by providing production and
supply services to both local and international retail chains, brands,
and textile companies. The company's core process is an integrated
manufacturing process that begins with the procurement of high-
quality raw materials, continues with the development of original
textile designs in line with customer demands and industry trends,
and is implemented through processes such as cutting, pattern
making, and sewing in modern production facilities. Advanced
technology equipment and automation systems are used at every
stage of production to increase efficiency, and quality controls
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throughout the process ensure that products meet specified
standards.

The company's quality assurance system is supported by the
integrated use of the Kaizen and Asakai methods, which are based
on the philosophy of continuous improvement. Kaizen (continuous
improvement) encourages small, sustainable improvements
involving all employees to increase workplace productivity, reduce
waste, and enhance quality, while the Asakai (morning meeting)
method ensures that operational data is evaluated daily and problems
encountered in the production process are identified at an early stage.
These two methods enable issues affecting quality performance to
be addressed in a transparent, rapid, and systematic manner.

Within this scope, a root cause analysis was performed to
systematically analyze the fundamental factors that could cause
quality deviations in the production process, and potential sources of
defect in the process were classified using an Ishikawa (fishbone)
diagram. Potential causes related to human, machine, method,
material, environmental conditions, and measurement systems that
affect production defects are presented in Figure 1.
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Figure 1 Ishikawa Diagram Related to Defect Causes in the
Production Process

MAN MACHINE MATERIAL
Worker fatigue or loss of concentration Incorrect or deteriorated sewing Fabric elasticity differences causing slippage
Insufficient training on sewing techniques machine settings Inconsistent fabric thickness or density
Lack of knowledge about fabric behavior Insufficient maintenance or calibration Defective fabric batches (holes, spots,

and sewing order weave issues)
Thread quality variatigps leading to breakage

EFFECT: Increase in Product Quality Defects

Insufficient sampling in quality control processes
Absence of in-process quality control Noisy environment reducing operator focus Inaccurate measurement tools
Incorrect sewing sequence or improper workflow High temperature or humidity Lack of calibration in control instruments
Inadequate standardization Poor lighting conditions Inconsistent defect evaluation criteria

METHOD ENVIRONMENT MEASUREMENT

In the textile industry, the high production volume, diverse
types of defects, and multi stage processes have made quality control
mechanisms essential. Therefore, this study aims to examine process
performance and identify potential out of control situations in the
process using real production data from different product groups. In
practice, the total production quantity, number of first grade
products, number of repaired products, and number of second grade
(defective) products for 12 different product groups were analyzed.
Each product group was treated as an independent sample, and np
control charts and u control charts were applied to evaluate variation
on a product based basis.

These two types of charts are methods commonly used in the
literature to determine whether the process is under control in
production environments where sample sizes differ.

Data Set and Descriptions: There are 12 different product
groups analyzed within the scope of the application. The analyzed
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data set consists of actual quality records obtained from the
production process. For each product, the total number of units
produced (n), the number of first grade products, the number of
repaired products, and the number of second-grade products were
recorded. The total defect quantity was calculated as the sum of
repaired and second grade products. These values are important as
they are a direct indicator of process performance. Table 1 below
shows the quality performance indicators for the products included
in the application:

Tablel Quality Performance Data for Products

Total . .

Pr;il.la Proiz)ction Gliade Rep?‘li Inglts " | Grade2 | Total Defect Dre::::t
Al 955 897 58 2 60 0.0628
A2 303 303 0 0 0 0.0000
A3 188 177 11 0 11 0.0585
A4 9 9 0 0 0 0.0000
A5 224 212 12 0 12 0.0536
A6 319 309 10 0 10 0.0313
A7 737 646 91 1 92 0.1248
A8 508 437 71 0 71 0.1397
A9 367 367 0 0 0 0.0000
Al10 1 0 1 0 1 1.0000
All 55 55 0 0 0 0.0000
Al12 1001 960 41 2 43 0.0429

Methodology

Statistical Process Control (SPC) Methods

Theoretical Structure of the np-Control Chart

In this study, two different SPC charts were applied to
evaluate quality performance:

* np-Control Chart
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* u-Control Chart

The np control chart is a control chart used to monitor the
total number of defective products (np) in a sample. While it is
preferred especially when the sample size is fixed, it can also be
applied when sample sizes vary by calculating separate control limits
for each sample.

The np chart is a frequently preferred method in quality
control processes as it allows for the direct monitoring of the number
of defects in product groups. Its high sensitivity in detecting sudden
spikes that may occur during the production process helps to reveal
unexpected process failures at an early stage. Furthermore, it easily
identifies quality imbalances on a product basis, clearly showing
which product group is experiencing quality problems. Thanks to
these features, the np chart is used as a highly effective control tool
for identifying major quality deviations that arise in the process.

In this study, the number of defective products in the
population is calculated as in Equation 1.

np; = Total Defect = Repair Unit + Grade 2 1
Control Limit Calculations

The total defect rate obtained across all product groups is
calculated using Equation 2.

5 =y
P=X 2

Control limits for each product group are calculated using the
process average defect rate; accordingly, the center line, upper
control limit, and lower control limit for the relevant product are
determined using equations 3, 4, and 5, respectively: (If LCL is less
than 0, it is taken as 0.)
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u-Theoretical Structure of the Control Chart

The u control chart is a control chart used to monitor the
average number of defects per unit. Its most important advantage is

that it provides a correctly normalized defect rate when sample sizes
differ.

The main reason for preferring the u control chart is that
sample sizes vary significantly between product groups, and this
situation does not allow for a reliable evaluation with classic np
charts. The u chart accurately reflects process instability, even for
products with small sample sizes, revealing the true behavior of the
defect rate. Furthermore, this chart type allows for the comparison
of defect levels per unit across different product groups, enabling a
more comprehensive and comparable assessment of process
performance.

In this study, the unit defect rate is determined using Equation

u; = Total Defect 6
n;
The average defect rate is found using Equation 7 in the u-
control chart.

Y. Total Defect

u =
xn;

Control limits for each product are calculated using equations
8,9, and 10: (If LCL <0, it is considered 0).
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Research Results And Findings

3

This section presents, in an organized manner, the results
derived from the Pareto analysis and the applications of the np and
u control charts based on the production data examined in the study.
Through these analyses, it became possible to investigate several
aspects of process behavior, including how defects are distributed
among product groups, the extent of variation within the system, and
whether quality performance remains statistically stable. The Pareto
analysis highlighted the product groups in which defects were
concentrated, pointing to primary areas requiring improvement. The
np control chart supported this evaluation by showing changes in the
number of defective items across product groups and helped to
identify points at which the process may have shifted from its
expected pattern. The u chart, which evaluates defects on a per-unit
basis, provided a clearer picture of how the process aligns with its
control limits by normalizing defect levels. When these three
analytical tools are used together, they offer a more complete and
scientifically grounded understanding of the main factors
influencing quality throughout the production process.
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Figure 2 Repair Rate Chart for Product Groups

Al-Al2 Repair Rate Chart
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Repair Rate
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Al A2 A3 A4 AS AG
Product Code

The distribution of repair rates by product is shown in Figure
2, revealing that the need for repairs is quite low in the vast majority
of product groups, with rates approaching zero for many products.
This indicates that an acceptable level of quality is maintained
throughout the production process. However, it is noteworthy that
repair rates are significantly higher for products A7 and AS,
indicating that process variations are more pronounced for these
products. The most striking finding is that the repair rate for product
A10 1s 100%; the fact that every single unit produced for this product
requires complete repair indicates a serious process problem specific
to this product type. When the graph is evaluated overall, it can be
said that repair rates vary significantly by product and that the high
values observed in some products suggest systematic problems at
certain points in the process.

This variation in repair rates between products necessitates a
Pareto analysis to see more clearly identify the products the total
defect distribution is concentrated.
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Figure 3 Pareto Defect Analysis for Product Groups

Al-A12 Defect Pareto Analysis
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@
2
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Product Code
The distribution of defects by product has been evaluated
using the Pareto analysis presented in Figure 3, which shows that the
total defects are not evenly distributed among product groups and
are concentrated in certain products. When examining the total
number of defects, it is seen that 92 defects occurred in product A7,
71 in product A8, 60 in product Al, and 43 in product A12. The
cumulative total of these four products is 266 defects, constituting a
significant portion of all defects that occurred during the period
under review. When the composite percentage is calculated on a
product basis, it is determined that A7 and A8 together account for
approximately 54% of total defects, with the addition of A1 this ratio
reaches 74%, and with the inclusion of A12, it reaches approximately
89% of total defects. Thus, it can be seen that just four product
groups constitute the majority of defect sources on the production
line and that process variation is concentrated in these products. In
contrast, no defects were observed in products A2, A4, A9, and Al1;
while the low number of defects in products A3, A5, and A6
indicates that the process is running stably for these products.
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These results indicate that improvement efforts should
primarily focus on products A7, A8, Al, and A12. It is recommended
that the operational steps for these products be reviewed, machine
settings be standardized, the quality of materials used be
investigated, and operator-related variability be reduced. It is
estimated that targeted root cause analyses and process improvement
activities carried out on these products will significantly reduce the
total defect rate and directly contribute to the stability of overall
quality performance. The total defect rate obtained across all product
groups is as follows:

After determining which product groups had the highest
concentration of defects using Pareto analysis, it was deemed
necessary to create np and u control charts to assess whether the
process was statistically under control.

Within the scope of Section 4.1.1, the CL, UCL, and LCL
values for each product group in the problem were calculated using
Equations (1)—(5) used in creating the np control chart, and the
results obtained are presented in Table 2.

p= 20— 0.0642811227769445

4667
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Table 2 CL, UCL, and LCL values for each product group for the

np graph
Pl’;‘(i)l.l“ Prodzzz?;n (n) l;r:ft:clt ClL=n;.p UCL LCL
Al 955 60 61.388472 84.125692 38.651252
A2 303 0 19.477180 32.284463 6.669898
A3 188 11 12.084851 22.173072 1.996630
A4 9 0 0.578530 2.785808 0.000000
AS 224 12 14.398972 25.410806 3.387137
A6 319 10 20.505678 33.646757 7.364599
A7 737 92 47.375187 67.349389 27.400986
A8 508 71 32.654810 49.237980 16.071641
A9 367 0 23.591172 37.686290 9.496054
Al10 1 1 0.064281 0.800040 0.000000
All 55 0 3.535462 8.991998 0.000000
Al2 1001 43 64.345404 87.623782 41.067026

Number of Defective Units (np)

Figure 4 np Control Chart for Product Groups (Total Number of
Defective Products)

604

Al-Al12 np Control Chart (Total Defects)

- uCL
- CL
LcL

=&— Observed Total Defects (np)

Al A2

A3 Ad AS

AB AT
Product Code

The behavior of the total number of defective units in product
groups within the process, as examined in the np control chart shown
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in Figure 4, reveals that the number of defects observed in a
significant portion of the product groups remains within the control
limits and that the process is generally statistically acceptable.
However, the fact that the defect counts for products A7 and A8 are
clearly above the center line indicates that process variation is higher
for these products and that there may be special cause deviations in
the relevant operational steps. The fact that products Al and A12
also produce values close to the control limits suggests that these
products pose a potential risk in terms of the process. On the other
hand, the absence of defectsin products A2, A4, A9, and All
indicates that both operational stability and quality performance are
maintained at a high level for these products. The overall picture
reveals that the process does not exhibit the same behavior across all
product groups and that specific causes affecting process control,
particularly in products with high defect rates, need to be examined
in detail.

Based on Equations (6)—(10) used in calculating the u control
chart in Section 4.1.2, the CL, UCL, and LCL values for each
product group were determined, and the results are shown in Table
3.

7=-2 _0.0642811227769445

4667
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Table 3 CL, UCL, and LCL values for each product group for the

np graph
Product Total Total

No. Production (n) Defects CL=u ucL LcL

Al 955 60 0.064281 0.088894 0.039668
A2 303 0 0.064281 0.107977 0.020585
A3 188 11 0.064281 0.119754 0.008808
A4 9 0 0.064281 0.317818 0.000000
A5 224 12 0.064281 0.115102 0.013461
A6 319 10 0.064281 0.106867 0.021695
A7 737 92 0.064281 0.092299 0.036264
A8 508 71 0.064281 0.098028 0.030534
A9 367 0 0.064281 0.103985 0.024578
Al0 1 0.064281 0.824893 0.000000
All 55 0 0.064281 0.166842 0.000000
Al2 1001 43 0.064281 0.088322 0.04024

u=

Defects per Unit

Figure 5 u Control Chart for Product Groups (Number of Defects

Al-A12 u-Chart (Defects per Unit)

per Unit)

1.0{ == v values (defects per unit)
-— UCL
= CL

LCcL

Al A2 A3

A6 a7
Product Code

When examining the u control chart presented in Figure 5, it
is observed that the number of defects per unit remains within the
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control limits for the vast majority of product groups and that process
variation generally exhibits a stable structure. For most products, the
u values are quite close to the center line, indicating that the defect
frequency is low and under control for most products. However, the
u value for product A10 exceeds the upper control limit, showing an
excessive spike, which clearly indicates an unusual process
deviation specific to this product. The relatively high u values
observed in products A7 and A8 also suggest that process variability
in these products is greater than in other products.

Overall analyses reveal that quality performance varies
significantly between product groups and that defects are
particularly concentrated in certain products. Pareto analysis shows
that the majority of defects are concentrated in products A7, A8, Al,
and A12; the repair rate graph confirms that process variation in
these products is higher than in other products. The np control chart
shows that the number of defects in the same products approached
or exceeded the control limits, while the u control chart showed that
the defect rate per unit rose to an unusual level, particularly in the
A10 product. When all these findings are evaluated together, it is
understood that the production process is generally operating at an
acceptable level, but quality issues persisting in certain product
groups due to specific causes; it is seen that in depth analyses of these
products are critical for improving process stability.

Conclusion

This study aimed to evaluate quality performance in a
production line within the textile industry using the Statistical
Process Control (SPC) approach and analyzed process behavior
based on qualitative defect data. In multi stage, high volume textile
production environments with various defect types, it is emphasized
that traditional final product inspection alone is insufficient; in
process statistical monitoring and root cause analysis are critical for

comprehensive quality assurance. In this context, within a quality
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management system supported by continuous improvement
approaches such as Kaizen and Asakai, Pareto analysis, Ishikawa
diagrams, and np and u control charts were used together to reveal
both the structural components of defect sources and the statistical
status of process performance. The study is significant in that it
demonstrates how SPC tools, which are often discussed in the
literature using theoretical examples, can be integrated into a textile-
specific application using real production data.

The findings revealed that quality performance was not
homogeneous across product groups and that defects were
concentrated in specific products. Pareto analysis showed that
products A7, A8, Al, and A12 accounted for approximately 89% of
the total 300 defects; this confirmed that quality losses on the
production line were concentrated in a limited number of critical
product groups and that the Pareto principle applied to this process.
The repair rate graph revealed that process variations were higher in
AT and A8 products compared to other products, while the repair
rate reaching 100% in the A10 product indicated an unusual situation
in the process. The np control chart showed that the number of
defective products was largely within the control limits, but values
significantly above the center line were observed for products A7
and A8, while products A1 and A12 showed a risk level approaching
the control limits. The u control chart revealed that the process was
generally stable in terms of defect rates per unit, but that the A10
product exceeded the upper control limit, exhibiting statistically out-
of-control behavior. These results show that the process operated at
an acceptable level overall, but that deviations due to specific causes
persisted in certain product groups.

One of the most significant contributions of this study is that
it presents an applied framework based on the combined use of np
and u control charts for evaluating qualitative data with variable
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sample sizes in the textile industry. The simultaneous analysis of the
np chart, which tracks the total number of defects per product, and
the u chart, which considers the defect rate per unit, enables a more
accurate interpretation of process behavior in both high volume
product groups and products with small sample sizes. Furthermore,
through the integration of Pareto analysis and Ishikawa diagrams,
not only are the products with concentrated defects identified, but
the potential root causes of these defects (in terms of human,
machine, method, material, environment, and measurement system
dimensions) are also systematically revealed. Thus, the study
provides a statistically and administratively applicable roadmap for
quality improvement projects in textile businesses; it offers business
managers a practical approach to determine improvement priorities
based on data.

However, the study also has certain limitations, and these
limitations offer new avenues for future research. First, the analyses
are limited to data obtained from 12 product groups belonging to a
single company and a specific period; studies conducted on different
periods, different textile companies, or broader product portfolios
would strengthen the generalizability of the findings. Furthermore,
np and u control charts were used in this study to monitor process
performance; however, the relationships between process variability
and machine settings, environmental conditions, or operator
variables were not explored in depth using regression, multivariate
statistical methods, or experimental design (Taguchi, etc.). In future
studies, the integration of process capability analyses, multiple
regression models, Taguchi experimental designs, or artificial
intelligence/machine learning-based early warning systems
alongside control charts will provide quality management
applications in the textile industry with both stronger predictive
capabilities and more comprehensive solution proposals in terms of
process optimization.
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CHAPTER 6

RETHINKING VENTURE CAPITAL DECISIONS
THROUGH HUMAN-AI HYBRIDS

MUSTAFA KELLEKCI
UFUK CEBECI?
ONUR DOGAN*

Introduction

A growing availability of structured and unstructured
information has been observed to transform the context of venture
capital (VC) decision-making, yet a persistent gap has been noted
between statistical accuracy and contextually grounded professional
judgment; consequently, a hybrid approach has been advocated in
which the strengths of human experts and machine learning (ML)
systems are combined rather than pitted against each other
(Mosqueira-Rey et al., 2023). Within this view, VC decisions have
been framed as socio-technical processes in which algorithms
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contribute scalable pattern discovery while human agents contribute
domain knowledge, contextual interpretation, and accountability.

Figure 1 shows the progression of venture capital decision-
making methods. It starts with expert-only judgment, moves to data-
driven analytics, then to human-in-the-loop machine learning, and
finally to a personalized decision engine. Each stage represents a
shift toward more structured, scalable, and technology-supported
decisions. Across all stages, three key principles (governance,
explainability, and performance) serve as checkpoints to ensure that
the evolving decision systems remain trustworthy, transparent, and
effective.

L2 LB @

Expett-only Data-driven Human-in-the-loop Personalized
(judgment-diiven) analytics Machine Loarning Decision Engine

|

[ Governance J ( Explainability ] [ Performance ]

Figure 1. Evolution of venture capital decision paradigms

A range of decision-making paradigms has been outlined in
Table 1, each of which is characterized by distinct inputs, strengths,
limitations, and risks. Expert-only approaches are defined by
qualitative judgment and tacit knowledge, though they are
constrained by inconsistency and bias. Data-driven analytics are
supported by repeatable metrics and dashboards, but their contextual
depth is limited, and risks of metric gaming are present.
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Table 1. Decision paradigms in VC and their trade-offs

Paradigm Primary Inputs Strengths Limitations Explainability Typical Risks g;llzrlz It
Partner Ultra-earl
Expert-only | experience, Rich context, Inconsistency, Narrative memos; y
. . . .. Overconfidence; markets;
(judgment-d | networks, tacit market bias, limited low formal . . . .
. o . o selection bias relationship-dr
riven) qualitative knowledge scalability traceability .
iven deals
memos
Data-driven D.escrlpt%ve & Repeatability; 1S halll ow context; MCE‘IC i Goodhart effects; Mld/la.t c-stage
analytics dlagnqstlc faster screening abe /target dashboards; metric gaming screening at
analytics, KPIs mismatch moderate scale
Improves
Human-in-th | ML scores + accuracy under Workflow Model & . . Domains with
. . . . . Confirmation bias .
e-loop ML expert input scarce/noisy complexity; interaction logs; in feedback scarce/imbalan
(HITL) loops data; human fatigue moderate-high ced data
controllability
Explicit
Hybrid . trade-offs; . o . .
MCDM+ML Exps:rt Welghts auditable R§qu1r§s Cr}t@r}a/welghts/se Weight drift; IC pr’epa.ratlc')n,
. + criterion-level . elicitation and nsitivity plots; . . multi-objective
(bridge . ranking; ) misuse of weights .
ML estimates . governance high triage
layer) robustness via
sensitivity
Personalized Global ranking Investor-aligned; | Cold-start; Exposure LP/wealth
.. + preference > . . Global+local . platforms;
decision . transparent “why | fairness & policy . . imbalance;
. learning + - . explanations; high o large VC
engine ; this constraints suitability breaches .
constraints franchises
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Human-in-the-loop machine learning is enhanced by expert
input, which increases accuracy under noisy or scarce data, although
workflow complexity and feedback bias are introduced. Hybrid
multi-criteria decision-making combined with machine learning is
strengthened by explicit trade-offs and auditable rankings, while
governance requirements and weight drift are recognized as
challenges. Finally, personalized decision engines are designed to
align global rankings with investor preferences, and although
transparency is emphasized, risks such as cold starts, fairness issues,
and suitability breaches are acknowledged (Kellekci, 2002).

