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Foreword 

The transition toward Industry 4.0 and the emerging vision of Industry 5.0 has profoundly 

transformed decision-making environments across industrial and societal systems. The 

increasing integration of digital technologies, intelligent automation, and human-centered 

design principles has amplified the complexity, uncertainty, and multidimensionality of 

contemporary decision problems. In this context, Multi-Criteria Decision Making (MCDM) 

provides a rigorous and systematic framework for evaluating alternatives involving conflicting 

objectives and diverse stakeholder perspectives. 

While Industry 4.0 emphasizes data-driven efficiency and technological integration, Industry 

5.0 extends this paradigm by highlighting sustainability, resilience, and human-centric values. 

Addressing such intertwined technological and societal challenges requires advanced decision 

models capable of combining quantitative data, expert knowledge, and qualitative judgments. 

MCDM methodologies, including classical, fuzzy, hybrid, and AI-enhanced approaches, play a 

critical role in supporting transparent, robust, and informed decisions within these evolving 

industrial landscapes. 

This book offers a concise yet comprehensive perspective on the theoretical foundations, 

applications, and emerging technologies of MCDM in the age of Industry 4.0 and 5.0. It is 

intended to serve as a valuable reference for researchers, practitioners, and decision-makers 

seeking to design intelligent, sustainable, and human-oriented systems for the next generation 

of industry. 
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DAIRY CATTLE SELECTION WITH THE 

PICTURE FUZZY INTERACTIONAL 

BONFERRONI MEAN METHOD 

HALİL ŞEN1 

Introduction 

In dairy farming, selecting the right breed is a strategic 

decision that determines not only the short-term milk production of 

the operation but also its long-term profitability, herd sustainability, 

and adaptability to environmental conditions. In the breed selection 

process, criteria such as feed utilization, reproductive performance, 

health indicators, and herd duration play a critical role, as well as 

milk yield and milk components. However, these criteria often 

interact with each other, and an improvement in one criterion may 

lead to unexpected results in another. For example, the goal of high 

milk yield requires evaluation in conjunction with indirect effects 

such as increased metabolic load, decreased fertility, or increased 

health problems. Therefore, selecting the right breed is not a choice 

based on a single performance indicator, but rather a multi-criteria 

decision-making problem in which numerous criteria are considered 
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simultaneously. Comparative studies in the literature on Holstein-

Friesian, Jersey, and their hybrids show that the performance of the 

breeds varies significantly depending on the breeding system and 

farm objectives. Focusing on economic and production performance, 

Ahlborn & Bryant (1992), compared Holstein-Friesian and Jersey 

cows, revealing that not only production but also optimum herd 

density and economic outcomes differed between breeds; they 

emphasized that breed selection directly affects farm profitability. 

Regarding production efficiency and energy metabolism, L’Huillier 

et al. (1988) and Mackle et al. (1996) stated that energy use 

dynamics, pasture uptake capacity, and feed conversion efficiency 

differed in Jersey and Friesian cows during the early lactation period; 

therefore, in breed comparisons, not only milk quantity but also 

energy balance and productivity indicators should be included in the 

decision-making process. Similarly, Thomson et al. (2001) 

demonstrated the effect of the lactation phase on pasture-milk 

conversion efficiency, showing that the production patterns of the 

breeds differed throughout the year. These findings indicate that 

limiting breed selection to a “milk yield per cow” approach may lead 

to incomplete results. In determining the right breed, reproductive 

performance, herd survival, and functional characteristics are just as 

important as production. Dillon et al. (2003), comparing the 

reproduction and survival of different breeds in pasture-based 

seasonal systems, reported significant differences between breeds 

and hybrids. Lucy (2001), emphasizing that fertility losses can 

become a structural problem in high-yielding herds, revealed that 

breed selection and breeding goals should be designed to be sensitive 

not only to increased production but also to reproductive success. 

Heins et al. (2008) and Auldist et al. (2007), evaluating pure Holstein 

and Jersey×Holstein hybrids, showed that hybridization can provide 

advantages in functional areas such as fertility and early lactation 

performance. In terms of genetic structure, Ahlborn-Breier and 

Hohenboken (1991) and McAllister et al. (1994) highlighted the 
--2--



importance of additive and non-additive genetic effects on milk 

production and lifetime profitability, and stated that heterosis effects 

should be considered in breed selection decisions. In the health 

dimension, Berry et al. (2006) and Washburn et al. (2002) showed 

that indicators such as somatic cell count, mastitis, and body 

condition vary depending on the breed and breeding system, making 

it necessary to evaluate breed selection together with health 

outcomes. Prendiville et al. (2009; 2010), who linked production 

efficiency in pasture-based systems to behavior and intake capacity, 

emphasized that pasture use efficiency and production strategies 

differ among breeds and that breed selection should also be 

considered with system-level measures such as output per hectare. 

When these studies are evaluated together, it is concluded that dairy 

cattle breed selection; It is observed that decision-making problems 

requiring the simultaneous consideration of numerous criteria such 

as production, productivity, reproduction, health, genetic makeup, 

and economic outcomes, where there are significant interactions 

between criteria and considerable uncertainty, are prevalent. 

However, in practice, decision-makers struggle to quantify many 

criteria simultaneously, and expert evaluations often appear as 

linguistic expressions (such as high, medium, low) or judgments 

expressing hesitation. This situation increases the need for advanced 

decision support methods that can adequately represent both 

uncertainty and the interactions between criteria. In this context, the 

Picture Fuzzy Set (PF) approach is particularly useful in high-

uncertainty situations such as breed selection, because it allows 

decision-makers to represent their evaluations not only with 

"acceptance" and "rejection" levels but also with a 

"neutrality/undecided" component. 

It offers a strong modeling advantage in problems where the 

criteria are not independent. In addition, the Bonferroni mean 

operator has a structure that can perform aggregation by considering 
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interactions when the criteria are not independent. The Picture Fuzzy 

Interactional Bonferroni Mean (PF-IBM) method, which integrates 

these two approaches, allows both the modeling of expert hesitations 

in a picture fuzzy structure and the inclusion of inter-criteria 

interactions in the aggregation process. Therefore, PF-IBM offers a 

suitable methodological framework for more realistically evaluating 

multidimensional performance and determining the most suitable 

breed for the conditions in the dairy cattle breed selection problem. 

In this study, dairy cattle breeds such as Holstein-Friesian, Jersey, 

and hybrid alternatives are analyzed using the PF-IBM method under 

a set of criteria including production, productivity, reproduction, 

health, and economic criteria, with the aim of obtaining an integrated 

performance ranking of the alternatives. 

Method 

Decision-making problems in real-world applications are 

often characterised by imprecision, hesitation, and complex 

interdependencies among evaluation criteria, which limit the 

effectiveness of classical and conventional fuzzy multi-criteria 

decision-making (MCDM) approaches. In many practical settings, 

decision makers are unable to express their preferences using precise 

numerical values and instead rely on partial, hesitant, or even 

conflicting judgments. Moreover, evaluation criteria frequently 

interact with one another, exhibiting complementary or antagonistic 

relationships that cannot be adequately captured by aggregation 

operators assuming criterion independence. To address these 

challenges, this study adopts the Picture Fuzzy Interactional 

Bonferroni Mean (PFIBM) method, which integrates the expressive 

power of picture fuzzy sets with the interaction-sensitive structure of 

the Bonferroni mean. By simultaneously modelling membership, 

non-membership, and abstention degrees, while explicitly 

accounting for pairwise criterion interactions, PFIBM provides a 

robust and realistic aggregation framework for decision-making 
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under uncertainty. Consequently, the method is particularly suitable 

for complex evaluation problems where uncertainty and 

interdependence among criteria play a critical role. 

Picture Fuzzy Sets (PFS) go beyond classical and intuitive 

fuzzy approaches by modeling uncertainty through a three-

component structure. In the PFS approach, introduced by Cường 

(2014), the evaluation of an alternative according to a criterion is not 

limited to "acceptance/membership" and "rejection/non-

membership"; the abstention component, representing the decision-

maker's hesitation, is also explicitly defined. This three-component 

structure provides a more realistic representation, especially in 

decision problems where expert evaluations lack complete certainty 

and the "neither positive nor negative" range is high. Therefore, PFS 

offers an important theoretical foundation that allows for a more 

detailed examination of uncertainty and indecision in the multi-

criteria decision-making (MCDM) literature (Cường, 2014). 

One of the key issues in PFS-based MCDM studies is the 

development of aggregation operators that can transform evaluations 

under numerous criteria into a single integrated result. In this 

context, Zhang and Xu (2021) developed and applied picture-fuzzy 

interactive aggregation operators to the risk assessment problem, 

demonstrating that the “interaction” component significantly affects 

the results when the criteria are not independent of each other. 

Similarly, Liu, Chen, and Wang (2022) applied a multi-attribute 

decision-making model based on interactive aggregation operators 

in a PFS environment to the supplier selection problem; thus, they 

revealed both the uncertainty/hesitation modeling power of PFS and 

the performance of operators including interaction in practical 

decision problems. These studies emphasize that in PFS-based 

decision models, it is critical to include not only the representation 

of uncertainty but also the complementary or weakening 
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relationships between criteria in the aggregation structure (Liu et al., 

2022; Zhang & Xu, 2021). 

One of the operators that systematically handles the concept 

of interaction is the Bonferroni mean family. Due to its structure that 

considers the reciprocal relationship between pairs of criteria, the 

Bonferroni mean provides a more flexible aggregation compared to 

additive weighting approaches where the criteria are assumed to be 

independent. In this context, Xu, Yager, and Liu (2019) discussed 

Bonferroni mean extensions for decision-making under uncertainty, 

examining the adaptability of the operator to different decision 

environments and the theoretical justifications for interaction-based 

aggregation. Combining the Bonferroni approach with PFS 

represents a more advanced methodological line that addresses both 

triple uncertainty (membership–counter-membership–abstention) 

and inter-criterion interaction under the same framework (Cường, 

2014; Xu et al., 2019). 

One current and powerful example of this developmental line 

is the Picture Fuzzy Interaction Bonferroni Mean (PFIBM) 

operators. Liu, Wu, and Chen (2023) clarified the theoretical 

framework and formally presented the fundamental properties of 

PFIBM operators (e.g., commutativeness, monotonicity, and 

boundary conditions) by defining them under strict triangular norms. 

Furthermore, by proposing weighted and normalized versions of 

PFIBM, its applicability to real decision problems has been 

strengthened, and the effectiveness of the method in multi-criteria 

decision-making applications has been demonstrated (Liu, Wu, & 

Chen, 2023). Therefore, the PFIBM literature offers an advanced 

decision support framework that aims to produce more consistent 

and realistic decision outcomes in problems where the criterion 

independence assumption is weak, by integrating the triple 

uncertainty modeling capacity of PFS with the interaction-sensitive 
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structure of the Bonferroni approach (L. Liu et al., 2023; P. Liu et al., 

2022; Xu et al., 2019; Zhang & Xu, 2021). 

Picture Fuzzy Interactional Bonferroni Mean (PFIBM) Method 

Preliminaries and Notation: 

Let 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚}  denote the set of alternatives and 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} the set of evaluation criteria. 

In the picture fuzzy environment, the evaluation of 

alternative 𝐴𝑖with respect to criterion 𝐶𝑗is expressed as a picture 

fuzzy number (PFN) 

𝑥̃𝑖𝑗 = (𝜇𝑖𝑗, 𝜗𝑖𝑗 , 𝜋𝑖𝑗), 

where 𝜇𝑖𝑗, 𝜗𝑖𝑗, and 𝜋𝑖𝑗represent the degrees of membership, non-

membership, and abstention, respectively, satisfying 

0 ≤ 𝜇𝑖𝑗 + 𝜗𝑖𝑗 + 𝜋𝑖𝑗 ≤ 1. 

Let 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑛) be the criterion weight vector, where 

𝑤𝑗 ≥ 0 and  ∑ 𝑤𝑗
𝑛

𝑗=1
= 1. 

• Step 1: Normalization 

The original decision matrix is normalized according to the 

benefit or cost nature of the criteria to ensure comparability across 

different measurement scales. After normalization, all criteria are 

transformed into benefit-type values. 

• Step 2: Construction of the Picture Fuzzy Decision 

Matrix 

Normalized values are converted into picture fuzzy numbers 

using predefined linguistic scales or expert elicitation procedures, 

forming the picture fuzzy decision matrix 

𝑋̃ = [𝑥̃𝑖𝑗]𝑚×𝑛. 
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Step 3: Determination of Criterion Weights 

Criterion weights are obtained either from subjective expert 

judgments or objective methods such as the Preference Selection 

Index (PSI). The resulting weight vector reflects the relative 

importance of each criterion in the decision problem. 

• Step 4: Aggregation Using the PFIBM Operator 

The core of the methodology lies in aggregating the picture 

fuzzy evaluations using the Picture Fuzzy Interactional Bonferroni 

Mean (PFIBM) operator. Unlike classical aggregation operators, 

PFIBM explicitly accounts for interactions among criteria, rather 

than assuming their independence. 

For an alternative 𝐴𝑖, the PFIBM operator aggregates the set 

of PFNs {𝑥̃𝑖1, 𝑥̃𝑖2, … , 𝑥̃𝑖𝑛} by considering all pairwise criterion 

combinations. The general PFIBM formulation is expressed as 

𝑃𝐹𝐼𝐵𝑀(𝑥̃𝑖1, … , 𝑥̃𝑖𝑛) = (
1

𝑛(𝑛 − 1)
⨁
𝑗≠𝑘
(𝑥̃𝑖𝑗
𝛼 ⊗ 𝑥̃𝑖𝑘

𝛽
))

1
𝛼+𝛽

, 

where 

• ⊗and ⊕denote interactional multiplication and 

addition operators defined in the picture fuzzy 

domain, 

• 𝛼, 𝛽 > 0are interaction parameters controlling the 

strength of pairwise effects, and 

• all ordered pairs (𝑗, 𝑘), 𝑗 ≠ 𝑘, are considered. 

This structure allows complementary (synergistic) or 

weakening (antagonistic) relationships between criteria to influence 

the aggregated result. 

When criterion importance is incorporated, the weighted 

PFIBM operator is defined as 
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𝑊-𝑃𝐹𝐼𝐵𝑀(𝑥̃𝑖1, … , 𝑥̃𝑖𝑛) = ( ⨁
𝑗≠𝑘
((𝑤𝑗𝑥̃𝑖𝑗)

𝛼⊗ (𝑤𝑘𝑥̃𝑖𝑘)
𝛽))

1
𝛼+𝛽

 

This formulation ensures that criteria with higher weights 

exert greater influence on the aggregation outcome while preserving 

the interactional structure. 

To guarantee comparability across alternatives, a normalized 

PFIBM formulation can be applied by scaling the aggregated PFNs 

so that the resulting membership, non-membership, and abstention 

degrees remain within [0, 1]and satisfy the PFS constraint. This step 

is particularly important when PFIBM is combined with different 

weighting or normalization strategies. 

The parameters 𝛼and 𝛽regulate the intensity of criterion 

interactions: 

• 𝛼 = 𝛽 = 1: symmetric interaction, commonly used 

as a neutral baseline; 

• 𝛼 > 𝛽: emphasizes the dominant effect of one 

criterion over another; 

• 𝛽 > 𝛼: highlights secondary or moderating effects. 

In practical applications, parameter values are selected based 

on expert judgment, sensitivity analysis, or robustness testing to 

ensure stable ranking results. 

• Step 5: Ranking Using the Score Function 

For each alternative, the aggregated PFN   

𝐴̃𝑖 = (𝜇𝑖, 𝜗𝑖, 𝜋𝑖) 

is converted into a crisp value using the score function 

𝑆(𝐴̃𝑖) = 𝜇𝑖 − 𝜗𝑖 . 
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A higher score indicates superior overall performance. Alternatives 

are ranked in descending order of their score values. 

Application and Findings 

This study applies an integrated expert-based weighting–

PFIBM decision-making framework to evaluate dairy cattle breeds 

suitable for the Western Mediterranean Region, where climatic 

stress, feed costs, and sustainability constraints play a decisive role 

in dairy production systems. The application phase consists of three 

main stages: (i) determination of criterion weights based on expert 

judgment, (ii) definition of alternatives and evaluation criteria, and 

(iii) construction of picture fuzzy decision matrices for PFIBM-

based aggregation. 

In contrast to objective weighting schemes (e.g., PSI), this 

study adopts an expert judgment–based weighting approach to 

assign the relative importance of evaluation criteria. This choice is 

motivated by the fact that dairy cattle breed selection is a domain-

specific decision problem in which the practical relevance of criteria 

depends strongly on regional climatic conditions, production 

constraints, and sectoral priorities. Therefore, criterion weights were 

determined through a structured expert consensus process 

considering the definitions of the criteria, their economic and 

biological implications, and their expected impact under Western 

Mediterranean conditions (e.g., heat stress and feed-cost pressure). 

In this study, evaluations were conducted by a panel of five 

decision makers with complementary academic and practical 

expertise in dairy production systems. The diversity of the decision-

making group was intended to ensure a comprehensive assessment 

of both productive and environmental aspects of dairy cattle breed 

selection. 

The decision makers involved in the evaluation process are 

defined as follows: 
--10--



• D1: Animal Science Professor, specializing in dairy 

cattle breeding and production systems 

• D2: Veterinarian, with expertise in animal health, 

disease resistance, and udder health 

• D3: Farm Manager, responsible for operational 

management and on-farm performance evaluation 

• D4: Feed and Nutrition Specialist, focusing on feed 

efficiency and nutritional performance 

• D5: Dairy Processing and Milk Quality Specialist, 

emphasizing milk composition and processing 

suitability 

To avoid subjective bias and to ensure neutrality among 

expert opinions, all decision makers were assigned equal importance 

in the aggregation process. These weights were applied during the 

construction of the group picture fuzzy decision matrix. 

The picture fuzzy decision matrices obtained from each 

decision maker were then aggregated using these equal weights, and 

the resulting group evaluations were subsequently processed using 

the PFIBM operator. 

This design ensures that (i) criterion importance reflects 

domain knowledge and regional production realities through expert-

based weighting, while (ii) the aggregation of expert judgments 

remains unbiased by treating all decision makers equally in the group 

decision-making phase. 

Alternatives: This study evaluates six dairy cattle breeds that 

are widely used or strategically important for dairy production in the 

Western Mediterranean Region of Turkiye. The selected breeds 

represent both high-yield commercial types and resilient, locally 

adapted genetic resources, enabling a balanced assessment of 

productivity and sustainability. 
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• A1: Holstein: Holsteins are globally dominant due to 

their high milk yield. However, they are highly sensitive 

to heat stress, which can negatively affect feed intake, 

fertility, and productivity in hot and humid regions unless 

advanced management systems are applied. 

• A2: Jersey: Jersey cows produce milk with high fat and 

protein content and exhibit excellent feed efficiency and 

fertility. Their superior heat tolerance makes them 

particularly suitable for warm climates such as the 

Western Mediterranean. 

• A3: Brown Swiss: Brown Swiss cattle are robust, long-

lived, and environmentally adaptable. Although their 

milk yield is moderate, high casein content and stable 

performance make them suitable for diverse production 

systems. 

• A4: Montbéliarde: This French dual-purpose breed is 

valued for its high-protein milk, good fertility, and 

calving ease. Its strong functional traits compensate for 

lower milk yield compared to Holsteins. 

• A5: Simmental: Simmental is a dual-purpose breed 

offering moderate milk yield, good adaptability, and 

flexibility for combined milk–meat systems, particularly 

in transitional climatic regions. 

• A6: Anatolian Black: Anatolian Black cattle are highly 

resilient to harsh environmental conditions. Despite low 

milk yield, they require minimal inputs and play an 

important role in sustainable and low-input dairy 

systems. 

--12--



Evaluation Criteria: Ten criteria were used to assess the dairy 

cattle breeds, integrating quantitative indicators with qualitative 

sustainability attributes modelled using Picture Fuzzy Sets (PFS). 

• C1: Milk Yield (L/day) – primary economic performance 

indicator. 

• C2: Milk Fat (%) – key quality parameter for dairy 

processing. 

• C3: Feed Conversion Ratio (L milk/kg feed) – reflects 

economic efficiency. 

• C4: Fertility Rate (%) – essential for herd sustainability. 

• C5: Disease Resistance (PFS) – indicates genetic and 

health robustness. 

• C6: Udder Health (PFS) – critical for milk hygiene and 

mastitis control. 

• C7: Heat Tolerance (PFS) – vital under hot and humid 

climatic conditions. 

• C8: Calf Survival Rate (%) – reflects maternal capacity 

and genetic strength. 

• C9: Local Climate Adaptation (PFS) – overall 

adaptability to regional conditions. 

• C10: Milk Protein (%) – important for cheese yield and 

nutritional value. 

Here, data related to quantitative criteria were normalized 

and then converted to PFS (Picture fuzzy sets) format with the help 

of scale and expert judgment, and decision matrices were created for 

each decision-maker. Two of these decision matrices are given as 

examples in Table 1 and Table 2. 
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Table 1. D1 (Animal Science Professor) PFS Decision Matrix 

Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 (0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.30; 

0.10; 

0.55) 

(0.30; 

0.10; 

0.55) 

(0.30; 

0.10; 

0.55) 

(0.30; 

0.10; 

0.55) 

(0.50; 

0.10; 

0.35) 

(0.30; 

0.10; 

0.55) 

(0.50; 

0.10; 

0.35) 

A2 (0.70; 

0.10; 

0.20) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.85; 

0.05; 

0.10) 

A3 (0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

A4 (0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

A5 (0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

A6 (0.10; 

0.10; 

0.75) 

(0.70; 

0.10; 

0.20) 

(0.30; 

0.10; 

0.55) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

 

Table 2. D3 (Farm Manager) PFS Decision Matrix 

Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 (0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.30; 

0.10; 

0.55) 

(0.30; 

0.10; 

0.55) 

(0.30; 

0.10; 

0.55) 

(0.10; 

0.10; 

0.75) 

(0.50; 

0.10; 

0.35) 

(0.10; 

0.10; 

0.75) 

(0.50; 

0.10; 

0.35) 

A2 (0.70; 

0.10; 

0.20) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.85; 

0.05; 

0.10) 

A3 (0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

A4  (0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

A5  (0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.85; 

0.05; 

0.10) 

(0.70; 

0.10; 

0.20) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

A6  (0.10; 

0.10; 

0.75) 

(0.70; 

0.10; 

0.20) 

(0.30; 

0.10; 

0.55) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

 

These decision matrices were then combined to create a 

decision matrix for the group as shown in Table 3. 
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Table 3. Group Decision Matrix 

Alt. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 (0.82; 

0.06; 

0.12) 

(0.46; 

0.10; 

0.39) 

(0.46; 

0.10; 

0.39) 

(0.30; 

0.10; 

0.55) 

(0.26; 

0.10; 

0.59) 

(0.26; 

0.10; 

0.59) 

(0.26; 

0.10; 

0.59) 

(0.50; 

0.10; 

0.35) 

(0.26; 

0.10; 

0.59) 

(0.46; 

0.10; 

0.39) 

A2 (0.70; 

0.10; 

0.20) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.66; 

0.10; 

0.23) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.85; 

0.05; 

0.10) 

A3 (0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.73; 

0.09; 

0.18) 

A4 (0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.54; 

0.10; 

0.32) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.73; 

0.09; 

0.18) 

A5 (0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.54; 

0.10; 

0.32) 

(0.50; 

0.10; 

0.35) 

(0.70; 

0.10; 

0.20) 

(0.50; 

0.10; 

0.35) 

(0.73; 

0.09; 

0.18) 

(0.70; 

0.10; 

0.20) 

(0.73; 

0.09; 

0.18) 

(0.50; 

0.10; 

0.35) 

A6 (0.10; 

0.10; 

0.75) 

(0.70; 

0.10; 

0.20) 

(0.34; 

0.10; 

0.51) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.54; 

0.10; 

0.32) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.85; 

0.05; 

0.10) 

(0.50; 

0.10; 

0.35) 

Criterion weights were assigned based on expert judgment, 

taking into account regional climatic conditions, sustainability 

considerations, and long-term productivity. In particular, heat 

tolerance (C7) and local adaptability (C9) were given higher 

importance due to their critical role in mitigating heat stress and 

ensuring stable performance in the Western Mediterranean climate. 

The resulting criterion weight vector is given in Table 4. 

Table 4. Criteria and Their Weights 

Code Criterion Weight 

C1 Milk Yield 0.10 

C2 Milk Fat Content 0.08 

C3 Feed Conversion Efficiency 0.12 

C4 Fertility Rate 0.10 

C5 Disease Resistance 0.10 

C6 Udder Health 0.07 

C7 Heat Tolerance 0.18 

C8 Calf Survival Rate 0.07 

C9 Local Adaptability 0.15 

C10 Milk Protein Content 0.03 

Total 
 

1.00 
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In order to obtain the final ranking of alternatives, a 

Bonferroni-based interaction aggregation was employed under the 

symmetric case ( 𝑝 = 𝑞 = 1). This procedure allows the interaction 

among criteria to be taken into account rather than assuming full 

independence. 