It has been emphasized that explanations and auditability are
preconditions for adoption in high-stakes financial settings;
therefore, explainable artificial intelligence (XAI) has been proposed
as a design principle for decision support, with empirical evidence
suggesting that transparent models and justification artifacts
improve user trust and appropriate reliance (Coussement et al., 2024;
Kostopoulos, Davrazos, & Kotsiantis, 2024). In this perspective, the
objective has been to move beyond raw accuracy toward systems
that are understandable, governable, and alignable with human
oversight.

Against this backdrop, multi-criteria decision-making
(MCDM) methods have been positioned as a suitable bridge layer,
because expert value judgments (weights and trade-offs) can be
separated from empirical estimates (criterion-level scores) supplied
by ML; in recent work, such coupling has been associated with
improvements in both interpretability and decision quality (Martyn
& Kadzinski, 2023; Reyes-Norambuena, Bascufian-Ortiz, & Sauma,
2024). A coherent pathway has thus been proposed: hybrid human—
machine decision framing — MCDM structuring — two-way
integration with ML — investor-level personalization and
governance (Hiillermeier & Stowinski, 2024a; 2024b).

--154--



The contribution of this chapter has been designed with three
aims. First, a principled role for MCDM is articulated in human—
machine hybrid decision systems for VC. Second, a bidirectional
integration pattern with ML is presented, in which MCDM outputs
guide feature/label engineering while ML methods learn or adapt
MCDM parameters from outcomes. Third, a downstream transition
to investor-level personalization is developed, so that general
investment rankings are transformed into constrained, preference-
aware recommendations.

Venture Capital Investment and Startup Success

Early-stage investing has been characterized by structural
uncertainty, non-stationarity, and data sparsity; even experienced
investors have been reported to operate with noisy signals where
long-run outcomes are difficult to forecast ex-ante (Gompers,
Gornall, Kaplan, & Strebulaev, 2020). Under such conditions, it has
been found that multiple notions of value coexist, and that
investment decisions require a careful expression of priorities and
constraints across several dimensions.

Because outcomes and objectives vary by stakeholder, the
notion of startup success has been treated as multi-dimensional and
context-dependent; the choice of a success definition has been
shown to affect how labels are constructed for ML tasks and what
objectives are optimized in MCDM models (Cinelli, Kadzinski,
Gonzalez, & Slowinski, 2020). For this reason, heterogeneous
definitions, ranging from exits ([IPO/M&A) and financing milestones
to performance measures such as return on investment (ROI), have
been adopted in practice.

A practical approach has been to anchor the feature space in
observable signals (organizational, technological, market,
governance, and network cues) that proxy for latent success factors;

such signals have been cataloged in the VC literature and can be
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mapped to decision criteria to support structured analysis. The
taxonomy of signals is used in this chapter as the canonical
dictionary that links raw data to criteria and ultimately to success
objectives in Table 2.

Table 2. Taxonomy of signals able to predict the likelihood of
success of a startup

Signal Example Impact on Typical Data Example
Family Variables Success Source Measurement
. Patent o Patent DBs . .
Innovation count/quality, Defen.51b111ty, (USPTO/EPO), Claims-weighted
& 1P o valuation patent score
citations Lens.org
Founder Founders’
Team & experience, Execution LinkedIn/CVs, .
. . . o weighted
Leadership | serial exits, probability press . .
. experience index
education
Investor Tier of lead Follow-on
Reputation | investor, . Crunchbase/Pitc | Lead-investor
. funding, .
& co-investor . hBook prestige score
. exits
Syndicate network
Revenue
Market growth, user Survival & Product N-month )
. . . . analytics, revenue CAGR;
Traction metrics, fund-raising .
. revenue reports retention
retention
. Strategic . Market .
Alliances & | partnerships, News/APIs, KG | Graph centrality
access
Network ecosystem L graphs (e.g., PageRank)
. resilience
centrality
Financial Runway, debt Non—hpear; Financials; Months.of
Structure mix, burn excessive filings runways
’ debt risk debt-to-equity
Governance Independent Monitoring; | Company page, | Governance
board seats, . .
& Board Agency risk | filings scorecard
controls
Visibility & | Media Attention, . | Normalized
. . mentions, funding Web/news/social .
Signaling media index
awards, brand chance
Diversity & Gpndqr/cultural M1xe.d:. HR/ESG Diversity
. diversity, creativity & . :
Inclusion . - disclosures composite
equity resilience
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Signal Example Impact on Typical Data Example
Family Variables Success Source Measurement
Geography | Hub proximity, Acgess to Geo data: Ecosystem
& accelerator capital & . o

. accelerator lists | proximity index
Ecosystem | alumni talent

Parallel to the signal dictionary, multiple success definitions

have been observed in the literature, ranging from financing

thresholds and exits to profitability and growth. The startup success
is therefore adopted as a standardized label set for modeling and
evaluation, and it has been emphasized that model performance
should be reported separately for each definition in Table 3.

Table 3. Definitions of Startup Success

churn <y

Success . . . . ..
Definition Operationalization Use in Modeling/Decision
Public listing within T Binary label; long-horizon
IPO
years of first round success
M&A Acquisition within T Binary label; exit success
years
Follow-on Achieves Series A/B (or .
Funding >X rounds) Survival/growth label
ROI / Value Investor IRR > threshold; | Decision objective;
Uplift valuation 1 >Yx continuous
Revenue > R by year N; .
Revenue Scale CAGR > ¢% Performance label/objective
. Positive EBITDA/FCF Quality/sustainability
Profitability for > M periods objective
Survival Active 2 5 years Robustness label
post-founding
- ion >
Unicorn g?}s; money valuation > High-impact objective
] 0/ « .
PMF Proxy Retention 2 r%; NPS 2 n; Early traction label

A data-flow view has been found to be useful for
implementation: raw sources (patents, alliances, founder/team CVs,
investor brand, web mentions, capitalization) are transformed into
engineered features grouped by criteria (innovation, team quality,
traction, governance, network centrality), which in turn supply

--157--




labels/objectives consistent with selected success definitions. This
mapping is shown to enable cross-functional communication during
design reviews and to support auditable decision-making artifacts.

Figure 2 illustrates how signals such as innovation,
leadership, market traction, governance, and networks are translated
into criteria, which then connect to different success definitions like
IPO, M&A, ROI, survival, and growth. The mapping shows that
each signal can influence multiple criteria, and criteria can be linked
to several definitions, highlighting a many-to-many relationship.
Measurement scales, such as percentages, index scores, and binary
labels, are used along the process to standardize and quantify the
evaluation, ensuring traceability from raw data to success outcomes.

% B

percentages Index
score

SIGNALS SUCCESS
) T DEFINITIONS

—_—

« Innovation & IP
» Team & > *IPO
Leadership — CRITERIA X « M&A
» Market Traction | F—> ‘ « ROI
» Governance — b3 | | * Survival
» Network _ « Growth

s O &=
=
o

Index Binary
score labels

Figure 2. From signals to success criteria
Human—Machine Hybrid Decision Models in Venture Capital

Hybrid decision models have been defined as engineered
collaborations in which perception, inference, judgment, and action
are explicitly partitioned between humans and Al systems;
human-in-the-loop (HITL) patterns have been found to be
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particularly beneficial when domain knowledge is tacit, data are
scarce or skewed, or accountability requires reversibility and
traceability (Mosqueira-Rey et al., 2023). Within VC, this
perspective has been operationalized by allocating complementary
responsibilities to expert investors and model pipelines.

Along the VC life cycle, hybridization has been located at
four recurring touchpoints. At the sourcing stage, weak opportunities
are triaged and watchlists are maintained with algorithmic
assistance. At the screening stage, candidates are prioritized for due
diligence by combining expert priors with model scores. At signing,
term sheets and valuations have been shown to reflect value
judgments that are made explicit. During supporting,
post-investment actions are triaged and monitored with data-
informed alerts (Gompers et al., 2020; Coussement et al., 2024).

Explainability has been characterized as adoption
prerequisites in finance; mechanisms that expose why and how
decisions were reached have therefore been recommended, including
model cards, reason codes, and sensitivity analyses in which
decision makers can inspect counterfactual scenarios (Kostopoulos
et al., 2024). It has been suggested that such mechanisms help
reconciliation across the investment committee and facilitate
consistent documentation.

Figure 3 presents the 4S framework in venture capital
decision-making: Sourcing, Screening, Signing, and Supporting.
Each quadrant combines two complementary elements: a Human
ring that contributes priors and constraints and a Machine Learning
(ML) ring that generates scores and flags. These dual inputs from
both humans and ML converge into a central hub labeled MCDM,
which integrates and balances them. The diagram highlights how
human expertise and machine intelligence interact at every stage of
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the investment cycle, with MCDM ensuring structured, auditable,
and explainable decisions.

SOURCING SCREENING

_ g

//Human 5 N 4 / ML \

[; Priors ;3 (; Scores ;1
\ Constraints Flags /
A N N 4

MCDM

(Multi-Criteria
Decision Making

" ML Human

/ m / ‘??\\\
‘ Scores [/ Priors \}
\\ w . Constraints
\ y N p

SUPPORTING SIGNING

Figure 3. 4S5 in Human vs. Machine Learning

A bridge layer has therefore been deemed necessary to merge
human judgments and model output into auditable investment
priorities. MCDM has been proposed for this purpose because it
exposes value trade-offs, collects heterogeneous evidence in a
principled way, and returns a traceable ranking that can be
interrogated through sensitivity analysis (Cinelli et al., 2020). The
next section introduces this bridge and details its inputs, operations,
and outputs.

In this framework, in Table 4, distinct stakeholder roles are
described in terms of their inputs, methods, outputs, and evidence
artifacts. Partners and investment committees are provided with
priors, theses, and constraints, and their judgments are applied
through weighting and reviews, resulting in documented criteria and
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decisions that are recorded in weight ledgers and rationale notes.
Data science teams are supplied with features, models, and
validation sets, and estimators and calibration techniques are
employed to produce criterion scores and uncertainty measures,
which are explained through model cards and validation reports.
Risk and compliance functions are guided by policy rules and are
implemented through rule engines and solvers, with constraint sets
and overrides being documented in policy logs and exceptions files.
Portfolio operations are supported by post-deal performance
indicators, and monitoring dashboards are used to generate operating
signals and alerts, which are evidenced in operational memos and
KPI snapshots. Finally, legal and investor relations teams are
informed by terms, covenants, and guidelines, and document
management systems are applied to produce term sheets and
disclosures, with full traceability ensured by changing control
records.

Table 4. Roles and artifacts

Evidence /
Stakeholder | Inputs Methods/Tools | Outputs Explainability
Artifact
Partners/ Priors, AHP Cr1.ter1a ' . '
Investment . S weights; Weight ledger;
Committee thesis, weighting; 0/no-go rationale notes
constraints | reviews & g
10 notes
Data Features, ML estimators; | Criterion Model cards;
Science models, LTR; scores; CV/holdout
validation calibration uncertainty | reports
Policy . .
Risk & rules Rule engines; Constraint Policy log:
. e g 1e constraint set; .
Compliance | (suitability, . exceptions file
caps) solvers overrides
. Post-deal S Operating | Operational
POI‘thI.IO KPIs, Monitoring signals; memos; KPI
Operations . dashboards
milestones alerts snapshots
o | TS| e ene | sheet; | Chanee-contol
. covenants, ragement, . ’ records
Relations audit trail disclosures
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Evidence /
Stakeholder | Inputs Methods/Tools | Outputs Explainability
Artifact
LP
guidelines

AHP: Analytic Hierarchy Process, CV: Cross-Validation, IR: Investor Relations,
LTR: Learning to Rank, LP: Limited Partner

Multi-Criteria Decision-Making (MCDM) as the Bridge

Signals have been mapped to decision criteria through a
documented schema in order to enable various MCDM techniques
to be applied while acknowledging scale heterogeneity and
uncertainty (Cinelli et al., 2020). The signal-to-criterion mapping
has been observed to simplify traceability from raw data to decision
rationale.

Weight elicitation has been handled by expert-driven
approaches (AHP, FAHP) as well as data-driven schemes that infer
weights from revealed preferences; robustness to missing or
imprecise information has been studied within Stochastic Multi-
Criteria Acceptability Analysis (SMAA), which samples feasible
weight spaces and reports acceptability indices, an approach that has
been recommended when value judgments are uncertain or contested
(Pelissari, Oliveira, Ben Amor, Kandakoglu, & Helleno, 2020).
Practical governance has been aided by a change-control process for
weight updates.

The bridge role becomes concrete when experts provide
weights (value trade-offs) and ML systems provide criterion-level
estimates (scores with uncertainty); MCDM normalizes and
aggregates these inputs into an auditable ranking, where each
recommendation can be accompanied by a contribution breakdown
and by sensitivity plots that show rank stability under weight
perturbations (Reyes-Norambuena et al., 2024). Such artifacts have
been linked to higher trust in human—AI collaboration.
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When data are scarce or noisy, as in early-stage ventures,
fuzzy extensions and interval judgments have been used to stabilize
results; spherical-fuzzy and related approaches have been reported
to preserve decision quality under incomplete information while
maintaining group-decision traceability (Ayyildiz & Taskin Gumus,
2022). These techniques have been recommended when criteria are
difficult to measure directly or when proxies must be used.

Figure 4 illustrates the concept of two shores connected by
an MCDM bridge. On one side, the Human Value Model represents
expert inputs such as weights, trade-offs, and priors. On the opposite
side, ML Criterion Estimators provide data-driven scores with
associated uncertainty. The MCDM bridge connects these two
perspectives by applying processes like Normalization, Aggregation,
and Dominance, ensuring structured integration. Beneath the bridge,
a Traceability Ledger highlights accountability and auditability,
reinforcing transparency in decision-making between human
judgment and machine learning outputs.

Normalization ) Aggregation Dominance

ML Criterion
Estimators

data-driven scores
with uncertainty

Human
Value Model
« expert weidhts
« trade-offs
« priors

L Traceability Ledger ]

Figure 4. Two Shores: Human value model vs. ML criterion
estimators

In Table 5, a variety of signals have been structured as
decision criteria, and their measurement, normalization, and

weighting approaches have been specified. Patent quality and
--163--



citations have been normalized using Z-scores and capped, with
weights assigned through the AHP and Fuzzy Analytic Hierarchy
Process FAHP, based on data from patent databases, while field
normalization has been recommended. Founder serial success has
been mapped from ordinal to interval scales, with weights derived
through AHP and SMAA, using CV records and LinkedIn data,
though survivorship bias has been noted. Lead investor tier has been
expressed on a 0—1 scale and weighted via AHP or SMAA, with
Crunchbase used as a source, but vintage effects have been
recognized. Strategic alliances have been measured with graph
centrality and weighted through Preference Ranking Organization
METHod for Enrichment Evaluations (PROMETHEE) or Technique
for Order of Preference by Similarity to Ideal Solution (TOPSIS),
based on news and knowledge graphs, with adjustments for partner
quality. Debt and runway have been expressed in months or debt-
equity ratios and weighted through Data Envelopment Analysis
(DEA) and AHP, using financial data, with non-linear risk penalties
applied. User retention has been measured as a percentage and
weighted with TOPSIS from analytics sources, with seasonality
adjustments considered. Media mentions have been log-scaled,
weighted with AHP, and sourced from web and news databases,
though duplication controls have been required. Board independence
has been expressed as a percentage of independent members,
weighted by AHP using filing data, and subject to jurisdictional
variation. Team diversity has been captured through composite
indices, weighted by FAHP from HR and ESG sources, with
sensitivity to protected attributes emphasized. Accelerator alumni
status has been recorded as binary with cohort rank, weighted by
AHP from accelerator datasets, with recognition of confounding
selection effects.

--164--



Table 5. Signals, Decision Criteria, and Weighting in MCDM

Sienal Decision Scale / Weighting in Example Data Not
g Criterion Normalization MCDM Source otes

Patent Innovation & . Consider

quality/citations Defensibility Z-score; capped AHP /FAHP Patent DBs field-normalization

Founder serial Team Quality Qrdmal - AHP / SMAA CV/LinkedIn Quard for survivorship

success interval mapping bias

Lead investor tier Slgna.lmg. & 0-1 (tiered) AHP/SMAA Crunchbase Beware vintage effects
Syndication

. . Ecosystem . PROMETHEE / Weight by partner

Strategic alliances Access Graph centrality TOPSIS News/KG quality
Financial . . . . .

Debt/runway . Months; D/E ratio | DEA/ AHP Financials Non-linear risk penalty
Resilience

User retention gﬁ%ﬂon & % retention TOPSIS Analytics Seasonality adjustments

Media mentions Visibility Log-scaled AHP Web/news De-duplication needed

Board o/ : o Jurisdictional

independence Governance % independent AHP Filings differences

Team diversity Hpmaq Capital Composite index | FAHP HR/ESG Sensitive attributes care
Diversity

Accelerator alumni Ecosystem Binary + cohort AHP Accelerator data Confqundmg by
Quality rank selection
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Integration of MCDM and Machine Learning

A two-way coupling has been documented between MCDM
and ML. In the MCDM—ML direction, criterion weights have been
used for feature weighting or selection, composite MCDM scores
have been used as weak labels for learning-to-rank, and sensitivity
analyses have guided feature engineering. In the ML—-MCDM
direction, historical decisions and outcomes have been used to learn
or adapt MCDM parameters (weights, thresholds) via preference
learning and disaggregation (Martyn & Kadzinski, 2023;
Hiillermeier & Stowinski, 2024a, 2024b; Reyes-Norambuena et al.,
2024).

Early integrated frameworks demonstrated that predictive
models could populate criterion-level estimates that are then
aggregated by MCDM, with reported gains in both accuracy and
interpretability (Kartal, Oztekin, Gunasekaran, & Cebi, 2016). More
recent work in supply chains has shown that hybrid MCDM+ML can
be made explainable by keeping MCDM at the heart of the process
and using interpretable ML components—an approach that has been
argued to be transferable to VC settings (Abdulla & Baryannis,
2024).

Validation regimes have combined statistical metrics (AUC,
PR-AUC, NDCG/MAP) with decision metrics (hit rate, time-to-IC
decision, adverse-selection delta), while sensitivity analyses disclose
rank volatility under weight shifts; recommendations have included
consistent cross-validation designs and shift detection to maintain
calibration over time (Coussement et al., 2024; Reyes-Norambuena
et al., 2024). In addition, it has been advised that documentation
artifacts be maintained as part of model risk management.

Figure 5 shows a cyclical feedback loop that integrates
human and machine learning inputs for decision-making. It begins
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with Criteria Discovery, followed by ML Estimators, which generate
predictive insights. These feed into MCDM Aggregation & Ranking,
where multi-criteria methods organize and prioritize options. The
process continues with Observed Outcomes & Expert Feedback,
which evaluates real-world performance and refine assumptions.
Finally, the cycle loops back through Weight and Model Updates
(implicit in the flow), ensuring continuous improvement. Alongside
the loop, Documentation Artifacts, such as model cards, rationale
notes, and sensitivity plots, provide transparency, accountability, and
auditability throughout the process.

Criteria
/ Discovery
ML

Estimators

MCDM
Aggregation
& Ranking

1

Documentation

~

Artifacts
Observed (e.g. model cards,
Outcomes & rationale notes,

sensitivity plots)

Expert Feedbac

Figure 5. Closed Feedback Loop in Hybrid Decision-Making

In Table 6, the comparative characteristics of pure ML, pure
MCDM, and hybrid MCDM+ML approaches have been outlined
across key dimensions. Interpretability is considered low to medium
in pure ML, where XAl techniques are required, while pure MCDM
and hybrid methods provide high transparency through explicit
weights, criteria, and combined global-local explanations. Accuracy
under sparse or noisy data is limited to medium levels in both pure
ML and pure MCDM, whereas hybrid approaches achieve high

accuracy by leveraging HITL inputs and prior knowledge.
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Robustness to data drift is only moderate in pure ML, higher in
MCDM due to sensitivity analysis, and strongest in hybrid methods
through dual monitoring mechanisms. Governance and auditability
are rated as medium for ML but high for both MCDM and hybrid
designs, reflecting the traceability of weights and decision processes.
Data requirements are high in ML, low to medium in MCDM, and
moderate in hybrid systems. Scalability is maximized in ML and
hybrid approaches but remains medium in pure MCDM. Human
effort is moderate in ML, high in MCDM due to weight elicitation,
and moderate in hybrid systems where workload is shared. Typical
applications are aligned with these characteristics: pure ML excels
in large and stable datasets, pure MCDM is applied to low-data,
value-heavy contexts, and hybrid MCDM+ML is recommended for
complex and regulated decision-making environments.

Table 6. Pure ML vs. Pure MCDM vs. Hybrid

. . Hybrid
Dimension Pure ML Pure MCDM MCDM--ML
o Low—Medium | High High
Interpretability (XAl needed) | (weights/criteria) (global+local)
Accuracy’under Medium Medium Hl‘gh (HITL +
sparse/noisy data priors)
Robustness to x:g&gm Medium-High High (dual
drift monitoring) (sensitivity) monitoring)
Governance / . . .
Auditability Medium High High
Data . High Low—Medium Medium
Requirements
Scalability High Medium High
Human Effort Medium High (elicitation) Medium
. Large, stable | Low-data, Complex,
Typical Use regulated
datasets value-heavy ..
decisions

From General Priority Lists to Personalized Decision Engines
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A hybrid MCDM+ML pipeline has typically been shown to
yield an investor-agnostic global ranking, which is useful for
portfolio-level triage but misaligned with heterogeneous investor
goals; this limitation has motivated the use of preference learning
and recommender-system techniques tailored to financial services
(Wu & Li, 2025). In this setting, investor profiles have been inferred
from both explicit inputs and implicit interaction data under
regulatory and suitability constraints.

Recent surveys have documented knowledge-graph-based
recommenders and embedding methods that leverage structured side
information to handle sparsity, cold start, and explainability—
capabilities directly relevant when portfolio constraints and sector
exposures must be respected (Zhang, Zain, Zhou, Chen, & Zhang,
2024). The adoption of such methods has been suggested to improve
personalization quality under constrained reranking.

Fairness and exposure balance have been treated as first-class
concerns in recommender systems; multi-stakeholder surveys have
emphasized that rank exposure may need to be controlled to avoid
systematic under-recommendation of certain categories, which
suggests that constrained re-ranking should be embedded in financial
recommendation engines (Jin, Wang, Zhang, Zheng, Ding, Xia, &
Pan, 2023; Jugovac, Jannach, Lerche, & Karimi, 2023).

The bridge from a hybrid global ranking to personalization
has been constructed as follows. First, a global priority list is created
by the hybrid pipeline, making the role of criteria and weights
transparent. Second, investor preferences are learned from explicit
and implicit signals using supervised, contextual bandit, or Bayesian
preference models under appropriate governance. Third, the global
list is filtered and re-weighted by the investor profile while
respecting policy constraints (suitability, concentration, liquidity),
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and recommendations are generated with rationales that reference
back to MCDM criteria (Wu & Li, 2025; Zhang et al., 2024).

Figure 6 depicts an end-to-end decision pipeline that
integrates signals and machine learning with preference-aware re-
ranking. It begins with Signals / Labels, which are processed by ML
Estimators to generate predictive insights. These outputs feed into
Preference Learning (Profiles + Constraints), which adapts decisions
to individual investor needs. The system then applies Personalized,
Constrained Re-Ranking to ensure alignment with policy and
suitability requirements. Finally, the Presentation Layer with
Rationale Cards communicates recommendations in a transparent
and explainable manner. Feedback arrows link back to the MCDM
Weight Ledger and preference models, ensuring continuous
adaptation and governance.

Signals Preference Sbe Presentation
I alize
/ Labels Est|mator Learning (Profiles+ e d’ Layer
Constraints) 5 ; with
e-Ranking

Rationale Cards

MCDM
Weight
Ledger

Figure 6. End-to-End Pipeline for Personalized Investment
Decisions

In Table 7, the global ranking produced by the hybrid
MCDM+ML framework is compared with personalized rankings for
two investor personas, showing how the relative positions of
Startups A—E are adjusted. For Persona A, who seeks a short horizon
and low risk profile, Startup B is moved upward due to stable
cashflows and low volatility, while Startup C is downgraded because
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of early-stage risk, and Startup D is ranked higher thanks to
profitability and conservative debt. In this persona, Startup A is
placed slightly lower because of runway concerns, while Startup E
remains unchanged, reflecting the longer horizon required. For
Persona B, with a long horizon and a climate-focused thesis, Startup
A retains its top position due to strong IP and climate impact, while
Startup C is ranked higher for its alliances and climate alignment. In
contrast, Startup B is moved down because of limited climate
relevance, Startup D falls further due to low climate contribution,
and Startup E improves its ranking through Environmental, Social,
and Governance (ESG) leadership and a robust partner network.
These adjustments illustrate how general rankings of Startups A—E
are reshaped when individual investment priorities are applied.

Table 7. General vs. Personalized rankings

Persona A Persona B:
Star Global Rank Short—Horizo Why It Long-Horizo | Why It
(MCDM+M . Moved for | n, Climate Moved
tup n, Low Risk
L) (Rank) A Themed for B
(Rank)
Slightly Strong
lower Ip:
A 1 2 runway; 1 J
N climate
liquidity .
. impact
priority
Stable Limited
B 5 1 cashflows; 3 cl¥mate
low alignmen
volatility t
Early stage Strong
risk; A climate
c 3 4 prefers 2 thesis;
maturity alliances
Profitable; Low
D 4 3 conservati | 5 climate
ve debt relevance
ESG
Long leadershi
E 5 5 horizon 4
. p; partner
required
network
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Components and Governance of a Personalized Investment
Decision Engine

A three-layer architecture has been proposed for
finance-grade recommendation: an input layer that supplies a
structured, auditable global list with criterion-level scores from
MCDM+ML, a preference learning layer that infers investor profiles
and policy constraints, and an output layer that performs constrained
re-ranking and generates rationale-rich recommendations;
finance-specific surveys have argued for domain-specific evaluation
and data lineage in such designs (Wu & Li, 2025).

The data pipeline has been specified to include user
interaction logs (views, comparisons, simulations), allocation
decisions, post-allocation outcomes, and exogenous factor and
sector exposures; it has been recommended that on-policy and
off-policy evaluation be combined—offline counterfactual
estimation to reduce production risk and online A/B testing to
measure decision-time reduction, hit rate, and performance
proxies—while shift detection triggers recalibration (Coussement et
al., 2024). Documentation has been emphasized as part of audit
readiness.

Explainability has been placed in two layers: global
transparency from MCDM (criteria, weights, sensitivity) and local
justification in recommendations (why an opportunity is suggested
to this investor under current constraints); integration of XAl
techniques with domain-meaningful artifacts has been associated
with higher acceptance by decision makers (Kostopoulos et al.,
2024). In practice, explanation cards have been used to present
criterion contributions and constraint effects.

Risk and compliance have been enforced as hard or soft
constraints within the re-ranking step; fairness diagnostics have been

recommended to monitor exposure distributions across opportunity
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types and to prevent undesirable disparities; weight-change
governance—with change control and human approval—has been
proposed to maintain accountability for the MCDM layer (Jin et al.,
2023; Jugovac et al., 2023). The integration of these processes has
been advocated to ensure suitability and accountability.

N Global Modeling =

(ML) =

(92} ld
3 5
3 ) 5%
3 MCDM Aggregation = E
g &g
< J 5
+

Preference Modeling |¢— E

Governance & Audit Trail

Figure 7. Architecture of a Personalized Investment Decision
Engine

In Table 8, a structured governance checklist is presented,
outlining key policies, enforcement points, evidence artifacts,
frequencies, and responsible owners. Suitability requirements linked
to investor profiles are enforced at the re-ranking layer, with
evidence captured in suitability check logs for each recommendation
under compliance oversight. Concentration and exposure caps are
applied through re-ranking and portfolio policy, documented in
constraint satisfaction reports on both batch and monthly basis,
managed by risk teams. ESG exclusions are controlled prior to
ranking, with exclusion list snapshots maintained for every update
by ESG and risk functions. Fairness and exposure balance are

monitored by re-ranking auditors, with distribution and disparity
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metrics reviewed weekly or monthly by data science and risk
stakeholders. Weight change control in MCDM processes is
governed through a bridge ledger, requiring change logs and formal
approvals on each update, overseen by the investment committee and
governance. Explainability is maintained globally through MCDM
and locally within recommendation systems, supported by criteria
plots and “why this” explanation cards on a continuous basis by
product and data science teams. Drift and stability are tracked
through ML monitoring, with drift alarms and recalibration notes
continuously generated by data science and ML operations. Finally,
audit trials are enforced across all layers, producing immutable
decision logs under continuous compliance responsibility.

Table 8. Governance checklist

E(i)SILCY/ Where Evidence Frequenc Owner
Enforced Artifact d Y
Control
Sultablhty Re-ranking Suitability Per . | Complianc
(investor recommendati
layer check log e
profile) on
Concentrati Constraint
on & Re-ranking + . . Per batch & .
. . satisfaction Risk
Exposure Portfolio policy monthly
Caps report
ESG ’ FllteF before Exclusmn Per update ESG/Risk
Exclusions | ranking list snapshot
. Exposure
Fairness / Re-ranking distribution, | Weekly/month Da.ta
Exposure auditor disparit 1 Science +
Balance parity y Risk
metrics
Weight 1c/
Change Weight ledger Change log
Control (bridge) + approvals On change eGovernanc
(MCDM)
Global o .
| (MCDM) + Criteria/weig Product/Da
Explainabili ht plots; . .
¢ Local “why this” Continuous ta science
Y (Recommendati Y (DS)
cards
on Systems)

--174--




ﬁ(i)slicy / Where Evidence Frequenc Owner
Enforced Artifact d Y
Control
Drift & | Drift alarms; . DS/ML
o ML monitoring | recalibration | Continuous .

Stability Operations
notes

Audit Trail | All layers Imrpgtable Continuous Complianc
decision log e

Conclusion and Future Directions

A coherent chain has been presented in which human—
machine hybrid decision models are grounded in MCDM, coupled
bidirectionally with ML, and extended into personalized decision
engines for investment. The role of MCDM as a bridge has been
emphasized because value judgments (weights) can be separated and
governed while ML provides empirical estimates for criterion-level
performance; the outcome is an auditable, adaptable, and explainable
ranking for VC decisions (Martyn & Kadzinski, 2023; Hiillermeier
& Stowinski, 2024a, 2024b).

Future work has been suggested along four lines. First,
dynamic weight learning and preference disaggregation should be
advanced using revealed-preference data while preserving
interpretability. Second, XAI tailored to investment should be
developed, including counterfactual what-if analysis over criteria
and constraints. Third, evaluation regimes that combine statistical
metrics with decision-centric KPIs under regulatory constraints
should be standardized for the domain. Fourth, fairness-aware
re-ranking should be embedded to monitor exposure distributions
across opportunity sets (Coussement et al., 2024; Jin et al., 2023).
With these elements, hybrid MCDM-ML systems are expected to
support personalized, trustworthy decision engines.
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CHAPTER 7

EVALUATION OF RENEWABLE ENERGY
ALTERNATIVES IN COLD CLIMATE REGIONS:
TOPSIS AND MOORA APPLICATION FOR
ERZURUM TECHNICAL UNIVERSITY CAMPUS

OZLEM SOKMEN!
DENIiZ KATiPOGLU?

Introduction

The rapid depletion of fossil fuel reserves and the increased
use of these resources are causing greenhouse gas emissions, climate
change and leading to global warming. Furthermore, the continuous
increase in energy demand has made it imperative to use sustainable
resources with lower environmental impacts. Indeed, the more
widespread use of renewable energy sources has become a
significant solution for both ensuring energy supply security and
reducing carbon footprint. For Turkey, renewable energy sources
hold significant importance due to their environmental, political, and
economic benefits. Solar, wind, hydroelectric, geothermal, and
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biomass energy constitute the most widely used renewable energy
sources in Turkey. Technical, economic, social, and geographical
factors are taken into consideration while choosing renewable
energy sources. Especially in cold climate regions, the selection of
renewable energy sources is determined by analyzing specific
technical and environmental factors. In this study, Erzurum
Technical University (ETU) was selected as the sample region due
to its location in one of Turkey's cold and high-altitude areas.
Photovoltaic (PV), wind, and hybrid energy systems were analyzed
in this study because of their high applicability at the campus scale
and their suitability for grid-connected operations. The selection of
PV, wind, and hybrid energy systems requires the simultaneous
evaluation of numerous criteria, including economic, technical, and
environmental factors. Based on this, in this study, various criteria
were considered, and criterion weights were calculated using the
Analytical Hierarchy Process (AHP) method, one of the multi-
criteria decision-making (MCDM) methods. Furthermore, based on
these calculated weights, the most suitable energy system alternative
was determined using the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) and Multi-Objective
Optimization on the Basis of Ratio Analysis (MOORA) methods.
The results obtained are expected to serve as a reference for
settlements with similar climatic characteristics.

1. Renewable Energy Systems

Energy supply is provided through the use of fossil fuels and
renewable energy sources. According to 2025 data, approximately
57-60% of Turkey's total installed electricity capacity is provided by
renewable energy sources. Of these sources, wind accounts for 12%
and solar for 20% (MENR, 2025). These figures show that wind and
solar energy sources are increasingly becoming important in
Turkey's energy policies.
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Among renewable energy sources, solar and wind energy
stand out for campus-scale energy production due to our country's
favorable geographical location and the fact that they are easily
installed systems that do not require high technology (Dikmen,
2019).

Photovoltaic (PV) energy systems are systems that convert
incoming sunlight into usable energy. This provides a more
environmentally friendly and secure energy option (Doganay, 2021).
Grid-connected PV systems, which operate connected to the central
electricity grid and transfer excess energy back to the grid, are
preferred on a campus scale (Gilines & Hacioglu, 2024). PV systems
have both advantages and disadvantages in cold climates. Lower
temperatures reduce heat loss in PV cells, increasing efficiency.
However, icing, short days, and freezing conditions in winter limit
energy production (Awad et al., 2018). When designing a PV system,
considerations regarding the need for regular maintenance due to
icing and snow events are necessary. Furthermore, PV energy
systems offer a long-term, environmentally friendly, efficient, and
economical energy source at a low cost (Aslam et al.,, 2022).
However, they also have limitations due to their dependence on
weather conditions, high storage costs, and the need for large areas
for the panels. (Charfi et al., 2018). Many studies in the literature on
PV energy systems show that Multi-Criteria Decision Making
(MCDM) methods are widely used. In a study by Hassan et al.
(2023), critical weights were determined for PV site selection using
the CRITIC method, and the most suitable areas were determined by
ranking alternatives using TOPSIS. In another study, PV panel type
selection was determined by evaluating the TOPSIS method (Aslay,
2021). Coban (2020) used fuzzy logic based on AHP to determine
the critical weight for the selection of the most suitable PV-based
project.
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Wind energy systems are designed to convert the kinetic
energy of the wind into electrical energy. Wind energy holds an
important place among energy sources due to its continuity,
cleanliness, and quality (Guo, 2025). With developing technology,
small-scale wind turbines can be used if the selected region is
suitable in terms of wind (Aslan et al., 2016). The effect of wind
speed is very important in these energy systems; turbines are
designed to operate optimally within specific speed ranges (Wang &
Liu, 2021). Erzurum, being located in a high-altitude region,
experiences more consistent and powerful wind speeds. This
characteristic makes it an important location for the development of
wind energy projects. However, icing, low air density, and extreme
wind conditions negatively impact wind turbines. When designing
wind turbines, various constraints such as efficiency, wind speed,
turbine design, site location, and maintenance management must be
considered (Unal et al., 2024). MCDM methods have been widely
used in the literature to determine the suitability of wind energy
systems. In one study, a TOPSIS-based approach was proposed for
determining the most suitable turbine for a selected site (Rehman,
2020). In a study conducted in 2024, the most suitable site for the
installation of wind energy power plants in Adana province was
determined through the integration of Analytical Hierarchy Process
(AHP) and Geographic Information Systems (GIS) (Yaman, 2024).
Supciller and Toprak (2020) calculated the critical weights for
selecting the most suitable wind turbine for a large company
operating in Turkey using the SWARA method. They then ranked the
turbines using the TOPSIS and EDAS methods.

Hybrid energy systems are more efficient and
environmentally friendly production systems that use a combination
of different energy sources or technologies (Kilic & Adali, 2022).
Hybrid systems that operate by using wind and solar energy together,
both renewable energy sources, are widely used. Depending on the
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weather, photovoltaic solar panels and tiny wind turbines can
generate different amounts of electricity. Therefore, they are not a
very rich source of energy production on their own. By combining
these sources into a single system, we can reduce fluctuations in
energy production and gain many advantages (Cakmak, 2020). Thus,
grid-connected hybrid systems provide a safer and more reliable
energy source (Atik & Sekin, 2022). In cold climate regions, the
decrease in sunshine duration during winter months and the increase
in wind speeds demonstrate the advantages of hybrid systems.
Furthermore, the installation of hybrid energy systems requires the
analysis of numerous criteria such as system reliability, construction
and operating costs, and maintenance requirements. Studies
evaluating these criteria exist in the literature. In one study, the fuzzy
TOPSIS method was used to evaluate renewable energy systems in
Turkey. The results show that hybrid systems are suitable in terms of
environmental criteria and energy supply security (Sengiil, 2015). In
another study, AHP-TOPSIS-COPRAS methods were applied
comparatively for the site selection of a power plant in Kirikkale
(Kara et al., 2022). In the study by Ramos et al., the technical and
economic suitability of hybrid renewable energy systems for a
settlement in Portugal was evaluated using an MCDM approach
(Ramos et al., 2025).

The literature shows that environmental, economic,
technical, and social criteria should be evaluated simultaneously in
the selection and planning of renewable energy systems. Appropriate
evaluation of these characteristics has been carried out using MCDM
methods. Simultaneous evaluation of these characteristics is also of
great importance in renewable energy system projects in cold climate
regions. Therefore, before proceeding with the selection of PV, wind,
and hybrid energy systems for the campus area, the weighting of the
criteria should be analyzed.
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This study uses the AHP method to determine the importance
levels of key criteria to consider before selecting grid-connected PV,
wind, and hybrid energy systems. The suitability of each energy
system alternative for the campus area was determined using the
TOPSIS and MOORA methods, based on the importance levels of
the criteria considered. The aim is to provide a roadmap for
campuses in cold climate regions based on the results obtained.

2. Method

2.1. Analytic Hierarchy Process (AHP) Method

The Analytic Hierarchy Process (AHP) is a multi-criteria
decision-making (MCDM) methodology established by Thomas L.
Saaty in the mid-1970s to address intricate decision-making
challenges (Saaty & Niemira, 2006). The most important feature of
AHP is its ability to integrate both subjective and objective thoughts
and experiences of the decision-maker into the decision-making
process within a logical framework (Ozel & Tiirkel, 2018; Haliloglu
& Odabasg, 2021). The application steps of the AHP method are
generally as follows (Saaty & Kearns, 1985; Saaty, 2005; Gokgoz et
al., 2020):

Step I: In this step, the decision problem is defined, and a
hierarchical structure is established.

Step 2: The criteria defined in the model are evaluated
through pairwise comparisons. For these comparisons, the 1-9
significance scale developed by Saaty and presented in Table 1 is
used.

Step 3: After the pairwise comparison matrices are created,
the matrix is normalized. This is done by dividing each cell value in
the matrix by the column sum. Using Eq. (1), the normalized
pairwise comparison matrix C is obtained.
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Table 1 AHP Importance Weights
Importance Definition
Level
1 Equally important
3 Moderately important
5 Strongly important
7 Very strongly important
9 Extremely important
2,4,6,8 Intermediate values
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By taking the row averages of the normalized matrix, the
priority vector (W) showing the importance levels for each criterion
is calculated as follows.

n
_ Xj=1Cij

W
t n
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Step 4: The Consistency Ratio (CR) is calculated to check the
consistency of the pairwise comparisons made by decision-makers.
For the analysis to be consistent and acceptable, the calculated CR
value must be less than 0.10. If the CR is not within this range, the
decision-maker should reconsider their judgments. The CR is
calculated using the Consistency Indicator (CI) and the Random
Indicator (RI). After Ana is calculated, CI is found using Eq. (4).

Amax—n
1 = Amex ©
Afterwards, the CR value is calculated by dividing the CI
value by the RI value given in Table 2 using Eq. (5).
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Table 2 Consistency Index (CI)

n 1 2 3 4 5 6 7 8 9 10
RI 0 0 [058] 09 | 1,12 | 1,24 | 1,32 | 1,41 | 1,45 | 1,49

2.2. TOPSIS Method

TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) is a MCDM method introduced by Hwang and Yoon
in 1981 (Hwang & Yoon, 1981). The fundamental principle of this
method is that the chosen alternative should be closest to the positive
ideal solution and furthest from the negative ideal solution (Lai et
al., 1994). In TOPSIS, the positive ideal solution (4 ") represents the
best solution that maximizes the benefit criterion and minimizes the
cost criterion, while the negative ideal solution (4°) represents the
worst solution (Tong et al., 2005). The method considers the
alternative closest to the positive ideal solution as the best
alternative, and FEuclidean distances are used to program the
distances (Wang & Elhag, 2006). The basic steps of the TOPSIS
method are as follows (Triantaphyllou, 2000; Yurdakul & I¢, 2003;
Mahmoodzadeh et al., 2007; Ozden, 2011; Sevgin & Kundaker,
2017; Geng et al., 2017):

Step 1: To achieve the decision-maker's goal, the problem,
the criteria to be considered, and the alternatives to be ranked are
determined.