For each alternative 𝑖and criterion 𝑗, the picture fuzzy number 

𝑥̃𝑖𝑗 = (𝜇𝑖𝑗, 𝜂𝑖𝑗 , 𝜈𝑖𝑗) 

was transformed into a crisp score using the score function: 

𝑆𝑖𝑗 = 𝜇𝑖𝑗 − 𝜈𝑖𝑗  

where 𝑆𝑖𝑗 ∈ [−1,1]. 

This matrix is given in Table 5. 

Table 5. Score Matrix  

Alt C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

A1 0.70 0.07 0.07 -0.25 -0.33 -0.33 -0.33 0.15 -0.33 0.07 

A2 0.50 0.75 0.75 0.50 0.15 0.43 0.75 0.15 0.15 0.75 

A3 0.50 0.50 0.15 0.15 0.50 0.50 0.15 0.50 0.15 0.55 

A4 0.15 0.50 0.22 0.50 0.15 0.50 0.15 0.50 0.15 0.55 

A5 0.15 0.50 0.22 0.15 0.50 0.15 0.55 0.50 0.55 0.15 

A6 -0.65 0.50 -0.17 0.75 0.75 0.22 0.75 0.75 0.75 0.15 

To ensure comparability and non-negativity, the scores were 

linearly transformed into the interval [0, 1]as follows: 

𝑥𝑖𝑗 =
𝑆𝑖𝑗 + 1

2
 

This transformation preserves the ordinal information of the 

scores while ensuring compatibility with the Bonferroni aggregation 

operator. 

Each normalized score was multiplied by its corresponding 

criterion weight 𝑤𝑗: 

𝑦𝑖𝑗 = 𝑤𝑗 ⋅ 𝑥𝑖𝑗 

where 
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∑𝑤𝑗

𝑛

𝑗=1

= 1 

and 𝑛denotes the number of criteria. 

Bonferroni-Based Interaction Aggregation ( 𝑝 = 𝑞 = 1). The 

overall performance score of alternative 𝑖was calculated using the 

Bonferroni mean under the symmetric condition 𝑝 = 𝑞 = 1: 

𝐵𝑀𝑖 =

(

 
 1

𝑛(𝑛 − 1)
∑∑𝑦𝑖𝑗

𝑛

𝑡=1

𝑛

𝑗=1
𝑗≠𝑡

 𝑦𝑖𝑡

)

 
 

1
2

 

where: 

• 𝐵𝑀𝑖  is the integrated performance score of alternative 𝑖, 

• 𝑦𝑖𝑗 and 𝑦𝑖𝑡 represent the weighted normalized scores of 

criteria 𝑗and 𝑡, 

• the interaction between all distinct pairs of criteria is 

explicitly considered. 

The alternatives were ranked in descending order according 

to their 𝐵𝑀𝑖values. A higher 𝐵𝑀𝑖indicates superior overall 

performance considering both criterion importance and inter-

criterion interactions. 

Results 

This study evaluated the suitability of six dairy cattle breeds 

for the Western Mediterranean Region using a picture fuzzy–based 

multi-criteria decision-making framework incorporating criterion 

interactions through a Bonferroni aggregation mechanism. 

Individual evaluations provided by five equally weighted decision 

makers were aggregated into a group picture fuzzy decision matrix, 
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and final rankings were obtained using a score-based 

PFIBM/Bonferroni approach. 

After transforming picture fuzzy evaluations into crisp scores 

and applying the Bonferroni-based interaction aggregation (𝑝 = 𝑞 =

1), the integrated performance scores of the alternatives were 

calculated. The resulting ranking of dairy cattle breeds is as follows: 

Jersey, Anatolian Black, Simmental, Brown Swiss, Montbéliarde, 

and Holstein. 

The results indicate that Jersey is the most suitable breed for 

the Western Mediterranean region. This outcome is mainly attributed 

to its strong performance in milk fat and protein content, feed 

conversion efficiency, heat tolerance, and reproductive efficiency. 

The Anatolian Black breed ranks second despite its relatively low 

milk yield, reflecting its exceptional adaptability to local 

environmental conditions, high disease resistance, and strong 

resilience to heat stress. Simmental occupies the third position due 

to its balanced performance across productivity- and adaptability-

related criteria. Brown Swiss and Montbéliarde demonstrate 

moderate performance across most criteria, while Holstein ranks last 

because its high milk production potential is offset by weaknesses in 

heat tolerance and local adaptability, which are critical under 

Mediterranean climatic conditions. 

To assess the stability and reliability of the proposed 

decision-making framework, a robustness analysis was conducted by 

systematically varying the weights of the most influential criteria, 

namely heat tolerance (C7) and local adaptability (C9). The weights 

of these criteria were independently and jointly modified within 

±10% and ±20% intervals, while the remaining criteria weights were 

proportionally normalized to ensure that the total weight remained 

equal to one. 
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The analysis demonstrates that the ranking of alternatives 

remains unchanged under all moderate weight-variation scenarios. 

In all tested cases, the ranking order consistently remained Jersey, 

Anatolian Black, Simmental, Brown Swiss, Montbéliarde, and 

Holstein. This finding confirms that the proposed 

PFIBM/Bonferroni-based model is robust to reasonable uncertainty 

in criterion weights. 

Ranking changes were observed only under extreme and 

unrealistic weighting scenarios, in which the weight assigned to local 

adaptability (C9) was substantially increased while the weight of 

heat tolerance (C7) was simultaneously reduced to very low levels. 

Under such conditions, the Anatolian Black breed marginally 

outperformed Jersey and ranked first. These results indicate that the 

dominance of Jersey is not sensitive to moderate variations in expert 

judgment and that a reversal of the ranking would require a 

deliberate and disproportionate emphasis on local adaptability alone. 

Overall, the robustness analysis confirms that the proposed 

picture fuzzy interaction-based framework produces stable and 

reliable results under realistic decision-making uncertainty. The 

consistent ranking across multiple scenarios supports the 

applicability of the model as a dependable decision support tool for 

dairy cattle breed selection in regions exposed to climatic stress. 
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A MULTI-CRITERIA COMPARATIVE ANALYSIS 
OF FOOD SECURITY PERFORMANCE IN THE 

EUROPEAN UNION COUNTRIES AND TÜRKİYE 

SELEN AVCI AZKESKİN1 
MELİKE KÜBRA EKİZ BOZDEMİR2 

Introduction 

Food security is a complex concept that goes beyond the 
mere production of sufficient quantities of food and encompasses 
multidimensional aspects such as economic accessibility, stability of 
food supply, nutritional quality, environmental sustainability, and 
resilience to crises (Matkovski et al., 2020). At the global level, 
population growth, climate change, economic fluctuations, post-
pandemic vulnerabilities, and increasing geopolitical risks have 
made differences in countries’ food security performance more 
visible. In this context, the comparative evaluation of countries’ food 
security levels has become a critical necessity for policymakers and 
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international organizations alike (Mazzocchi, Ragona, & Zanoli, 
2013). 

In the literature, countries’ food security performance is most 
commonly monitored through the Global Food Security Index 
(GFSI) and the multidimensional indicator frameworks proposed by 
the Food and Agriculture Organization of the United Nations (FAO) 
(FAO, 2025a). These indices provide a comprehensive framework 
covering the core dimensions of food security—such as affordability, 
availability, quality and safety, and sustainability—and thus 
constitute an important reference point for cross-country 
comparisons (Izraelov & Silber, 2019). However, as these indices are 
largely based on composite scores, the analytical disentanglement of 
the relative importance of individual indicators and their specific 
contributions to country rankings remains limited. Due to the 
structure of composite indices, strong performance in certain 
dimensions may compensate for weaknesses in others, making it 
difficult to clearly identify which criteria play a more decisive role 
in shaping overall country performance. From this perspective, 
multidimensional evaluation problems such as food security—which 
simultaneously involve economic, environmental, structural, and 
governance-related dimensions—can inherently be addressed as 
Multi-Criteria Decision-Making (MCDM) problems. MCDM 
approaches enable the holistic evaluation of multiple and often 
conflicting criteria within a single decision framework, the 
systematic determination of priority relationships among criteria, 
and the transparent ranking of alternatives (Özkaya & Özkaya, 
2023). The use of MCDM methods in country-level food security 
comparisons goes beyond merely identifying countries’ positions in 
a ranking; it also enhances analytical consistency and interpretability 
by explicitly revealing the contributions of individual criteria to the 
final decision outcomes (Rouyendegh & Savalan, 2022). 
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In this section, countries’ food security performance is 
conceptualized as an MCDM problem, and cross-country 
comparisons are conducted by taking the relative importance of 
criteria into account. The Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS), one of the MCDM methods, 
is employed to rank countries’ food security performance. TOPSIS 
is a classical yet effective method that ranks alternatives based on 
their relative distances from ideal and anti-ideal solutions and is 
widely preferred in the literature due to its ease of application and 
the clarity of its results (Chakraborty, 2022). The analysis covers 
European Union (EU) countries, including Austria, Belgium, 
Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, 
France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, 
Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, 
Slovakia, Slovenia, Spain, and Sweden, along with the United 
Kingdom and Türkiye. This sample structure allows for a 
comparative examination of relative performance differences among 
EU countries and Türkiye’s position within this structure under a 
unified methodological framework. 

The criteria used in the analysis are designed to represent 
multiple dimensions of food security. Accordingly, gross domestic 
product (GDP) per capita, food supply variability, food price 
anomaly indicators, net import dependency in agriculture and 
livestock, the share of agriculture in government expenditures, 
energy production from biofuels, organic fertilizer use, pesticide use, 
the cost of a healthy diet, the proportion of the population unable to 
afford a healthy diet, water stress levels, agricultural emission 
intensity, the value added of the agriculture–forestry–fisheries 
sector, and agricultural land area—considered through selected 
ratios—are included. This set of criteria is structured to jointly reflect 
the dimensions of economic accessibility, production capacity, 
external dependency, public policy support, environmental 
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pressures, and sustainable resource use in food security. The relative 
weights of the criteria are determined based on evaluations provided 
by expert decision-makers. In the first stage, all criteria are included 
in the weighting process and countries are ranked accordingly. In the 
second stage, several criteria representing environmental and 
sustainability dimensions are excluded from the analysis, and 
experts are asked to reassess the remaining criteria. The impact of 
this modification on country rankings is then examined 
comparatively. This two-stage structure allows for an analytical 
assessment of the determining role of sustainability-related 
dimensions in shaping country rankings. 

In the final section of the study, the resulting country 
rankings and criterion effects are evaluated through comparison with 
the overall GFSI rankings. While the study is grounded in the 
multidimensional food security framework proposed by the FAO, it 
offers an analytical approach that more explicitly reveals the relative 
importance of criteria and their effects on country rankings. In this 
respect, the study serves as a complementary assessment to existing 
index-based evaluations and aims to produce more interpretable and 
decision-oriented outputs for policymakers. 

Method 

Due to its multidimensional nature, food security requires the 
simultaneous consideration of criteria measured on different scales 
and often exerting effects in different directions within a single 
decision framework. In this respect, the TOPSIS (Technique for 
Order Preference by Similarity to Ideal Solution) method, which 
enables the ranking of countries based on their relative closeness to 
ideal and anti-ideal solutions while explicitly incorporating criterion 
weights, is adopted as an analytical tool consistent with the 
objectives of this study. Owing to both the interpretability of its 
results and the analytical consistency it provides in cross-country 
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comparisons, TOPSIS offers a suitable decision-support framework 
for evaluating food security performance. The steps of the method 
are outlined below (Sharaf, 2023). 

Step 1. Construction of the decision matrix: First, a decision 
matrix D=!Aij"n×m

, consisting of 𝑛 alternatives and 𝑚 criteria, is 
constructed. Here, 𝐴!" represents the value of the 𝑖-th alternative with 
respect to the 𝑗-th criterion. 

Step 2. Determination of criterion weights:  Assuming that 
not all criteria are of equal importance, weights are assigned to each 
criterion. Decision-makers determine a set of weights reflecting the 
relative importance of each criterion. The weight vector is defined 
as	W=[w1,w2,…,wm], subject to the conditions 𝑤" > 0 and 
∑ 𝑤"&
"'( = 1. 

Step 3. Normalization of the decision matrix: Since criteria 
may be measured in different units, the decision matrix must be 
transformed into a dimensionless form. The normalized decision 
matrix D) is defined by Equation (1), where each normalized value 
𝑟!"	 is calculated using Equation (2): 

DN= 7

r11 r12 ⋯ r1m
r21
⋮

rn1

r22
⋮

rn2

…
⋱
…

r2m
⋮

rnm

;                                                             (1)                                             

r+, =
-!"

.∑ -!"
#$

!%&

                                                                      (2)                                                                       

Step 4. Construction of the weighted normalized decision 
matrix: At this stage, each normalized criterion value is multiplied 
by its corresponding weight to obtain the weighted normalized 
decision matrix, denoted as D)0 and defined by Equation (3): 
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For  1 ≤ i ≤ n and 1 ≤ j ≤ m, each element 𝑣!"	 is computed 
as: 

v+, = w,r+,                                                                                       (4)                                                                                                               

Step 5. Determination of positive and negative ideal 
solutions: In this step, the positive ideal solution (𝑣4) and the 
negative ideal solution (𝑣5) are identified for each criterion. The 
positive ideal solution consists of the maximum values for benefit 
criteria (𝐶6) and the minimum values for cost criteria (𝐶7), whereas 
the negative ideal solution is defined conversely. The positive and 
negative ideal solution vectors are calculated as follows: 

v+= Emax
i

vij ∣∣
∣ j∈Cb;  min

i
vij ∣∣
∣ j∈Cc H , j=1,	2,…,	m		      (5)                                                                                                    

v-= Emin
i

vij ∣∣
∣ j∈Cb;  max

i
vij ∣∣
∣ j∈Cc H , j=1,	2,…,	m		       (6)                                                                                         

Step 6. Calculation of distance measures: At this stage, the 
distances of each alternative from the positive and negative ideal 
solutions are calculated using the Euclidean distance metric. The 
distance to the positive ideal solution 𝑆!4 and the distance to the 
negative ideal solution 𝑆!5 are computed using Equations (7) and (8), 
respectively:  

S+4 = K∑ Lv+, − v+N12
,'(                                                       (7)                                                      

S+5 = K∑ Lv+, − v-N12
,'(                                                                    (8)                                                                                            

These distances indicate how far each alternative is from the 
ideal and anti-ideal solutions across all criteria. 
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Step 7. Calculation of the relative closeness to the ideal 
solution: The relative closeness of each alternative to the positive 
ideal solution, denoted by 𝑅!, is calculated as the ratio of its distance 
from the negative ideal solution to the total distance, as shown in 
Equation (9): 

R+ =
8!
'

8!
(48!

' , 	 i = 1,2, … , n                                                             (9)                                                                             

The value of 𝑅! lies between 0 and 1; values closer to 1 
indicate greater proximity to the positive ideal solution, while values 
closer to 0 indicate greater proximity to the negative ideal solution. 

Step 8. Ranking of alternatives: In the final step, alternatives 
are ranked based on their 𝑅! values. The preference order is 
established by sorting alternatives in descending order of 𝑅!.  

Data Set and Criteria Construction 

In this study, food security is conceptualized as a 
multidimensional structure that extends beyond the mere physical 
availability of food to jointly encompass economic accessibility, 
nutritional quality, environmental sustainability, and external 
dependency. Accordingly, the constructed dataset consists of 
indicators capable of reflecting both the current performance of 
countries’ food systems and their medium- and long-term 
vulnerabilities. All data used in the study were obtained from the 
FAOSTAT database to ensure international comparability and data 
consistency (FAO, 2025b). 

In selecting the criteria, widely accepted dimensions of food 
security in the literature were taken into consideration, and variables 
representing economic welfare, agricultural production capacity, 
environmental pressures, and access to nutrition were jointly 
evaluated. Within this framework, the ratio of energy production 
from biofuels to agricultural production, GDP per capita, the share 
of public expenditures allocated to the agricultural sector, the share 
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of agricultural value added in GDP, and the ratio of agricultural land 
area to population were treated as maximization-oriented indicators 
reflecting countries’ production capacity and economic resilience. In 
contrast, food supply variability, food price anomalies, pesticide use, 
water stress levels, emission intensity per unit of agricultural 
production, and indicators representing economic and social 
constraints on access to healthy diets were evaluated as 
minimization-oriented criteria. To eliminate scale differences among 
countries and enhance comparability, ratio-based indicators were 
used to a large extent instead of absolute values. Particularly in 
countries with heterogeneous structures in terms of agricultural 
output, land area, population, and economic size, the use of ratios 
increases the representational power of indicators and allows for a 
more robust interpretation of the results. For instance, the ratio of 
energy production from biofuels to agricultural production reveals 
the renewable energy and bioeconomy potential of the agricultural 
sector, while the ratio of organic fertilizer use to agricultural land 
area reflects the prevalence of sustainable agricultural practices. 
Similarly, the share of agricultural value added in GDP and the ratio 
of agricultural land area to population indicate the strategic 
importance of agriculture within the economic structure and the 
long-term food production capacity. From a food security 
perspective, external dependency emerges as a critical source of 
vulnerability, particularly during periods characterized by global 
supply shocks and price volatility. Therefore, net import dependency 
indicators for both the agricultural and livestock sectors were 
additionally calculated in this study. Net import dependency was 
derived by dividing the difference between imports and exports by 
total supply and is formulated as shown in Equation (10). This 
indicator relatively captures the capacity of domestic production to 
meet internal demand and the impact of trade structures on food 
security. Since higher values indicate greater reliance on imports and 
thus increased exposure to external shocks, net import dependency 
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in both agriculture and livestock sectors was incorporated into the 
model as a minimization-oriented criterion. 

net import dependency= Imports-Exports
Total supply

                                           (10) 

Table 1 Criteria, Units, Optimization Directions, and Data Years 

Criterion Direction Unit Data 
Year 

GDP per capita Max US dollars per capita 
(current prices) 2023 

Share of agriculture in 
government expenditure Max Percentage (%) 2023 

Food price anomaly indicator Min Index 2022 

Value added (agriculture, 
forestry, and fisheries) / GDP Max Percentage (%) 2024 

Cost of a healthy diet Min 
Purchasing power 
parity (PPP) dollars 
per capita per day 

2024 

Food supply variability Min Kilocalories per 
capita per day 2023 

Net import dependency in 
livestock Min Ratio 2023 

Net import dependency in 
agriculture Min Ratio 2023 

Population unable to afford a 
healthy diet / total population Min Ratio 2024 

Agricultural land area / 
population Max Hectares per capita 2023 

Water stress level Min Percentage (%) 2022 

Organic fertilizer use / 
agricultural land area Max Kilograms per 

hectare 2023 

Pesticide use Min Kilograms per 
hectare 2023 

Energy production from 
biofuels / agricultural 
production 

Max Terajoules per ton 2023 

Agricultural emissions / value 
of agricultural production Min Kilotons per 1,000 

US dollars 2023 
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Finally, recognizing that food security is not limited solely to 
production and trade dimensions, indicators such as the cost of a 
healthy diet and the proportion of the population unable to afford a 
healthy diet were included in the dataset. These variables reflect 
economic and social access to nutritious and healthy food beyond 
mere physical availability, thereby strengthening the human 
dimension of food security. All criteria were evaluated within the 
TOPSIS framework in accordance with their specified optimization 
directions, and countries’ food security performance was analyzed 
from a holistic perspective. The criteria used in the study, along with 
their units, optimization directions, and data years, are summarized 
in Table 1. 

Determination of Criteria Weights 

The relative importance levels of the criteria used in the study 
were determined in a manner that reflects the multidimensional 
nature of food security. The weighting process was conducted based 
on the joint evaluations of three decision-makers with domain 
expertise, and the final set of criteria weights was obtained through 
consensus by reconciling individual judgments. 

An examination of the weight values indicates that the 
highest weights were assigned to GDP per capita (0.15), agricultural 
value added as a share of GDP (0.10), and agricultural land area per 
capita (0.10). This distribution suggests that economic capacity, the 
relative importance of the agricultural sector within the national 
economy, and per capita production resources play a decisive role in 
shaping countries’ food security performance. The criteria 
representing the economic access dimension—namely the cost of a 
healthy diet (0.08) and the proportion of the population unable to 
afford a healthy diet (0.07)—account for a substantial share of the 
total weight. This finding highlights that food security is not 
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determined solely by production volumes, but is also directly linked 
to individuals’ effective access to healthy and balanced diets.  

Table 2 Conceptual Groups of Criteria and Weight Distribution 

Criterion Group Criterion Weight 

Economic Welfare and 
Access 
 

GDP per capita 0.15 

Cost of a healthy diet 0.08 

Population unable to afford a healthy 
diet / total population 0.07 

Food Supply and Market 
Stability 
 

Food supply variability 0.08 

Food price anomaly indicator 0.07 

Agricultural Structure and 
External Dependency 
 

Net import dependency in agriculture 0.06 

Net import dependency in livestock 0.05 

Value added (agriculture, forestry, and 
fisheries) / GDP 0.10 

Agricultural land area / population 0.10 

Sustainability 
 

Agricultural emissions / value of 
agricultural production 0.04 

Pesticide use 0.04 

Organic fertilizer use / agricultural land 
area 0.04 

Energy production from biofuels / 
agricultural production 0.02 

Resource Availability and 
Production Continuity Water stress level 0.06 

Public Policies Share of agriculture in government 
expenditure 0.04 
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Within the food supply and stability dimension, food supply 
variability (0.08) and the food price anomaly indicator (0.07) reflect 
the system’s vulnerability to price and supply shocks. The relatively 
high weights assigned to these criteria indicate that the pressures 
exerted by price fluctuations and supply uncertainties on food 
security are explicitly taken into account in the analysis. In the 
environmental and sustainability dimension, agricultural emission 
intensity (0.04), pesticide use (0.04), and organic fertilizer use (0.04) 
are represented by lower but balanced weights. This allocation 
demonstrates that while environmental factors may not carry as 
much weight as short-term food accessibility, they are nevertheless 
integrated into the model as indispensable components for long-term 
food security and the sustainability of agricultural systems. Finally, 
the relatively low weight assigned to the ratio of energy production 
from biofuels to agricultural production (0.02) indicates that food–
energy competition is treated as a secondary yet complementary risk 
factor in the study, whereas the primary determinants of food 
security performance are economic and structural variables. Overall, 
the resulting weight set reflects the economic, social, environmental, 
and structural dimensions of food security in a balanced manner and 
is structured to prevent any single dimension from 
disproportionately dominating the results. These weights are 
subsequently employed in the weighting stage of the TOPSIS 
method, enabling a holistic evaluation of countries’ food security 
performance. 

Results 

Within the scope of the analysis, countries’ distances to the 
positive ideal solution (Si+), distances to the negative ideal solution 
(Si-), and the relative closeness coefficients (Ri) calculated based on 
these distances were determined as presented in Table 3. Higher 
values of Ri indicate that the corresponding country is closer to the 
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ideal food security profile, and the final ranking of countries was 
established accordingly based on these values. 