Step 2: An initial decision matrix (4;) is created, with criteria
in the columns and alternatives in the rows.
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Step 3: The generated matrix is normalized so that all criteria
can be compared in the same dimensionlessness. The elements of the
normalized decision matrix are denoted by 77 and calculated using

Eq. (7).

xij
T

il i=12,.....m)(G= 12,....,n) (7)
i=1%ij

Step 4: The predefined criterion weights (w;), which add up
to 1, are multiplied by the normalized matrix values ( 77) to obtain

the weighted normalized decision matrix (V).

n

Taw =1 ®)
vij = ijrij (l= 1,2,,m)(]= 1,2,....,71) (9)

Step 5: Define the negative ideal and positive ideal solution
values according to Eq. (10) and Eq. (11), respectively. Here, J
represents the utility (maximization) criteria, J' represents the cost
(minimization) criteria, X~ represents the least preferred negative
ideal solution, and X* represents the most preferred positive ideal
solution.

X~ = {(min;v;;| j € ]),(maksivijlj €J)i=12,...m}=

VO Vs, Vi) (10)
X+ = {(maksivij| ] € D, (minivijl ] E],),l' = 1,2, ,m} =
Vi Vs Vit (11)
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Step 6: The Euclidean distances of each alternative from
the negative and positive ideal solutions are calculated using Eq.
(12) and Eq. (13).

S¥= \/2’,-21 Wy — v? (= 12,....,m) (12)

S;= \/Z;‘zl (vy—v)?* (= 12,...,m) (13)

Step 7: In this step, the relative proximity of each alternative
to the ideal solution is calculated using Eq. (14). This value is
between 0 and 1, and the alternative with the largest value is
considered the best alternative.

CC==t_(i=12,.....m) (14)

i - ot
ST +S;

2.3. MOORA Method

MOORA (Multi-Objective Optimization on the Basis of
Ratio Analysis) is a multi-objective decision-making method based
on ratio analysis, originally introduced by Brauers and Zavadskas in
2006. The method holistically addresses the interactions between
selection criteria and objectives (Brauers & Zavadskas, 2006). The
stages of the MOORA method are as follows (Brauers et al., 2008;
Metin et al., 2017; Orhan et al., 2023):

Step 1: First, an initial decision matrix is created. Here, “m”
represents the number of alternatives; “n” represents the total
number of criteria; and x;; represents the value of the i. alternative

in the j. objective.
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Step 2: The decision matrix values are normalized using Eq.

(16).
’ Xij
X (16)
j=1%ij

Step 3: In this stage, the criteria in the normalized decision
matrix are classified as benefit (maximization) and cost
(minimization) criteria according to the level of contribution they
provide to the business. The values of the criteria that need to be
maximized are summed up, while the sum of the criteria that need to
be minimized is subtracted from this value. The MOORA score is
calculated using Eq. (17), where j = 1,2,...,g represents the benefit
criteriaandj =g + [, g + 2,...,n represents the cost criteria.

yi = Xi—1 x{j - ;=2+1x1{j (17)

After completing these steps, the resulting y; values are
sorted from largest to smallest. The alternative with the highest value
in this sorting process is then considered the most suitable option for
the decision problem.

3. Application

In this section, the defined multi-criteria decision-making
model was applied to the Erzurum Technical University campus,
located in one of Turkey’s high-altitude regions with harsh winter
conditions. The application phase of the study involved measuring
the performance of grid-connected PV, wind, and hybrid energy
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systems, determined based on the region’s climatic data and the
campus’s energy needs. In the first stage, the importance weights of
the criteria were determined using pairwise comparison matrices
created based on expert opinions and the AHP method. Based on
these weights, the proximity of the alternatives to the ideal solution
was analyzed using the TOPSIS method, and the benefit-cost
balance was analyzed using the MOORA method. The analysis
process was completed by comparing the results of these methods
with different algorithms and identifying the most sustainable energy
model for the campus.

3.1. Definition of the Criteria Set

The criteria for this study were determined by considering a
literature review, applications in renewable energy systems, and the
opinions of expert academics and industry representatives.
Furthermore, the technical characteristics of grid-connected PV,
wind, and hybrid energy systems were examined. Energy
infrastructures in cold climate regions, particularly in university
campuses, were investigated, and a final evaluation framework with
10 criteria was created. These criteria encompass technical,
economic, environmental, and social factors affecting the
applicability of PV, wind, and hybrid energy systems. Brief
descriptions of each criterion are shown in Table 3.

The 10 key criteria used in the analysis process were divided
into two groups, benefit and cost, according to their impact on the
decision-making model. Accordingly, Regional Energy Potential
(C1), Resilience and Efficiency under Climatic Conditions (C2),
System Reliability and Continuity (C3), Grid Connection and
Integration Suitability (C4), Land Conditions and Topography (C8),
Regional and National Incentive Opportunities (C9), and
Environmental Impact and Emission Reduction (C10) criteria were
defined as benefit criteria where high values were preferred. In
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contrast, Initial Investment Cost (C5), Payback Period (C6), and
Operating and Maintenance Costs (C7), representing the economic
burden of the system, were included in the model as cost criteria
where low values were targeted.

Table 3 Criteria and Definitions

No Criterion Name

Criterion Description

Cl1 Regional Energy Potential

Solar irradiation duration, wind
speeds, seasonal variations

C2 Resilience and Efficiency
under Climatic Conditions

Snow load, low-temperature
performance, icing effects

Integration Suitability

C3 System Reliability and Failure rate, operational
Continuity continuity
C4 Grid Connection and Infrastructure compatibility,

connection cost, technical
requirements

C5 Initial Investment Cost Capital expenditures
C6 Payback Period (PP) Financial return
C7 Operating and Maintenance Maintenance frequency and
Costs component durability in cold
climates
C8 Land Conditions and Installation orientation, impact of
Topography slope on efficiencyand slope
effect on efficiency
C9 Regional and National Government incentives, tax
Incentive Opportunities benefits
C10 Environmental Impact and CO: reduction contribution,

impact on the campus
environment

Emission Reduction

The 10 key criteria used in the analysis process were divided
into two groups, benefit and cost, according to their impact on the
decision-making model. Accordingly, Regional Energy Potential
(Cl1), Resilience and Efficiency under Climatic Conditions (C2),
System Reliability and Continuity (C3), Grid Connection and
Integration Suitability (C4), Land Conditions and Topography (C8),
Regional and National Incentive Opportunities (C9), and
Environmental Impact and Emission Reduction (C10) criteria were
defined as benefit criteria where high values were preferred. In
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contrast, Initial Investment Cost (C5), Payback Period (C6), and
Operating and Maintenance Costs (C7), representing the economic
burden of the system, were included in the model as cost criteria
where low values were targeted.

After the criteria were determined as shown in Table 3,
evaluation forms were prepared. Interviews were conducted with
academics and experts experienced in renewable energy systems and
regional applications to ensure the reliability of the decision-making
process. To determine the importance levels of these criteria and to
create pairwise comparison matrices, the opinions of three
Electrical-Electronics Engineers specializing in energy systems were
consulted. Literature research has shown that multiple MCDM
methods are used together to solve similar decision-making
problems. It has been emphasized that this strengthens the
consistency of the results obtained. Accordingly, in this study,
different MCDM methods were used for analysis, and the criterion
weights confirmed the validity of the decision results.

3.2. Calculation of Criteria Weights Using the AHP Method

Within the scope of the study, the individual evaluations of
three expert engineers were combined using the geometric mean
method in accordance with the group decision-making process. This
ensured the reduction of subjectivity and the gathering of expert
opinions on a common denominator. A pairwise comparison matrix
of size 10x10 was created using the 1-9 scale given in Table 1. The
steps of the AHP method were followed and the normalized decision
matrix was obtained using Eq. (1). The normalized decision matrix
created is presented in Table 4. In the next stage, the criterion weights
obtained using Eq. (3) are presented in Table 5 in order of
importance.
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Table 4 Normalized Decision Matrix

Crit. Cl1 C2 C3 C4 C5 C6 C7 C8 C9 Cl10
Cl1 0.249 | 0.437 | 0.308 | 0.363 | 0.262 | 0.254 | 0.120 | 0.194 | 0.131 | 0.081
C2 0.059 | 0.104 | 0.125 | 0.147 | 0.163 | 0.158 | 0.120 | 0.113 | 0.081 | 0.081
C3 0.101 | 0.104 | 0.125 | 0.147 | 0.163 | 0.133 | 0.120 | 0.101 | 0.096 | 0.075
C4 0.070 | 0.072 | 0.087 | 0.102 | 0.198 | 0.192 | 0.134 | 0.093 | 0.081 | 0.139
Cs 0.063 | 0.042 | 0.051 | 0.034 | 0.066 | 0.092 | 0.173 | 0.076 | 0.156 | 0.165
C6 0.090 | 0.061 | 0.087 | 0.049 | 0.066 | 0.092 | 0.194 | 0.210 | 0.251 | 0.185
C7 0.146 | 0.061 | 0.073 | 0.053 | 0.027 | 0.033 | 0.070 | 0.134 | 0.121 | 0.081
C8 0.040 | 0.028 | 0.038 | 0.034 | 0.027 | 0.014 | 0.016 | 0.031 | 0.033 | 0.071
C9 0.063 | 0.042 | 0.043 | 0.041 | 0.014 | 0.012 | 0.019 | 0.031 | 0.033 | 0.081
Cl10 0.120 | 0.050 | 0.065 | 0.029 | 0.016 | 0.020 | 0.034 | 0.017 | 0.016 | 0.039
Table 5 Criteria Weight Values
Rank | Code Criterion Name Weight (w))
1 Cl Regional Energy Potential 0,241
2 Cé6 Payback Period (PP) 0,128
3 C4 Grid Connection and Integration Suitability 0,117
4 C3 System Reliability and Continuity 0,116
5 C2 Resilience and Efficiency under Climatic 0,115
Conditions
6 C5 Initial Investment Cost 0,092
7 C7 Operating and Maintenance Costs 0,080
C10 Environmental Impact and Emission 0,040
Reduction
9 C9 Regional and National Incentive 0,038
Opportunities
10 C8 Land Conditions and Topography 0,033

As seen in Table 5, the criterion with the highest importance

in the study was “Regional Energy Potential” with a weight of 0.241,

while the criterion with the lowest weight was “Land Conditions and
Topography” with a weight of 0.033. Furthermore, the consistency
ratio obtained from the AHP consistency analysis (CR < 0.10) was
found to be within acceptable limits, and the comparison matrix was

determined to be consistent.
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3.3. Evaluation and Ranking of Alternatives

In this phase of the study, the performance of the alternatives
(PV, wind, and hybrid energy systems) determined using the
criterion weights (w;) obtained by the AHP method was evaluated.
To confirm the accuracy of the results and observe the effect of
different mathematical algorithms on the ranking, the TOPSIS and
MOORA methods were used together in the analysis process. These
methods normalize the criterion-based performance of the
alternatives, transforming them into a comparable structure and
generating a final success score for each alternative.

3.3.1. Evaluation Using the TOPSIS Method

After normalization and weighted matrix vector
normalization, each value was multiplied by the relevant criterion
weight w; as shown in Eq. (9) to create the weighted normalized
decision matrix, which is presented in Table 6.

Table 6 Weighted Normalized Decision Matrix

Alt. Cl1 C2 C3 C4 Cs C6 C7 C8 C9 Cl10

PV 0.147 | 0.067 | 0.062 | 0.058 | 0.066 | 0.079 | 0.051 | 0.013 | 0.019 | 0.021
Energy
(AD)
Wind 0.121 | 0.055 | 0.055 | 0.065 | 0.043 | 0.065 | 0.034 | 0.024 | 0.024 | 0.026
Energy
(A2)
Hybrid | 0.147 | 0.075 | 0.082 | 0.077 | 0.048 | 0.079 | 0.051 | 0.019 | 0.022 | 0.023
Energy
(A3)

The best (ideal) and worst (negative ideal (NI)) performance
values for each criterion are determined below and given in Table 7.

Table 7 Ideal (X*) and Negative Ideal (X') Solution Values

Values Cl C2 C3 C4 C5 C6 C7 C8 C9 C10
Ideal 0.147 | 0.075 | 0.082 | 0.077 | 0.043 | 0.065 | 0.034 | 0.024 | 0.024 | 0.026
xH

NI(X) | 0.121 | 0.055 | 0.055 | 0.058 | 0.066 | 0.079 | 0.051 | 0.013 | 0.019 | 0.021
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In the next step, the distances of each alternative to the ideal
solutions, S;" and S;, using Eq. (12) and Eq. (13), and the relative
proximity coefficients (C;") obtained using Eq. (14) are presented in
Table 8.

Table 8 Distances of Alternatives from Positive and Negative Ideal

Solutions
Alternative St Sy C; Rank
A3 0.023 0.050 0.686 1
A2 0.044 0.035 0.444 2
Al 0.045 0.029 0.398 3

Examining the C;" coefficients given in Table 8, it is seen that
alternative A3 (hybrid energy system) is the best option with a score
of 0.686. According to the TOPSIS logic, this result shows that A3
is the alternative closest to the determined ideal criterion values and
furthest from the negative ideal values. The significant score
difference between A2 (wind energy system), which is in second
place, and A3, which is in first place, stems from A3’s dominant
performance, especially in the high-weighted criteria (C1, C3, C4).
Alternative A1 (PV energy system) ranked last in the evaluation with
a score of 0.398.

3.3.2. Evaluation Using the MOORA Method

Normalization and weighting of the standard decision matrix
for the MOORA method is the same as in the TOPSIS method. In the
next step, using Eq. (17), the sum of the cost criteria is subtracted
from the sum of the benefit criteria to obtain the net values (y;). In
this context, the values of the benefit-oriented criteria (C1, C2, C3,
C4, C8, C9, C10) and the cost-oriented criteria (C5, C6, C7) are
summed separately. The benefit/cost totals are given in Table 9.
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Table 9 Benefit/Cost Totals

Alternative Total Benefit Total Cost
PV Energy System (A1) 0.388 0.195
Wind Energy System (A2) 0.370 0.141
Hybrid Energy System (A3) 0.445 0.177

In the final stage, net performance values were obtained by
subtracting total costs from total benefits, and these are given in
Table 10.

Table 10 MOORA Score Values

Alternative y;_* Rank
A3 0,268 1
A2 0,229 2
Al 0.192 3

The y; scores obtained from the MOORA analysis support
the TOPSIS results. Alternative A3 (hybrid energy system) ranked
first with a net score of 0.268, confirming it to be the most suitable
option. The MOORA method, by clearly subtracting the effect of
cost criteria (C5, C6, C7) from the total, confirms that A3 has both a
high benefit and an acceptable cost balance. The results obtained
with both methods are summarized comparatively in Figure 1.

As shown in Figure 1, both analysis methods confirmed the
consistency of the results by ranking alternative A3 (hybrid energy)
in first place with the highest score. The significant difference in
TOPSIS scores, in particular, is a numerical indicator of A3’s
closeness to the ideal solution.
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Figure 1 Comparative Performance Scores of Alternatives
According to Methods
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4. Conclusion and Recommendations

This study presents an integrated decision-making model to
determine the most suitable grid-connected renewable energy
system for the ETU campus. In the study area, which represents
Turkey's cold climate and high altitude characteristics, PV, wind, and
hybrid systems (Al, A2, A3) were evaluated under 10 different
technical, economic, and environmental criteria. The weighting
process, carried out using the AHP method, revealed that the most
decisive factor in energy investments in cold climate regions is “Cl:
Regional Energy Potential” with a weight of 24.1%. This finding
confirms the need for specific analysis of high-altitude regions. The
fact that the second most important criterion is “C6: Payback Period
(PP) (12.8%)” demonstrates the priority of economic sustainability
for campus-scale investments.

Both TOPSIS and MOORA analyses ranked the hybrid
energy system (A3) first with the highest performance score. In the
TOPSIS method, alternative A3 was determined to be the closest
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option to the ideal solution with a success coefficient of 0.686. In the
MOORA method, the net score of 0.268 confirmed that the benefit-
cost balance of system A3 is superior to other alternatives (PV and
wind). The fact that both different MCDM methods produced the
same ranking (A3 > A2 > Al) shows that hybrid systems
(combination of solar and wind) are the most stable solution for
regions with challenging climatic conditions like Erzurum.

According to the results of the study, it can be said that
priority should be given to the installation of hybrid systems in which
grid-connected PV and wind turbines work together to ensure energy
supply security and minimize the carbon footprint on the ETU
campus. This structure will maximize the continuity of the system
(C3 criterion) by utilizing wind energy during hours when solar
radiation is low. In the design of the systems to be installed, panel
and turbine technologies that offer high efficiency at low
temperatures should be preferred, taking into account the high
weight of the “C2: Resilience and Efficiency under Climatic
Conditions™ criterion. It is predicted that the weight of the “C9:
Regional and National Incentive Opportunities” criterion, which has
a low weight in the analysis, may increase with future local
government and ministry support; this situation is considered to
further shorten the return on investment period (C6).

The criterion weights and ranking results obtained in this
study can be used as a strategic planning guide for other settlements
and public campuses with similar climate and topographical
characteristics. Several suggestions are presented for future studies
to expand the scope of the findings and make the decision-making
process more dynamic. To minimize uncertainties in decision-
makers' evaluations, the model’s sensitivity can be increased by
using fuzzy logic versions of AHP, TOPSIS, and MOORA methods.
The stability of the results can be tested by including MCDM
techniques with different algorithms such as VIKOR,
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PROMETHEE, or ELECTRE in the current model. Furthermore,
comprehensive sensitivity analyses can be performed to measure the
impact of possible changes in criterion weights and economic data
(incentives, costs, etc.) on the ranking.
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CHAPTER 8

PICTURE FUZZY-BASED ASSESSMENT OF
SUSTAINABLE DEVELOPMENT PERFORMANCE
OF EUROPEAN COUNTRIES BORDERING THE
MEDITERRANEAN

HALIL SEN!
Introduction

Sustainable development is a multidimensional development
approach that aims to achieve economic growth, social inclusion,
and environmental protection goals together and in a balanced
manner. This approach has been transformed into a globally
measurable policy framework with the 17 Sustainable Development
Goals (SDGs) defined within the 2030 Agenda adopted by the
United Nations in 2015; a comprehensive monitoring architecture
has been established for monitoring and comparing the performance
of countries. However, measuring SDG performance is not only a
problem of bringing together numerous indicators, but also a
decision analytics problem where methodological choices such as
indicator selection, normalization, weighting, and composite
indexing can significantly alter country rankings. Indeed, the

! Assistant Professor, Burdur Mehmet Akif Ersoy University, Industrial

Engineering Department, Orcid: 0000-0003-4062-5366
--206--



literature clearly emphasizes that SDG rankings are highly sensitive
to the indicators used and methodological assumptions; different
methodological approaches can significantly change the relative
positions of countries (Lafortune et al., 2020; Miola & Schiltz,
2019). Similarly, the need for "appropriate indicators" is critical in
measuring SDG goals; The need to establish a consistent framework
for indicators 1in terms of their meaningfulness and
representativeness is also a key area of discussion (Hék et al., 2016).

European countries bordering the Mediterranean share
common areas of vulnerability such as climate change, water stress,
energy transition, tourism  pressure, urbanization, and
socioeconomic inequalities. Therefore, a comparative analysis of the
SDG performance of this group of countries is important both for
regional sustainability policies and for making the priority sets of
countries visible. However, the heterogeneity of data, incomplete
observations, structural differences between countries, and
uncertainty in  interpreting trend indicators such as
"progress/regression” can limit the explanatory power of classical
exact comparison methods in the evaluation of SDG indicators. In
addition, since SDG evaluations are often carried out with composite
indices based on a high degree of compensatory power, it is possible
for success in one dimension to mask weakness in another
dimension; This situation can lead to misleading results in policy
inferences (Hametner & Kostetckaia, 2020; Miola & Schiltz, 2019).

In this study, a Picture Fuzzy Set (PFS) based integrated
multi-criteria decision-making (MCDM) approach is proposed to
reduce these methodological difficulties and to enable the evaluation
of SDG performance with a more flexible uncertainty representation.
Unlike classical fuzzy sets, the PFS approach represents the
uncertainty in decision-maker judgments more realistically by
modeling not only the degree of "membership" but also the degrees
of "undecided/abstaining" and "opposition" together (Cuong, 2014).
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Since the selection of appropriate aggregation operators is critical
for combining multi-criteria information in PFS-based decision
problems, the Picture Fuzzy Interactional Bonferroni Mean (PF-
IBM) operator, which stands out for its ability to capture inter-
criteria interactions, is used in this study. Bonferroni average is a
powerful tool in multi-criteria aggregation because it can account for
the interrelationships between criteria through a partial multiplier
structure (Beliakov et al., 2010; Yager, 2009). The development of
PF-IBM operators in the PFS environment and the demonstration of
their applicability to MCDM have been particularly emphasized in
recent literature (Ates & Akay, 2020; Liu et al., 2023). In this
context, the study aims to transform the SDG performance of
European countries bordering the Mediterranean Sea within the PFS
framework, generate SDG-based scores using PF-IBM, and rank the
countries. On the other hand, to test the reliability of the rankings
obtained with the method and to evaluate the consistency of the
results under an alternative consensus-based method, the Picture
Fuzzy CoCoSo (PF-CoCoSo) approach is used within the scope of
robustness analysis. The CoCoSo method combines additive
weighting and exponential weighting logic to produce a
“consensus’-based solution and is a powerful ranking tool widely
used in the MCDM literature (Yazdani et al., 2019). CoCoSo is also
used in the context of SDG; for example, it has been shown that the
integration of CoCoSo and Shannon entropy produces objective
results in the assessment of SDG progress in EU countries (Stanujkic
et al., 2020). Furthermore, it has been shown that normalization
preferences have a strong impact on the results in the CoCoSo
algorithm, and appropriate normalization is a critical design decision
(Ersoy, 2022). In this study, testing the findings obtained with PF-
IBM under PF-CoCoSo provides a validation layer that strengthens
the methodological stability of the results. Thus, this study aims to
contribute to literature by proposing a holistic framework that (i)

models the uncertainty of SDG performance with PFS, (ii) accounts
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for criterion interactions with PF-IBM, and (iii) tests ranking
robustness with PF-CoCoSo.

The measurement and cross-country comparison of SDG
performance is rapidly expanding as both methodological and
policy-oriented research area in the literature. While indices created
with SDG indicators are functional in increasing country
accountability and making progress towards the 2030 goals visible,
the high sensitivity of rankings to methodological preferences stands
out as a significant problem. Miola & Schiltz (2019), in their study
on the EU-28 sample, compared the three most common SDG
ranking approaches and showed that country positions can change
almost entirely depending on the chosen indicator set and
assumptions. Similarly, Lafortune et al. (2020), emphasized that
there is no “single correct approach” to measuring SDG progress in
the EU context; factors such as the definition of targets/trajectories,
cross-border impacts, and how data gaps are closed determine the
results. These findings have highlighted the limitations of classical
single-method indices in SDG performance assessment, paving the
way for alternative frameworks based on MCDM.

The use of MCDM methods in SDG assessments has become
widespread, both in terms of weighting indicators and aggregating
multidimensional performance. For example, Mateusz et al. (2018),
examined the sustainable development indicators of EU countries
using TOPSIS and VIKOR, discussing method sensitivity and the
impact of method selection on the results. Rocchi et al. (2022),
proposed a multi-criteria-based SDG achievement index (SDG-AI)
to measure SDG performance; they discussed inter-dimensional
consistency and the impact of the pandemic. Ricciolini et al. (2022),
on the other hand, examined the progress of SDG implementation in
European countries using multi-criteria methods with partial
compensatory based on multiple reference points, revealing clusters
of countries that experienced difficulties, particularly in social and
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economic dimensions. In addition, studies highlighting the
importance of the time dimension and absolute progress measure in
SDG monitoring show that relative rankings can misleadingly
produce “leader/lagging” labels (Hametner & Kostetckaia, 2020).
These discussions indicate that SDG performance should be
considered not only in a single cross-section, but also taking into
account the nature of the indicators and the dynamics of progress.

One of the fundamental problems of SDG measurement is the
appropriateness and representativeness of the indicators. Hak et al.
(2016), argued that in the operationalization of SDG targets, the
“indicator-represented phenomenon” relationship of the indicators
must be clearly established, otherwise the measurements will
produce ambiguous messages. This problem, especially when
combined with inter-country heterogeneity and differences in data
quality, justifies the use of fuzzy approaches that explicitly represent
uncertainty. At this point, the Picture Fuzzy Set (PFS) approach
offers a strong theoretical framework because it can directly model
the components of uncertainty and instability in evaluations. Cudng
(2014), defined the PFS concept and proposed an uncertainty
representation using degrees of undecidedness/abstention and
opposition in addition to membership degree; he showed that PFS
provides higher expressive power than intuitive fuzzy sets. The use
of PFS in conjunction with aggregation operators in the context of
MCDM has been increasing in the literature. Garg (2017), presented
a viable decision procedure for multi-criteria decision making by
developing various aggregation operators (weighted average, ordinal
weighted average, and hybrid average) under PFS. One of the critical
steps in PFS-based decision problems is selecting the appropriate
aggregation operator that captures the relationships between criteria.
In this context, the Bonferroni mean family has gained an important
place in multi-criteria aggregation because it partially accounts for
inter-criteria interactions through a multiplier structure. Yager
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(2009), emphasized the capacity of the Bonferroni mean operator to
capture inter-criteria relationships by interpreting it within multi-
criteria aggregation functions; Beliakov et al. (2010), systematically
examined generalized forms of Bonferroni mean operators,
revealing a broad family capable of modeling partial
combination/decomposition and tolerance concepts. This theoretical
foundation paved the way for the development of interactive
Bonferroni types in a fuzzy environment. In the PFS environment,
Bonferroni-based operators have been particularly concretized with
the Picture Fuzzy Interactional Bonferroni Mean (PF-IBM)
approach. Ates & Akay (2020), proposed a multi-criteria decision-
making procedure by developing Bonferroni mean and its
derivatives (including normalized weighted and ordinal weighted
forms) under PFS and demonstrated the applicability of the method
through application. Liu et al. (2023), developed PF-IBM and related
operators (PFIWBM, PFINWBM) based on strict triangular norms,
proved their basic properties, and also proposed a new MCDM
method in the PFS environment, reporting that it yielded consistent
selections under different triangular norm classes when used in the
ERP selection problem. These studies show that PF-IBM is a
powerful aggregation and ranking tool, especially in problems with
high uncertainty and criterion interaction. Therefore, the use of PF-
IBM in performance evaluations consisting of multidimensional and
interconnected objectives such as SDG is theoretically supported.

In recent years, the integration of robustness/sensitivity
analyses into MCDM studies has become widespread in order to
increase the reliability of the obtained rankings. In this context, the
CoCoSo (Combined Compromise Solution) method is noteworthy
because it produces a consensus-based score by combining different
aggregation logics (aggregate weighting and exponential
multiplication structure). Yazdani et al. (2019), proposed the
CoCoSo method for MCDM problems; By discussing the
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comparative performance and sensitivity analyses of the method on
areal logistics/transportation selection problem, the method's unique
contribution has been demonstrated. As an example of CoCoSo's
applications in the context of sustainability and SDGs, Stanujkic et
al. (2020), obtained an objective ranking by evaluating the progress
of EU countries towards SDG achievement using CoCoSo and
Shannon entropy, and discussed the structural differences between
the countries in the upper and lower groups. Ersoy (2022), showed
through a scenario-based comparison that the normalization step is
critical in the algorithmic design of CoCoSo, and that different
normalization procedures can change the results. Fuzzy extensions
of CoCoSo are also expanding in the literature; for example, Karasan
& Bolturk (2019), demonstrated the applicability of the method to
uncertain and indeterminate decision problems by adapting it to an
interval-valued neutrosophic environment; while Kumar & Kumar
(2024), performed sustainable biomass crop selection with an
extended CoCoSo framework in an intuitive fuzzy environment and
examined the stability of the results with sensitivity analysis. These
developments demonstrate that CoCoSo is a family of methods
suitable for use in different uncertainty environments for the purpose
of “robustness” and “validation”. The placement of this study in the
literature is that it establishes a master-ranking approach that
addresses the problems of method sensitivity and indicator selection
in SDG performance measurement (Miola & Schiltz, 2019;
Lafortune et al., 2020; Hak et al., 2016), models uncertainty with
PFS (Cuong, 2014; Garg, 2017), and captures criterion interactions
with Bonferroni/IBM-based interactive operators (Yager, 2009;
Beliakov et al., 2010; Ates & Akay, 2020; Liu et al., 2023). In
addition, the consistency and methodological stability of the
obtained results are tested with PF-CoCoSo, thus applying the
consensus-based validation logic from the CoCoSo literature to the
SDG problem (Yazdani et al., 2019; Stanujkic et al., 2020; Ersoy,

2022). Therefore, this study aims to evaluate the SDG performance
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in European countries bordering the Mediterranean Sea using an
integrated picture fuzzy MCDM framework that can represent
uncertainty while also incorporating interaction and robustness
elements.

Method

This study proposes an integrated Picture Fuzzy (PF) multi-
criteria decision-making (MCDM) framework to evaluate the
sustainable development performance of European countries
bordering the Mediterranean Sea based on Sustainable Development
Goal (SDG) indicators. The research design consists of four main
stages: (1) construction of the dataset and definition of the decision
problem, (ii) transformation of SDG indicators into picture fuzzy
numbers, (ii1) computation of SDG-based performance scores and
country rankings using the Picture Fuzzy Interactional Bonferroni
Mean (PF-IBM) method, and (iv) robustness analysis of the obtained
results using the Picture Fuzzy CoCoSo (PF-CoCoSo) method. Since
SDG performance assessments are highly sensitive to indicator
selection and methodological choices, as emphasized in the
literature, the main ranking is derived using PF-IBM, while the
consistency and reliability of the results are examined through an
alternative compromise-based approach.

The set of alternatives is defined as;

A= {AIIAZI ,Am},
representing the European countries bordering the Mediterranean.
The criteria set;

C ={Cy,Cy, ..., Cr}
corresponds to the selected SDG dimensions. For each country—SDG
pair, two complementary types of information are used: the SDG
Dashboard (Rating), which reflects the current level of performance,
and the SDG Trend, which captures the direction and pace of
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progress. By jointly considering both dimensions, the analysis
incorporates not only the present status of sustainability but also its
dynamic evolution.

To adequately model uncertainty, incompleteness, and
interpretative ambiguity in SDG assessments, each country—SDG
evaluation is represented using Picture Fuzzy Numbers (PFNs). A
PFN is defined as;

Zip = (i mijpvij), 0 < pgj + 1y + vy < 1,

where u;j, 1;, and v;jdenote the degrees of membership (success),
neutrality (hesitation), and non-membership (failure), respectively.
In this study, SDG Dashboard and SDG Trend indicators are
converted into PFNs using a predefined linguistic-to-numerical
transformation scale. The underlying logic of this transformation is
that high SDG performance is associated with a high membership
degree, low performance with a high non-membership degree, and
intermediate or ambiguous conditions with a higher neutrality
degree. Accordingly, two PFNs are defined for each country—SDG
pair:

#ij = (ufj,mi;, vi;)(Dashboard PFN),
£ = (uf;,nt;,vE)(Trend PFN).
To integrate the current performance level and the progress

trend into a single assessment, these two PFNs are aggregated using
a weighted linear combination:

xl-jzm’ij+(1—a)f 0<ac<l

ijr

Component-wise, this aggregation is computed as

pij = apf; + (1= a)uf;,

ny = ang; + (1 —ang,

v = avl + (1= a)v],.
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When necessary, normalization is applied to ensure that the
condition ;; +n;; + v;j < 1is satisfied. As a result, the picture

fuzzy decision matrix

X = [Xijlmxn
1s obtained.

The criteria weights are defined as;

w = (W, Wy, ..., W),
subject to the constraints;

n
wj = O’Z w; =1,
j=1

Weights are determined either by equal weighting, to preserve
methodological neutrality, or by objective data-driven approaches,
depending on the analytical scenario. The same weight vector is
consistently used across PF-IBM and PF-CoCoSo analyses to ensure
comparability.

To compute the overall SDG performance of each country,
the Picture Fuzzy Interactional Bonferroni Mean (PF-IBM) operator
is employed. Unlike traditional aggregation operators, PF-IBM
explicitly accounts for interactions among criteria by evaluating the
contribution of each criterion together with the average influence of
the others. The general form of the PF-IBM operator is expressed as

1
PF-IBM(Xl, ...,Xn) = mz X; ® Xj,
i%j
where @denotes the picture fuzzy multiplication operation. The
weighted PF-IBM operator for country A;is given by

1/2
S; = PF-IBM(&;q, iz, o) Xip; W) = Z w; Wi (% & Ziy)
j#k
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This aggregation yields a single picture fuzzy performance
value

Si = (Mumuvy)
for each country.

To obtain a crisp ranking, PFNs are transformed into scalar
values using a score function defined as

Score(S;) = u; —v; — An;, A >0,
where Ais a balancing parameter controlling the influence of the
neutrality degree. Countries are ranked in descending order of their
score values, resulting in the PF-IBM-based SDG performance
ranking.

In the final stage, the robustness of the obtained ranking is
examined using the Picture Fuzzy CoCoSo (PF-CoCoSo) method.
PF-CoCoSo is a compromise-based MCDM approach that integrates
additive and multiplicative utility principles within a picture fuzzy
environment. Based on the picture fuzzy decision matrix, two utility
measures are computed for each country: the additive utility

n
S; = Z w; - Score(X;;),
j=1
and the multiplicative utility

n
P, = [Score( X;;)]",

j=1
where X; jdenotes the normalized picture fuzzy evaluations.

These two measures are then combined into a compromise score:

K =2, [— +(1-21) B )o<a <1
' 7%\ max S; ““\ max P; -
L L
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The parameter A.controls the relative importance of additive

and multiplicative components and is typically set to 0.5 to ensure

balance. Countries are ranked according to their K;values, and the
resulting PF-CoCoSo ranking is compared with the PF-IBM ranking

using rank correlation coefficients, top-k overlap analysis, and

sensitivity analysis with respect to A.. This procedure allows the
stability and methodological robustness of the proposed PF-IBM-

based SDG performance assessment to be rigorously evaluated.

As shown below, the algorithm of the PF-IBM—PF-CoCoSo
Framework for Sustainable Development Goals Performance
Assessment is as follows:

Step 1: Data preparation Collect SDG Dashboard and
SDG Trend indicators for each country—SDG pair

(4r ;).

Step 2. Transformation to Picture Fuzzy Numbers (PFNs)
Convert Dashboard and Trend indicators into PFNs using
a predefined linguistic-numerical scale:

. st ot ot
fij = (WijMijpvij) i = (Wi Mij» vij)-

Step 3. Integration of Dashboard and Trend information
Aggregate the two PFNs into a single picture fuzzy
evaluation:

fij = afij + (1 — a)fl]

Step 4. Construction of the Picture Fuzzy Decision
Matrix
Form the PF decision matrix:

X = [Xij]lmxn-
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Step 5. PF-IBM aggregation. For each country A4;,
aggregate SDG criteria using the weighted PF-IBM
operator:

1/2
Si= Z w; Wi (X; @ Xige)
j#k
Step 6. Defuzzification and PF-IBM ranking. Compute
the PF-IBM score:
Score(S;) = p; — v; — An;.

Step 7. PF-CoCoSo robustness analysis. Normalize PF
decision matrix values to obtain ;.

Step 8. Computation of additive and multiplicative
utilities
n

S = Z w; - Score(%)),

j=1
n
P, = H[Score( X"
j=1

Step 9. Calculation of CoCoSo compromise score

K=o [— )4 12 ik
t7 %\ max S; ( ) max P; |’
l l

Step 10. PF-CoCoSo ranking and robustness evaluation
Rank countries according to K;. Compare PF-IBM and
PF-CoCoSo rankings using rank correlation measures,
top-k overlap, and sensitivity analysis with respect to A..
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Application And Findings

The empirical application of the proposed PF-IBM-PF-
CoCoSo framework is conducted on European countries bordering
the Mediterranean Sea by utilizing Sustainable Development Goal
(SDG) Dashboard and Trend indicators. The application relies on
three interrelated data components: (i) SDG Dashboard and Trend
evaluations for each country—SDG pair, (ii) a picture fuzzy
transformation scale for Dashboard indicators, and (iii) a picture
fuzzy transformation scale for Trend indicators. These components
jointly form the basis for constructing the picture fuzzy decision
matrix and for subsequent aggregation and robustness analysis.

Table 1 presents the SDG Dashboard and Trend evaluations
for the selected countries across SDG1-SDG17. For each country
and SDG, the Dashboard indicator reflects the current achievement
status (e.g., SDG achieved, challenges remain, major challenges
remain), while the Trend indicator captures the recent direction of
progress (e.g., on track, moderately improving, stagnating,
decreasing). This dual representation enables the assessment to
move beyond static SDG performance and incorporate dynamic
progress information, which is essential for monitoring advancement
toward the 2030 Agenda.

In Table 1, the SDG Dashboard and Trend indicators are
expressed using specific abbreviations. For the Dashboard
evaluations, SA (SDG Achieved) indicates that the respective goal
has been largely achieved; CR (Challenges Remain) denotes that
progress has been made but certain challenges persist; SCR
(Significant Challenges Remain) reflects the presence of substantial
barriers to achieving the goal; MCR (Major Challenges Remain)
signifies severe and structural difficulties; and IU (Information
Unavailable) indicates the absence of sufficient and reliable data for
the corresponding goal.
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Table 1. SDG Dashboard and Trend indicators for Mediterranean
European countries (SDGI-SDG17).

SDG BA HR CY FR GR IT ME  SI ES TR

SDG1 @ CR/ SA/ SA/ SA/ CR/ CR/ CR/ | SA/ CR/ | CR/
MI OoT OoT oT MI MI MI oT MI Ml

SDG2 SCR | CR/ SCR/ | CR/ CR/ CR/ CR/ | CR/ | CR/ | CR/
/ML | MI MI MI MI MI MI MI MI MI

SDG3 @ CR/ SA/ CR/ SA/ SA/ SA/ CR/ | SA/ | SA/ | CR/
MI OoT MI oT oT oT MI oT oT MI

SDG4 CR/ SA/ SA/ CR/ CR/ CR/ CR/ CR/  SA/  SA/
MI  OT OT Ml MI MI MI Ml  OT  OT

SDGS5 @ SCR/ | CR/ CR/ CR/ CR/ CR/ CR/ CR/ SA/ MCR
MI MI MI MI MI MI MI MI oT /Ml

SDG6 @ CR/ SA/ CR/ SA/ SA/ SA/ CR/ SA/ SA/ CR/
MI oT MI oT oT oT MI oT oT MI

SDG7 CR/ SA/ CR/ SA/ CR/ CR/ CR/ SA/ SA/ CR/
MI  OT MI OT MI M Ml  OT OT M

SDG8§ MCR CR/ CR/ CR/ CR/ CR/ CR/ CR/ CR/  MCR
/MI MI MI Ml MI  MI Ml Ml  MI /M

SDG9 SCR/ CR/ CR/ CR/ CR/ CR/ SCR/ CR/ CR/  CR/
Ml MI Ml MI  MI Ml MI  MI M MI

SDG1 | CR/ SA/ SA/ CR/ CR/ | CR/ CR/ SA/ CR/ SCR/

0 MI OT OT MI Ml MI Ml OT Ml M
SDG] | CR/ CR/ | CR/ CR/ CR/ CR/ CR/ | CR/ CR/ | CR/
) MI Ml MI  MI Ml Ml Ml MI | Ml | M
SDG] | MCR | SCR/ MCR | MCR  MCR MCR | IU/ | MCR  MCR | MCR
5 /MI | DEC |/ /ML / /MI | TU /ML | /MI | /MI
DEC DEC
SDG1 | MCR MCR  MCR MCR MCR  MCR MCR  MCR MCR MCR
3 /ST | /ST |/ /ML /MI | /MI /ML | /MI | /MI |/
DEC DEC
SDG1 | IU/ | SCR/ | SCR/  SCR/ | SCR/  SCR/ | SCR/ | SCR/  SCR/  SCR/
4 U MI  MI  MI Ml Ml MI  MI | Ml | M
SDG1 | SCR/  SCR/  CR/ | SCR/ | SCR/  SCR/ | SCR/ | SCR/  SCR/  SCR/
5 MI Ml MI  MI Ml Ml Ml  MI | Ml | M
SDGl CR/ CR/ CR/ CR/ | CR/ CR/ | CR/ | CR/ | CR/ | SCR/
6 MI M MI  MI Ml Ml Ml  MI | Ml | M
SDGl | CR/ CR/ CR/ CR/ CR/ CR/ SA/ CR/ CR/ | CR/
7 MI MI MI MI Ml Ml  OT MI Ml M

Source: Sustainable Development Report 2025)

Regarding the Trend indicators, OT (On Track) represents
progress that is aligned with the target trajectory; MI (Moderately
Improving) indicates a limited but positive improvement trend; ST
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(Stagnating) denotes a lack of meaningful progress; and DEC
(Decreasing) reflects a deterioration in performance over time.

To handle the inherent uncertainty, incompleteness, and
qualitative nature of SDG indicators, Dashboard and Trend
evaluations are transformed into Picture Fuzzy Numbers (PFNs).
The linguistic categories used in the SDG Dashboard meaningfully
differ in terms of achievement intensity and uncertainty.
Accordingly, Table 2 reports the picture fuzzy transformation scale
for Dashboard indicators. High achievement levels (e.g., SDG
achieved) are represented by high membership degrees and very low
non-membership degrees, whereas worsening performance
categories (e.g., major challenges remain) are characterized by
increased non-membership. Situations with insufficient information
are modeled using balanced membership, neutrality, and non-
membership values to reflect maximum uncertainty.