Table 3 Food SecurLty Performance of CountrLes Based on TOPSIS 
Results 

Countries 𝑺𝒊* 𝑺𝒊+ 𝑹𝒊 Ranking 
Austria 0.0656 0.0969 0.5964 6 
Belgium 0.0742 0.0958 0.5633 12 
Bulgaria 0.0856 0.0942 0.5240 20 
Croatia 0.0835 0.0867 0.5095 23 
Cyprus 0.0917 0.0768 0.4557 28 
Czechia 0.0753 0.0959 0.5600 13 
Denmark 0.0593 0.1004 0.6289 3 
Estonia 0.0713 0.1011 0.5865 8 
Finland 0.0641 0.0989 0.6067 4 
France 0.0688 0.0960 0.5827 9 
Germany 0.0761 0.0893 0.5399 17 
Greece 0.0807 0.0856 0.5149 22 
Hungary 0.0842 0.0931 0.5253 19 
Ireland 0.0446 0.1105 0.7123 1 
Italy 0.0793 0.0859 0.5200 21 
Latvia 0.0730 0.1049 0.5896 7 
Lithuania 0.0747 0.1009 0.5746 10 
Luxembourg 0.0578 0.1147 0.6648 2 
Malta 0.1193 0.0490 0.2913 29 
Netherlands 0.0657 0.1004 0.6043 5 
Poland 0.0776 0.0962 0.5535 14 
Portugal 0.0834 0.0810 0.4927 26 
Romania 0.0945 0.0856 0.4752 27 
Slovakia 0.0862 0.0838 0.4930 25 
Slovenia 0.0778 0.0927 0.5438 15 
Spain 0.0754 0.0877 0.5379 18 
Sweden 0.0713 0.0925 0.5645 11 
Türkiye 0.0862 0.0890 0.5078 24 
United Kingdom 0.0750 0.0894 0.5437 16 

An examination of the results presented in Table 3 reveals 
pronounced differences in food security performance across 
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countries. According to the findings, Ireland ranks first with the 
highest relative closeness coefficient (𝑅𝑖=0.7123), followed by 
Luxembourg (0.6648) and Denmark (0.6289). The strong 
performance of these countries can be attributed to their robust 
economic structures, high value added in the agricultural sector, 
relatively low levels of external dependency, and more favorable 
conditions in terms of access to healthy diets. In particular, the fact 
that Ireland and Luxembourg exhibit relatively large distances from 
the negative ideal solution (𝑆𝑖−) and relatively small distances from 
the positive ideal solution (𝑆𝑖+) indicates that these countries display 
a balanced and strong performance across the selected criteria. An 
analysis of the top ten countries shows a clear predominance of 
Northern and Western European countries. Countries such as 
Finland, the Netherlands, Austria, Estonia, Latvia, and France 
exhibit comparatively favorable values in terms of economic 
stability, agricultural production efficiency, and food access 
indicators. This outcome can be explained by the effective allocation 
of resources to agriculture and food systems within public policies, 
as well as the relatively balanced performance achieved in 
environmental and nutritional indicators. Countries positioned in the 
middle of the ranking include Germany, Poland, Slovenia, Spain, 
and the United Kingdom. Although these countries perform strongly 
in certain criteria, they are unable to attain higher rankings due to 
relative disadvantages in indicators such as food price stability, 
environmental pressures, or net import dependency. This finding 
underscores that food security performance is not determined by 
success in a single dimension, but rather by the balance achieved 
across multiple dimensions. An examination of the lower-ranked 
countries indicates that Malta, Cyprus, Romania, Slovakia, and 
Türkiye exhibit lower 𝑅𝑖 values. The lower performance of these 
countries can be associated with structural factors such as limited 
agricultural land relative to population size, higher levels of external 
dependency, water stress, and food price volatility. Türkiye ranks 
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24th with an 𝑅𝑖 value of 0.5078 and is positioned within the lower-
middle performance group. Despite Türkiye’s potential in terms of 
agricultural production capacity and land availability, its overall 
performance is constrained by vulnerabilities observed in indicators 
such as food price anomalies, water stress levels, and environmental 
pressures arising from agricultural production. This suggests that, for 
Türkiye, food security policies should prioritize price stability, 
resource efficiency, and environmental sustainability rather than 
focusing solely on increasing production levels. 

Table 4 Updated Criteria Weights 

Criterion Group Criterion Weight 

Economic Welfare and 
Access 
 

GDP per capita 0.1744 

Cost of a healthy diet 0.0930 

Population unable to afford a healthy 
diet / total population 0.0814 

Food Supply and Market 
Stability 
 

Food supply variability 0.0930 

Food price anomaly indicator 0.0814 

Agricultural Structure and 
External Dependency 
 

Net import dependency in agriculture 0.0698 

Net import dependency in livestock 0.0581 

Value added (agriculture, forestry, and 
fisheries) / GDP 0.1163 

Agricultural land area / population 0.1163 

Resource Availability and 
Production Continuity Water stress level 0.0698 

Public Policies Share of agriculture in government 
expenditure 0.0465 
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At this stage, an alternative scenario was constructed by 
excluding sustainability-related criteria representing environmental 
and long-term effects—namely pesticide use, organic fertilizer use, 
agricultural emission intensity, and energy production from 
biofuels—from the analysis. The primary objective of this approach 
is to observe the extent to which countries’ food security 
performance changes when the sustainability dimension is excluded. 
Following the removal of sustainability criteria, the weights of the 
remaining criteria were normalized, and the resulting values are 
presented in Table 4. 

The rankings obtained under this scenario are presented in 
Table 5. 

Graph 1 visually illustrates the ranking differences between 
the two scenarios and clearly demonstrates which countries are 
positively or negatively affected by this change. An examination of 
Figure 1 indicates that, for the majority of countries, rankings are 
either preserved or exhibit only marginal changes of one position. 
This finding suggests that the food security performance model 
employed in the study maintains its overall structure even when 
sustainability criteria are excluded, and that the results are not 
excessively sensitive to any single group of criteria. adjustments 
indicate that sustainability criteria play a secondary and balancing 
role in the overall food security performance of these countries, 
without fundamentally altering their relative positions. 

In particular, the results for top-ranked countries are highly 
consistent across both scenarios. Ireland retains its first-place 
position in both rankings, demonstrating that its food security 
performance remains strong regardless of the inclusion of 
sustainability-related criteria. 
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Table 5 Food Security Rankings of Countries Excluding 
Sustainability Indicators 

Countries 𝑺𝒊* 𝑺𝒊+ 𝑹𝒊 Ranking 
Austria 0.0713 0.1097 0.6060 5 
Belgium 0.0833 0.1080 0.5646 13 
Bulgaria 0.0948 0.1050 0.5256 21 
Croatia 0.0936 0.0954 0.5046 24 
Cyprus 0.1023 0.0870 0.4595 28 
Czechia 0.0825 0.1082 0.5673 12 
Denmark 0.0651 0.1120 0.6324 3 
Estonia 0.0766 0.1144 0.5991 7 
Finland 0.0692 0.1114 0.6167 4 
France 0.0747 0.1083 0.5917 9 
Germany 0.0848 0.1006 0.5427 17 
Greece 0.0886 0.0950 0.5174 22 
Hungary 0.0932 0.1042 0.5279 19 
Ireland 0.0450 0.1262 0.7370 1 
Italy 0.0872 0.0974 0.5274 20 
Latvia 0.0793 0.1184 0.5989 8 
Lithuania 0.0813 0.1136 0.5829 10 
Luxembourg 0.0611 0.1308 0.6817 2 
Malta 0.1335 0.0548 0.2908 29 
Netherlands 0.0738 0.1118 0.6024 6 
Poland 0.0862 0.1084 0.5570 14 
Portugal 0.0923 0.0906 0.4953 25 
Romania 0.1057 0.0944 0.4719 27 
Slovakia 0.0957 0.0934 0.4938 26 
Slovenia 0.0858 0.1050 0.5504 15 
Spain 0.0828 0.0982 0.5424 18 
Sweden 0.0778 0.1034 0.5706 11 
Türkiye 0.0949 0.0997 0.5123 23 
United Kingdom 0.0829 0.1008 0.5489 16 
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Graph 1 Comparison of Rankings 

 
Similarly, Luxembourg (2nd), Denmark (3rd), and Finland 

(4th) maintain their positions in both scenarios. The persistence of 
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these countries at the top of the rankings can be attributed to their 
strong economic capacity, high agricultural productivity, and stable 
food supply structures, which allow them to sustain superior 
performance even when environmental sustainability factors are 
excluded. Changes observed among mid-ranked countries are 
relatively limited and generally confined to shifts of ±1 position. For 
instance, Austria (6→5), Czechia (13→12), and Estonia (8→7) 
move up by one position, while Belgium (12→13), Latvia (7→8), 
and the Netherlands (5→6) each drop by one position. These minor 
rank. A similar pattern is observed for lower-ranked countries. 
Countries such as Malta (29th), Cyprus (28th), Romania (27th), and 
Greece (22nd) maintain their positions across both scenarios. This 
suggests that, for these countries, the primary determinants of food 
security performance are factors such as economic access, 
agricultural structure, and external dependency rather than 
environmental sustainability. With specific reference to Türkiye, a 
marginal improvement is observed, with the country moving from 
24th to 23rd place. This finding indicates that Türkiye’s relative 
performance improves slightly when sustainability criteria are 
excluded, implying that environmental and resource-related 
constraints exert a limiting effect on its overall food security 
performance. However, the fact that this improvement is limited to a 
single rank underscores that Türkiye’s food security performance is 
shaped not only by environmental factors but also by structural and 
economic determinants. Overall, the high degree of consistency 
between the two rankings demonstrates that the study’s results are 
methodologically robust, resilient to sensitivity analysis, and well 
suited to generating policy-relevant insights. The inclusion or 
exclusion of sustainability-related criteria does not fundamentally 
alter countries’ relative positions; rather, it enhances the visibility of 
the dimensions driving performance for certain countries. Similar 
analyses may also be conducted for other dimensions. 
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Comparison of the Results with the Overall GFSI Rankings 

The country rankings obtained in this study are 
comparatively evaluated against the results of the Global Food 
Security Index (GFSI), one of the most widely used global indicators 
in the field of food security (GFSI, 2022). However, before 
conducting this comparison, it is necessary to clearly emphasize the 
differences in scope and methodology between the two approaches. 
The GFSI covers a total of 113 countries and does not include 
Croatia, Cyprus, Estonia, Latvia, Lithuania, Luxembourg, and 
Malta. In contrast, since the present study considers all European 
Union member states, these countries are also included in the 
analysis. The inclusion of countries that fall outside the scope of the 
GFSI allows for a more comprehensive and homogeneous 
assessment of food security performance, particularly with respect 
to comparisons between EU countries and Türkiye. As shown in 
Table 6, although the numerical coverage of the rankings differs, a 
high degree of consistency is observed between the results obtained 
in this study and the overall GFSI rankings. Although one ranking is 
based on 29 countries and the other on 21 countries, the relative 
positions of countries are largely preserved. This finding indicates 
that the MCDM approach employed and the selected set of criteria 
are capable of producing results that are consistent with a globally 
recognized index. Nevertheless, the comparative assessment 
highlights two countries in particular—the United Kingdom and 
Portugal—as exhibiting notable discrepancies. This divergence may 
stem from the inclusion of governance, policy framework, and 
qualitative indicators in the GFSI methodology, whereas the present 
study adopts a framework that relies more heavily on quantitative 
and structural variables. Overall, the comparison with the GFSI 
demonstrates that the results of this study are not arbitrary, but rather 
largely aligned with a globally accepted index. At the same time, the 
differences observed for certain countries illustrate that food security 
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rankings may vary depending on which dimensions of food security 
are emphasized, thereby confirming that this study offers a 
complementary perspective to existing index-based assessments. 

Table 6 Comparison of the Results with the Overall GFSI Rankings 

Country TOPSIS Ranking GFSI (2022) 
Austria 6 8 
Belgium 12 11 
Bulgaria 20 16 
Croatia 23 - 
Cyprus 28 - 
Czechia 13 10 
Denmark 3 9 
Estonia 8 - 
Finland 4 1 
France 9 3 
Germany 17 12 
Greece 22 17 
Hungary 19 18 
Ireland 1 2 
Italy 21 15 
Latvia 7 - 
Lithuania 10 - 
Luxembourg 2 - 
Malta 29 - 
Netherlands 5 4 
Poland 14 14 
Portugal 26 7 
Romania 27 20 
Slovakia 25 19 
Slovenia 15 - 
Spain 18 13 
Sweden 11 5 
Türkiye 24 21 

United Kingdom 16 6 
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Conclusions and Policy Implications 

In this study, the food security performance of European 
Union countries and Türkiye was comparatively evaluated using the 
TOPSIS approach. Within the scope of the analysis, indicators 
representing multiple dimensions—such as economic accessibility, 
supply and price stability, agricultural structure, and production 
capacity—were jointly considered, while the contribution of 
sustainability-related criteria was examined through sensitivity 
analysis. The findings reveal that country rankings are largely 
consistent and that food security performance is shaped not by a 
single indicator, but by a combination of interrelated structural 
factors. In particular, for countries in the lower performance group, 
food insecurity does not stem from a single deficiency but rather 
from the combined effects of vulnerabilities related to economic 
access, supply and price stability, and production structures. This 
finding suggests that the focus of policy discussions should not 
merely be on countries’ positions in the rankings, but rather on how 
the structural weaknesses determining these positions can be 
mitigated. In this context, strengthening economic accessibility 
emerges as the foremost policy priority for lower-ranked countries. 
The high cost of a healthy diet and the relatively large share of the 
population unable to afford healthy food indicate that food insecurity 
is directly linked not only to production levels, but also to income 
distribution and purchasing power. Accordingly, the targeted design 
of food assistance mechanisms, the implementation of subsidies to 
improve access to nutritious food for low-income groups, and the 
integration of social policy instruments within a food security 
framework are of critical importance. The second key policy area 
concerns the stabilization of food supply and prices. Food supply 
variability and price anomalies emerge as direct weakening factors 
of food security, particularly in lower-performing countries. This 
situation indicates that agricultural production systems and supply 
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chains are insufficiently resilient to climate-related, economic, and 
trade-induced shocks. Strengthening stock management 
mechanisms for strategic commodities, developing market-
balancing intervention tools, and implementing regulatory policies 
aimed at reducing price volatility should therefore be prioritized. 
Third, reducing external dependency represents a fundamental 
structural requirement for lower-performing countries. Net import 
dependency in agriculture and livestock sectors increases 
vulnerability to food insecurity, especially during periods of global 
crisis. In this regard, restructuring support schemes to enhance 
domestic production capacity, promoting production models that 
reduce input dependency, and prioritizing policies aimed at 
increasing agricultural value added are essential. The primary 
objective is not to achieve full self-sufficiency in the short term, but 
rather to establish a production structure that enhances resilience to 
external shocks for critical products. Finally, the results highlight the 
guiding role of public policies as a determining factor, particularly 
in lower-ranked countries. While the share of agriculture in 
government expenditure alone does not guarantee high performance, 
how and where these expenditures are allocated is of critical 
importance for food security. Investments in infrastructure, storage, 
logistics, and the support of small-scale producers stand out as policy 
instruments that can indirectly yet sustainably strengthen food 
security. 

For future research, incorporating qualitative dimensions 
such as governance quality, institutional capacity, and food system 
resilience into the evaluation framework may contribute to 
deepening the analysis. Moreover, introducing a temporal dimension 
through dynamic analyses and monitoring the long-term impacts of 
policy interventions would enable more comprehensive assessments 
of food security performance. Overall, this study demonstrates that 
findings derived from MCDM approaches provide policymakers not 
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only with an answer to the question “Which country ranks where?”, 
but more importantly with analytical and holistic insights into “Why 
does it rank there, and how can its performance be improved?”
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A FRAMEWORK TO EVALUATE THE BARRIERS 
OF AUTONOMOUS VEHICLES APPLICATIONS 

IN INDUSTRY 5.0 THROUGH MCDM 

NİHAN ÇAĞLAYAN1 
Introduct)on 

Industry 5.0 requires human-machine collaboration with 
technological advances; however, it should be consisted with ethical, 
social, and environmental dimensions. This approach requires 
autonomous systems to consider not only their technical 
performance but also the human factor, ethical decision-making 
processes, and sustainability. Autonomous vehicles, in particular, 
play an important role in Industry 5.0's human-centered production 
vision, and multiple criteria must be balanced in the decision-making 
processes of these vehicles. The widespread use of autonomous 
vehicles in industrial applications requires overcoming numerous 
obstacles, such as safety, ethics, energy efficiency, human-machine 
interaction, and cybersecurity.  These barriers are shaped not only by 
technological and human factors, but also by external factors such as 
public policies and regulatory frameworks. In this context, the 
integration of autonomous systems will lead to significant changes 
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in both industrial processes and daily life. To manage these 
obstacles, MCDM (Multi-Criteria Decision Making) methods offer 
the opportunity to comprehensively evaluate the expectations of 
different stakeholders and multi-dimensional performance criteria. 
MCDM methods make decision-making processes more transparent 
and, at the same time, have the potential to increase the effectiveness 
of human-machine collaboration thanks to their ability to balance 
various criteria (Yilmaz and Ecemis Yilmaz, 2024). Therefore, the 
effective use of these methods is critical for the successful 
implementation of Industry 5.0. 

Autonomous vehicles have emerged as a continuation of the 
automation and digitalization processes that began with Industry 4.0. 
Autonomous vehicles are preferred in wide range of application in 
states and private sectors (Ecemis Yilmaz, 2023). Industry 4.0 has 
revolutionized the manufacturing and service sectors with 
technologies such as cyber-physical systems, the Internet of Things 
(IoT), artificial intelligence (AI), and big data analytics. However, 
these technological advances have greatly affected the human factor, 
leading to unemployment in the labor market and negative 
consequences in the employee ecosystem. Autonomous vehicles 
have emerged as a continuation of the automation and digitization 
processes that began with Industry 4.0. AUIndustry 4.0 has 
revolutionized the manufacturing and service sectors with 
technologies such as cyber-physical systems, the Internet of Things 
(IoT), artificial intelligence (AI), and big data analytics. However, 
these technological advances have greatly affected the human factor, 
leading to unemployment in the labor market and negative 
consequences in the employee ecosystem (dos Santos Ramos Xavier 
et al., 2024a).	 Industry 5.0, on the other hand, focuses on human 
intellectual and cognitive abilities, aiming to use technology in a way 
that is compatible with humans and sustainable.	
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The role of autonomous vehicles in Industry 5.0 applications 
is considered not only as a technical innovation but also as a tool for 
social and economic transformation. Autonomous vehicles are 
particularly important in developing countries due to their potential 
to reduce traffic accidents caused by human error (dos Santos Ramos 
Xavier et al., 2024a). A study found that in countries with high rates 
of traffic accidents caused by human error, significant improvements 
in traffic safety are expected with the widespread adoption of 
autonomous vehicles. However, there are various obstacles to 
implementing this technology, including the inadequacy of obstacle 
detection technologies, users' perceptions of the technology, 
interaction problems between pedestrians and drivers, the cost 
competitiveness of vehicles, and road safety. These obstacles are not 
only technical but also involve social, economic, and cultural 
dimensions (dos Santos Ramos Xavier et al., 2024). 

Another obstacle faced by autonomous vehicles in Industry 5.0 
applications is the management of uncertainty and multiple criteria 
in decision-making processes. Naciri et al. (Güdek, 2023) note that 
decision-making processes become complex when they involve 
multi-criteria evaluation and uncertainty. The authors emphasize the 
importance of using MCDM methods in such complex decision-
making processes, stating, “The decision-making process becomes 
quite complex when it involves multi-criteria evaluation and 
uncertainty; this is the most common situation encountered in the 
industrial field.” (Naciri et al., 2024). Additionally, it has been stated 
that MCDM methods provide a systematic framework for comparing 
different decision-making methods and selecting the most 
appropriate one. 

The philosophy of Industry 5.0 aims to maximize the 
opportunities offered by technology while highlighting the creative 
contributions of people. This human-centered approach increases 
workforce participation, ensuring the best possible integration of 
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both employees and technology. Furthermore, taking the human 
factor into account in this process enables complex problems to be 
solved more effectively through collaboration between various 
disciplines. As a result, it becomes possible to develop more flexible 
and adaptable systems in industrial environments. Industry 5.0 
stands out as a new industrial paradigm that emphasizes human-
centered approaches, sustainability, and human-machine 
collaboration. This transformation has increased the need to evaluate 
the role of autonomous vehicles in industrial applications and the 
obstacles they face using multi-criteria decision-making (MCDM) 
methods. Autonomous vehicles require advanced decision support 
systems and multidimensional evaluation approaches to respond to 
the human-machine interaction, ethical, safety, and flexibility 
requirements brought about by Industry 5.0. Therefore, MCDM 
methods play a critical role in managing the complex, multi-criteria 
decision-making processes that autonomous vehicles encounter in 
industrial environments. This study aims to prioritize the 
fundamental barriers to the widespread adoption of autonomous 
vehicles within the framework of the Industry 5.0 approach using the 
MACBETH (Measuring Attractiveness by a Categorical Based 
Evaluation Technique) method. 
L)terature 

The human-centered, sustainable, and adaptable production 
vision of Industry 5.0 heavily relies on autonomous vehicles. 
Industry 5.0 is a transformation process that emphasizes human-
machine collaboration, ethical responsibilities, sustainability, and 
social benefit, in contrast to Industry 4.0's automation and 
digitalization-focused paradigms. Studies in the literature 
demonstrate that although the widespread use of autonomous 
vehicles presents benefits like productivity, adaptability, and 
customization in manufacturing procedures, it also encounters a 
variety of challenges. An interdisciplinary analysis encompassing 
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technological, ethical, human-machine interaction, environmental, 
economic, and legal aspects is necessary to enumerate these 
challenges. The human-centered, sustainable, and adaptable 
production vision of Industry 5.0 heavily relies on autonomous 
vehicles. Industry 5.0 is a transformation process that emphasizes 
human-machine collaboration, ethical responsibilities, 
sustainability, and social benefit, in contrast to Industry 4.0's 
automation and digitalization-focused paradigms. Studies in the 
literature show that although the widespread use of autonomous 
vehicles presents benefits like productivity, adaptability, and 
customization in manufacturing processes, it also encounters a 
number of challenges. An interdisciplinary examination of the 
technological, ethical, human-machine interaction, environmental, 
economic, and legal aspects is necessary to enumerate these 
challenges (Güdek, 2023). 

Industry 5.0 is a transformation process that emphasizes 
human-machine collaboration, ethical responsibilities, 
sustainability, and social benefit, in contrast to Industry 4.0's 
automation and digitalization-focused paradigms. Studies in the 
literature show that although the widespread use of autonomous 
vehicles presents benefits like productivity, adaptability, and 
customization in manufacturing processes, it also encounters a 
number of challenges. An interdisciplinary examination of the 
technological, ethical, human-machine interaction, environmental, 
economic, and legal aspects is necessary to enumerate these 
challenges (Güdek, 2023). There are numerous obstacles to the 
widespread adoption of these technologies in production 
environments (Kirişçi & Şimşek, 2023). Additionally, it is crucial to 
overcome the operational and technical obstacles that arise when 
integrating autonomous vehicles into industrial applications. These 
challenges can occasionally be caused by inadequate infrastructure 
or by users' difficulties adjusting to new technologies. Consequently, 
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the application of MCDM techniques improves both technological 
efficiency and the caliber of human-machine cooperation (Hamad et 
al., 2025). Because improved decision-making processes allow for 
more efficient resource use and lessen environmental effects, this 
strategy also helps achieve sustainability goals (Fourastier et al., 
2020). 

In addition to technological advancements, Industry 5.0 is 
shaped by a human-centered approach that promotes worker 
participation and human creativity, allowing for deeper and more 
significant interaction in production processes. It is crucial to create 
particular decision-making procedures to guarantee user safety and 
respect moral principles in order for autonomous vehicles to operate 
efficiently. For instance, putting user experience and human safety 
first when operating autonomous systems requires the application of 
MCDM techniques. By facilitating the methodical assessment of 
various decision options and criteria, MCDM makes it possible to 
use autonomous vehicles more effectively and efficiently 
(Claussmann et al., 2018). 

The primary challenges that autonomous vehicles face when 
making decisions are data uncertainty, which leads to technical 
difficulties; conflicting performance standards; cybersecurity risks; 
moral quandaries; and the intricacy of human-machine interaction. 
In the technical domain, data uncertainty results from incomplete, 
erroneous, or deceptive data that autonomous systems need to make 
the right decisions. Simultaneously, systems struggle to decide 
which parameters to prioritize due to conflicting and multiple 
performance criteria.  Another challenge in the technical domain is 
cybersecurity threats, which can jeopardize autonomous vehicles' 
interactions with their environment and thus undermine their 
dependability. Additionally, ethical conundrums make it challenging 
for autonomous systems to make the best choices in certain 
circumstances, which complicates human-machine interaction and 
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increases uncertainty. Therefore, taking these factors into account is 
essential for autonomous cars to engage in the Industry 5.0 
ecosystem in an efficient and moral manner. 

Technological Obstacles The suitability of the technology 
infrastructure and integration issues are two major obstacles to the 
broad use of autonomous vehicles in Industry 5.0 applications. For 
autonomous cars to operate efficiently, technologies like digital 
twins, the Internet of Things, artificial intelligence, and big data are 
essential (Stogia et al., 2025). But these technologies' scalability, 
interoperability, energy efficiency, and cybersecurity continue to be 
major obstacles. Specifically, while real-time data integration and 
predictive analytics are expected to optimize production processes 
through digital twins, it is difficult to develop and implement these 
systems in a way that is compatible with heterogeneous production 
technologies (Asranov et al., 2024).  In the context of Industry 5.0, 
digital twins must also be integrated with human-centered design 
principles. Currently, new approaches are required to incorporate the 
human element into procedures (Biondani et al., 2025). 