Table 2. Picture fuzzy transformation scale for SDG Dashboard

indicators.
Dashboard status U n v
SDG achieved (SA) 0.85 0.10  0.05
Challenges remain (CR) 0.60 | 030 @ 0.10
Significant challenges remain (SCR) 035 045 | 0.20
Major challenges remain (MCR) 0.15 1035 | 0.50
Information unavailable (IU) 033 033 034

Similarly, SDG Trend indicators describe the evolution of
performance over time rather than the current status. Positive
dynamics (on track or improving) and negative dynamics (stagnating
or decreasing) convey different implications for future sustainability
outcomes. Therefore, a separate picture fuzzy transformation scale
is adopted for Trend indicators, as shown in Table 3. Positive trends
are associated with higher membership degrees, while declining
trends increase non-membership values. Trend unavailability is
again represented by balanced picture fuzzy values to preserve

neutrality.
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Table 3. Picture fuzzy transformation scale for SDG Trend

indicators.
Trend status ut nt vt
On track (OT) 0.80  0.15 0.05
Moderately improving (MI) 0.60  0.30 0.10
Stagnating (ST) 0.30  0.40 0.30
Decreasing (DEC) 0.10 1 0.30 0.60
Trend unavailable 0.33 | 0.33 0.34

Using the transformation scales in Tables 2 and 3, each
Dashboard and Trend evaluation in Table 1 is converted into two
PFNs for every country—SDG pair. These two PFNs are subsequently
integrated into a single picture fuzzy assessment through a weighted
linear combination, ensuring that both the current performance level
and the progress trajectory contribute to the final evaluation. This
process yields the integrated picture fuzzy decision matrix, which
serves as the input for the PF-IBM aggregation.

Following the construction of the integrated picture fuzzy
decision matrix, the next step of the analysis involves determining
the relative importance of the SDG criteria. Since the Sustainable
Development Goals differ in their systemic impact and urgency,
treating all SDGs as equally important may obscure meaningful
policy priorities. Therefore, this study adopts a transparent, theory-
driven SDG prioritization scheme, explicitly aligned with the core
principles of sustainable development.

The criterion weights were determined based on expert
opinions. Within this framework, the Sustainable Development
Goals (SDGs) were divided into three priority groups according to
their relative importance levels derived from the final normalized
weight values. This classification aims to reflect the systemic
impacts of the goals on environmental sustainability, socio-
economic stability, and development support mechanisms.
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The first group comprises the Very High Priority SDGs and
represents the system-dominant dimensions with the strongest
impact on the overall sustainability assessment. In this group, SDG
12 (Responsible Production and Consumption) stands out with the
highest weight value (0.3639), followed by SDG 7 (Accessible and
Clean Energy) (0.1316) and SDG 9 (Industry, Innovation and
Infrastructure) (0.1066). These goals are directly related to
production structures, energy transition, and technological capacity,
and are key drivers of sustainable development. High weight values
indicate that performance differences in these areas are decisive in
distinguishing the overall sustainability levels of countries.

The second group consists of High Priority SDGs and
includes objectives directly related to basic needs, human well-
being, and essential services. In this group, SDG 2 (End Hunger)
(0.0958) and SDG 6 (Clean Water and Sanitation) (0.0702) reflect
the critical importance of food security and access to basic services.
Additionally, SDG 3 (Health and Quality of Life) (0.0422) and SDG
4 (Quality Education) (0.0442) are included as key elements
strengthening human capital and societal resilience. While these
objectives make a significant contribution to sustainability
performance, their level of distinctiveness is more limited compared
to the system-critical objectives in the first group.

The third group encompasses Medium Priority SDGs and
consists of objectives related to social equity, environmental
protection, urban development, and global cooperation. This group
includes SDG 1 (Ending Poverty), SDG 5 (Gender Equality), SDG
8 (Decent Work and Economic Growth), SDG 10 (Reducing
Inequalities), SDG 11 (Sustainable Cities and Communities), SDG
14 (Life Below Water), SDG 15 (Life on Land), SDG 16 (Peace,
Justice and Strong Institutions), and SDG 17 (Partnerships for the
Goals). While these goals are essential for long-term and inclusive
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development, their impact within the decision-making framework is
mostly felt indirectly or through progress in higher-priority goals.

Based on this updated classification, numerical weights have
been assigned to each SDG, ensuring that the sum of all criterion
weights equals one. The resulting structure allows system-critical
and highly distinctive SDGs to have a stronger impact on the final
ranking, while also ensuring that the multifaceted scope of the 2030
Sustainable Development Agenda is preserved during the
assessment process.

After applying these weights, each picture fuzzy evaluation
was multiplied by its corresponding SDG weight, yielding a
weighted picture fuzzy decision matrix. The PF-IBM operator was
then employed to aggregate SDG-level information into a single
country-level assessment. Unlike additive aggregation methods, PF-
IBM explicitly accounts for interactions among criteria, thereby
capturing the reality that progress in one SDG may reinforce or
constrain progress in others. With parameters p = q = 1, the PF-
IBM aggregation computes pairwise interactions among all SDGs,
ensuring that highly weighted goals exert proportionally stronger
influence throughout the aggregation process.

For each country, the PF-IBM operator produced three
aggregated components—membership (1), indeterminacy (n;), and
non-membership (vi)—representing overall sustainable development
performance under uncertainty. These components were
subsequently converted into a single scalar index using the score
function Score; = pu; — v;, which rewards strong achievement while
penalizing persistent opposition or failure. This score function is
widely adopted in picture fuzzy decision-making studies due to its
interpretability and robustness.

The updated PF-IBM results under the priority-based
weighting scenario are summarized in Table 4.
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Table 4. Updated PF-IBM Scores and Country Ranking

Rank = Country i Vi PF-IBM
Score

1 Spain (ES) 0.023151  0.004279 | 0.018872
2 Slovenia (SI) 0.023093  0.004298 | 0.018794
3 France (FR) 0.022814 | 0.004385 | 0.018428
4 Croatia (HR) 0.022510  0.004205 | 0.018305
5 Italy (IT) 0.021710  0.004750 | 0.016960
6 Tiirkiye (TR) 0.020125  0.005429 | 0.014696
7 Greece (GR) 0.019843  0.005231 | 0.014612
8 Cyprus (CY) 0.019082  0.005532 | 0.013550
9 Bosnia & Herzegovina (BA) | 0.017181 @ 0.005087 @ 0.012094
10 Montenegro (ME) 0.014914  0.002902 | 0.012012

The findings reveal a clear stratification of sustainable
development performance across the Mediterranean region.
Countries occupying the top tier—Spain, Slovenia, France, and
Croatia—exhibit relatively balanced achievement across high-
weight SDGs, particularly those related to clean energy transitions,
responsible production patterns, and institutional effectiveness.
Their low non-membership values indicate fewer structural barriers
across priority goals, allowing positive interactions to dominate the
PF-IBM aggregation.

Turkiye’s sixth-place ranking reflects its comparative
strength, particularly in selected high-weighted Sustainable
Development Goals (SDGs) such as SDGI12 (Responsible
Consumption and Production) and SDG7 (Clean Energy); recent
progress in these areas compensates for weaker performance on
governance and equity-related goals. The interactive nature of PF-
IBM plays a decisive role here: progress on strategically weighted
SDGs boosts Tiirkiye’s overall score despite ongoing challenges in
specific social dimensions. In contrast, Greece exhibits less positive
trend dynamics on various environment-weighted goals, resulting in
a marginal decline in its PF-IBM score despite similar underlying
conditions. Lower-ranked countries such as Bosnia and Herzegovina
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and Montenegro are characterized by a concentration of major or
significant challenges across multiple SDGs and limited positive
trend signals. In these cases, PF-IBM penalizes inconsistent or
fragmented progress, emphasizing the importance of consistency
across goals rather than isolated successes. Overall, the extended
results demonstrate that sustainable development performance in the
Mediterranean context is shaped not only by levels of achievement
but also by the appropriate distribution of progress among priority
goals. When combined with scenario-based Sustainable
Development Goals weighting, the PF-IBM framework offers a
powerful and flexible decision support tool capable of revealing
nuanced performance patterns under uncertainty. These findings
provide a solid empirical basis for subsequent robustness analyses
and policy-driven interpretations.

To assess the stability of the obtained country rankings
against methodological assumptions, a comprehensive robustness
analysis was conducted. In the multi-criteria decision-making
literature, robustness refers to the extent to which rankings remain
stable under reasonable variations in weighting schemes, indicator
fusion, and aggregation operators. Given the multidimensional and
uncertainty-prone nature of sustainable development assessment,
such robustness analysis is essential to support the credibility and
reliability of the findings.

First, the sensitivity of the rankings to the choice of
aggregation method was examined. For this purpose, the country
rankings obtained using the Picture Fuzzy Interactional Bonferroni
Mean (PF-IBM) method were compared with those derived from the
Picture Fuzzy CoCoSo (PF-CoCoSo) method, applied using the
same picture fuzzy decision matrix and the same SDG weight vector.
The association between the two rankings was measured using the
Spearman rank correlation coefficient. Table 5 presents the rankings
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obtained by both methods along with the rank differences and their
squared values.

Table 5. Comparison of PF-IBM and PF-CoCoSo Rankings and

Rank Differences

Country PF-IBM Rank = PF-CoCoSo Rank  d; @ d?
Spain (ES) 1 1 (U
Slovenia (SI) 2 2 (U
France (FR) 3 4 -1 1
Croatia (HR) 4 3 1 1
Italy (IT) 5 5 0 0
Tiirkiye (TR) 6 6 0 0
Greece (GR) 7 7 (U
Cyprus (CY) 8 8 (U
Bosnia and Herzegovina 9 9 0 0
(BA)

Montenegro (ME) 10 10 0 0
Total 2

Based on Table 5, the sum of squared rank differences is ) d;?
= 2. For a sample of ten countries, the Spearman rank correlation
coefficient was calculated as follows:

6yd; 6 X 2

m@m?—1) ~  10(102 — 1)

This very high correlation coefficient indicates that the
rankings obtained by PF-IBM and PF-CoCoSo are largely
consistent, despite their different aggregation logics. The fact that
the observed rank differences are limited to adjacent positions
further confirms that the overall ranking structure is preserved and
that the results are highly robust with respect to the choice of
aggregation method.

p=1- = 0.988.

As a second robustness dimension, the sensitivity of the
results to the fusion parameter used to combine SDG Dashboard and
SDG Trend indicators was examined. In the baseline analysis, both
components were combined with equal importance (o = 0.50). Two

alternative scenarios were then considered: a = 0.30, giving greater
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emphasis to trend dynamics, and a = 0.70, giving greater emphasis
to current achievement levels. PF-IBM scores and rankings were
recalculated for each scenario and compared with the baseline
results. The Spearman rank correlation coefficients between the
baseline and alternative scenarios are reported in Table 6.

Table 6. Rank Correlations under Alternative Dashboard—Trend
Fusion Scenarios

Scenario Comparison Spearman p
a=0.50 vs. a=0.30 0.88
0=0.50 vs. 0 =10.70 0.91

The correlation coefficients reported in Table 6 are both
above the commonly accepted threshold of 0.80, indicating that the
country rankings are only weakly sensitive to moderate changes in
the relative importance assigned to current performance and progress
trends. This finding suggests that the evaluation results are not driven
by a specific fusion assumption.

To further examine ranking stability, the Average Rank
Deviation (ARD) was computed. ARD measures the average
absolute deviation of each country’s rank from its mean rank across
different scenarios. The ARD for each country was calculated using
the following expression:

K
1
ARD; = Ez |T.i(k) —7 1,
k=1

where ri(k)denotes the rank of country iunder scenario k, 7;is its
mean rank across all scenarios, and Kis the number of scenarios
considered. The resulting ARD values are presented in Table 7.
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Table 7. Average Rank Deviation (ARD) across Scenarios

Country Mean Rank = ARD
Spain (ES) 1.00 0.00
Slovenia (SI) 2.00 0.00
France (FR) 3.00 0.33
Croatia (HR) 4.00 0.33
Italy (IT) 5.00 0.67
Tiirkiye (TR) 6.00 0.33
Greece (GR) 7.00 0.33
Cyprus (CY) 8.00 0.33
Bosnia and Herzegovina (BA) = 9.00 0.33
Montenegro (ME) 10.00 0.00

As shown in Table 5, the average ARD across all countries is
0.42, indicating that country rankings vary by less than half a
position on average across scenarios. Particularly low ARD values
for the highest- and lowest-ranked countries suggest that the extreme
performance groups remain stable under alternative methodological
assumptions.

Robustness was also evaluated at the score level by
computing the coefficient of variation for PF-IBM scores across
scenarios. The average coefficient of variation was found to be
below 6%, indicating limited dispersion in performance scores. This
result demonstrates that not only ordinal rankings but also cardinal
performance levels are relatively insensitive to reasonable
methodological changes.

Overall, the combination of high Spearman rank correlations,
low average rank deviations, and limited score variability provides
strong quantitative evidence that the obtained country rankings are
robust across different aggregation methods, Dashboard—Trend
fusion schemes, and weighting assumptions. These findings confirm
that the proposed picture fuzzy—based sustainable development
assessment framework produces methodologically sound, stable,
and reliable results, thereby offering a solid analytical basis for
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comparative  sustainability = analysis and  policy-oriented
interpretation.

Conclusion

This study proposed and applied an integrated picture fuzzy
multi-criteria  decision-making framework to evaluate the
sustainable development performance of European countries
bordering the Mediterranean. By jointly considering SDG
Dashboard indicators, which reflect current achievement levels, and
SDG Trend indicators, which capture recent progress dynamics, the
analysis provided a temporally sensitive and uncertainty-aware
assessment of national sustainability performance. The
transformation of qualitative SDG information into Picture Fuzzy
Numbers (PFNs) enabled the explicit modeling of achievement,
hesitation, and opposition, thereby overcoming key limitations of
conventional crisp and single-membership fuzzy approaches.

The methodological contribution of the study lies in the
combined use of priority-based SDG weighting and the Picture
Fuzzy Interactional Bonferroni Mean (PF-IBM) operator. Unlike
traditional aggregation methods, PF-IBM explicitly incorporates
interactions among criteria, allowing the evaluation framework to
reflect the interdependent nature of the SDGs. In this context,
progress or stagnation in highly interconnected goals propagates
through the aggregation process, yielding a more realistic
representation of sustainable development as a systemic
phenomenon rather than a collection of isolated targets.

Empirical findings demonstrate that sustainable development
performance among Mediterranean European countries exhibits
clear differentiation patterns. Countries achieving balanced progress
across high-priority environmental, social, and institutional SDGs
consistently outperform those with fragmented or uneven
performance profiles. The results confirm that sustainability
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leadership is not driven solely by success in individual goals, but
rather by coherent and interaction-consistent advancement across
multiple SDGs, a feature effectively captured by the PF-IBM
framework.

The robustness analysis further strengthens the credibility of
the findings. High Spearman rank correlation coefficients between
PF-IBM and PF-CoCoSo rankings, limited sensitivity to alternative
Dashboard—Trend fusion parameters, low average rank deviations,
and small score variability collectively indicate that the results are
stable across reasonable methodological variations. These outcomes
suggest that the observed ranking patterns are driven by underlying
performance structures rather than by specific modeling
assumptions, thereby reinforcing the methodological reliability of
the proposed framework.

From a methodological perspective, the study demonstrates
that picture fuzzy modeling provides a powerful tool for SDG
assessment under uncertainty, particularly when qualitative
indicators and incomplete information dominate the evaluation
landscape. The integration of interaction-aware aggregation and
transparent SDG weighting offers a flexible yet rigorous decision-
support structure that can be adapted to different regional contexts
and policy priorities without compromising analytical consistency.

Despite its contributions, the study is subject to certain
limitations. The analysis relies on aggregated SDG indicators at the
national level and does not account for sub-national disparities or
sector-specific dynamics. Moreover, while the priority-based
weighting scheme enhances interpretability, alternative weighting
approaches—such as data-driven or stakeholder-based methods—
may yield complementary insights. Future research could extend the
proposed framework by incorporating additional uncertainty
models, longitudinal analysis, or hybrid weighting mechanisms, as
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well as by applying the methodology to other regions or thematic
sustainability domains.

In conclusion, this study provides a robust, interaction-
sensitive, and uncertainty-aware framework for comparative SDG
performance assessment. The findings highlight the importance of
integrated progress across interdependent goals and demonstrate the
value of picture fuzzy methods in sustainability evaluation. The
proposed approach offers both methodological advancement and
practical relevance, making it a valuable contribution to the growing
literature on multi-criteria sustainability assessment and evidence-
based policy analysis.
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CHAPTER 9

FUZZY LOGIC FOR TRAFFIC STATE
CLASSIFICATION

GiZEM ERDINC!

Introduction

Indicating traffic breakdowns immediately has a pivot role in
intelligent transportation engineering. Common approaches evaluate
traffic condition by classifying traffic volume and average speed of
vehicles in their binary-set-nature computation methods. These
mathematical approaches are acceptable if they defined by precise
and real-observed deterministic data. An effective mobility method
needs to consider three factors as continuous traffic flow, traffic
monitoring particularly at known traffic breakdown areas, and
identifying and solving accident-related risk factors (Krause,
Altrock, & Pozybill, 1996). For dealing with mentioned factors three
parameters of traffic flow description are highlighted consisting of
speed, density, and flow (Kalinic & Krisp, 2019) (Logghe & Immers,
2007). These parameters are macroscopic traffic model variables
where aggregate traffic parameters or overall behaviour of the traffic
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stream are modelled. On the other hand, each traffic condition has
some level of similarity, which makes traffic state division fuzziness.
So, in this chapter the conception of ‘fuzziness’ is introduced as a
better thinking than the current deterministic approaches with
highlighting its advantages and easiness. However, traffic is known
to be a highly complex system and drivers’ behaviour cannot be
foreseen. In such circumstances, rather than ‘crisp’ mathematical
models, fuzzy logic can be better performed beside their tractability
in dealing with ambiguity and subjectivity are aligned with
intelligent traffic modelling purposes in designing traffic
breakdown-related alert or early warning systems, infrastructure and
services planning, and sustainability development.

The Necessity of a Fuzzy Approach for Traffic State Modelling

The necessity of using reliable congestion detection and prediction
techniques mostly arose from recent advancement in ITS. These
techniques are categorized on two main levels: first, conventional
methods formed on statistical approaches (e.g., autoregressive
integrated moving average, Kalman filtering, etc.) joined with flow
and congestion related parameters, second, data-driven methods
employing such machine learning algorithms (e.g., artificial neural
network, support vector regression, and fuzzy based computation)
which these methods are the most frequent techniques in the latest
research (Chmiel & Szwed, 2015) (Majumdar, Subhani, Roullier,
Anjum, & R, 2021). Employing such techniques requires clarifying
traffic congestion concepts. Although it has been investigated and
developed in various aspects (Aftabuzzaman, 2007), among them all
demand— capacity equilibrium is a significant characteristic of
congestion that needs to be considered. This category is a relative
calibre of traffic flow or a proportion of the best possible condition
of the freeway and current condition which any change in
equilibrium between traffic flow and approximate capacity of

freeway can affect travel time, economic aspects, and variation of
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behaviour. Approximation plays a significant role in all traffic
involved measurements; this means that each involved parameter in
congestion respecting the precision of its representation in real-
world circumstances needs to be analysed by a framework which can
deal with ambiguity and uncertainty. Fuzzy inference methods can
homogeneously approximate and model every existing continuous
nonlinear system to a subjective degree of exactness (J.M., 1995).
Describing level of traffic is connected to uncertainty associated
properties, especially the traffic interval speed variable. Therefore,
the computation of grading description of speed necessitates to be
fuzzy. Among the first research (Pappis & Mamdani, 2007) proposed
fuzzy inference-based method to deal with a specific problem of
traffic congestion where a fuzzy based controller implemented in an
intersection to compare the results with conventional vehicle-
actuated controller, consequently, performed analyses indicated that
fuzzy based controller has a preferable performance. There are many
examples of solving complex traffic and transportation problems
indicating the great potential of using fuzzy set theory techniques in
literature, especially for congestion quantification (Erdinc,
Colombaroni, & Fusco, 2023).

Traffic State Division

In the traffic engineering and management literature, three
parameters are usually used to describe the traffic flow
characteristic, which are volume of traffic (q = vehicle/h/km), speed
(v = km/h) and traffic density (k = vehicle/km). The relationships
among the 3 parameters can be expressed formally with the Equation
1 and the flow-density curve is given in Fig (1-a). The flow-density
curve is called the traffic fundamental diagram.

Q=v<k (D

Road traffic state refers to the real-time traffic flow condition of one

road, but the road congestion definition is a vague concept, and it is
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difficult to use specific data to define. In general, the traffic condition
of one road can be divided into different feature states. The traffic
condition is divided into 4 features states as shown in Fig (1-b).

Fig 1. Traffic fundamental diagram (a) and traffic state division (b)
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Kaynak: (Huang, Zhang, Liu, & Zhang, 2022)

The first state is freely driving state. Under this condition, flow and
density are very low and speed is high. The vehicle can hardly be
suffered from the influence of the vehicle ahead or behind of it and
driver has good free driving degrees. The 2nd state corresponds to
the steady-flow condition, in which both speed and flow remain at
relatively high, but density is medium. Along with the increase of
density, flow is on the increase and even can be increased to the
traffic capacity. Under this traffic condition, the road infrastructure
can get to be fully used, and driver can drive in larger freedom. The
3rd state is crowded flow state. Along with the increase of flow,
speed falls sharply. The 4th state is serious crowded state. Here, the
density is very high, and traffic jam often happens. The whole the
road traffic condition is under the state of vehicle-following
synchronization.

Table 1 summarizes all the states discussed above and presents the
corresponding changes in the parameters as represented on the traffic
fundamental and state division diagrams which is in given in Fig.1.
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Table 1. Traffic state division summary

State q k v
Freely driving -1- Very low Very low High
Steady flow -2- Very high Medium Very high
Crowded flow -3- High High Low
Serious crowded -4- Low Very high Very low

Therefore, with this summary, the state classification problem can be
understood as a classified problem with three inputs (flow, density
and speed) and one output (traffic congestion state). In this
definition, all the variables are defined with linguistic definitions.
While the traffic states are defined in classes between from freely
driving to serious crowded; all the inputs variables clustered from
very low, low, medium, high and very high.

Modelling Traffic States using Fuzzy Logic

The basic structure of a fuzzy-based system consists of three
components, namely, fuzzification of the input variables, construct
knowledge-based inference system and defuzzification of the output
variable membership function (Fig.2).

Fig. 2. Fuzzy Logic architecture
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The first step is fuzzification which converts crisp input/output
values into a set of fuzzy variables defined by membership functions.
But before that, we specified both input and output parameters with
their suitable numerical ranges which can give us a meaning to
determine the impact of ranges on congestion and assigned linguistic
variables corresponding to them. We defined three input parameters
(Flow, Density, and Speed) and one out parameter (Traffic State).
The input parameter — Flow — is assigned with the following
linguistic variables: Very Low Flow (VLF), Low Flow (LF),
Medium Flow (MF), High Flow (HF), and Very High Flow (VHF).
The input parameter — Density — is clustered as: Very Low Density
(VLD), Low Density (LD), Medium Density (MD), High Density
(HD), Very High Density (VHD). The last input parameter -Speed is
defined with three linguistic variables: Very Low Speed (VLS), Low
Speed (LS), Medium Speed (MS), High Speed (HS), and Very High
Speed (VHS). The output parameter — Traffic State — (calculated for
each road section) is also fuzzified with five linguistic variables:
Freely Driving (FD), Steady Flow (SF), Crowded Flow (CF), and
Serious Crowded Flow (SCF).

After giving the variables linguistic definitions and numeric ranges,
all of them fuzzified by assigning them membership functions.
Fuzzy theory provides a basis for applying expert supervised
customizations and rules, human knowledge has a central role in
engineering and designing procedures (L.A., 1973). The most
significant part of this idea is supporting and solving the crisp set
limitations where dichotomizing (divide into two sharply defined
parts) the individuals as members and non-members by increasing
the volume of acceptable and allowable uncertainty through
sacrificing some of the accurate information in favour of an
ambiguous but more robust summary (Zadeh, 2015). The
membership or non-membership of x value in the binary set A is
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assigned by function pA of A, illustrated by equation below (Erdinc,
Colombaroni, & Fusco, 2023):

1,i A
Ha(x) = {0, llff; Z A @

As opposed to a crisp set in which a sharp and unambiguous
distinction exists between the members and non-members, a fuzzy
set introduces ambiguity with the aim at reducing complexity by
eliminating the sharp boundary separating members of the set from
non-members. Therefore, a value can partly be a participant of a
specific set. These values are computed with linguistic metaphors
rather than numerical expressions; an element is assigned in a class
with membership function in closed interval 0 and 1; 1 expresses
complete membership and 0 states non-membership; membership
function pa quantifies the degree of belongingness of x to A. In the
equation below the fuzzy set A is indicated:

A={x,pA®)|x € U} 3)

Even though there are various membership functions commonly
used, in this paper triangular membership functions as given in
Equation 2 are used since they capture the characteristics of the case
study’s fuzzy set and it’s one of the most used examples.

0, x < amin or x > amax

x—amin c ( . ,3)
pa(x)= p—amin’ x amin, “4)
amax—x

amaxp’ € (B, amax)

Fuzzy intelligence has been employed in various engineering and

industrial applications. One of the first and popular fuzzy based

control systems was introduced by Mamdani-Assilian [14]. The

Mamdani fuzzy system has been commonly applied for dealing with

complex problems in the field of traffic engineering (Kalinic &

Krisp, 2019). This model employs fuzzy set instructions to convert
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a completely unstructured class of linguistic heuristics into an
algorithm (Wang & Chen, 2014). The ‘if-then’ rule process of the
Mamdani based algorithm (Fig. 2) is stated as: If x; is Aj1 and x> is
Apand ... xris Airthenyis Bi (fori=1, 2, ..., k)

where x; is the input variable and the output variable is y, Ai: and B;
are linguistic terms, and k is the number of rules.

As the second step and as the heart of the fuzzy model, we combine
our previously fuzzified inputs using if—then fuzzy rules to build the
inference and nonlinear surface model. Linguistic information (such
as free flow and medium density) relates to AND operator meaning
that minimum condition has to be met in order for conditional if
statement to be fulfilled. All rules are evaluated in parallel based on
fuzzy set theory that describes interpretation of the logical operations
such as the complement, intersection, and union of sets. The
consequent of each rule assigns an entire fuzzy set to the outputs.
The fuzzy set is represented by a membership function to indicate
the qualities of the consequent. Thus, every rule has a nonzero degree
overlapping with other rules. The aggregation method is chosen to
combine the inference results of these rules. Table 2 shows some of
the rules. It is worth to remember here that all feasible points (even
if they represent unstable conditions) need to be involved in
Mamdani phase as rules to get a better model of g-k-v.

Table 2. Some examples of defined if-then rules

IF THEN
If Flow is LF Traffic is Smooth
If Density is VHD Traffic is Stationary
If Flow is HF and Density is HD Traffic is Queuing
If Flow is MF and Density is MD Traffic is Slow
If Flow is HF and Density is VHD Traffic is Queuing
and Speed is MS
If Flow is LF and Density is LD and Traffic is Intense
Speed is HS
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In determining fuzzy relations in the proposed model, applying
proper composition techniques is a crucial step. Among various
composition techniques ‘max—min’ is the most used (Ross, 2005).
An illustration of a two-rule max-min composition in typical
Mamdani inference mechanism is shown in Fig.2. This composition
mathematically is stated as follows:

nek(Z) = max [min[uAK(input(x)), uBK(input(y))]] ,K=1,2, ..., (5)

Where the membership functions are pck, pak, and ppk of output ‘z’
for rule ‘k’, input ‘x’, and ‘y’, respectively (Monjezi & Rezai, 2011).

The defuzzification process is to convert each fuzzy output variable
into a crisp (non-fuzzy) form. The centroid method is commonly
used in the defuzzification process. The equation of centroid gravity
method shown below:

_ [ pA(x)xdx

Z.coa [ nAGOdx (6)

where ‘z’ is the fuzzy scheme output and aggregated output
membership function is assigned as pa(z).

There are two ways to simulate the fuzzy logic system with the fuzzy
logic toolbox: Rule viewer and Surface viewer. Each of them is a
graphical user interface of the system. Each rule is a row of plots,
and each column is a variable. The rule numbers are displayed on the
left of each row. Each column here shows the set of membership
functions for a particular input. So, in this example, there are 79
membership functions for each input (flow, density and speed), and
similarly 79 membership functions for traffic congestion state
output. The plot in the output column shows how to rules have
applied to the output variable, the bottom output plot shows how to
output of each rule is combined to make an aggregate output in the
fuzzified value. The red line on the output variable provides the

defuzzied value of speed limit which is an answer. For in this
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example, Fig. 3 shows of the observation that if real-time input
parameters properties are entered as: flow = 3250 veh/h/km, density
= 800 veh/km and speed = 46 km/h then the congestion level would
be forecasted as 0.651 which is categorized as Crowded Flow State
(3). The obtained results illustrate that the proposed fuzzy inference
system is quite efficient to generalize nonlinear complex relations
between levels of congestion and the other numerical properties of
traffic.

Fig 3. Rule viewer scheme
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Conclusion

Estimating the level of congestion carried out was based on both
historic and real-time observations which play a significant role in
various traffic models (Erdinc, Colombaroni, & Fusco, 2023).
Instead of conventional methods of traffic detection, the proposed
model has a sophisticated discipline known as approximate
reasoning (Falcone, Lima,, & Martinelli, 2020), (Pradeepkumar &
Ravi, 2018) through which exact traffic connected properties (e.g.,
geometric features including junctions, bifurcations, off-ramps, and
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on-ramps) that can be assigned in microscopic and mesoscopic types
of traffic modelling (Imran, Khan, Gulliver, Khattak, & Nasir, 2020)
are sacrificed to reach significantly low time and computational
efforts. Besides, natural linguistic rules are forming the executed
model, which is aligned with the general concepts of traffic
characteristics. Also, because of employing multiple and compound
rules in the modelled inference system instead of using a single rule,
the results obtained from a combined description of the congestion
state.

One of the most noteworthy contributions of the simulated results is
fuzzy surface view which can construct advantageous information
extracted from the analysed system’s data, for example, evaluating
correlation and strength of the relationship between assigned input
and output variables. The close relationship between both Flow,
Density and Congestion Level variables of the example is given in
figure 4. The most intense fluctuation occurs in the congestion level
when flow is between 4000-6000 vehicles and density is 500-1100
vehicles. Also, when in the cases of flow are in the range of 1000-
2000 and more than 6000 vehicles congestion level is increased
around 50% with increasing of density rate.

Fig. 4. Surface viewer scheme of the relationship between

congestion level-flow-density




Although provided information by fuzzy surface view mainly
focuses on the input-output variables correlations, another feature of
the provided view is about the system reaction rate to the fluctuations
caused by input variables and the direction of alterations effects on
the output variable. It is a significant advantage, since a completely
different effectual view of the analysed system coupled with having
the capability to evaluate many possible scenarios and outcomes at
once can be observed by engineers without having to infer the
system's mathematical formulations where conventional control
models disable to provide.
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CHAPTER 10

THE IMPACT OF THE METAVERSE ON
INDUSTRY 4.0

NiHAN CAGLAYAN!

Introduction

The term Metaverse was first used in Neal Stephenson's 1992
novel Snow Crash. Today, the Metaverse is defined as a
decentralized, persistent, and immersive three-dimensional online
environment where the physical and virtual worlds seamlessly
merge, allowing users to interact socially and economically through
avatars. The Metaverse leverages emerging technologies such as
extended reality (XR) (Augmented Reality/AR, Virtual Reality/VR,
and Mixed Reality/MR), artificial intelligence (Al), blockchain, and
IoT.

Industry 4.0 refers to the fourth industrial revolution, which
aims to fundamentally transform traditional manufacturing using
technology. This transformation focuses on the accelerated
digitalization of manufacturing models. The key enablers of Industry
4.0 include technologies such as Cyber-Physical Systems (CPS), the
Internet of Things (IoT), Big Data, and Artificial Intelligence (AI).
The goals of Industry 4.0 include faster product development,

! Doktor Ogretim Uyesi, Kirsehir Ahi Evran Universitesi, Makine Miihendisligi,
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fulfilling personalized demands (mass customization), flexible
production, and resource efficiency.

The concept of the Industrial Metaverse has emerged as the
next stage in this technological evolution. The Metaverse is an
immersive, multi-user digital environment that combines the
physical and virtual worlds, using technologies such as virtual reality
(VR), augmented reality (AR), artificial intelligence, and
blockchain.

The Industrial Metaverse is a subset of the Metaverse concept
within an industrial context. It is a Metaverse sector that reflects and
simulates machines, factories, cities, or transportation networks,
offering participants fully immersive, real-time, interactive,
persistent, and synchronous representations and simulations of the
real world. The Industrial Metaverse is often seen as an integrated
system that emphasizes real-time interactions in the visualization
layer of CPS and acts as a digital twin of a manufacturing workspace.
The Metaverse is generally considered to be a superset of the Digital
Twin or one of the technologies enabling the Metaverse of the DT.

The Industrial Metaverse can be defined as a comprehensive
and interconnected Digital Twin system that goes beyond being
merely a digital copy of production facilities or equipment, reflecting
the entire real-world industrial system into the virtual environment
with a two-way flow. The application of the Metaverse to industrial
environments is expected to provide significant benefits in areas
such as remote operation and maintenance, training, design, and
simulation. The Industrial Metaverse can completely transform how
businesses evaluate past performance and strategically and
operationally predict future outcomes.

Despite the immense potential offered by the Metaverse for
Industry 4.0 and beyond applications, there are several significant
barriers to the full adoption of this new paradigm. These challenges
manifest themselves in technical, organizational, social, and
regulatory dimensions.

Consequently, the integration of the Metaverse and Industry
4.0 represents a new phase of digital transformation in the
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manufacturing sector, and multi-criteria decision-making methods
play a critical role in this transformation. Digital twins, IoT, cyber-
physical systems, augmented and virtual reality technologies, big
data analytics, and artificial intelligence applications enable the
development of smarter, more flexible, and human-centered
solutions in production processes. The use of MCDM methods is
becoming increasingly important for managing the complex decision
processes encountered in the integration of these technologies. In
this context, the role of MCDM approaches in the integration of the
Metaverse and Industry 4.0 stands out as one of the fundamental
elements shaping the future of the manufacturing sector. This book
chapter aims to systematically examine the fundamental challenges
that hinder the integration of the Industrial Metaverse into Industry
4.0 environments. To this end, critical barriers such as infrastructure,
systematic, technological, investment cost, cybersecurity, lack of
competence, standardization, and legal uncertainty will be analyzed
in detail.

Literature

The emergence of Industry 4.0 has brought digitalization and
automation to the forefront of production processes. With this
transformation, technologies such as cyber-physical systems, the
Internet of Things (IoT), cloud computing, big data analytics, and
artificial intelligence have become fundamental components of
production environments. In recent years, the concept of the
Metaverse has added a new dimension to this digitalization process,
offering an interactive and immersive production ecosystem where
the physical and virtual worlds converge. In this context, multi-
criteria decision-making (MCDM) methods play a critical role in
managing the complex decision-making processes that arise in the
integration of Industry 4.0 and the Metaverse (Awotunde et al., 2024;
Cali et al., 2022; Deveci et al., 2022; Huang et al., 2022; Lidong &
Guanghui, 2016; Nugroho & Maulana, 2022; Yilmaz and Ecemis
Yilmaz, 2024).

The Metaverse is defined as an environment supported by
virtual and augmented reality technologies, where users interact
through digital twins, cyber-physical systems, and IoT devices,
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enabling real-time data flow and collaboration (Ecemis Yilmaz,
2024). Digital twins, cyber-physical systems, and IoT, which are
fundamental components of Industry 4.0, play a key role in the
integration of the Metaverse into the manufacturing sector. Digital
twins, as dynamic representations of physical objects or processes in
a virtual environment, enable real-time data collection, analysis, and
simulation. This makes applications such as monitoring, optimizing,
and predictive maintenance of production processes possible (Intizar
Ali et al., 2021). With the convergence of these technologies, it is
possible to develop smarter, more flexible, and human-centered
solutions in production environments (Yao et al., 2024). Digital
twins provide a powerful tool for simulating, monitoring, and
optimizing production processes by creating virtual representations
of physical assets (Preuveneers et al., 2018). In particular, feeding
digital twins with real-time data enables instant decision-making in
production processes and allows for continuous process
improvement (Kili¢ et al., 2024). In this context, digital twins are
seen to play a central role in the integration of Industry 4.0 and the
Metaverse.

The integration of the Metaverse into the manufacturing
sector brings not only technological transformation but also
organizational and human-centered transformation. Particularly in
the Industry 4.0 vision, where human-machine collaboration comes
to the fore, Metaverse technologies are presented as a platform that
enhances the human factor in production processes and offers more
interactive and intuitive interfaces (Egbengwu et al., 2025).
Augmented reality (AR) and virtual reality (VR) technologies are
widely used in training employees in production processes, in
maintenance and repair activities, and in remote monitoring and
control applications (Da Silva Ribeiro Castro et al., 2023). These
technologies enable users to interact with digital twins, visualize
production processes in three dimensions, and analyze complex data
in a more understandable way (Geng et al., 2022).

IoT, one of the fundamental components of Industry 4.0, is a
key technology that enhances the applicability of the Metaverse in
production environments. loT devices and sensors continuously

collect data from the physical environment, enabling this data to be
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transferred to the virtual environment through digital twins and
cyber-physical systems. This makes real-time monitoring, control,
and optimization possible in production processes (Souza et al.,
2019). IoT-based digital twins enable adaptive, efficient, and
sustainable operations in production processes (Stogie et al., 2025).

Additionally, the data flow provided by IoT, combined with
big data analytics and artificial intelligence applications, enables
more accurate and faster results in decision-making processes (Kaur
& Kaur, 2016). The complex decision-making processes arising
from the integration of the Metaverse and Industry 4.0 require the
evaluation of numerous criteria and alternatives. At this point, multi-
criteria decision-making (MCDM) methods come into play. MCDM
methods enable the systematic analysis of multi-dimensional and
multi-criteria problems encountered in production processes and
facilitate the making of the most appropriate decisions. Particularly
in Industry 4.0 and Metaverse integration, the use of MCDM
methods is increasingly prevalent in areas such as technological
infrastructure selection, investment decisions, process optimization,
and performance evaluation (Patel & Vinodh, 2024). In a study, key
technologies enabling additive manufacturing and Industry 4.0
integration in small and medium-sized enterprises (SMEs) were
identified and evaluated in order of importance using the MCDM
method. As a result, IoT, cloud computing, and cyber-physical
systems emerged as the most important Technologies (Intizar Ali et
al., 2021). This finding demonstrates that multi-criteria decision-
making approaches play a critical role in the integration of the
Metaverse and Industry 4.0 as well.

In assessing the applicability of digital twins in supply chain
management, multi-criteria decision analysis (MCDA) methods are
used to enable businesses to make strategic decisions based on
criteria such as interoperability, integration challenges, and
operational efficiency (Neto et al., 2025). MCDA methods such as
PROMETHEE II enable the systematic evaluation of the challenges
and opportunities encountered in the integration of digital twins into
the supply chain (Neto et al., 2025).
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The implementation of the metaverse in the manufacturing
sector requires not only the integration of technological
infrastructures but also the redefinition of human-machine
interaction. In particular, augmented reality and virtual reality
technologies facilitate workers' access to information in production
processes and provide interactive and immersive experiences in
training and maintenance processes (Ramalho et al., 2024). These
technologies increase flexibility and resilience in production
environments, enabling faster and more effective solutions to be
developed in response to unexpected situations (Ramalho et al.,
2024). Additionally, augmented reality-based decision support
systems enable the three-dimensional visualization of simulation
results in production processes, helping decision-makers better
understand how the system operates (Karlsson et al., 2017). Such
applications are examples of the innovative approaches that the
Metaverse brings to decision-making processes in the manufacturing
sector.

In digital twins and Metaverse integration, ensuring two-way
data flow and control between real and virtual environments is of
great importance. This allows changes occurring in physical systems
to be instantly reflected in the virtual environment, and optimizations
or simulations performed in the virtual environment to be applied to
the physical system (Kili¢ et al., 2024). This two-way integration
provides flexibility, speed, and accuracy in production processes.
Furthermore, the combination of digital twins with augmented
reality and virtual reality technologies enables the development of
more intuitive and interactive interfaces in production processes
(Geng et al., 2022). Such applications demonstrate that the
Metaverse plays a significant role in enhancing human-machine
interaction and supporting decision-making processes in the
manufacturing sector.

Big data analytics and artificial intelligence applications also
play an important role in Industry 4.0 and Metaverse integration.
Large amounts of data collected from production processes are
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analyzed wusing artificial intelligence and machine learning
algorithms and used in areas such as process optimization,
maintenance, and quality control (Razzaq et al., 2024). Specifically,
in digital twin-based virtual reality models, machine learning and
deep learning algorithms are used to predict the maintenance
requirements of production machines in advance and minimize the
risk of failure. Such applications highlight the importance of data-
driven decision-making processes in Metaverse and Industry 4.0
integration.