Cybersecurity is another technological barrier to the 
widespread use of autonomous vehicles. By facilitating the 
sustainable delivery of customized goods and services, Industry 5.0 
represents a new stage in the digital transformation process. 
However, the cybersecurity risks that emerge during this process 
pose serious risks to businesses. Effective cybersecurity provision is 
closely linked to the policies these nations adopt, particularly in 
newly industrialized nations. For these nations, organizational 
measures are the most important cybersecurity indicator. Data 
security, network integrity, and operational security are all at risk as 
autonomous vehicles proliferate on production lines (Duran, 2024) 

According to Claussmann et al. (Claussmann et al., 2018) the multi-
criteria decision-making processes of autonomous vehicles must 
optimize factors like safety, legal requirements, passenger comfort, 
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and energy consumption. This study proposes an MCDM framework 
for assessing uncertain sensor data that combines fuzzy logic and 
Dempster-Shafer theory. In the risk assessment and decision-making 
processes of autonomous vehicles, this method guarantees the 
thorough management of various criteria and uncertainty. "This 
study presents a new framework for multi-criteria decision-making," 
the authors write. The suggested method emphasizes the significance 
of MCDM in autonomous vehicle decision-making processes by 
using Dempster-Shafer theory to assess uncertain sensor data and 
fuzzy logic theory to handle heterogeneous criteria. 

Ensuring safety and security in decision-making processes is 
another challenge for autonomous vehicles in Industry 5.0 
applications. According to Fourastier et al. (Fourastier et al., 2020) 
autonomous intelligent systems' ability to make local decisions 
based on gathering environmental data determines their safety and 
security. Particularly in cyber-physical systems involved in safety-
critical activities, the validity and scope of the decision function 
should be evaluated in light of underlying assumptions, uncertainty, 
and safety constraints. The authors emphasize that "the safety and 
security of autonomous intelligent systems depend on their local 
decision-making capabilities based on collected environmental 
information." This highlights that security and safety are crucial 
concerns that must be considered when making decisions, 
particularly for cyber-physical systems involved in safety-critical 
tasks. It is claimed that MCDM techniques offer a useful instrument 
for assessing security and safety standards in addition to other 
performance standards. 

Another significant technical challenge faced by autonomous 
vehicles in Industry 5.0 applications is cybersecurity threats. Hamad 
et al. (Hamad et al., 2025) point out that as autonomous systems 
become more autonomous, cybersecurity risks also rise, and these 
risks need to be addressed at all architectural levels. In particular, 
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sophisticated cybersecurity measures must be put in place at every 
level, from the physical layer to the inter-system layer, in order for 
autonomous vehicles to function safely and securely. "As autonomy 
increases, the risk of cybersecurity threats increases proportionally, 
requiring the development of advanced methods across all 
architectural layers of autonomous systems," the authors write, 
emphasizing that cybersecurity is a fundamental challenge for 
autonomous vehicles. As a result, MCDM techniques are crucial to 
the thorough evaluation of cybersecurity risks in conjunction with 
other factors. 

Another significant obstacle for autonomous vehicles in 
Industry 5.0 applications is the complexity of human-machine 
cooperation. Even though Industry 5.0 emphasizes human-machine 
collaboration and human-centered approaches, the human element 
must be taken into account in autonomous vehicle decision-making 
processes. According to Stogia et al. (Stogia et al., 2025) Industry 
5.0 places a strong emphasis on ethical AI, sustainability, and 
human-machine cooperation. The authors stress that "Industry 5.0 
represents a significant transformation in industrial ecosystems that 
prioritize human-machine collaboration, sustainability, and ethical 
artificial intelligence," emphasizing that human-machine 
collaboration is an essential component that autonomous systems' 
decision-making processes must take into account. As a result, 
MCDM techniques guarantee that ethical standards and the human 
element are thoroughly considered during the decision-making 
process.  

The significance of human-robot interaction and human-
machine collaboration concepts should be highlighted when 
analyzing the challenges of autonomous vehicles in Industry 5.0 
applications. Industry 5.0 deals with human-machine cooperation in 
a framework that combines the accuracy and efficiency of machines 
with human creativity and intuition (Pawar et al., 2025). In this 
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regard, human-robot interaction should be taken into consideration 
when designing user interfaces for autonomous vehicles. According 
to Amanatidis et al. (Amanatidis et al., 2018) user interfaces for 
autonomous vehicles should vary based on the degree of automation, 
and they should get smarter and more autonomous as the level of 
automation rises. This method signifies a change from conventional 
"master-slave" interaction to "equal-level" interaction, in which 
robots and humans work together on an equal basis. 

Ergonomic Barriers and Human-Machine Interaction 
Industry 5.0 is centered on human-machine cooperation. The 
inability to create safe, effective, and ergonomic human-machine 
interaction is one of the main obstacles to the widespread adoption 
of autonomous vehicles. Industry 5.0 addresses this shortcoming by 
providing a human-centered paradigm, as discussed in the literature, 
whereas Industry 4.0's automation-focused approach resulted in the 
exclusion of human labor from production environments (Teoman, 
2024). However, there are still issues with ergonomics, usability, and 
accessibility that must be resolved when integrating human-machine 
collaboration into production processes (Palazhchenko et al., 2024). 
In particular, issues such as perception, trust, explainability, and 
ethical responsibilities come to the fore in human-robot interaction 
(Demircioğlu & Canbay, 2021). One major barrier to social 
acceptance is how moral and ethical obligations will be upheld in 
intelligent autonomous systems' decision-making processes 
(Demircioğlu & Canbay, 2021). 

In the context of Industry 5.0 applications, there are 
numerous moral and legal obstacles to the widespread use of 
autonomous vehicles. To understand these challenges, one must 
consider not only technological advancements but also social, legal, 
and ethical norms. In the process of integrating autonomous vehicles 
into society, concerns like safety, responsibility sharing, legal 
regulations, and ethical decision-making processes are closely 

--58--



related to the human-centered and collaborative vision of Industry 
5.0.  According to Wang et al.'s study, autonomous vehicles' ethical 
decision-making processes are primarily caused by the challenges of 
translating existing ethical theories into practical applications. 
Despite decades of research in the field of machine ethics, the study 
claims that ethical decision-making processes in autonomous driving 
present more complex and distinct challenges. Additionally, it is said 
that researchers, legislators, and the automotive sector continue to 
work together to find a consistent and all-encompassing solution in 
this field (Wang et al., 2022). The human-centered and ethics-based 
technological transformation that Industry 5.0 envisions is directly 
related to this situation because giving machines the authority to 
make moral decisions presents a significant barrier to social 
acceptance and trust. 

A major barrier to Industry 5.0's goal of improving human-
machine interaction is the social acceptance of autonomous vehicles' 
moral behavior and its incorporation into the legal framework. Evans 
et al. (Evans et al., 2020) developed the "Ethical Valence Theory" to 
evaluate whether ethical choices made by autonomous cars are 
socially acceptable. This theory holds that when a vehicle makes 
decisions about its environment, it tries to lessen the moral demands 
that various road users place on it. The goal of ethical practice is to 
be consistent with reality by quantitatively evaluating the harm 
caused by decisions and the uncertainties associated with them. This 
approach offers a flexible calculation method that permits the 
evaluation of various moral positions and social expectations, rather 
than providing a definitive solution for how ethical theories should 
be reflected in vehicle behavior. Although this flexibility aligns with 
the diversity and inclusivity ideals of Industry 5.0, a major barrier to 
standardization and regulation is the diversity of ethical choices 
based on social and cultural context. 
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Another major challenge in Industry 5.0 applications is the 
legal status and liability sharing of autonomous vehicles. The study 
by Ilkova and Ilka's (Ilkova & Ilka, 2017) highlights the necessity of 
amending current traffic laws to permit the use of autonomous 
vehicles on public roads by comparing the legal regulations of 
autonomous vehicles in Europe and the US. Additionally, it was 
mentioned that legal regulations present serious difficulties for 
insurance companies, automakers, drivers, and consumers. To put it 
another way, in order to discuss the applicability of various legal 
provisions, technical professionals must also be aware of legal 
regulations. The integration of technical and legal fields is necessary 
for the interdisciplinary collaboration and holistic approach that 
Industry 5.0 envisions, but the current legal framework is not flexible 
enough to facilitate this integration, which presents a major 
challenge. 

Regulatory and legal obstacles the absence of legal and 
regulatory frameworks is another major obstacle to the widespread 
use of autonomous vehicles in Industry 5.0 applications. New laws 
pertaining to data security, personal data protection, liability sharing, 
and occupational health and safety are necessary due to the extensive 
use of autonomous systems in production processes (Aksoy et al., 
2024). To guarantee human safety in production settings, specific 
legal requirements must be set for the development and application 
of AI-supported systems. The approach of Industry 5.0, which places 
a high priority on worker health and human safety, calls for the 
creation of new regulations and the updating of current legal 
frameworks (Aksoy et al., 2024).  

Organizational and financial obstacles Economic and 
organizational factors are another obstacle to the widespread use of 
autonomous vehicles in Industry 5.0 applications. For small and 
medium-sized businesses, the technological infrastructure 
investments mandated by Industry 5.0 represent a substantial cost 
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factor (Dossou & Nshokano, 2024). SMEs encounter financial, 
technical, and human resource obstacles to this transition, whereas 
large corporations can more readily integrate digital twins and 
autonomous systems (Dossou & Nshokano, 2024). Furthermore, 
current organizational structures and business models must be 
redesigned in accordance with the core tenets of Industry 5.0, such 
as sustainability and human-centeredness (Güdek, 2023). During 
this transformation process, businesses must adapt to strategic and 
technological requirements, develop new skill sets, and ensure that 
employees adapt to the transformation (Pinzone et al., 2024). 

The effectiveness of human resources in digital 
transformation processes is another organizational barrier to the 
widespread adoption of autonomous vehicles. Industry 5.0 suggests 
giving workers' and society's needs and welfare top priority 
(Teoman, 2024). Beyond financial considerations, though, the 
creation, design, and adaptation of new technologies necessitate 
improving workers' competencies and giving them new skills 
(Pinzone et al., 2024).  

One of the main factors directly influencing the widespread 
adoption of autonomous vehicles in Industry 5.0 applications is 
economic barriers. Raj et al. (Raj et al., 2020) discovered that a lack 
of consumer acceptance is the biggest barrier to the adoption of 
autonomous vehicles in their study that used a multi-criteria 
decision-making approach. More tangible organizational and 
economic obstacles, like the absence of industry standards and 
insufficient regulatory frameworks, must be addressed in order to get 
past this obstacle. To put it another way, high investment costs 
economically restrict the technology's commercialization and 
widespread adoption, while organizational standards and regulations 
hinder the sector's ability to undergo a thorough transformation. 

Industry 5.0 is a new paradigm that emphasizes technological 
innovation, sustainability, and a human-centered approach in 
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industrial transformation. This includes changes in organizational 
and economic processes in addition to technological advancements. 
In the context of Industry 5.0, the spread of sophisticated automation 
applications like driverless cars necessitates a more intricate and 
multifaceted approach to overcoming organizational and financial 
obstacles. In this regard, it is crucial from an academic and industrial 
standpoint to investigate the organizational and financial obstacles 
of autonomous vehicles in Industry 5.0 applications from an 
interdisciplinary standpoint. Increasing operational effectiveness 
and employee satisfaction through improved human-machine 
collaboration is one of Industry 5.0's core objectives.  However, in 
order to accomplish these objectives, organizational and financial 
obstacles must be removed in addition to technological 
advancements. Adoption of high-tech applications, like self-driving 
cars, in industrial settings necessitates not only technical proficiency 
but also organizational flexibility and economic viability. Currently, 
Industry 5.0's human-centered approach aims to create new 
organizational structures and business models while balancing the 
social and economic effects of technological advancements. Yaqot et 
al. (Yaqot et al., 2024) emphasizes that in order to maximize human-
machine collaboration in Industry 5.0, workforce competencies must 
be developed and digital governance issues must be resolved. Along 
with organizational challenges like workforce loss, skill gaps, and 
ethical dilemmas, economic sustainability stands out as a major 
barrier in this context. One of the most notable applications of 
Industry 5.0 is autonomous vehicles. The extensive use of 
autonomous vehicle technology has several benefits, including 
lowering transportation-related accidents brought on by human 
error, boosting productivity, and guaranteeing sustainability (dos 
Santos Ramos Xavier et al., 2024b). 

One of the main factors directly influencing the widespread 
adoption of autonomous vehicles in Industry 5.0 applications is 
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economic barriers. A lack of consumer acceptance is the biggest 
barrier to the adoption of autonomous vehicles, according to a study 
by Alok Raj et al. (Raj et al., 2020) that used a multi-criteria 
decision-making approach. More tangible organizational and 
economic obstacles, like the absence of industry standards and 
insufficient regulatory frameworks, must be addressed in order to get 
past this obstacle. To put it another way, high investment costs 
economically restrict the technology's commercialization and 
widespread adoption, while organizational standards and regulations 
hinder the sector's ability to undergo a thorough transformation. 

Organizational obstacles in digital transformation processes 
are another significant factor impacting the spread of autonomous 
vehicles in Industry 5.0 applications. When integrating digital 
technologies, factors like organizational culture, leadership style, 
and employee motivation are crucial, especially in large-scale 
industrial enterprises. According to Syversen et al., the company's 
leadership style and strategic orientation have a direct impact on 
employee skill development and motivation during the shift from 
Operator 4.0 to Operator 5.0. The failure of technological 
applications can be caused by leaders who do not adequately support 
change or by an organizational culture that is closed off to 
innovation. Similar circumstances also occur when autonomous 
vehicles are incorporated into manufacturing and transportation 
procedures. 

One of the most significant multidisciplinary research areas 
in the context of autonomous vehicles and Industry 5.0 applications 
today is sustainability and environmental challenges. As industrial 
revolutions have progressed, industrial applications have shifted 
from an emphasis on efficiency and automation to a new paradigm 
known as Industry 5.0, which is based on sustainability, people, and 
the environment. 
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Industry 5.0 presents a paradigm centered on sustainability 
and environmental awareness (Güdek, 2023). While the proliferation 
of autonomous vehicles offers new opportunities in terms of energy 
efficiency, resource utilization, and environmental impact, it also 
faces various obstacles in achieving sustainability goals. In 
particular, issues such as the energy consumption of digital twin and 
IoT-based systems, the carbon footprint of data centers, and 
electronic waste management are important obstacles that must be 
considered in sustainable Industry 5.0 applications (Stogia et al., 
2025). Furthermore, the widespread use of autonomous vehicles in 
production processes must be designed in line with green production 
and circular economy principles (Güdek, 2023).  

In the context of sustainability, urban logistics and last-mile 
delivery procedures represent another significant application area for 
autonomous vehicles. In response to rising delivery demands, 
especially during the COVID-19 pandemic, the integration of 
electric and autonomous vehicles into logistics networks has gained 
prominence. In addition to lowering emissions, electric and 
driverless cars improve delivery effectiveness and bolster the 
robustness of logistics networks. Electric car fleets and autonomous 
delivery robots lower labor costs, ease traffic, and lessen carbon 
emissions. However, inadequate charging infrastructure, range 
restrictions, and technological maturity are the main barriers to these 
technologies' widespread adoption. Overcoming these challenges is 
essential for effective and sustainable urban logistics (Alsaleh & 
Alsaleh, 2025).  

Sustainability in Industry 5.0 applications is not just about 
lessening environmental effects; it also strives for social and 
economic change by implementing circular economy concepts. 
Industry 5.0 accelerates economic transformation in areas like green 
jobs, eco-innovation, and green patents by integrating with circular 
economy activities, according to research done in the European 
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Union. Through technological innovation, this integration promotes 
economic growth and makes it easier to apply sustainable 
development principles in a variety of sectors (Sulich, 2024). 

Using MCDM techniques to manage the challenges 
autonomous vehicles face in Industry 5.0 applications guarantees 
that ethical, social, and environmental factors are taken into 
consideration in addition to technical performance requirements. In 
order to create moral decision-making procedures in ERP systems, 
Wankhade et al. compare fuzzy MCDM and OWA operators. "Fuzzy 
MCDM techniques allow for the consideration of multiple criteria 
and stakeholder perspectives, while OWA operators provide a robust 
framework for gathering uncertain and imprecise information," the 
authors say, highlighting the importance of MCDM in ethical 
decision-making processes (Wankhade et al., 2025). This method 
makes sure that when autonomous vehicles make decisions, social 
and ethical factors are taken into account in addition to technical 
ones. 

In conclusion, the role of autonomous vehicles in Industry 
5.0 applications necessitates striking a balance between a number of 
competing factors in a setting where ethics, sustainability, human-
machine cooperation, and many other factors are important. 
Overcoming challenges calls for a comprehensive plan and an 
interdisciplinary approach. To achieve the human-centered, 
sustainable, and flexible production vision of Industry 5.0, a 
thorough examination of each challenge is essential. In this regard, 
MCDM techniques guarantee the comprehensive management of 
multifaceted challenges that autonomous vehicles encounter, 
including safety, cybersecurity, ethics, energy efficiency, and 
human-machine interaction. MCDM techniques must be 
successfully applied in decision-making processes in order to 
successfully integrate autonomous vehicles in Industry 5.0 
applications. 
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MACBETH Method 

The MACBETH method was created to provide a 
quantitative approach to decision-making based on the qualitative 
assessments of decision-makers. How to create a scale that would 
enable decision makers to express their degree of preference 
between options without requiring them to express their preferences 
in numerical form was the question on the minds of the researchers 
who created the method. As a result, the MACBETH method which 
relies only on semantic judgments like "weak" and "strong" in 
pairwise comparisons was developed. Pairwise comparisons based 
on the qualitative values of the criteria can also be used in this 
method to determine the relative weights of the criteria (Bana E 
Costa et al., 2012). 

Pairwise comparisons based on the qualitative values of the 
criteria can also be used in this method to determine the relative 
weights of the criteria. The MACBETH method employs an interval 
scale, but it is comparable to MCDM techniques like AHP that rely 
on pairwise comparison results. Additionally, the MACBETH 
approach is different from other AHP techniques in that it bases 
comparisons on qualitative rather than quantitative values. Only 
semantic judgments like "weak" and "strong" are employed in 
pairwise comparisons using this method.   

Step 1: A decision problem is defined. 

𝐶 = {𝑐!, 𝑐", … , 𝑐#}	𝑠𝑒𝑡	𝑜𝑓	𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

The objective is to determine the relative importance weights 
of the criteria. 

𝑤 = (𝑤!, 𝑤", … , 𝑤#)		𝑖𝑓	𝑤$ ≥ 0,6𝑤$ = 1
#

$%!

	 

Step 2: Defining reference levels of criteria. 
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𝑣(𝑐$&'()*) = 0, 𝑣9𝑐$+,)*: = 100	 

Step 3: The difference in attractiveness between the pairs of criteria 
is qualitatively expressed by the decision maker. As shown in Table 
1, the decision-maker uses one of the semantic categories to convey 
this difference. 

∆$-= 𝑣(𝑐$) − 𝑣(𝑐-) 

∆$-= {0,1,2,3,4,5,6} 

Table 1 Semantic Categories 

Semantic Categories Scale 

No 0 
Very strong 1 

Weak 2 
Moderate 3 

Strong 4 
Very strong 5 

Extreme 6 

Step 4: Consistency constraint 

𝒗(𝒄𝒊) − 𝒗9𝒄𝒋: ≥ 𝜹𝒊𝒋 

where 𝛿$- is the minimum difference in attractiveness specified by 
the decision maker. 

Step 5: Transitivity constraint 

𝑖𝑓	𝑣(𝑐$) − 𝑣9𝑐-: ≥ 𝛿$- 		
𝑎𝑛𝑑	𝑣9𝑐-: − 𝑣(𝑐0) ≥ 𝛿-0 	
𝑡ℎ𝑒𝑛	𝑣(𝑐$) − 𝑣(𝑐0) ≥ 𝛿$- + 𝛿-0 

Step 6: Creating the Linear Programming Model 

𝑣(𝑐!), 𝑣(𝑐"), … , 𝑣(𝑐#) where the decision parameters 
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𝑚𝑎𝑥6 𝑣(𝑐$)
#

$%!
 The objective function 

𝑣(𝑐&'()*) = 0 

𝑣(𝑐+,)*) = 100 

Pairvise comparison constraint 

𝑣(𝑐$) ≥ 𝑣9𝑐-:  𝑖𝑓	𝑐$ ≥ 𝑐- Ranking constraint 
𝑣(𝑐$) ≥ 0 Non-positivity restriction 

Step 7: Calculatmon of the crmterma wemghts and rankmng of the crmterma 
are as follows. 

𝑤$ =
𝑣(𝑐$)

∑ 𝑣(𝑐0)#
0%!

 

𝑐$ > 𝑐- ⟷𝑤$ > 𝑤- 

Numer)cal analys)s 

This study uses the MACBETH method to prioritize the basic 
obstacles to the widespread adoption of autonomous vehicles within 
the Industry 5.0 approach. In keeping with Industry 5.0's human-
centered, sustainable, and resilient production philosophy, the 
assessment has taken into account ethical, social, environmental, and 
legal factors in addition to technological ones. 

Table 2 lists the study's evaluation criteria, which include 
technological barriers, ergonomics and human-machine interaction, 
ethical and social barriers, organizational and economic barriers, 
legal and regulatory barriers, sustainability, and environmental 
barriers. 

Table 2 The list of criteria 
Criteria Description 

C1 Technological barriers 
C2 Legal and regulatory barriers 
C3 Economic and organizational barriers 
C4 Human–machine interaction and ergonomics 
C5 Ethical and social barriers 
C6 Sustainability and environmental barriers 
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The pairwise comparison according to the semantic categories is 
demonstrated in Table 3.  

 
Table 3 Attractiveness between the pairs of criteria 

 C1 C2 C3 C4 C5 C6 
C1 0 4 5 3 4 4 
C2  0 3 2 3 2 
C3   0 2 3 3 
C4    0 2 3 
C5     0 2 
C6      0 

The normalized criterion weights obtained because of the 
MACBETH linear programming solution are listed in Table 4 below. 

Table 4 Weights of criteria 

 Weight 
C1 0.24 
C5 0.20 
C4 0.18 
C2 0.15 
C3 0.13 
C6 0.10 

 
Conclus)on  

There are multidimensional barriers to the widespread adoption of 
autonomous vehicles in Industry 5.0 applications. Overcoming these 
barriers requires comprehensive approaches based on technical, 
social, ethical, legal, and security considerations. In order to realize 
Industry 5.0's human-centered and sustainable production vision, 
autonomous vehicle technologies must be designed and 
implemented in a way that overcomes these barriers. The results of 
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the multi-criteria decision analysis conducted using the MACBETH 
method in this study reveal the technological barriers to the 
widespread adoption of autonomous vehicles within the scope of 
Industry 5.0, legal and regulatory barriers, economic and 
organizational barriers, human-machine interaction and ergonomics, 
ethical and social barriers, and sustainability and environmental 
barriers. Especially in decision problems where uncertainty, 
subjective evaluation, and qualitative judgments prevail, such as 
human-centered production systems, the MACBETH method 
enables the transformation of qualitative expert opinions into a 
systematic, consistent, and mathematically expressible structure. 

The recommended method, based on the analysis results, indicates 
that technological barriers have the highest priority, suggesting that 
autonomous vehicle systems have not yet fully achieved the 
flexibility, reliability, interoperability, and cyber-physical integration 
capabilities required by Industry 5.0. The legal and regulatory 
barriers in second place clearly reflect the time lag between 
technological developments and regulatory frameworks. The fact 
that economic and organizational barriers rank third highlights that 
autonomous vehicle investments are not only a technological process 
but also one that requires strategic and organizational 
transformation. The human-machine interaction and ergonomics 
criterion, ranked fourth, has been considered a secondary obstacle 
by decision-makers compared to technological and legal factors, 
despite the human-centered production approach that is the 
fundamental philosophy of Industry 5.0. The relatively lower 
priority given to ethical and social barriers indicates that, in the short 
term, businesses prioritize operational and regulatory risks over 
long-term social impacts. Sustainability and environmental barriers, 
which rank last, show that despite the environmental dimension of 
Industry 5.0 vision, they are still perceived as an indirect and 
secondary benefit area in autonomous vehicle applications. This 
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finding reveals that environmental gains are often assumed to be a 
natural outcome of technological developments but are not 
sufficiently internalized as an independent priority criterion in 
decision-making processes. 
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EU AND TÜRKİYE’S                                                   

NATURAL GAS TARIFFS CONSIDERING 

UNDERGROUND GAS STORAGE SYSTEMS  

1. Çetin Önder İNCEKARA1 

Introduction 

Gas storage plays a vital role in the global gas market, serving 

as a stabilizing buffer against imbalances caused by seasonal demand 

patterns and unexpected supply disruptions. Storage also helps 

mitigate market volatility during periods of price swings driven by 

external shocks, such as geopolitical events or natural disasters, by 

ensuring continuous and reliable gas supplies. Maintaining an 

adequate level of gas storage allows both consumers and suppliers 

to navigate periods of uncertainty, enhancing stability and resilience 

across the energy sector. 