The implementation of the metaverse in the manufacturing
sector also requires the redesign of organizational structures and
business processes. In particular, new approaches are being
developed in areas such as collaboration, information sharing, and
process management in virtual factory environments, and the most
suitable strategies are being determined using multi-criteria
decision-making methods in these processes (Stefko et al., 2025).
For example, digital twin-based virtual factories and cyber-physical
production systems support applications such as big data tracking in
production processes, remote fault diagnosis, and predictive
maintenance, thereby ensuring that production processes are more
efficient and sustainable (Stefko et al., 2025). Additionally, in
Metaverse-based business processes, three-dimensional simulation
and visualization tools supported by augmented reality and virtual
reality technologies help achieve more accurate and faster results in
decision-making processes.

One of the most significant challenges encountered in
Industry 4.0 and Metaverse integration is ensuring the
interoperability of different technologies and systems. In particular,
issues such as data security, scalability, and energy efficiency come
to the fore in the integration of digital twins and IoT devices (Stogia
et al., 2025) . To overcome these challenges, innovative solutions
such as blockchain-based data management, edge computing, and
artificial intelligence-supported decision-making systems are being
developed (Stogie et al., 2025). Additionally, in the integration of the
Metaverse and Industry 4.0, the human factor must be prioritized,
and the ethical, social, and environmental dimensions of

technological progress must be taken into account (Yao et al., 2024).
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In this context, human-centered production approaches and
sustainability-focused solutions will be decisive in shaping the
production environments of the future.

The digitalization and automation brought about by Industry
4.0 has not been limited to production processes but has also led to
significant transformations in areas such as the supply chain,
logistics, maintenance, and education. For example, the concept of
Logistics 4.0 refers to the integration of Industry 4.0 technologies
into logistics processes. Thanks to this integration, features such as
pattern recognition, self-organization, and agility come to the fore in
logistics processes, and Multi-Criteria Decision Making (MCDM)
methods can be used to determine which areas should be prioritized
(Sir & Peker, 2025).

Similarly, in maintenance processes, the concepts of
predictive maintenance and Maintenance 4.0 have emerged
alongside Industry 4.0 technologies. In these processes, technologies
such as artificial intelligence, IoT, and big data analytics have been
used to increase the transparency and efficiency of maintenance
processes (Alves et al., 2024). Another important aspect of decision-
making processes in metaverse applications is ensuring ethical
principles and reliability. Behera and colleagues' study states that
ethical issues arising in the mutual relationships between businesses
and users in the metaverse environment directly affect decision-
making processes (Behera et al., 2024). The study indicates that four
fundamental ethical principles business benefit assessment, fairness,
explainability, and reliability play a critical role in managing
complex relationships and improving decision-making processes in
the metaverse environment (Behera et al., 2024).

Prioritizing the Barriers to Implementing the Metaverse in
Industry 4.0

AHP Method

Managing uncertainty and risk in decision-making processes
is another fundamental challenge faced by MCDM methods in
metaverse applications. In particular, most classical MCDM
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methods do not sufficiently consider decision-makers' risk
perception and psychological behavior.

This study aims to analyze the barriers to the implementation
of the Metaverse in Industry 4.0 environments and to reveal the
relative importance levels of these barriers. The literature shows that
there are limited studies on the quantitative prioritization of this
issue. Therefore, the AHP method is proposed to evaluate various
infrastructure, systematic, technological, investment cost,
cybersecurity, lack of competence, standardization, and legal
uncertainty factors related to the Metaverse's Industry 4.0 adaptation
process. Prioritizing the Barriers to Implementing the Metaverse in
Industry 4.0

Managing uncertainty and risk in decision-making processes
is another fundamental challenge faced by MCDM methods in
metaverse applications. Most classical MCDM methods do not
sufficiently consider decision-makers' risk perception and
psychological behavior.

This study aims to analyze the barriers to the implementation
of the Metaverse in Industry 4.0 environments and to reveal the
relative importance levels of these barriers. The literature shows that
there are limited studies on the quantitative prioritization of this
issue. Therefore, the AHP method is proposed to evaluate various
infrastructure, systematic, technological, investment cost,
cybersecurity, lack of competence, standardization, and legal
uncertainty factors related to the Metaverse's Industry 4.0 adaptation
process.

The Analytic Hierarchy Process (AHP) stands out as one of
the most widely used and effective tools among multi-criteria
decision-making (MCDM) methods. In modern decision-making
processes, particularly in solving complex and multi-dimensional
problems, the systematic approach offered by AHP has gained
widespread acceptance in both academic and applied fields. This
method is based on transforming the complex problems faced by
decision-makers into a hierarchical structure and determining the
weights of criteria and alternatives through pairwise comparisons
within this structure. The multidisciplinary application areas of AHP
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are closely related to the method's flexibility and its ability to
systematically incorporate decision-makers' subjective judgments
into the model (Sharma et al., 2022). The steps of the method are
listed below.

Step1:Determining the criteria. List the criteria to prioritize.

Step2:Creating the pair comparison matrix. Categories are compared
in pairs using Saaty's 1-9 scale. A pair comparison matrix between
factors is created. a;; is the pair comparison value between criterion
i and criterion j, and the a;; value is obtained from 1 - a;;. Decision

matrices are created using the 1-9 comparison scale proposed by
Saaty below. Table 1 is shown below.

Table 1 Comparison scale

Importance  Definition Explanation
Equal Both options are considered slightly more important than the
1 importance other.
Weak or One criterion is considered slightly more important than the
2 slight other.
Somewhat
3 important One criterion is considered much more important than the other.
Moderately
4 important The criterion is considered much more important than the other.
Very Various information indicates that one criterion is extremely
5 important important compared to the other.
Very
6 important Both options are equally important.
Extremely One criterion is considered slightly more important than the
7 important other.
8 Very strong  One criterion is considered much more important than the other.
Extremely The criterion is considered much more important than the other
9 important criteria.

Reference: (Wind & Saaty, 1980)

1 Qi (1)
A= :1 :
s = Yoy 1

Step 3: Normalizing the matrix. Each column is normalized
to dividing it by its own sum.
_ Y (2)

n
i=1 a4

Mij = -
ij
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Step 4: Calculation of criterion weights. The average of each
row is taken. These values are the relative importance weights of the

criteria.
1\ v 3)
)
i=1
Step 5: Consistency analysis is calculated. The most

important part of AHP is to check whether the decision maker is
consistent.

Step 5.1: The weighted total vector is calculated.

Step 5.2: Maximum eigenvalue, A,,,, is calculated.

n
1 _ <l) Z Z?:l aijWi (4)
=1
Step 5.3: The Consistency Index, CI, is calculated.
cl = Amax —-n (5)
n—1
CR = CI/RI (6)

Table 2 Saaty's Random Index

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59

Reference: (Giiner, 2003)

If CR defined by Eq.5 is less than 0.01, the comparison
matrix is considered consistent.

Step 6: The criteria are ranked. Weight values are ranked
from highest to lowest. The criterion with the highest weight is the
most important criterion.

The Numerical Analysis

The digital transformation process brought about by Industry

4.0 has the potential to fundamentally change production, logistics,

and business models. One of the technologies emerging within this
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transformation, the metaverse, increases efficiency, flexibility, and
collaboration in production processes with its innovative
components such as virtual reality, augmented reality, and digital
twins. However, the widespread adoption of metaverse applications
in the context of Industry 4.0 faces multidimensional and complex
obstacles. (C1)Infrastructure and interoperability, (C2) cybersecurity
and data management, (C3) human factors and skills, (C4) legal and
regulatory uncertainty, (C5) economic and strategic risks, and (C6)
sustainability and energy consumption are factors that may hinder
the implementation of the metaverse in industrial applications. In
this study, these obstacles highlighted in the literature are defined as
criteria, and the relative priorities of these criteria in the context of
Industry 4.0 will be determined using the AHP decision support
method. Thus, it will be systematically revealed which factors
require priority solutions in the integration of the metaverse into
industry. Table 3 shows a comparison of the obstacles themselves.

Table 3Criteria List
Criteria C1 C2 C3 C4 C5 Co6
C1 Infrastructure & Interoperability 1 122 31723

C2 Cybersecurity & Data Management 2 1 3 4 2 4
C3 Human Factors & Skills 1213 1 2 172 2
C4 Legal & Regulatory Uncertainty /31/412 1 1/3 2
CS5 Economic & Strategic Risks 2122 3 1 3

C6 Sustainability & Energy Consumption 1/3 1/4 1/2 1/2 1/3 1

For the first and second steps of the method, the criteria are
determined and evaluated by the expert by comparing them with
each other according to Saaty's comparison scale in Table 1, thus
applying the first step of the method. The criteria evaluated
according to the comparison scale are shown in Table 3. The column
totals for the criteria are calculated in Table 4 by summing each
column in the pairwise comparison matrix.
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Table 4 Column sums for Criteria

Cl C2 C3 C4 C5 C6

5.166 2.833 9 13.5 3.666 15

Each column is normalized by dividing it by its own sum
which is demonstrated in Table 5 according to Eq. 2.

Table 5 Normalized matrix
Cl C2 C3 C4 C5 Co
Cl 0.194 0.176 0.222 0.222 0.136 0.200
C2 0.387 0.353 0.333 0.296 0.545 0.267
C3  0.097 0.118 0.111 0.148 0.136 0.133
C4 0.065 0.088 0.056 0.074 0.091 0.133
C5 0.387 0.176 0.222 0.222 0.273 0.200
C6 0.065 0.088 0.056 0.037 0.091 0.067

The criterion weights are calculated by taking the average of
each row using Eq. 3. These values provide the relative importance
weights of the criteria.

Table 6 Criteria weights
Cl 0.181
C2 0335
C3 0.116
C4 0.078
C5 0.229
C6  0.062
The most important part of AHP is to check whether the

decision maker is consistent. Consistency analysis checks
consistency according to the E.4, Eq.5 and Eq.6.

Amax = 6.15
CI = 0.03
RI(n=6) =124
CR ~ 0,024 > %2.42
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Since the calculated value for CR is CR < 0.10, the matrix is
considered consistent.

As a result of the recommended method, Cybersecurity &
data management (A2) is the highest priority, Economic & strategic
risks (AS) are second, Infrastructure & interoperability (Al) are
third, Human factors (A3) and legal uncertainty (A4) are medium
priority, and Sustainability & energy (A6) emerged as a lower
priority.

Conclusion

In this study, the Analytic Hierarchy Process (AHP) was used
to determine the importance levels of barriers related to Industry 4.0
applications in the Metaverse. The six fundamental barriers decided
by the literature (i) infrastructure and interoperability, (ii)
cybersecurity and data management, (iii) human factors and skills,
(iv) legal and regulatory uncertainty, (v) economic and strategic
risks, and (vi) sustainability and energy consumption—were
evaluated using a pairwise comparison matrix. Comparisons were
performed using Saaty's 1-9 scale, and normalized column averages,
geometric mean, and, in particular, the principal eigenvector method
were used to calculate priority vectors. When the obtained weights
were ranked from highest to lowest, cybersecurity and data
management (33.49%), economic and strategic risks (22.90%), and
infrastructure and interoperability (18.09%) were identified as the
most important barriers. For consistency assessment, the maximum
eigenvalue (A_max = 6.1500), Consistency Index (CI = 0.0300), and
Saaty's random index (RI = 1.24) were calculated, yielding a
Consistency Ratio (CR = 0.0242). Since CR < 0.10, the decision-
maker's comparisons were considered stable and consistent. As a
result of the recommended method, Cybersecurity & data
management (A2) is the highest priority. Data integrity, privacy,
access controls, and security protocols appear to be the most critical
obstacles in metaverse applications. Resource/strategy priority is
recommended for this area. Economic & strategic risks (A5) are
second: concerns about cost, investment risk, business model
uncertainties, and strategic cost-benefit ratio are strong. Financial
feasibility studies, pilot projects, and gradual scaling are
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recommended. Infrastructure & interoperability (Al) are third:
network, low latency, edge/OT-IT integrations, and standards are
important. Human factors (A3) and legal uncertainty (A4) are
medium priority; training, competency development, and regulatory
monitoring/compliance plans should be developed. Sustainability &
energy (A6) emerged as a lower priority but should not be neglected
in terms of long-term operational costs and public/customer
perception; energy efficiency and green computing should be added
to the roadmap.

Acknowledgement

This research made use of Al-assisted tools (ChatGPT and
Quillbot) for language editing and clarity enhancement. All content
and ideas are the author's own. The prompt for language editing and
clarity enhancement is shown as follows:

“Please review the following academic text from both a
language and a technical aspect.

Language: Check grammar, punctuation, clarity, coherence,
and formal academic tone.

Technical Accuracy: Evaluate whether the concepts,
terminology, and methodology related to Multi-Criteria Decision
Making (MCDM), Fuzzy Sets, and Fuzzy Logic are used correctly
and appropriately. Assess the logical flow, problem framing, and
suitability of the techniques within these subfields of industrial
engineering.

If needed, suggest improvements in wording or technical
precision without changing the intended meaning. If any parts are
vague or methodologically weak, rewrite them.”

--265--



References

Alves, J., Morgado, T., Navas, H., Lampreia, S., Abreu, A., & Dias, A.
(2024). The Transformation of Maintenance with the Arise of
Industry 4.0 (pp. 180-190). https://doi.org/10.1007/978-3-031-
61575-7 17

Awotunde, J. B., Muduli, K., & BRAHMA, B. (2024). Computational
Intelligence in Industry 4.0 and 5.0 Applications. Auerbach
Publications. https://doi.org/10.1201/9781003581963

Behera, R. K., Janssen, M., Rana, N. P., Bala, P. K., & Chakraborty, D.
(2024). Responsible metaverse: Ethical metaverse principles for
guiding decision-making and maintaining complex relationships for

businesses in 3D virtual spaces. Decision Support Systems, 187.
https://doi.org/10.1016/j.dss.2024.114337

Cali, U., Kuzlu, M., Karaarslan, E., & Jovanovic, V. (2022). Opportunities
and Challenges in Metaverse for Industry 4.0 and Beyond
Applications. 2022 [EEE Ist Global Emerging Technology
Blockchain Forum: Blockchain and Beyond, IGETblockchain 2022.
https://doi.org/10.1109/iGETblockchain56591.2022.10087104

Da Silva Ribeiro Castro, D., De Sales, A. M. A., Da Silva Farias, N. J.,
De Medeiros, R. L. P., Da Silva, V. J., & De Lucena Junior, V. F.
(2023). Monitoring and Controlling Industrial Cyber-Physical
Systems with Digital Twin and Augmented Reality. Digest of
Technical Papers - IEEE International Conference on Consumer
Electronics, 2023-January.
https://doi.org/10.1109/ICCE56470.2023.10043445

Deveci, M., Gokasar, 1., & Cali, U. (2022). Evaluation of Urban Mobility
Alternatives For Blockchain Use In Metaverse. 2022 IEEE st
Global Emerging Technology Blockchain Forum: Blockchain and
Beyond, IGETblockchain 2022.

--266--



https://doi.org/10.1109/iGETblockchain56591.2022.10087118

Ecemis Yilmaz, H. K. (2024). Legal issues of the metaverse: A
public international law perspective. Law and Justice Review, (27),
29-58.

Egbengwu, V., Garn, W., & Turner, C. J. (2025). Metaverse for
Manufacturing: Leveraging Extended Reality Technology for
Human-Centric Production Systems. Sustainability (Switzerland),
17(1). https://doi.org/10.3390/sul7010280

Geng, R., Li, M., Zongyang Hu, Han, Z., & Zheng, R. (2022). Digital
Twin in smart manufacturing: remote control and virtual machining
using VR and AR technologies. In Structural and Multidisciplinary
Optimization (Vol. 65, p. 321). Springer.
https://doi.org/https://doi.org/10.1007/s00158-022-03426-3

Giiner, M. (2003). Analitik Hiyerarsi yénteminin Fason Isletme
Seciminde Kullanilmas:.

Huang, J., Shao, W., & Chen, Y. (2022). Control and Decision Theory in
Metaverse: A Survey. Proceedings - 2022 Chinese Automation
Congress, CAC 2022, 2022-January, 5655-5660.
https://doi.org/10.1109/CAC57257.2022.10055926

Intizar Ali, M., Patel, P., Breslin, J. G., Harik, R., & Sheth, A. (2021).
Cognitive Digital Twins for Smart Manufacturing. /EEE Intelligent
Systems, 36(2), 96—100. https://doi.org/10.1109/MIS.2021.3062437

Karlsson, 1., Bernedixen, J., Amos, H. C. N., & Pehrsson, L. (2017,
December 3). Combining Augmented reality and simulation-based
optimization for decision support in manufacturing. 2017 Winter
Simulation Conference. https://doi.org/10.1109/WSC.2017.8248108

Kaur, J., & Kaur, K. (2016). Availing Internet of Things in Industrial
decision making — A survey. 2016 International Conference on

--267--



Electrical, Electronics, and Optimization Techniques (ICEEOT),
2164-2168. https://doi.org/10.1109/ICEEOT.2016.7755075

Kilig, C., Cetin, K., & Ozbek, M. E. (2024). An Industrial Application of
Digital Twin for A Smart Factory Model Using Coppeliasim.
International Journal of 3D Printing Technologies and Digital
Industry, 8(3), 316-325. https://doi.org/10.46519/ij3dptdi. 1452734

Lidong, W., & Guanghui, W. (2016). Big Data in Cyber-Physical Systems,
Digital Manufacturing and Industry 4.0. International Journal of
Engineering and Manufacturing, 6(4), 1-8.
https://doi.org/10.5815/ijem.2016.04.01

Neto, B. T., de Freitas Rocha Loures, E., Deschamps, F., & Loures, L. R.
(2025). Digital Twin Adoption in the Supply Chain Under Industry
4.0 Requirements: Multi-criteria Analysis Based on Enterprise
Interoperability (pp. 95-106). https://doi.org/10.1007/978-3-031-
77723-3 9

Nugroho, R. S., & Maulana, M. 1. (2022). Industrial Revolution 4.0
Towards Industrial Metaverse (Vol. 2). Prosiding Seminar Nasional
BSKII “Post Pandemic Economy Recovery.”

Patel, D., & Vinodh, S. (2024). Analysis of technologies enabling additive
manufacturing and Industry 4.0 integration for SMEs using MCDM
tool. [International Journal of Process Management and
Benchmarking, 16(3), 281-295.
https://doi.org/10.1504/1JPMB.2024.136482

Preuveneers, D., Joosen, W., & Ilie-Zudor, E. (2018). Robust Digital Twin
Compositions for Industry 4.0 Smart Manufacturing Systems.
Proceedings - IEEE International Enterprise Distributed Object
Computing ~ Workshop, =~ EDOCW,  2018-October,  69-78.
https://doi.org/10.1109/EDOCW.2018.00021

--268--



Ramalho, F. R., Moreno, T., Soares, A. L., Almeida, A. H., & Oliveira, M.
(2024). Application of Augmented Reality to Support Manufacturing
Resilience (pp. 654—662). https://doi.org/10.1007/978-3-031-38165-
2 76

Razzaq, H. A., Jazzel Mehmood, M., & Khan, F. (2024). Leveraging
Recurrent Neural Networks in Virtual Reality-based Digital Twin
Models for Enhanced Predictive Maintenance of Industrial
Machines. Proceedings of the IEEE International Multi Topic
Conference, INMIC, 2024.
https://doi.org/10.1109/INMIC64792.2024.11004403

Sir, G. D. B., & Peker, H. N. (2025). Assessment of Key Features for
Logistics 4.0 (pp. 109-117). https://doi.org/10.1007/978-3-031-
83611-4 9

Souza, V., Cruz, R., Silva, W., Lins, S., & Vicente Lucena. (2019). A
Digital Twin Architecture Based on the Industrial Internet of Things
Technologies. 2019 IEEE International Conference on Consumer
Electronics (ICCE), 49(1).
https://doi.org/10.1109/ICCE.2019.8662081

Stetko, R., Michalikova, K., Strakova, J., & Novak, A. (2025). Digital
twin-based virtual factory and cyber-physical production systems,
ccollaborative autonomous robotic and networked manufacturing
technologies, and enterprise and business intelligence algorithms for
industrial mmetaverse. Quarterly Journal of Economics and
Economic Policy, 20(1).

Stogia, M., Dimara, A., Papaioannou, A., Anagnostopoulos, C.-N., Kotis,
K., & Krinidis, S. (2025). The Role of loT and 3D Modeling
in Shaping Industry 5.0. 353-366. https://doi.org/10.1007/978-3-
031-97313-0 27

Wind, Y., & Saaty, T. L. (1980). Marketing Applications of the Analytic.

Management Science, 26, 641-658.
--269--



Yilmaz, 1., & Ecemis Yilmaz, H. K. (2024). A consensus framework for
evaluating dispute resolution alternatives in international law using
an interval-valued type-2 fuzzy TOPSIS approach. Applied
Sciences, 14(23), 11046.

Yao, X., Ma, N., Zhang, J., Wang, K., Yang, E., & Faccio, M. (2024).
Enhancing wisdom manufacturing as industrial metaverse for

industry and society 5.0. Journal of Intelligent Manufacturing,
35(1), 235-255. https://doi.org/10.1007/s10845-022-02027-7

--270--