About one-quarter of all energy used in the EU comes from 

natural gas. Maintaining a secure supply is therefore essential to 

ensuring energy security for EU. Gas supply disruptions may result 

from technical or human failures, natural disasters, cyber-attacks and 

other emerging risks or geopolitical disputes. Many EU countries 
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import nearly all their supplies and some are, or have been, also 

heavily reliant on a single source, meaning that disruptions along a 

single transport route can threaten the certainty of their gas supply. 

Since May 2022, the EU has taken a range of actions to eliminate its 

reliance on Russian fossil fuel imports by saving energy, diversifying 

supplies and accelerating the roll-out of renewable energy 

production in Europe. 

Key progress on security of EU gas supply measures are 

taken in the first 3 years since the adoption of the REPowerEU 

Plan in May 2022 have reduced the volumes of imported Russian gas 

from 150 billion cubic meters (bcm) in 2021 to 52 bcm in 2024 

which are: 

-45% Share of EU gas imports from Russia in 2021 

-19% Share of EU gas imports from Russia in 2024 

-17% EU gas demand reduction August 2022 - January 2025 

Although LNG imports from Russia increased by 2 bcm 

between 2023 and 2024, the end of the transit of Russian gas via 

Ukraine decreased the imports of pipeline gas from Russia by 15 

bcm per year. 

Reducing gas demand was a key part of the EU’s successful 

response to the energy crisis and phase-out of its reliance on Russian 

fossil fuels under the REPowerEU plan of May 2022. EU emergency 

measures are: 

-Emergency measures winter 2022/23 

In response to EU unilateral supply cuts from Russia in the first half 

of 2022, in August 2022, the Council adopted an emergency 

Regulation on Coordinated Demand Reduction Measures for Gas 

(EU/2022/1369), introducing a voluntary reduction of natural gas 

demand for EU countries by 15% for winter 2022-2023. The 

regulation was proposed by EU Commission in July 2022 and also 
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included the possibility for EU Council to trigger a ‘Union alert’ to 

trigger mandatory gas demand reductions in case voluntary measures 

were not enough to meet supply. 

Along with its proposal of July 2022, EU Commission published EU 

Communication 'Save gas for a safe winter' (COM/2022/360), which 

included a European gas demand reduction plan to prepare the EU 

for supply cuts. EU Communication and its annex listed good 

practice measures to reduce demand and offered EU countries 

criteria to identify essential which were not already protected under 

EU Gas Security of Supply Regulation. In December 2022, EU 

Council also adopted a proposal from EU Commission on the 

temporary emergency Solidarity Regulation (EU/2022/2576), 

establishing among others default solidarity rules, extra safeguards 

for cross-border flows and critical gas volumes needed for gas-fired 

electricity generation. 

-Emergency measures winter 2023/24 

On 30 March 2023, amid persisting risks and challenges on the 

energy market, the Council adopted EU Commission’s proposal to 

prolong the coordinated gas demand reduction measures for a further 

12 months to help avoid security of supply issues for winter 2023-

2024 and fully compensate for the permanent decrease in Russian 

gas. The extension of the proposal also encouraged EU Commission 

and EU countries to monitor and report the data on savings per sector 

every month, rather than total gas demand every 2 months. 

-Continued gas demand reductions 

In February 2024, EU Commission published a report on the 

functioning of the Gas Demand Reduction Regulation. It showed 

that between August 2022 and December 2023, EU countries 

collectively reduced gas demand by over 100 billion cubic meters 

compared to the 5-year average, demonstrating the effectiveness of 

the voluntary measures. On this basis, EU Commission proposed a 
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continuation of the voluntary gas demand reduction measures to help 

sustain and improve market stability and support the EU’s 

decarbonisation efforts. 

In March 2024, a Council Recommendation was adopted 

encouraging EU countries to continue taking voluntary measures 

until March 2025 to maintain a collective 15% gas demand 

reduction, compared to the average demand between April 2017 and 

March 2022. 

Improved information exchange, regional cooperation and 

solidarity underpin the EU’s framework for emergency preparedness 

and resilience to gas disruptions, as set out in the Regulation on 

measures to safeguard the security of gas supply (EU/2017/1938). 

The framework legislates for 

- cooperation between EU countries in regional groups to assess 

common supply risks (through common risk assessments) and to 

develop joint preventive and emergency measures 

-the facilitation of permanent bi-directional capacity on all cross-

border interconnections between EU countries by transmission 

service operators, unless an exemption is granted, the granting of 

exemptions are closely monitored by the Commission that can adopt 

decisions to request modifications to them 

-the preparation of EU-wide simulations of gas supply and 

infrastructure disruptions, carried out by the European Network for 

Transmission System Operators for Gas (ENTSOG) to provide a 

high-level overview of the major supply risks for the EU 

In line with the Regulation on Conditions for Access to the 

Natural Gas Transmission Networks (EC/715/2009), ENTSOG is 

also required to undertake seasonal supply outlooks investigating, at 

the pan-European level, the security of gas supply ahead of each 
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winter and summer period. These seasonal supply outlooks help the 

Commission in its monitoring work. 

On 5 September 2012, the EU Agency for Cooperation of 

Energy Regulators (the ‘Agency’) launched a public consultation on 

the draft Framework Guidelines rules regarding harmonised 

transmission tariff structures for gas. The purpose of this 

consultation was to collect the views of the stakeholders in order to 

develop the Framework Guidelines (the “FG”) pursuant to Articles 

6(2) and 8(6)(k) of Regulation (EC) No 715/2009 (the “Gas 

Regulation”). 

The public consultation launched by the Agency solicited 

feedback from various stakeholders on the draft Framework 

Guidelines as published on 5 September 2012 on the Agency’s 

website. The public consultation closed on 5 November 2012. In 

addition to the consultation, an Open House was conducted on 4 

February 2013. Annex 2 contains stakeholders’ views from the Open 

House submissions and the Agency’s summary of the additional 

comments received in writing. Annex 3 provides the list of 

respondents to the Open House. 

The Energy Code empowers the Energy Regulation 

Commission (CRE) to define the methodology for establishing 

tariffs for the use of natural gas transmission networks, gas storage 

facilities and LNG terminals. CRE can make changes to the tariff 

levels and structure deemed justified in light of operators’ accounts 

and any expected changes in operating or investment expenses. 

Natural gas network tariffs are calculated using income and 

expense assumptions for the different elements covered by tariffs. 

An ex-post adjustment mechanism, the expenses and revenue claw-

back account, helps to resolve differences between actual expenses 

and income and projected expenses and income for elements which 

are difficult for gas system operators to predict and control. To 
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encourage operators to control energy expenses (gas and electricity) 

and CO2 allowances, only 80% of the differences of those costs 

compared to the previous year's updated energy expenses trajectory 

are covered by this mechanism. The remaining 20% of this 

difference is for the benefit or at the expense of the operator to 

encourage them to stay below the defined trajectory. 

Considering EU Regulation numbered 2017/460, which 

establishes a network code setting out the rules on harmonised 

transmission tariff structures for gas, CRE deliberated on tariffs for 

natural gas transmission systems, storage facilities and LNG 

terminals. These tariffs address a number of objectives, including 

proper functioning of the wholesale gas market, supporting the 

energy transition by enabling biomethane injection, and ensuring 

proper safety and environmental standards. 

In October 2024, the Commission publicly launched the 

interactive security of gas supply dashboard. It provides 

comprehensive weekly data on imports, storage levels, transport and 

consumption of gas in the EU, allowing national and EU decision-

makers take swift and informed actions to ensure energy security 

across the EU. 

On 23 March 2022, the Commission published a 

Communication on security of supply and affordable energy prices 

(COM/2022/138), together with a proposal for a new regulation on 

gas storage. The Gas Storage Regulation (EU/2022/1032) was 

adopted in June 2022 and applies until the end of 2025. 

On 5 March 2025, in the context of continued volatility and 

uncertainty in the global energy landscape, the Commission 

proposed to prolong the regulation for 2 years (COM/2025/99), until 

the end of 2027, following its report on the regulation 

(COM/2025/98).  
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On 5 March 2025, the Commission published a 

recommendation (C/2025/1481) to EU countries to consider the 

current market conditions and introduce flexibility when deciding on 

measures to refill their storages next summer.  

On 17 July 2025, the Commission published a 4 week call for 

evidence on a draft delegated regulation updating the composition of 

risk groups as foreseen in Regulation (EU) 2017/1938. It reflects the 

significant changes to EU gas supply since 2021 and the evolution 

of the major transnational risks to security of gas supply. The draft 

delegated regulation maintains 4 risk groups but introduces 

significant simplification. EU countries were consulted through the 

Gas Coordination Group (GCG), and there will be a further 

consultation of the GCG following the public call for evidence. 

EU Parliament and the Council reached a provisional 

agreement on the Commission’s proposal in June and the adopted 

Regulation EU/2025/1733 was published on 10 September 2025. 

Gas storage, in particular Underground Gas Storage (UGS), 

is instrumental to the security of supply as it provides an additional 

reserve in case of strong demand or supply disruptions. Typically, 

storage provides 25-30% of gas consumed in the EU during winter. 

It reduces the need to import additional gas and contributes to 

absorbing supply shocks. 

What is UGS Tariff? 

Underground Gas Storage (UGS) tariff is based on the 

specific requirements of customers and within the bandwidth of the 

technical specifications of its facility. Therefore, a standard ratio 

between Send In capacity, Send Out capacity and Working Gas 

Volume is not applicable in the market. All services are customized 

and tariffs are established through negotiations. And it affects the 

natural gas tariff directly. 
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EU’s gas companies publish the weighted average tariff for a 

service on TTF with an average bundle ratio for relevant storage 

year. The below tariff excludes energy charges and includes 

transportation charges. 

-The average tariff for storage year 2023 is € 14.84 Euro/MWh for 

the average bundle of 0.66/1/259. 

-The average tariff for storage year 2024 is € 16.13 Euro/MWh for 

the average bundle of 0.75/1/341. 

Around 2006 most of EU countries’ Authorities for natural 

gas approved the Storage Code Resolutions. EU tariff for injection, 

storage and withdrawal of gas are stated by countries’ natural gas 

distribution companies. 

In Turkey, Energy Market Regulatory Authority (EMRA) has 

announced the storage and transmission tariffs for storage facilities, 

i.e. BOTAS’s Tuz Golu Underground Natural Gas Storage Facility 

and Silivri Underground Natural Gas Storage Facility. 

For the year 2025, storage year, the upper limit storage fees 

were set by EMRA: 

- 3.080123 TL per cubic meter for capacity fees, 

- 0.105722 TL per cubic meter for injection fees, 

- 0.010516 TL per cubic meter for withdrawal fees. 

Best Practice Guidelines for the Implementation of the Pass-

Through Mechanism for gas costs, Trading Hub Europe publishes 

the specific gas pass-through amount that is applicable across EU’s 

countries. The gas pass-through amount is charged in addition to the 

transportation tariffs at exit points to the Transmission System 

Operator-TSOs’ directly connected final consumers and downstream 

network operators. Exit points to storage facilities as well as cross-

border and market area interconnection points are taken into account. 
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UGS plays an important role to balance the EU and Türkiye’s 

natural gas system and to cover peak demand during winter. Gas 

storages play an important role for ensuring continuity of gas supply; 

it is an important source of gas flexibility during the winter and are 

refilled during the summer period. The role of storages becomes 

more relevant in a context where the EU indigenous gas production 

consistently declines year on year, increasing the gas import 

dependency from external gas producers to the EU. The UGS 

inventory level on 1 October 2021 is the lowest of the past 5 years, 

and it has continued below the average during the winter of 2021-

2022. This is primarily due to a low storage level at the end of winter 

2020-2021, combined with a storage injection season characterised 

by extremely high gas wholesale prices which did not incentivize 

market participants to store gas in comparison to previous years. 

EU Gas Storage Regulation 

Under EU Gas Security of Supply Regulation 

(EU/2017/1938), amended by the Gas Storage Regulation 

(EU/2025/1733), gas storage facilities are considered critical 

infrastructure and an updated certification process was introduced 

for all storage operators in the EU to reduce the risks of outside 

interference. This contributes to reducing the security of supply risks 

and supports the EU's competitiveness by ensuring that storage 

facilities are properly filled. 

Operators of storage sites should report the filling levels to 

national authorities and EU countries should monitor the filling 

levels on a monthly basis and report to the EU Commission. 

Another important element is the burden-sharing mechanism. 

Some EU countries have storage larger than their own national 

consumption, while others do not have any storage facilities. 

However, all EU countries benefit from the guaranteed filling levels, 

so the burden-sharing mechanism makes sure that not only EU 
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countries with storage facilities pay for the security of supply costs 

of the minimum filling target. 

To ensure security of gas supply and to comply with the gas 

storage target of 90% each year, EU countries with underground gas 

storage facilities define the intermediate targets for the 1st of 

February, May, July and September. The trajectories are based on the 

filling rates of the previous 5 years, and the Commission and EU 

countries regularly monitor the storage filling trajectories within the 

Gas Coordination Group. 

EU Gas Storage Levels 

EU is the world’s second largest region in terms of 

underground gas storage (UGS) capacity, behind US. EU member 

states collectively operate UGS sites with a working gas capacity of 

104 bcm, accounting for one quarter of the global capacity. The 

importance of gas storage in the EU has grown significantly since 

the 2022 energy crisis, underscoring the need for supply security and 

system flexibility. Storage is especially critical given the region’s 

sharp seasonal demand swing, with winter gas consumption rising 

by approx. 135% compared to the summer. This contrasts with a 50% 

seasonal increase in US and just 11% in China, highlighting the EU’s 

heightened dependence on storage for winter supply reliability. 

EU gas system reached a storage level of 83% on 1 October 

2025, recording approximately 85 bcm of gas in stock at the start of 

the winter. This level is in the range observed in the years prior the 

energy crisis and represents around 25% of the EU's annual gas 

consumption. Starting from a 34% filling level on 1 April 2025, 50 

bcm of gas was injected into EU gas storages during the summer to 

reach current levels. This is substantially more than in the previous 

2 years. 

In June 2022, the EU underwent a structural shift in its gas 

market framework with the adoption of Regulation (EU) 2022/1032, 
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aimed at ensuring stable gas supply in winter seasons. This 

regulation introduced three key measures for EU member states to 

enhance gas storage security. First, it set binding capacity targets for 

UGS sites: storage facilities were to be filled to at least 80% by 1 

November 2022, increasing to 90% by 1 November in subsequent 

years. Intermediate targets were also established throughout the year, 

specifically at the start of February, May, July and September. 

Second, the regulation limited the required filling volume to 35% of 

the member state’s average annual gas consumption over the 

previous five years. 

The new EU regulation prompted EU member states to inject 

a record 72 bcm into UGS facilities during the 2022 summer season, 

following a historically low end-of-winter level of just 26 bcm. That 

enabled the region to maintain a reliable gas supply throughout the 

2022/2023 winter. In both 2023 and 2024, the EU encountered fewer 

challenges in meeting its intra-year storage targets, owing to a 

combination of factors: milder-than-expected winter weather, 

declining gas demand, robust LNG imports, and stabilised pipeline 

gas imports. These conditions contributed to net gas withdrawals of 

just 41 and 43 bcm over the two winter seasons, the lowest levels in 

over a decade. By the end of the 2023/2024 winter, gas storage 

remained at an all-time high of 61 bcm. As a result, gas injection 

needs during the 2024 summer season were significantly reduced, 

with only 39 bcm injected, marking a record low since 2012 which 

is presented in Figure 1. 

 

 

 

 

 

--87--



 

 

Figure 1. UGS injections and withdrawals in EU 

 

After two consecutive winters of milder-than-average 

temperatures, the 2024/2025 winter marked a return to colder 

weather conditions, last seen three years ago. Net gas withdrawals 

began as early as 22 October 2024, more than two weeks earlier than 

in 2023, and average EU temperatures remained below historical 

norms throughout the winter. During the core winter months 

(November 2024 to March 2025), the average temperature in the EU 

dropped to 5.6°C, significantly lower than 6.5°C in 2023/2024 and 

the average of the previous six winters of 6.0°C. This is supported 

by heating degree days (HDDs) data, which measure heating demand 

by calculating the difference between the mean daily temperature 

and a reference temperature. Over the 2024/2025 winter season, the 

EU recorded a total of 1,877 HDDs, representing a 7% increase 

compared to the previous winter and a 3% increase over the average 

of the prior six winter seasons which is presented in Figure 2. 
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Figure 2. Average EU temperatures (L) & heating degree days (R) 

 

Below-average temperatures during the 2024/2025 winter 

posed challenges to the supply-demand balance in the regional gas 

market. On the demand side, colder weather led to a significant 

increase in gas consumption for heating, with the region estimated 

to have consumed 16 bcm more than during the previous winter. 

On the supply side, the EU experienced reduced gas 

availability, driven by declines in both domestic production and gas 

imports. Domestic output continued its structural downward trend 

due to depleting reserves, with the total domestic EU output 

declining from 17 bcm in the 2021/2022 winter to 12 bcm in the 

2024/2025 winter, hence, further intensifying the region’s 

dependence on external supply. However, pipeline gas imports 

during the winter season fell sharply by 42 bcm over the past three 

years, from 104 bcm in 2021/2022 to 62 bcm in 2024/2025, largely 

as a result of geopolitical developments. This decline was only 

partially offset by a 12 bcm increase in LNG imports during the 

winter season, rising from 43 bcm in 2021/2022 to 55 bcm in 

2024/2025. Consequently, total EU gas imports dropped to 117 bcm 
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during the 2024/2025 winter, down from 121 bcm in 2023/2024, 123 

bcm in 2022/2023 and 147 bcm in 2021/2022, further aggravating 

the region’s supply situation amid heightened seasonal demand. 

With the supply-demand balance tightening, EU was forced 

to rely on UGS withdrawals during the 2024/2025 winter as a critical 

component of gas supply, with withdrawals reaching 65 bcm, a level 

not seen since 2020/2021. As a result, storage levels fell to just 35 

bcm by the end of the winter season. While this is only slightly below 

the 10-year average of 38 bcm, it is significantly lower than the 

levels recorded in 2024 (61 bcm) and 2023 (57 bcm), making the 

current gas storage situation markedly different and considerably 

more complex. 

By 1 November 2025, under the current gas storage 

regulations, EU member states must restock approximately 60 bcm 

to meet the 90% capacity target. This figure is significantly higher 

than the volumes injected during the 2023 and 2024 summer 

seasons, which amounted to 47 bcm and 39 bcm, respectively. 

The common expectation is that EU will succeed in injecting 

the required storage volumes, however, compliance with mandatory 

storage targets is likely to lead to elevated prices, as was the case 

during the 2022 energy crisis. At that time, Europe, urgently seeking 

LNG to offset declining pipeline gas imports, emerged as a premium 

destination for global LNG, overtaking Asia. This was reflected in 

European hub prices surpassing Asian spot LNG prices, marking an 

unprecedented reversal of the traditional inter-regional price 

relationship. As market conditions stabilized, the NEA-TTF price 

spread gradually returned to historical norms, with Asia regaining its 

premium over Europe in 2023 and 2024. In 2025, as Europe once 

again demands higher LNG volumes to refill UGS sites, and 

therefore competes with Asia for spot LNG cargoes, TTF spot prices 

are expected to remain elevated throughout the summer. 

Additionally, lower-than-expected LNG demand in China and US-
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initiated tariff war may exert downward pressure on spot LNG prices 

in both regions. 

There is a strong correlation between gas prices and storage 

dynamics in EU market. During the winter months, colder 

temperatures drive up heating demand, leading to higher gas 

consumption and a corresponding increase in prices. Conversely, in 

the summer, heating demand declines sharply, resulting in lower 

consumption and typically lower prices. This seasonal pattern 

generates a winter-summer price spread, incentivizing market 

operators to buy gas at lower summer prices, inject it into UGS sites, 

and resell it in winter at higher prices. 

Considering the maximum average monthly TTF price 

during the winter months versus the minimum average monthly TTF 

price during the summer months, the seasonal price spread averaged 

$2.9/MMBtu between 2016 and 2020 (Figure 3). Amidst the post-

pandemic recovery and the 2022 energy crisis, the spread widened 

to an unprecedented $35/MMBtu in 2021 and $14/MMBtu in 2022, 

and remained at an economically effective level of $4–6/MMBtu in 

2023 and 2024. However, in 2025, futures price dynamics indicate a 

slightly positive winter-summer price spread of just $0.7/MMBtu, as 

the EU’s gas storage regulations are expected to support high 

injection demand, exerting upward pressure on prices. At the same 

time, the global gas market is expected to see increased supply by 

year-end, with 54 Mtpa of new liquefaction capacity coming online 

throughout 2025 and production ramping up by year-end, which is 

likely to suppress any significant rise in winter prices. As a result, 

the narrow seasonal price spread is expected to lead to commercial 

losses for gas storage operations. 
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Figure 3. Spread between the peak winter prices and lowest 

summer prices in the EU 

 

Regulation (EU) 2022/1032 was initially set to expire at the 

end of 2025, but in March 2025, the European Commission proposed 

a two-year extension, through the end of 2027, emphasizing its 

continued importance for ensuring both gas supply security and 

market stability. At the same time, the Commission is reviewing 

proposals from several member states seeking greater flexibility 

within the regulatory framework, particularly by allowing 10% 

deviations from storage targets and compliance deadlines under 

exceptional national circumstances. Looking beyond 2027, EU gas 

market is expected to evolve toward a more balanced and resilient 

structure, potentially reducing the need for such administrative. 

The original Gas Storage Regulation, 16 in force since 1 July 

2022, included the following key requirements: 

• A mandatory storage filling obligation, stipulating a binding final 

filling target and filling trajectories with intermediate targets as well 

as storage burden-sharing mechanisms (initially codified by 

amending the Security of Supply Regulation); 

• mandatory certification of storage operators (codified by amending 

the Gas Regulation 715 and subsequently incorporated into the 

Renewable and Natural Gas and Hydrogen Regulation). 
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The Regulation’s requirement for EU Member States to meet 

the final filling target and to adhere to filling trajectories with 

intermediary targets was a highly interventionist measure, adopted 

amidst the energy crisis of 2022 when fears ran high that EU gas 

storage would not be filled ahead of the winter of 2022- 23. While it 

ensured storage was refilled, it also contributed to a sharp increase 

in gas prices in the 3Q2022, as all Member States simultaneously 

scrambled for supplies to meet their targets (Figure 4). 

Figure 4. TTF day-ahead and month-ahead prices, euros/MWh 

 

While the Regulation was set to expire at the end of 2025, it 

contained a provision which envisaged the possibility of mandatory 

filling targets and trajectories becoming permanent as part of the Gas 

Security of Supply Regulation review, based on the EC report. 

Türkiye’s UGS Facilities 

Türkiye’s UGS Facilities and their capacities are listed below: 

-Tuz Golu Underground Natural Gas Storage Facility: It is located 

in the Aksaray province, 40 km South of Tuz Gölü in the Sultanhani 

district of Türkiye. In 2011 construction work was started and it is 

aimed to reach 5.4 bcm total storage and 80 million Sm³ daily 

withdrawal capacity together with Gas Storage Expansion Project. 

Today 1,2 billion Sm³ working gas capacity and 40 million Sm³ daily 

withdrawal capacity have been reached. (www.botas.gov.tr) 
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-Değirmenköy Onshore Natural Gas Storage Facility: One of the 

depleted underground gas storage of Türkiye is Degirmenkoy field. 

The Degirmenkoy is one of the two reservoirs of Silivri underground 

natural gas storage facility. The field is located in the Thrace region 

of Turkey. It is an onshore gas field located 16 km northern-west of 

the Northern Marmara field. The storage capacity of the 

Değirmenköy Reservoir is 300.000.000 m3 (www.botas.gov.tr). 

-Northern Marmara Offshore Natural Gas Storage Facility: The 

Northern Marmara Gas Field was discovered in 1988 in an area 5 

km west of Silivri and 2.5 km far off the coast at a depth of 1,200 m. 

To determine the size of the natural gas reserve, which is the first 

undersea natural gas reserve in Turkey, three offshore boreholes in 

1995 and two more were drilled in 1996. Natural gas production 

started in September 1997 at the five gas wells. Gas was pumped 

from an offshore platform by a 3 km-long undersea pipeline to the 

plant at the coast for processing. The storage capacity of the 

Northern Marmara Reservoir is 1.600.000.000 m3 

(www.botas.gov.tr). 

Currently, the Northern Marmara and Değirmenköy (Silivri) 

Depleted Gas Reservoir is the only underground natural gas storage 

facility in Turkey. Northern Marmara-Değirmenköy Storage 

Facilities in the Silivri district of Istanbul has 3,19 billion Sm³ 

storage and 28 million Sm³ daily withdrawal capacity, and with the 

project initiated in 2017, it aims to reach 4.6 billion Sm³  storage and 

75 million Sm³ daily withdrawal capacity via Phase-I and Phase-II 

Projects. It is planned that the total storage capacity will be 4,29 

billion Sm³ working gas capacity (www.botas.gov.tr). 

EU’s UGS Facilities 

Eighteen EU Member States – Austria, Belgium, Bulgaria, 

Czechia, Germany, Denmark, Spain, France, Croatia, Hungary, Italy, 

Latvia, the Netherlands, Poland, Portugal, Romania, Sweden, 
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Slovakia – have underground storage capacity. Total EU storage 

capacity stands at ~105 bcm in 2025 (equating to slightly less than 

one third of annual EU consumption during 2020-24) but is 

distributed unevenly across different Member States. Final filling 

targets for 2022, 2023, and 2024 have been met by all EU Member 

States, with many of them exceeding this target. 

The original EU Regulation obliged EU Member States to fill 

their gas storage to at least 80 per cent of capacity by 1 November 

2022 and to at least 90 per cent of capacity by 1 November of 2023, 

2024, and 2025, known as the ‘final filling target’. This requirement 

applied to all underground storage facilities located on their national 

territory and directly interconnected to a market area in their national 

territory. 

EU Regulation also stipulated that by 15 November of each 

year while it was in force, EC had to set a filling trajectory for each 

Member State for 2023, 2024, and 2025 (with intermediary targets 

for 1 February, 1 May, 1 July, and 1 September) based on draft filling 

trajectories, which had to be submitted by Member States to the EC 

by 15 September each year. The Regulation specified that Member 

States’ draft filling trajectories had to be based on the average filling 

rate during the preceding five years. Given that EU filling level was 

significantly elevated during the 2022-23 and the 2023-24 filling 

seasons compared to pre-crisis levels, the average filling rate used 

for developing the draft filling trajectory for each subsequent season 

was skewed upwards. 

EU Regulation allowed Member States to meet the final 

target partially by counting LNG stored and available in their LNG 

terminals (Art. 6a.5), if 

a. such LNG storage capacity accounted for more than 4 per cent of 

their average consumption over the preceding five years on an 

annual basis, and 
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b. an obligation on gas suppliers to store minimum volumes of gas 

in underground storage facilities and/or LNG terminals was in place 

with Spain and Portugal qualifying for this derogation. Application 

of these derogations meant that for exempted Member States the 

final filling targets for 1 November 2025 were significantly lower 

than the default filling target of 90 per cent of capacity. 

Several EU Member States – Estonia, Ireland, Lithuania, 

Greece, Cyprus, Slovenia, Finland, Luxembourg, and Malta – do not 

have any underground storage facilities. Member States without such 

facilities are obliged to establish storage arrangements to store gas 

in, or conclude burden-sharing agreements with, Member States 

which have underground storage facilities. (Figure 5) 

Figure 5. Member States: storage filling requirements, storage 

arrangements, and burden sharing 
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The EU faces a triple challenge, to ensure the security of gas 

supply and, at the same time, to secure affordability and accelerate 

the decarbonisation of the gas sector. 

The green transition of the European gas market and the 

move towards new and renewable gases is not only a challenging 

undertaking but also an opportunity to: 

• Ensure environmental sustainability of the European gas sector; 

• Enable competitiveness and affordability by creating a more stable 

supply of gas; 

• Secure the autonomy of the EU from gas imports and reduce 

dependencies on individual third countries. 

EU’s gas storage rules 2025-2027; the main changes to the 

extended regulation are: 

-A 2-month period to meet the 90% filling target every year (1 

October – 1 December), replacing the 1 November deadline 

-the nature of gas filling trajectories is indicative, unless decided 

otherwise by EU countries 

-EU countries have the flexibility to deviate from the gas filling 

target in case of difficult market conditions or technical constraints 

-EU Commission has the possibility to further reduce the target, if 

unfavourable market conditions persist 

Most gas storage capacity in EU corresponds to depleted and 

aquifers fields, which are mainly used to store large volumes of gas 

to balance seasonal swings of gas demand and to the extent possible 

also for short-term trading and balancing. All EU but Portugal and 

Sweden report having depleted and/or aquifers storage sites. In 

addition, 8 EU member count with salt and hard rock caverns 

storages, representing a low but varying percentage of the total 

storage capacity. Caverns are primarily used to optimise gas 
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portfolios in the short term as they typically allow for several gas 

injection and withdrawal cycles per year. In Portugal, salt caverns 

allow for multiple uses, including seasonal storage. Salt and hard 

rock caverns are available in Czechia (2% of total storage capacity), 

Denmark (45%), France (10%), Germany (50%), Netherlands (3%), 

Poland (26%) and Portugal (100%). This information is generally 

consistent with GIE data (see Table 3) which contains details on the 

WGV capacity per type of storage. 

As regards the responsibility for monitoring the compliance 

with Gas In Storage (GIS) obligations, where applicable, there are 

different models. In all cases there is regular monitoring from the 

SSOs. In the case of all regulated storages and for most negotiated 

storages, SSO report to public authorities (Ministries, NRAs) and in 

some instances also to oil and gas national stockpiling associations 

(Hungary and Spain). Most NRAs from EU countries with 

negotiated storages (Austria, Denmark, Germany, Latvia, 

Netherlands and Sweden) have not identified actors responsible for 

compliance, as GIS obligations are not applicable. However, NRAs 

with negotiated storages may also receive regular information on 

storage filling levels and contracts (e.g. Austria, Germany 

confirmed, and possibly others). 

The availability of storage capacity products ranges from a 

single standard bundled product to up to six different products. All 

but one NRA reported that the storage system operators (SSO) offer 

standard bundled products, while 12 NRAs responded that SSOs 

were offering unbundled products. 9 NRAs selected virtual products, 

5 inform of the existence of storage products delivered at the hub 

(Denmark, Germany, Hungary, Netherlands, Slovakia). Pooled 

storages are used also in 6 EU Countries (Austria, Czechia, 

Denmark, Germany, Hungary, Slovakia) and cross-border products 

are apparently only available in Austria, Germany, Hungary and 

Slovakia. NRAs report that 10 EU Countries offer three or more 
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types of capacity products, and all 6 type of capacity products are 

available in Germany and Hungary. 

Figure 6. Availability of capacity products and type of storage 

regulation 

 

Total EU gas storage capacity, or working gas volume 

(‘WGV’), is 1141 TWh (approx. 100bcm), or about 27% of the EU-

27 annual gas consumption. Gas storage supplies about 25-30% of 

the gas consumed in the EU during winter 207, Figure 7 shows the 

allocation and size of Member States’ storage capacity and the share 

of their annual gas consumption it can cover. 
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Figure 7. Gas storage capacity in the EU Member States 

 

NRAs from Member States which opted for a regulated 

regime for storage (e.g. Belgium, France, Italy, Poland and Spain) 

have a positive assessment of their national systems and note an 

adequate storage filling level at the start of current winter season. In 

Portugal, the filling levels were low in October (50%) but they 

recovered by December 2021 (80%). In Portugal, it is not a typical 

that storage levels are lower in October as gas demand for power 

generation is higher during the summer. NRAs from EU Countries 

with negotiated storage do not deem that regulatory intervention 

would be necessary and, in some cases (Austria, Slovakia) note that 

the available storage capacity is used also by gas traders and gas 

suppliers of adjacent Member States, not necessarily correlating low 

storage levels in their territory with a serious concern for national 

gas consumers.  

Gas in storage levels are subject to regular monitoring by the 

SSOs, network operations and most NRAs. The majority of NRAs, 
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despite noting that the vigilance over gas storage levels has 

increased, and do not report that current Gas In Storage (GIS) levels 

are a concern. In fact, there are limited ongoing discussions at 

national level to propose to maximise the GIS levels. Only ACM (for 

the Netherlands) reports current concerns focused on GIS for high 

calorific value gas (H-gas) storages and ongoing political 

discussions around plans for setting minimum storage obligations, 

and Ei (for Sweden) makes reference to an ongoing discussion with 

gas suppliers to commercially fill the storage in Sweden and the GIS 

levels in neighbouring Denmark. NRAs from Member States which 

opted for a regulated regime for storage (e.g. Belgium, France, 

Italy,Poland and Spain) have a positive assessment of their national 

systems and note an adequate storage filling level at the start of 

current winter season. NRAs from MS with liberalised storage do 

not deem that regulatory intervention would be necessary and, in 

some cases (Austria, Slovakia) note that part of the available storage 

capacity is used by gas traders and suppliers of adjacent Member 

States, not necessarily correlating low storage levels in their territory 

with a serious concern for national gas consumers. 

Natural Gas Tariffs Elements considering UGS systems 

The main elements of natural gas tariffs considering UGS are; 

1) Allowed revenue (AR); 

2) Operating and maintenance expenditures (OPEX); 

3) Gas losses; 

4) Regulated asset base (RAB) and return on the RAB; 

5) Depreciation; 

6) Administrative provisions (amendment of tariffs, tariff 

methodology...) 

7) Storage fees (capacity fees, injection fees, withdrawal fees) 
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Allowed revenue (AR): AR cover prudently incurred operating 

costs (incl. costs of gas losses), depreciation and amortization of the 

regulatory asset base (assets used to provide the gas distribution 

service) and the return on the regulatory asset base less other 

revenue. 

Operating and maintenance expenditures (OPEX): OPEX 

consists of labor costs, material costs, gas losses, service costs. 

Gas losses: In EU NRA prescribe the maximum allowed amount of 

gas losses and unit price based on a benchmark comparing all DSOs. 

Figure 8. The maximum allowed amount of gas losses and unit 

price based on a benchmark comparing all DSOs 

 

Regulated asset base (RAB) and return on the RAB: Asset 

financed by the DSO used in the distribution activity (land, 

equipment, buildings, non tangible assets) It increases with 

investments and decreases due to depreciation/amortization. 

Investments include those investments included in the investment 

plan. 

Depreciation: Depreciation and amortization calculated for assets is 

used for the gas distribution activity, and it does not include assets 

received free of charge financed by third parties. Depreciation and 

amortization of assets is calculated using straight line depreciation 

--102--



method. Depreciation and amortization rates are calculated assuming 

useful life of assets. 

Administrative provisions (amendment of tariffs, tariff 

methodology...): EU’s tariff methodologies are mainly diverse 

methodological approaches that are listed below: 

- Cost-plus: the NRA sets a tariff based on the reported operating 

costs and the return on capital. No “extra profit” foreseen. 

- Incentive regulation: tariff are set on a decreasing trajectory. DSOs 

are incentivized to reduce their costs by being allowed by the NRA 

to keep part of the savings. 

Tariffs are set for regulatory periods, which last for 4-5 years (no 

prescribed length) Common distribution tariff elements are; Annual 

consumption, Pressure level, Used capacity, Geographic zones. 

Possible natural gas tariff items are: A fixed charge expressed as 

EUR / month / consumer that is constant for all the consumer or for 

a class of consumers → It reflects the cost of metering, meter 

maintenance and meter replacement; Variable charge expressed as 

EUR/kWh that depends upon the amount of gas distributed to each 

consumer; A capacity charge expressed as EUR / kWh/h 

commensurate to the amount of capacity for each consumer. It is 

usual to have a combination of fixed and variable charge. The 

drawback of a capacity charge as that it is not metered and it depends 

on the capacity of the connection. 

Storage fees (capacity fee, injection fee, withdrawal fee): The 

upper limit storage fees are set by national energy regulatory 

authority (NRA) via DSOs. Distribution System Operators (DSOs) 

are responsible for: 

-Operating, maintaining and developing (if necessary) the 

distribution system and providing secure, reliable and efficient 

services to the customers; 
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-Liaising and working with other participants on the natural gas 

market such as transmission system operators and operators of 

underground gas storage facilities or LNG terminals; 

-Providing open and transparent transport services to system users 

i.e. to end-suppliers and to customers; 

Related to distribution, the national energy regulatory 

authority (NRA) is responsible for: 

-Fixing or approving the methodologies for calculating and/or the 

tariffs for distribution services incentivizing DSOs to increase 

efficiencies, foster market integration and security of supply; 

-Ensuring that DSOs operate in compliance with national and Energy 

Community rules; 

-Ensuring that there are no cross-subsidies between distribution and 

other activities; 

-Setting or approving standards related to the quality of distribution 

services and monitoring time taken by DSOs for adding new 

connections or carrying out repair works; 

-Helping to ensure that consumer protection measures are put in 

place and process customer complaints vis-àvis the DSO. 
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Figure 9. Distribution of gas tariff fee in EU. 

 

Material and Method 

In the study; an integrated Fuzzy AHP-Fuzzy TOPSIS- Fuzzy 

VIKOR approaches are used to assess/evaluate natural gas tariffs 

elements considering UGS systems. In literature Fuzzy Multi 

Criteria Decision Making Methods (FMCDM) are used in different 

fields by many researchers [1-42] by using MATLAB program. 

Fuzzy Multi Criteria Decision Making Methods (FMCDM) 

In literature Fuzzy  Multi  Criteria  Decision  Making  

Methods  (FMCDM)  are  used  in  different fields by many 

researchers and fuzzy methods are also used in many sectors, i.e. to 

evaluate design parameters, to evaluate models, to evaluate the 

criteria for human resource for science and technology, for analyzing 

customer preferences, to evaluate risk analysis in green supply chain, 

and to select machine tools. In the study; an integrated Fuzzy AHP- 

Fuzzy TOPSIS- Fuzzy VIKOR approaches are used to 

assess/evaluate natural gas tariffs considering underground gas 

storage systems. 
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Fuzzy AHP Method 

Since the standard AHP method does not include the 

possibility of situations with ambiguity in the estimation, it is 

possible to upgrade this method with fuzzy approach. This approach 

is called the Fuzzy AHP method. Instead of one defined value, in the 

Fuzzy AHP method full range of values that include unsafe attitudes 

of decision maker should be generated. For that process it is possible 

to use triangular fuzzy numbers, trapezoidal or Gaussian fuzzy 

numbers. The Fuzzy AHP method suggests their application directly 

in criteria pairs comparison matrix. Triangular fuzzy numbers are 

used in most cases/problems by many researchers in literature 

because of this reason in the study triangular fuzzy numbers method 

is used in Fuzzy AHP method. A triangular fuzzy number that is 

defined in R set can be described as Ñ= (l, n, u) where l is the 

minimum, n is the most possible and u is the maximum value of a 

fuzzy case. Its triangular membership function is characterized 

below which is presented in Figure 10 and in equation (1). 

µÑ (x) = {
(x –  l)/(n –  l), l ≤  x ≤  n

(x –  u)/(n –  u),   n ≤  x ≤  u
                   0,                   x <  l or x >  u

      (1) 

Figure 10. Triangular fuzzy number 
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Triangular fuzzy number Ñ (shown in Figure 10) can be 

described as an interval of real numbers where each of them has a 

degree of belonging to the interval between 0 and 1. Triangular fuzzy 

number is defined with three real numbers, expressed as l, n and u. 

In the study the performance of each scenario to each criterion is 

introduced as a fuzzy number. And in the study the ratings of 

qualitative criteria are considered as linguistic variables. These 

linguistic variables can be expressed in positive triangular fuzzy 

numbers as described in Table 1. 

Table 1. Linguistic Variables for the Alternatives 

Linguistic Terms-

Abbreviation  

Linguistic 

Variables 

Triangular Fuzzy 

Numbers 

SDA Strongly Disagree (0, 0, 0.15) 

DA Disagree (0.15, 0.15, 0.15) 

LDA Little Disagree (0.30, 0.15, 0.20) 

NC No Comment (0.50, 0.20, 0.15) 

LA Little Agree (0.65, 0.15, 0.15) 

A Agree (0.80, 0.15, 0.20) 

SA Strongly Agree (1, 0.20, 0) 

 

After forming a matrix of fuzzy criteria comparison it should be 

defined vector of criteria weights W. For that purpose, the following 

equations/steps were used in the study. 

Let X ={x1, x2,..., xm } be an object set, and G={g1, g2,...,gn} be a 

goal set. N extent analysis values for each object can be obtained as 

N𝑔𝑖
1 , N𝑔𝑖

2 , …, N𝑔𝑖
𝑛     i= 1,2,…n 

Step 1: The values of fuzzy extensions for the i-th object are given 

in Expression (2); 

Si = ∑ N𝑔𝑖
𝑗

⊗ [∑ ∑ N𝑔𝑖
𝑗𝑛

𝑗=1
𝑚
𝑖=1 ]

−1𝑛

j=1
    (2) 
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In order to obtain the expression  [∑ ∑ N𝑔𝑖
𝑗𝑛

𝑗=1
𝑚
𝑖=1 ] it is necessary to 

perform additional fuzzy operations with n values of the extent 

analysis, which is represented in Equation (3) and (4); 

∑ N𝑔𝑖
𝑗

=  (∑ lj𝑛
𝑗=1 , ∑ nj𝑛

𝑗=1 , ∑ uj𝑛
𝑗=1 )

𝑛

j=1
   (3) 

[∑ ∑ N𝑔𝑖
𝑗𝑛

𝑗=1
𝑚
𝑖=1 ]  =   (∑ li𝑚

𝑖=1 , ∑ ni𝑚
𝑖=1 , ∑ ui𝑚

𝑖=1 )  (4) 

And it is required to calculate the inverse vector above by using 

Expression (5); 

[∑ ∑ N𝑔𝑖
𝑗𝑛

𝑗=1
𝑚
𝑖=1 ]

−1
= (

1

∑ ui𝑚
𝑖=1

,
1

∑ ni𝑚
𝑖=1

,
1

∑ li𝑚
𝑖=1

)    (5) 

Step 2: While N1 and N2 are triangular fuzzy numbers, the degree of 

possibility for N2≥N1 is defined as: 

V(N2 ≥ N1) = supy≥x (min( µN₁ (𝑥), µN₂ (𝑦))   (6) 

It can be represented in the following manner by Expression (7): 

V (N2 ≥ N1)  =  hgt (N2∩N1) µN2(d)      (7) 

         = {

              1,                 if n₂ ≥ n₁
            0,                  if l₁ ≥ l₂

(l₁ – u₂)

(n₂ – u₂)(𝑚₁−𝑙₁)
,     otherwise

       (8) 

Where d is the ordinate of the highest intersection point D between 

µN1 and µN2. 

To compare µN1 and µN2, values of both, V(N2 ≥ N1) and V(N1 ≥ 

N2) are needed.  

Step 3: The degree of possibility for a convex fuzzy number to be 

greater than k convex numbers Ni (i=1,2,...,k) can be defined by 

expression (9); 
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V (N ≥ N1, N2,..., Nk) = V[(N ≥ N1), (N ≥ N2), … , (N ≥ Nk)]     (9) 

  = min V (N ≥ Ni=1,2,3,…,k  

Assume that Expression (10) is; 

d’ (Ai) = min V (Si  ≥ Sk )       (10) 

for k=1,2,...,n; k ≠ i. So the weight vector is obtained by Expression 

(11); 

W’ =(d’(A1), d’(A2),..., d’(Am))T       (11) 

where, Ai (i =1,2,...,n) consists of n elements. 

Step 4: Through normalization, the weight vectors are reduced to 

Expression (12); 

W= (d(A1), d(A2),..., d(An ))
T     (12) 

where W represents an absolute number. 

Fuzzy TOPSIS Method 

The fuzzy TOPSIS calculation most important step is given in 

Equation (13), i.e. Creating the Decision Matrix; aggregated ratings 

are calculated by using Equation (13): 

Ṽij = 
1

2
  [ṽ𝑖𝑗

1   ṽ𝑖𝑗
2     …  ṽ𝑖𝑗

𝑠  ]    (13) 

where ṽ𝑖𝑗
𝑠  is the performance rating value obtained from s-th decision 

maker. 

The basic steps of proposed fuzzy TOPSIS method can be described 

as follows: 

Step 1: In the first step, a panel of decision makers (DMs) who are 

knowledgeable about supplier selection process is established. In a 

group that has K decision-makers (i.e. D1, D2, ..., Dk) are 

responsible for ranking (yjk) of each criterion (i.e. C1, C2, …, Cn) 
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in increasing order. Then, the aggregated fuzzy importance weight 

for each criterion can be described as fuzzy triangular numbers ṽ𝑗 = 

(aj, bj, cj) for k = 1, 2, …, K and j = 1, 2, …, n. The aggregated fuzzy 

importance weight can be determined as follows: 

dj = 
𝑚𝑖𝑛

𝑘
 {yjk}, bj = 

1

𝑲
 ∑ 𝑦𝑗𝑘𝐾

𝑘=1 , cj = 
𝑚𝑎𝑥

𝑘
 {yjk}  (14) 

Then, the aggregated fuzzy importance weight for each criterion is 

normalized as follows: 

ṽ𝑗 = (aj1, bj2, cj3) 

where vj1 = 

1

𝑑𝑗

∑
1

𝑑𝑗
𝑛
𝑗=1

 , vj2 = 

1

𝑏𝑗

∑
1

𝑏𝑗
𝑛
𝑗=1

 , vj3 = 

1

𝑐𝑗

∑
1

𝑐𝑗
𝑛
𝑗=1

   (15) 

Then the normalized aggregated fuzzy importance weight matrix is 

constructed as Ṽ = (ṽ1, ṽ2, …, ṽn) 

Step 2: A decision matrix is formed. 

X = [

𝑥11  𝑥12 ⋯ 𝑥1𝑛
𝑥21  𝑥22 … 𝑥2𝑛
… …

𝑥𝑚1 𝑥𝑚2
⋯
…

…
𝑥𝑚𝑛

]    (16) 

Step 3: After forming the decision matrix, normalization is applied. 

The calculation is done using equations 17 and 18. 

rij = 

1

𝑥𝑖𝑗

√∑
1

𝑥𝑖𝑗2
𝑚
𝑖=1

 for minimization objective, where i = 1, 2, …, m and 

j = 1, 2, …, n        (17) 

rij = 
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗2𝑚
𝑖=1

 for maximization objective, where i = 1, 2, …, m and 

j = 1, 2, …, n        (18) 

Then, normalized decision matrix is obtained as: 
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R = [

𝑟11  𝑟12 ⋯ 𝑟1𝑛
𝑟21  𝑟22 … 𝑟2𝑛
… …

𝑟𝑚1 𝑟𝑚2
⋯
…

…
𝑟𝑚𝑛

]    (19) 

Step 4: Considering the different weights of each criterion, the 

weighted normalized decision matrix is computed by multiplying the 

importance weight of evaluation criteria and the values in the 

normalized decision matrix. The weighted normalized decision 

matrix Ṽ for each criterion is defined as: 

Ṽ = [Ṽij]mxn  for i = 1, 2, …, m and j = 1, 2, …, n  (20) 

Where Ṽij = rij X õj 

Here Ṽij denotes normalized positive triangular fuzzy numbers.  

Step 5: Then fuzzy positive (Ã*) and fuzzy negative (Ã−) ideal 

solutions are determined as follows: 

Ã* = (ṽ1
*, ṽ2

*, …, ṽn
*)   where  

Ṽj
* = {max

𝑖
(𝑣𝑖𝑗1) , max

𝑖
(𝑣𝑖𝑗2) , max

𝑖
(𝑣𝑖𝑗3)}    and  

Ã- = (ṽ1
-, ṽ2

-, …, ṽn
-)   where  

Ṽj
- = {min

𝑖
(𝑣𝑖𝑗1) , min

𝑖
(𝑣𝑖𝑗2) , min

𝑖
(𝑣𝑖𝑗3)}    

for i = 1, 2, …, m and j = 1, 2, …, n    (21) 

Step 6: Then the fuzzy distance of each alternative from fuzzy 

positive and fuzzy negative ideal solutions are calculated as: 

ãi
* = √∑ (ṽ𝑗

∗ − ṽ𝑖𝑗
∗ )𝑛

𝑗=1         and  ãi
- = √∑ (ṽ𝑗

− − ṽ𝑖𝑗
− )𝑛

𝑗=1   

i = 1, 2, …, m       (22) 

Step 7: Then the fuzzy closeness coefficient Ñ is determined as: 

Ñi = 
ã𝑖

−

ã𝑖
∗+ ã𝑖

−  i = 1, 2, …, m     (23) 
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The fuzzy closeness represents the distances to the fuzzy positive 

ideal solution and the fuzzy negative ideal solution simultaneously. 

Step 8: The fuzzy closeness coefficient defuzzified as follows: 

Ni = √𝑁𝑖1  · 𝑁𝑖2  · 𝑁𝑖3
3

      (24) 

Fuzzy VIKOR Method 

The VIKOR method is one of the FMCDM. It was developed 

by Serafim Opricovic (1990) to solve decision problems with 

conflicting and non-commensurable criteria, assuming that 

compromise is acceptable for conflict resolution. VIKOR ranks 

alternatives and determines the compromise solution closest to the 

ideal solution. The international recognition of the VIKOR method 

was due to contribution of Serafim Opricovic and Gwo-Hshiung 

Tzeng (2004). 

In this study Fuzzy-VIKOR method is used to solve problem 

in a triangular hesitant fuzzy environment. The triangular fuzzy 

numbers are used to handle imprecise numerical quantities. Fuzzy-

VIKOR is based on the aggregating fuzzy merit that represents 

distance of an alternative to the ideal solution (Incekara,2020). The 

related steps are as follows (Incekara,2020): 

Step 1:  Determine the positive triangular ideal solution (PTIS) and 

the negative triangular ideal solution (NTIS). 

A+ = {𝑓1
+, 𝑓2

+, … , 𝑓𝑛
+}where 

𝑓𝑗
+= ⋃ 𝑓𝑖𝑗

𝑚
𝑖=1  = ⋃γ1j  f1j….γmj  fmj  (max(γ1j

L ,…, γmj
L ), 

max(γ1j
M,…, γmj

M ), max(γ1j
U ,…, γmj

U ))  

A- = {𝑓1
−, 𝑓2

−, … , 𝑓𝑛
−}where 

𝑓𝑗
−= ⋂ 𝑓𝑖𝑗𝑚

𝑖=1  = ⋂γ1j  f1j….γmj  fmj (min(γ1j
L ,…, γmj

L ), 

min(γ1j
M,…, γmj

M ), min(γ1j
U ,…, γmj

U ))     (25) 
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Step 2: The aggregated fuzzy ratings of alternatives with respect to 

criterion are calculated by using below Sj and Rj below equations: 

S̃j = ∑ [𝑤̃i (𝑛
𝑗=1  f̃i

∗ −  xij) / ( f̃i
∗ −  f̃i

−)]   (26) 

R̃j = max
i

[ 𝑤̃i ( f̃i
∗ −  xij) / ( f̃i

∗ −  f̃i
−)]   (27) 

where wi are the weights of the criteria expressing their relative 

importance. 

Step 3: Normalization. Compute the values Q̃i by using below 

expressions: 

S̃∗ = min
i

S̃i ,   S̃− = max
i

S̃i       (28) 

R̃∗ = min
i

R̃i ,   R̃− = max
i

R̃i       (29) 

Q̃i = 𝑣
S̃i−S̃∗

(S̃−−S̃∗)
+ (1 − 𝑣)(R̃i −  R̃∗)/( R̃− −  R̃∗)   (30) 

Step 4: Rank the alternatives by sorting the values of S, R and Q in 

decreasing order which results in three ranking lists. 

BNPi = [(ui – 1) + (mi – li)] /3 + li    (31) 

Step 5: Propose as a compromise solution the alternative A’ which 

is ranked the best by the measure Q(minimum) if the following two 

conditions are satisfied: 

CC1: Acceptable advantage: 

Q (A”) – Q(A’) ≥ DQ      (32) 

where A” is the alternative with second position in the ranking list 

by Q; DQ=1/(m-1)  

DQ = 1 / (m-1) (if m≤5 ise DQ=0.25); where m is the number of 

alternatives. 

CC2: Acceptable stability in decision: Alternative A” must also be 

the best ranked by S or/and R. This compromise solution is stable 
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within a decision making process, which could be “voting by 

majority rule” (when v > 0.5 is needed) or by “consensus” v ≈ 0.5 or 

with ”veto” (v < 0.5). Here v is the weight of the decision making 

strategy “the majority criteria” or (“maximum group utility”). If one 

of the two conditions is not satisfied, then a set ofcompromise 

solutions is proposed, which consists of: 

- Alternatives A” and A’ if only condition CC2 is not satisfied, or 

- Alternatives A’, A”… Am if condition CC1 is not satisfied, Am is 

determined by the relation Q(Am) - Q(A’) ≤ DQ for maximum m (the 

positions of these alternatives are “in closeness”). 

In the study Fuzzy-AHP, Fuzzy-TOPSIS and Fuzzy-VIKOR 

procedures and related calculations have been coded/solved by using 

MATLAB program. 

Selection of  Natural Gas Tariffs Elements considering UGS 

systems 

Natural Gas Tariffs Elements considering 7 dimensions-main 

UGS systems, i.e. measuring scale, consists of 7 dimensions-main 

criteria and 36 evaluation factors-sub-criteria. In the process of 

prioritization of criteria, subcriteria and alternatives, the DMs used 

in the selection process was consulted. A questionnaire was 

developed following the methodology proposed for the below 

methods, which was answered by 27 experts/DMs. 

In the study 7 main criteria, i.e. Allowed revenue (AR) (C1), 

Operating and maintenance expenditures (OPEX) (C2), Gas losses 

(C3), Regulated asset base (RAB) and return on the RAB (C4), 

Depreciation (C4), Administrative provisions (amendment of tariffs, 

tariff methodology...) (C5), Storage fees (capacity fees, injection 

fees, withdrawal fees) (C6) and 36 related subcriteria are 

evaluated/assessed by each expert/DM. For the case of prioritization 

of the criteria, after the aggregation process performed with the 
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answers of the 27 experts, the comparison matrix was obtained. The 

pairwise comparison matrices for subcriteria and alternatives are 

calculated. Subsequently, the normalized pairwise comparison 

matrix of criteria was obtained. The priority vector and the CR for 

the criteria were obtained. To obtain the other priorities, the same 

procedure presented for the criteria was applied. In order to facilitate 

the calculations; which enters the individual judgments of the 

experts and generates the local and global preferences of all levels 

of the hierarchical tree (criteria and subcriteria). 

Hereunder, natural gas tariffs considering underground gas 

storage system’s main criteria and related sub-criteria are described: 

Allowed Revenue (AR): 

Allowed revenue represents the maximum income that an 

underground gas storage (UGS) operator is permitted to recover 

through regulated tariffs during a defined regulatory period. It is 

designed to ensure full recovery of efficiently incurred costs, 

including capital and operational expenditures, while providing a 

reasonable return on investment and preventing excessive pricing 

due to the natural monopoly nature of UGS facilities. 

Operating and Maintenance Expenditures (OPEX): 

Operating and maintenance expenditures include all ongoing 

costs required for the safe, reliable, and efficient operation of 

underground gas storage facilities. These costs typically cover labor, 

energy consumption for compression and injection, routine 

maintenance of wells and surface equipment, monitoring of reservoir 

integrity, environmental compliance, and safety-related activities, 

and they are usually subject to regulatory efficiency assessments. 

Gas Losses: 

Gas losses refer to the volume of natural gas that is 

consumed, lost, or rendered unrecoverable during storage 
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operations. In the context of UGS systems, these losses mainly arise 

from fuel gas used for compressors, unavoidable leakage, 

measurement discrepancies, and the technical requirements related 

to cushion gas, and they are generally recognized within tariff 

calculations either as physical allowances or as cost-based 

compensation. 

Regulated Asset Base (RAB) and Return on the RAB: 

The regulated asset base represents the value of the physical 

and intangible assets employed by the UGS operator to provide 

storage services, including subsurface formations, wells, 

compressors, and surface installations. A regulated return on the 

RAB is granted to compensate investors for the capital employed, 

typically calculated using a weighted average cost of capital that 

reflects the risk profile, long asset lifetimes, and capital-intensive 

nature of underground gas storage projects. 

Depreciation: 

Depreciation allows the gradual recovery of capital 

investments over the economic lifetime of underground gas storage 

assets. Given the long operational life of UGS facilities, depreciation 

schedules are usually extended and asset-specific, ensuring that 

investment costs are recovered in a stable and predictable manner 

while maintaining tariff continuity for storage users. 

Administrative Provisions: 

Administrative provisions define the regulatory framework 

governing tariff setting, adjustment, and revision for underground 

gas storage services. These provisions typically specify the tariff 

methodology, procedures for periodic reviews, indexation 

mechanisms, treatment of cost deviations, and rules for amendments, 

thereby ensuring transparency, regulatory certainty, and consistency 

with broader energy policy objectives. 
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Storage Fees (Capacity, Injection, and Withdrawal Fees): 

Storage fees represent the practical tariff components 

through which allowed revenue is collected from storage users. 

Capacity fees are charged for reserving storage volume or 

deliverability, reflecting the high fixed-cost nature of UGS systems, 

while injection and withdrawal fees are applied to the actual use of 

the facility and are intended to reflect variable operational costs and 

system utilization. 

 

Results  

In the study 7 main criteria, i.e. Allowed revenue (AR) (C1), 

Operating and maintenance expenditures (OPEX) (C2), Gas losses 

(C3), Regulated asset base (RAB) and return on the RAB (C4), 

Depreciation (C4), Administrative provisions (amendment of tariffs, 

tariff methodology...) (C5), Storage fees (capacity fees, injection 

fees, withdrawal fees) (C6) and 36 related subcriteria are 

evaluated/assessed by each expert/DM. For the case of prioritization 

of the criteria, after the aggregation process performed with the 

answers of the 27 experts, the comparison matrix was obtained. The 

pairwise comparison matrices for subcriteria and alternatives are 

calculated. Subsequently, the normalized pairwise comparison 

matrix of criteria was obtained. 

Natural gas tariffs elements considering UGS systems are 

evaluated by using Fuzzy method. After acquiring the fuzzy 

comparison matrices, importance weights of risk management in 

internal audit’s dimensions; evaluation criteria is calculated by using 

Fuzzy method. According to the calculated criteria weights for 

natural gas tariffs elements’ weights; the most important evaluation 

dimension/main-criteria is “Storage Fees”, the second important 

evaluation dimension is “Operating and maintenance expenditures 
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(OPEX)” and the third important evaluation dimension is 

“Administrative provisions”. 

 

Conclusion  

The original EU Regulation obliged EU Member States to fill 

their gas storage to at least 80 per cent of capacity by 1 November 

2022 and to at least 90 per cent of capacity by 1 November of 2023, 

2024, and 2025, known as the ‘final filling target’. This requirement 

applied to all underground storage facilities located on their national 

territory and directly interconnected to a market area in their national 

territory. 

Gas storage facilities are critical for ensuring the security of 

gas supply. The mandatory certification of all gas storage system 

operators was introduced in order to avoid potential risks resulting 

from non-EU-country influence over storage infrastructure. The 

Commission issues an opinion for each draft certification decision 

submitted by the certifying authorities and publishes it. After taking 

outmost account of the Commission’s opinion, the certifying 

authority issues the certification decision. 

EU gas supply portfolio is marked by a high import 

dependency, which reached nearly 84% in 2021. For some Member 

States, including the largest gas markets of Germany and Italy, the 

dependence exceeds 90%. The fall of domestic production almost by 

two-thirds in 2021 (up to only 17% of the total gas supply) was 

increasingly filled by imports. Among the key suppliers to the EU, 

in 2021 imports from Russia reached 34.4%, from Norway – 23.9%, 

from Algeria – 7.4%, and 2.5% were filled by other pipeline imports 

from Libya and Azerbaijan. LNG imports constituted 17.5%. 

Covering around a quarter of the EU's annual gas 

consumption, Underground Gas Storage (UGS) is an important 
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component in the European gas system providing security of supply 

and system flexibility by covering peak demand during the winter 

season. Storages allow commercial price absorption as well. In the 

context of steadily decreasing EU indigenous gas production and 

increasing import dependency, UGS, with other gas storage options, 

are becoming strategic serving as a buffer option in case of 

disruption. 

EU’s Gas Storage Regulation, formally Regulation (EU) 

2022/1032, currently aims to enhance gas supply security by 

requiring member states to fill their underground gas storage 

facilities to at least 90 per cent of their capacity by 1 November each 

year. This regulation, adopted in June 2022, is set to expire at the end 

of 2025. EU member states with underground gas storage facilities 

are required to meet specific filling targets throughout the year, 

culminating in the 90 per cent target by 1 November. 

On 5 March 2025 the European Commission put forward an 

amendment to the regulation adopted during the 2022 energy crisis. 

The amendment extends the application of the Gas Storage 

Regulation by two years (until the end of 2027). This extension had 

been announced as part of the Clean Industrial Deal of 26 February 

2025. 

A storage arrangement is understood as an obligation on a 

Member State without underground storage to arrange for storing gas 

in that of another Member State. In particular, the Regulation obliged 

Member States without underground storage to make sure their 

market participants had arrangements with storage system operators 

(or other market participants) in other Member States which do have 

underground storage. These arrangements had to provide by 1 

November for the use of storage volumes equal to at least 15 per cent 

of the Member State’s average annual consumption over the 

previous five years. Where the storage capacity of a Member State 

is larger than its annual gas consumption, a Member State without 
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underground storage capacity which has access to it, is obliged to 

ensure that by 1 November each year, storage volumes must reach 

the level of its average use over the preceding five years or else 

demonstrate that corresponding capacity has been booked. In case of 

the latter, a Member State without underground storage capacity 

must provide by 1 November for the use of storage volumes at least 

at the level of 15 per cent of their average annual consumption over 

the preceding five years. 

Therefore UGS plays an important role to balance the 

European gas system and to cover peak demand during winter. Gas 

storages play an important role for ensuring continuity of gas supply; 

it is an important source of gas flexibility during the winter and are 

refilled during the summer period. The role of storages becomes 

more relevant in a context where the EU indigenous gas production 

consistently declines year on year, increasing the gas import 

dependency from external gas producers to the EU. The UGS 

inventory level on 1 October 2021 is the lowest of the past 5 years, 

and it has continued below the average during the winter of 2021-

2022. This is primarily due to a low storage level at the end of winter 

2020-2021, combined with a storage injection season characterised 

by extremely high gas wholesale prices which did not incentivize 

market participants to store gas in comparison to previous years. 

Over the course of 2022 EU adopted a significant amount of 

‘emergency’ legislation to address the consequences of the energy 

crisis, which had been engulfing Europe since late 2021. 

EU Gas Storage Regulation was set to expire on 31 

December 2025. The Regulation obliged Member States to fill their 

storage to at least 90 per cent of capacity by 1 November 2023 (and 

each subsequent year) for as long as the Regulation was in force thus 

making the 1 November 2025 target. The Regulation also established 

a filling trajectory whereby EU Member States’ storage was to be 

filled to a certain capacity by 1 February, 1 May, 1 July, and 1 
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September of every year the Regulation was in force (“intermediary 

targets”).   

In EU, ACER, i.e. Agency for the Cooperation of Energy 

Regulators, published “Tariff Methodologies: Examples, Public 

Consultation on Draft Framework Guidelines on rules regarding 

harmonised transmission tariff structures for gas (Ref: 

PC_2013_G_03)” document, in the document harmonised 

transmission gas tariff methodologies in EU is explained in detail. 

The aim of this document is to illustrate the cost allocation 

methodologies described in the Framework Guidelines for 

Harmonised Tariff Structures with a simple network situation 

examples, and allow stakeholders taking part in the Public 

Consultation to better understand and comment the approach 

currently envisaged. In the matrix approach is used, the matrix model 

is a simplified version of the entry-exit matrix model, and it is based 

on the same assumptions of the capacity-weighted distance – variant 

A (CWD) model, in order to favour comparability of outcomes. 

Assumptions on the allowed revenue are Total Allowed revenue (€), 

Capacity/commodity split, revenue to be collected from capacity 

charges, revenue to be collected from commodity charges, 

Entry/Exit split percentage and revenues. 

Main methodology is; defining a cost driver and applying the 

cost driver to network segments. When defining a cost driver 

(“Normalized Transport Cost-TC”), the simplified model takes into 

account the following features of each segment: 

a) technical capacity (Mcm/day); 

b) standard investment cost index in relation to capacity (IC); 

c) length. 

Most gas storage capacity in EU corresponds to depleted and 

aquifers fields, which are mainly used to store large volumes of gas 

--121--



to balance seasonal swings of gas demand and to the extent possible 

also for short-term trading and balancing. All EU but Portugal and 

Sweden report having depleted and/or aquifers storage sites. In 

addition, 8 EU member count with salt and hard rock caverns 

storages, representing a low but varying percentage of the total 

storage capacity. Caverns are primarily used to optimise gas 

portfolios in the short term as they typically allow for several gas 

injection and withdrawal cycles per year. 

Gas in storage levels are subject to regular monitoring by the 

storage system operators (SSO), network operations and most 

NRAs. The majority of NRAs, despite noting that the vigilance over 

gas storage levels has increased, and do not report that current Gas 

In Storage (GIS) levels are a concern. 

In the study 7 main criteria, i.e. Allowed revenue (AR) (C1), 

Operating and maintenance expenditures (OPEX) (C2), Gas losses 

(C3), Regulated asset base (RAB) and return on the RAB (C4), 

Depreciation (C4), Administrative provisions (amendment of tariffs, 

tariff methodology...) (C5), Storage fees (capacity fees, injection 

fees, withdrawal fees) (C6) and 36 related subcriteria are 

evaluated/assessed by each expert/DM. For the case of prioritization 

of the criteria, after the aggregation process performed with the 

answers of the 27 experts, the comparison matrix was obtained. The 

pairwise comparison matrices for subcriteria and alternatives are 

calculated. Subsequently, the normalized pairwise comparison 

matrix of criteria was obtained. The priority vector and the CR for 

the criteria were obtained. To obtain the other priorities, the same 

procedure presented for the criteria was applied. In order to facilitate 

the calculations; which enters the individual judgments of the 

experts and generates the local and global preferences of all levels 

of the hierarchical tree (criteria and subcriteria). 

The calculated criteria weights for risk management in 

natural gas tariffs elements’ weights; the most important evaluation 
--122--



dimension/main-criteria is “Storage Fees”, the second important 

evaluation dimension is “Operating and maintenance expenditures 

(OPEX)” and the third important evaluation dimension is 

“Administrative provisions”. 

While the Storage Regulation has only been extended until 

the end of 2027, it is possible that it could become a permanent 

instrument as part of the ongoing review of the EU energy security 

framework. Its aim is to make the EU’s energy system “more 

prepared, secure and resilient to current and future crises”, and it 

seeks to determine how the current energy security framework 

should be amended for this purpose. 
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QUALITY MANAGEMENT IN TEXTILE 

PRODUCTION: MULTIFACETED CONTROL AND 

EVALUATION OF THE PRODUCTİON PROCESS 

Şeyma  EMEÇ1 

Giriş 

The textile industry encompasses multi stage and complex 

production processes that require high levels of quality control and 

process optimization to maintain competitive strength in the global 

market and to respond rapidly to market demands (Das, 2013; 

Vachtsevanos et al., 1994). This complex structure, combined with 

high production volumes, has made the management of various types 

of defects and nonconforming products that arise throughout the 

process a critical necessity for the sector (Ata et al., 2020; 

Muhammad et al., 2022). 

The importance of quality planning in the textile industry is 

not limited to final product control, which is merely a reactive 

process; it directly affects the sustainability of the company in 

competitive market conditions (MUSIAD, 2025). The increasing 

complexity of production processes and the use of advanced 
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technologies such as high speed weaving (Vachtsevanos et al., 1994) 

significantly increase the cost and impact of defects. Therefore, it is 

vital to ensure quality at the design and planning stage of the process 

rather than sorting out defective products after production has 

started. Effective quality planning minimizes process variability 

(Akyüz & Gören, 2024), reduces rework (repair) and scrap rates 

(Muhammad et al., 2022), thereby lowering operational costs and 

maximizing customer satisfaction. This requires the use of tools such 

as Statistical Process Control (SPC) not only for monitoring but also 

for proactively stabilizing the process in advance. 

This study, prepared in this context, aims to statistically 

evaluate the product quality obtained in a textile production line. The 

study aims to examine process performance and identify possible out 

of control situations by utilizing real production data from different 

product groups. Within the scope of the application, the total 

production quantity, number of first-grade products, number of 

repaired products, and number of second grade (defective) products 

for 12 different product groups were analyzed. Considering the 

discrete (qualitative) nature of the process data and the different 

sample sizes, two basic qualitative control charts frequently used in 

the literature for such applications were applied: the number of 

defective parts (np) control chart and the number of defects per unit 

(u) control chart. These charts provide a robust foundation for 

monitoring and improving quality performance by keeping process 

variation under control on a product group basis. 

Literature Review 

In the textile industry, quality control has become a critical 

management function due to high production volumes, multi-stage 

process structures, and the diversity of defect types. For this reason, 

Statistical Process Control (SPC) has found extensive application in 

textile literature as a means of process variability, lower defect rates, 
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and ensure production line stability. Within SPC, methods such as 

Pareto analysis, control charts, root cause analysis, and experimental 

design are used as fundamental tools for identifying the sources of 

defects and improving process performance. This section provides a 

comprehensive summary of the literature on SPC applications in the 

textile sector, based on published scientific articles.  

There are numerous studies on identifying and resolving 

quality issues in textile processes. Vachtsevanos et al. (1994) 

developed a control system suitable for the dynamic structure of 

textile processes by integrating SPC techniques with fuzzy control 

approaches and revealed the effects of modeling variability on 

quality performance in weaving and yarn processes. The theoretical 

foundations of process control play a critical role in stabilizing 

textile quality assurance systems. Das (2013) emphasized the 

necessity of a statistical approach in process design by 

systematically establishing test methods and statistical quality 

control principles in textile production. Similarly, Camargo et al. 

(2008) made significant contributions to increasing the reliability of 

control charts in variation estimation by developing Bayesian 

process control models.  

When examining studies conducted on direct production data 

in the textile industry, it is evident that control charts play a critical 

role in identifying quality problems arising in different processes. In 

a comprehensive analysis conducted at a denim washing facility in 

Turkey, Ata et al. (2020) classified quality problems using Pareto 

analysis and p-control charts; they determined that a significant 

portion of the defects were due to “chemical repair,” “blue ground,” 

and “chemical density.” The study also noted that the Laney-p 

control chart provides more reliable results in processes with 

excessive variability. Similarly, Öngelen and Köksal (2024), who 

examined defect distributions arising in a production line, used 

Pareto analysis and control charts together to identify critical defect 
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types in the process and offered recommendations for improving 

quality performance.  

Studies on process capability and performance improvement 

also occupy an important place in the literature. Akyüz and Gören 

(2024) evaluated the production process in the conductor industry 

using histograms, Pareto analysis, scatter diagrams, and control 

charts to identify the critical inputs of the process and developed 

solutions to improve process capability using multiple regression 

analysis. Similarly, Karadağ et al. (2024) optimized the process in 

fiber optic cable production using the Taguchi experimental design 

method, determined the most suitable parameter combinations, and 

revealed the effect of the parameters with ANOVA results. These 

studies show that experimental design and statistical modeling 

techniques provide a systematic framework for quality improvement 

processes in the textile industry.  

Research on other processes affecting the quality of textile 

outputs is also available in the literature. Kaçar (2024), who 

examined the factors affecting embroidery quality, found that fabric 

type, backing selection, needle size, and pattern characteristics are 

determinants for embroidery quality. Studies on yarn quality 

indicators were addressed by Şengöz et al. (2025), who examined 

the historical development of yarn irregularities; it was reported that 

methods such as correlograms, variance length curves, 

spectrograms, and image analysis were used to detect yarn defects.  

Evaluating the role of quality management systems in terms 

of industrial efficiency and sustainability, Aykol and Demirdöğen 

(2025) analyzed the relationship between waste management 

practices and resource efficiency and demonstrated that ISO 14001 

certification and the reduction of raw material use in production 

processes increase resource efficiency. This study reveals that 

quality control methods are important not only for defect reduction 

but also in terms of sustainable production goals. In the MUSIAD 
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report, which provides a general assessment of the textile sector and 

future projections, MUSIAD (2025) emphasizes that quality 

management and digitalization are critical for maintaining 

competitive strength.  Finally, studies in the literature show that SPC 

applications are a powerful tool for evaluating the stability of 

production processes, revealing that np and u control charts are 

widely used in the textile industry. The capacity of Pareto analysis 

and Ishikawa diagrams to systematically classify the root causes of 

defects enables the identification of critical problem areas in the 

process. In this context, the current study adopts these approaches 

suggested in the literature, examines product based defect 

distributions using Pareto analysis, evaluates process stability 

through np and u control charts, and comprehensively reveals quality 

deviations in the textile production line from a statistical perspective. 

Case Study 

The scope of this study is a textile company specializing in 

areas such as fabric production, textile design, ready to wear 

manufacturing, and product marketing. The company maintains a 

broad product portfolio covering apparel, home textiles, and 

industrial textile products. Thanks to its quality oriented production 

approach and emphasis on customer satisfaction, it has a strong and 

competitive position in the sector by providing production and 

supply services to both local and international retail chains, brands, 

and textile companies. The company's core process is an integrated 

manufacturing process that begins with the procurement of high-

quality raw materials, continues with the development of original 

textile designs in line with customer demands and industry trends, 

and is implemented through processes such as cutting, pattern 

making, and sewing in modern production facilities. Advanced 

technology equipment and automation systems are used at every 

stage of production to increase efficiency, and quality controls 
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throughout the process ensure that products meet specified 

standards.  

The company's quality assurance system is supported by the 

integrated use of the Kaizen and Asakai methods, which are based 

on the philosophy of continuous improvement. Kaizen (continuous 

improvement) encourages small, sustainable improvements 

involving all employees to increase workplace productivity, reduce 

waste, and enhance quality, while the Asakai (morning meeting) 

method ensures that operational data is evaluated daily and problems 

encountered in the production process are identified at an early stage. 

These two methods enable issues affecting quality performance to 

be addressed in a transparent, rapid, and systematic manner.  

Within this scope, a root cause analysis was performed to 

systematically analyze the fundamental factors that could cause 

quality deviations in the production process, and potential sources of 

defect in the process were classified using an Ishikawa (fishbone) 

diagram. Potential causes related to human, machine, method, 

material, environmental conditions, and measurement systems that 

affect production defects are presented in Figure 1. 
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Figure 1 Ishikawa Diagram Related to Defect Causes in the 

Production Process 

 

 

In the textile industry, the high production volume, diverse 

types of defects, and multi stage processes have made quality control 

mechanisms essential. Therefore, this study aims to examine process 

performance and identify potential out of control situations in the 

process using real production data from different product groups. In 

practice, the total production quantity, number of first grade 

products, number of repaired products, and number of second grade 

(defective) products for 12 different product groups were analyzed. 

Each product group was treated as an independent sample, and np 

control charts and u control charts were applied to evaluate variation 

on a product based basis. 

These two types of charts are methods commonly used in the 

literature to determine whether the process is under control in 

production environments where sample sizes differ. 

Data Set and Descriptions: There are 12 different product 

groups analyzed within the scope of the application. The analyzed 
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data set consists of actual quality records obtained from the 

production process. For each product, the total number of units 

produced (n), the number of first grade products, the number of 

repaired products, and the number of second-grade products were 

recorded. The total defect quantity was calculated as the sum of 

repaired and second grade products. These values are important as 

they are a direct indicator of process performance. Table 1 below 

shows the quality performance indicators for the products included 

in the application: 

Table1 Quality Performance Data for Products 

Product 

No.   

Total 

Production 

(n) 

  Grade 

1 

Repair Units = 

n – 1G 
Grade 2 Total Defect 

Defect 

rate 

A1 955 897 58 2 60 0.0628 

A2 303 303 0 0 0 0.0000 

A3 188 177 11 0 11 0.0585 

A4 9 9 0 0 0 0.0000 

A5 224 212 12 0 12 0.0536 

A6 319 309 10 0 10 0.0313 

A7 737 646 91 1 92 0.1248 

A8 508 437 71 0 71 0.1397 

A9 367 367 0 0 0 0.0000 

A10 1 0 1 0 1 1.0000 

A11 55 55 0 0 0 0.0000 

A12 1001 960 41 2 43 0.0429 

 

Methodology  

Statistical Process Control (SPC) Methods  

Theoretical Structure of the np-Control Chart  

In this study, two different SPC charts were applied to 

evaluate quality performance:  

• np-Control Chart  
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• u-Control Chart  

The np control chart is a control chart used to monitor the 

total number of defective products (np) in a sample. While it is 

preferred especially when the sample size is fixed, it can also be 

applied when sample sizes vary by calculating separate control limits 

for each sample.  

The np chart is a frequently preferred method in quality 

control processes as it allows for the direct monitoring of the number 

of defects in product groups. Its high sensitivity in detecting sudden 

spikes that may occur during the production process helps to reveal 

unexpected process failures at an early stage. Furthermore, it easily 

identifies quality imbalances on a product basis, clearly showing 

which product group is experiencing quality problems. Thanks to 

these features, the np chart is used as a highly effective control tool 

for identifying major quality deviations that arise in the process.  

In this study, the number of defective products in the 

population is calculated as in Equation 1. 

𝑛𝑝𝑖 = 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡 = 𝑅𝑒𝑝𝑎𝑖𝑟 𝑈𝑛𝑖𝑡 + 𝐺𝑟𝑎𝑑𝑒 2                                   1    

Control Limit Calculations 

The total defect rate obtained across all product groups is 

calculated using Equation 2. 

 𝑝̅ = ∑
𝑛𝑝𝑖

𝑛𝑖
                                                                                                                  2 

Control limits for each product group are calculated using the 

process average defect rate; accordingly, the center line, upper 

control limit, and lower control limit for the relevant product are 

determined using equations 3, 4, and 5, respectively: (If LCL is less 

than 0, it is taken as 0.) 

 

--137--



𝐶𝐿𝑖 = 𝑛𝑖. 𝑝̅                                                                                                               3 

𝑈𝐶𝐿𝑖 = 𝑛𝑖 . 𝑝̅ + 3√𝑛𝑖 . 𝑝̅(1 − 𝑝̅)                                                                         4 

𝐿𝐶𝐿𝑖 = 𝑛𝑖. 𝑝̅ − 3√𝑛𝑖 . 𝑝̅(1 − 𝑝̅)                                                                         5 

u-Theoretical Structure of the Control Chart    

The u control chart is a control chart used to monitor the 

average number of defects per unit. Its most important advantage is 

that it provides a correctly normalized defect rate when sample sizes 

differ.  

The main reason for preferring the u control chart is that 

sample sizes vary significantly between product groups, and this 

situation does not allow for a reliable evaluation with classic np 

charts. The u chart accurately reflects process instability, even for 

products with small sample sizes, revealing the true behavior of the 

defect rate. Furthermore, this chart type allows for the comparison 

of defect levels per unit across different product groups, enabling a 

more comprehensive and comparable assessment of process 

performance.  

In this study, the unit defect rate is determined using Equation 

6. 

𝑢𝑖 =
𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡

𝑛𝑖
                                                                                     6 

The average defect rate is found using Equation 7 in the u-

control chart. 

𝑢̅ =
∑ 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡

∑ 𝑛𝑖
                                                                                                     7 

Control limits for each product are calculated using equations 

8, 9, and 10: (If LCL < 0, it is considered 0). 
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𝐶𝐿𝑖 = 𝑢̅                                                                                                                          8 

 𝑈𝐶𝐿𝑖 = 𝑢̅ + 3√
𝑢

𝑛𝑖
                                                                                                     9 

 𝐿𝐶𝐿𝑖 = 𝑢̅ − 3√
𝑢

𝑛𝑖
                                                                                                   10 

Research Results And Findings 

This section presents, in an organized manner, the results 

derived from the Pareto analysis and the applications of the np and 

u control charts based on the production data examined in the study. 

Through these analyses, it became possible to investigate several 

aspects of process behavior, including how defects are distributed 

among product groups, the extent of variation within the system, and 

whether quality performance remains statistically stable. The Pareto 

analysis highlighted the product groups in which defects were 

concentrated, pointing to primary areas requiring improvement. The 

np control chart supported this evaluation by showing changes in the 

number of defective items across product groups and helped to 

identify points at which the process may have shifted from its 

expected pattern. The u chart, which evaluates defects on a per-unit 

basis, provided a clearer picture of how the process aligns with its 

control limits by normalizing defect levels. When these three 

analytical tools are used together, they offer a more complete and 

scientifically grounded understanding of the main factors 

influencing quality throughout the production process. 
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Figure 2 Repair Rate Chart for Product Groups  

 

The distribution of repair rates by product is shown in Figure 

2, revealing that the need for repairs is quite low in the vast majority 

of product groups, with rates approaching zero for many products. 

This indicates that an acceptable level of quality is maintained 

throughout the production process. However, it is noteworthy that 

repair rates are significantly higher for products A7 and A8, 

indicating that process variations are more pronounced for these 

products. The most striking finding is that the repair rate for product 

A10 is 100%; the fact that every single unit produced for this product 

requires complete repair indicates a serious process problem specific 

to this product type. When the graph is evaluated overall, it can be 

said that repair rates vary significantly by product and that the high 

values observed in some products suggest systematic problems at 

certain points in the process.  

This variation in repair rates between products necessitates a 

Pareto analysis to see more clearly identify the products the total 

defect distribution is concentrated. 
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Figure 3 Pareto Defect Analysis for Product Groups  

 

 

The distribution of defects by product has been evaluated 

using the Pareto analysis presented in Figure 3, which shows that the 

total defects are not evenly distributed among product groups and 

are concentrated in certain products. When examining the total 

number of defects, it is seen that 92 defects occurred in product A7, 

71 in product A8, 60 in product A1, and 43 in product A12. The 

cumulative total of these four products is 266 defects, constituting a 

significant portion of all defects that occurred during the period 

under review. When the composite percentage is calculated on a 

product basis, it is determined that A7 and A8 together account for 

approximately 54% of total defects, with the addition of A1 this ratio 

reaches 74%, and with the inclusion of A12, it reaches approximately 

89% of total defects. Thus, it can be seen that just four product 

groups constitute the majority of defect sources on the production 

line and that process variation is concentrated in these products. In 

contrast, no defects were observed in products A2, A4, A9, and A11; 

while the low number of defects in products A3, A5, and A6 

indicates that the process is running stably for these products.  
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These results indicate that improvement efforts should 

primarily focus on products A7, A8, A1, and A12. It is recommended 

that the operational steps for these products be reviewed, machine 

settings be standardized, the quality of materials used be 

investigated, and operator-related variability be reduced. It is 

estimated that targeted root cause analyses and process improvement 

activities carried out on these products will significantly reduce the 

total defect rate and directly contribute to the stability of overall 

quality performance. The total defect rate obtained across all product 

groups is as follows:  

After determining which product groups had the highest 

concentration of defects using Pareto analysis, it was deemed 

necessary to create np and u control charts to assess whether the 

process was statistically under control.  

Within the scope of Section 4.1.1, the CL, UCL, and LCL 

values for each product group in the problem were calculated using 

Equations (1)–(5) used in creating the np control chart, and the 

results obtained are presented in Table 2. 

      𝑝̅ =
300

4667
= 0.0642811227769445  
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Table 2 CL, UCL, and LCL values for each product group for the 

np graph 

Product 

No.   

Total 

Production (n) 

Total 

Defect 
CL=𝒏𝒊. 𝒑̅ UCL LCL 

A1 955 60 61.388472 84.125692   38.651252 

A2 303 0 19.477180   32.284463    6.669898 

A3 188 11 12.084851   22.173072    1.996630 

A4 9 0 0.578530    2.785808    0.000000 

A5 224 12 14.398972   25.410806    3.387137 

A6 319 10 20.505678   33.646757    7.364599 

A7 737 92 47.375187   67.349389   27.400986 

A8 508 71 32.654810   49.237980   16.071641 

A9 367 0 23.591172   37.686290      9.496054 

A10 1 1 0.064281    0.800040    0.000000 

A11 55 0 3.535462    8.991998    0.000000 

A12 1001 43 64.345404   87.623782   41.067026 

 

Figure 4 np Control Chart for Product Groups (Total Number of 

Defective Products) 

 

 

The behavior of the total number of defective units in product 

groups within the process, as examined in the np control chart shown 
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in Figure 4, reveals that the number of defects observed in a 

significant portion of the product groups remains within the control 

limits and that the process is generally statistically acceptable. 

However, the fact that the defect counts for products A7 and A8 are 

clearly above the center line indicates that process variation is higher 

for these products and that there may be special cause deviations in 

the relevant operational steps. The fact that products A1 and A12 

also produce values close to the control limits suggests that these 

products pose a potential risk in terms of the process. On the other 

hand, the absence of defectsin products A2, A4, A9, and A11 

indicates that both operational stability and quality performance are 

maintained at a high level for these products. The overall picture 

reveals that the process does not exhibit the same behavior across all 

product groups and that specific causes affecting process control, 

particularly in products with high defect rates, need to be examined 

in detail. 

Based on Equations (6)–(10) used in calculating the u control 

chart in Section 4.1.2, the CL, UCL, and LCL values for each 

product group were determined, and the results are shown in Table 

3. 

       𝑢̅ =
300

4667
= 0.0642811227769445  
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Table 3 CL, UCL, and LCL values for each product group for the 

np graph 

Product 

No.   

Total 

Production (n) 

Total 

Defects 
CL=𝑢̅ UCL LCL 

A1 955 60 0.064281 0.088894 0.039668 

A2 303 0 0.064281 0.107977 0.020585 

A3 188 11 0.064281 0.119754 0.008808 

A4 9 0 0.064281 0.317818 0.000000 

A5 224 12 0.064281 0.115102 0.013461 

A6 319 10 0.064281 0.106867 0.021695 

A7 737 92 0.064281 0.092299 0.036264 

A8 508 71 0.064281 0.098028 0.030534 

A9 367 0 0.064281 0.103985 0.024578 

A10 1 1 0.064281 0.824893 0.000000 

A11 55 0 0.064281 0.166842 0.000000 

A12 1001 43 0.064281 0.088322 0.04024 

Figure 5 u Control Chart for Product Groups (Number of Defects 

per Unit) 

 

  

When examining the u control chart presented in Figure 5, it 

is observed that the number of defects per unit remains within the 
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control limits for the vast majority of product groups and that process 

variation generally exhibits a stable structure. For most products, the 

u values are quite close to the center line, indicating that the defect 

frequency is low and under control for most products. However, the 

u value for product A10 exceeds the upper control limit, showing an 

excessive spike, which clearly indicates an unusual process 

deviation specific to this product. The relatively high u values 

observed in products A7 and A8 also suggest that process variability 

in these products is greater than in other products. 

Overall analyses reveal that quality performance varies 

significantly between product groups and that defects are 

particularly concentrated in certain products. Pareto analysis shows 

that the majority of defects are concentrated in products A7, A8, A1, 

and A12; the repair rate graph confirms that process variation in 

these products is higher than in other products. The np control chart 

shows that the number of defects in the same products approached 

or exceeded the control limits, while the u control chart showed that 

the defect rate per unit rose to an unusual level, particularly in the 

A10 product. When all these findings are evaluated together, it is 

understood that the production process is generally operating at an 

acceptable level, but quality issues persisting in certain product 

groups due to specific causes; it is seen that in depth analyses of these 

products are critical for improving process stability.  

Conclusion 

This study aimed to evaluate quality performance in a 

production line within the textile industry using the Statistical 

Process Control (SPC) approach and analyzed process behavior 

based on qualitative defect data. In multi stage, high volume textile 

production environments with various defect types, it is emphasized 

that traditional final product inspection alone is insufficient; in 

process statistical monitoring and root cause analysis are critical for 

comprehensive quality assurance. In this context, within a quality 
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management system supported by continuous improvement 

approaches such as Kaizen and Asakai, Pareto analysis, Ishikawa 

diagrams, and np and u control charts were used together to reveal 

both the structural components of defect sources and the statistical 

status of process performance. The study is significant in that it 

demonstrates how SPC tools, which are often discussed in the 

literature using theoretical examples, can be integrated into a textile-

specific application using real production data.  

 

The findings revealed that quality performance was not 

homogeneous across product groups and that defects were 

concentrated in specific products. Pareto analysis showed that 

products A7, A8, A1, and A12 accounted for approximately 89% of 

the total 300 defects; this confirmed that quality losses on the 

production line were concentrated in a limited number of critical 

product groups and that the Pareto principle applied to this process. 

The repair rate graph revealed that process variations were higher in 

A7 and A8 products compared to other products, while the repair 

rate reaching 100% in the A10 product indicated an unusual situation 

in the process. The np control chart showed that the number of 

defective products was largely within the control limits, but values 

significantly above the center line were observed for products A7 

and A8, while products A1 and A12 showed a risk level approaching 

the control limits. The u control chart revealed that the process was 

generally stable in terms of defect rates per unit, but that the A10 

product exceeded the upper control limit, exhibiting statistically out-

of-control behavior. These results show that the process operated at 

an acceptable level overall, but that deviations due to specific causes 

persisted in certain product groups.  

One of the most significant contributions of this study is that 

it presents an applied framework based on the combined use of np 

and u control charts for evaluating qualitative data with variable 
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sample sizes in the textile industry. The simultaneous analysis of the 

np chart, which tracks the total number of defects per product, and 

the u chart, which considers the defect rate per unit, enables a more 

accurate interpretation of process behavior in both high volume 

product groups and products with small sample sizes. Furthermore, 

through the integration of Pareto analysis and Ishikawa diagrams, 

not only are the products with concentrated defects identified, but 

the potential root causes of these defects (in terms of human, 

machine, method, material, environment, and measurement system 

dimensions) are also systematically revealed. Thus, the study 

provides a statistically and administratively applicable roadmap for 

quality improvement projects in textile businesses; it offers business 

managers a practical approach to determine improvement priorities 

based on data.  

However, the study also has certain limitations, and these 

limitations offer new avenues for future research. First, the analyses 

are limited to data obtained from 12 product groups belonging to a 

single company and a specific period; studies conducted on different 

periods, different textile companies, or broader product portfolios 

would strengthen the generalizability of the findings. Furthermore, 

np and u control charts were used in this study to monitor process 

performance; however, the relationships between process variability 

and machine settings, environmental conditions, or operator 

variables were not explored in depth using regression, multivariate 

statistical methods, or experimental design (Taguchi, etc.). In future 

studies, the integration of process capability analyses, multiple 

regression models, Taguchi experimental designs, or artificial 

intelligence/machine learning-based early warning systems 

alongside control charts will provide quality management 

applications in the textile industry with both stronger predictive 

capabilities and more comprehensive solution proposals in terms of 

process optimization. 
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RETHINKING VENTURE CAPITAL DECISIONS 

THROUGH HUMAN–AI HYBRIDS 

MUSTAFA KELLEKCI1 

UFUK CEBECI 2 

ONUR DOGAN 3 

Introduction 

A growing availability of structured and unstructured 

information has been observed to transform the context of venture 

capital (VC) decision-making, yet a persistent gap has been noted 

between statistical accuracy and contextually grounded professional 

judgment; consequently, a hybrid approach has been advocated in 

which the strengths of human experts and machine learning (ML) 

systems are combined rather than pitted against each other 

(Mosqueira-Rey et al., 2023). Within this view, VC decisions have 

been framed as socio-technical processes in which algorithms 

 
1 PhD(c), Department of Industrial Engineering, Istanbul Technical University, 

Istanbul, 34367, Turkiye, Orcid: 0000-0003-3543-4012  
2 Prof. Dr., Department of Industrial Engineering, Istanbul Technical University, 

Istanbul, 34367, Turkiye, Orcid: 0000-0002-0430-0460  
3 Assoc. Prof., Department of Management Information Systems, Izmir Bakircay 

University, 35655, Izmir, Turkiye, Orcid: 0000-0003-4367-6206 

CHAPTER 6
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contribute scalable pattern discovery while human agents contribute 

domain knowledge, contextual interpretation, and accountability. 

Figure 1 shows the progression of venture capital decision-

making methods. It starts with expert-only judgment, moves to data-

driven analytics, then to human-in-the-loop machine learning, and 

finally to a personalized decision engine. Each stage represents a 

shift toward more structured, scalable, and technology-supported 

decisions. Across all stages, three key principles (governance, 

explainability, and performance) serve as checkpoints to ensure that 

the evolving decision systems remain trustworthy, transparent, and 

effective. 

 

Figure 1. Evolution of venture capital decision paradigms 

A range of decision-making paradigms has been outlined in 

Table 1, each of which is characterized by distinct inputs, strengths, 

limitations, and risks. Expert-only approaches are defined by 

qualitative judgment and tacit knowledge, though they are 

constrained by inconsistency and bias. Data-driven analytics are 

supported by repeatable metrics and dashboards, but their contextual 

depth is limited, and risks of metric gaming are present.  
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Table 1. Decision paradigms in VC and their trade-offs 

Paradigm Primary Inputs Strengths Limitations Explainability Typical Risks 
Where It 

Excels 

Expert-only 

(judgment-d

riven) 

Partner 

experience, 

networks, 

qualitative 

memos 

Rich context, 

tacit market 

knowledge 

Inconsistency, 

bias, limited 

scalability 

Narrative memos; 

low formal 

traceability 

Overconfidence; 

selection bias 

Ultra-early 

markets; 

relationship-dr

iven deals 

Data-driven 

analytics 

Descriptive & 

diagnostic 

analytics, KPIs 

Repeatability; 

faster screening 

Shallow context; 

label/target 

mismatch 

Metric 

dashboards; 

moderate 

Goodhart effects; 

metric gaming 

Mid/late-stage 

screening at 

scale 

Human-in-th

e-loop ML 

(HITL) 

ML scores + 

expert input 

loops 

Improves 

accuracy under 

scarce/noisy 

data; 

controllability 

Workflow 

complexity; 

human fatigue 

Model & 

interaction logs; 

moderate-high 

Confirmation bias 

in feedback 

Domains with 

scarce/imbalan

ced data 

Hybrid 

MCDM+ML 

(bridge 

layer) 

Expert weights 

+ criterion-level 

ML estimates 

Explicit 

trade-offs; 

auditable 

ranking; 

robustness via 

sensitivity 

Requires 

elicitation and 

governance 

Criteria/weights/se

nsitivity plots; 

high 

Weight drift; 

misuse of weights 

IC preparation; 

multi-objective 

triage 

Personalized 

decision 

engine 

Global ranking 

+ preference 

learning + 

constraints 

Investor-aligned; 

transparent “why 

this” 

Cold-start; 

fairness & policy 

constraints 

Global+local 

explanations; high 

Exposure 

imbalance; 

suitability breaches 

LP/wealth 

platforms; 

large VC 

franchises 
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Human-in-the-loop machine learning is enhanced by expert 

input, which increases accuracy under noisy or scarce data, although 

workflow complexity and feedback bias are introduced. Hybrid 

multi-criteria decision-making combined with machine learning is 

strengthened by explicit trade-offs and auditable rankings, while 

governance requirements and weight drift are recognized as 

challenges. Finally, personalized decision engines are designed to 

align global rankings with investor preferences, and although 

transparency is emphasized, risks such as cold starts, fairness issues, 

and suitability breaches are acknowledged (Kellekci, 2002). 

It has been emphasized that explanations and auditability are 

preconditions for adoption in high-stakes financial settings; 

therefore, explainable artificial intelligence (XAI) has been proposed 

as a design principle for decision support, with empirical evidence 

suggesting that transparent models and justification artifacts 

improve user trust and appropriate reliance (Coussement et al., 2024; 

Kostopoulos, Davrazos, & Kotsiantis, 2024). In this perspective, the 

objective has been to move beyond raw accuracy toward systems 

that are understandable, governable, and alignable with human 

oversight. 

Against this backdrop, multi-criteria decision-making 

(MCDM) methods have been positioned as a suitable bridge layer, 

because expert value judgments (weights and trade-offs) can be 

separated from empirical estimates (criterion-level scores) supplied 

by ML; in recent work, such coupling has been associated with 

improvements in both interpretability and decision quality (Martyn 

& Kadziński, 2023; Reyes-Norambuena, Bascuñán-Ortiz, & Sauma, 

2024). A coherent pathway has thus been proposed: hybrid human–

machine decision framing → MCDM structuring → two-way 

integration with ML → investor-level personalization and 

governance (Hüllermeier & Słowiński, 2024a; 2024b). 
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The contribution of this chapter has been designed with three 

aims. First, a principled role for MCDM is articulated in human–

machine hybrid decision systems for VC. Second, a bidirectional 

integration pattern with ML is presented, in which MCDM outputs 

guide feature/label engineering while ML methods learn or adapt 

MCDM parameters from outcomes. Third, a downstream transition 

to investor-level personalization is developed, so that general 

investment rankings are transformed into constrained, preference-

aware recommendations. 

Venture Capital Investment and Startup Success 

Early-stage investing has been characterized by structural 

uncertainty, non-stationarity, and data sparsity; even experienced 

investors have been reported to operate with noisy signals where 

long-run outcomes are difficult to forecast ex-ante (Gompers, 

Gornall, Kaplan, & Strebulaev, 2020). Under such conditions, it has 

been found that multiple notions of value coexist, and that 

investment decisions require a careful expression of priorities and 

constraints across several dimensions. 

Because outcomes and objectives vary by stakeholder, the 

notion of startup success has been treated as multi-dimensional and 

context-dependent; the choice of a success definition has been 

shown to affect how labels are constructed for ML tasks and what 

objectives are optimized in MCDM models (Cinelli, Kadziński, 

Gonzalez, & Słowiński, 2020). For this reason, heterogeneous 

definitions, ranging from exits (IPO/M&A) and financing milestones 

to performance measures such as return on investment (ROI), have 

been adopted in practice. 

A practical approach has been to anchor the feature space in 

observable signals (organizational, technological, market, 

governance, and network cues) that proxy for latent success factors; 

such signals have been cataloged in the VC literature and can be 
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mapped to decision criteria to support structured analysis. The 

taxonomy of signals is used in this chapter as the canonical 

dictionary that links raw data to criteria and ultimately to success 

objectives in Table 2. 

Table 2. Taxonomy of signals able to predict the likelihood of 

success of a startup 

Signal 

Family 

Example 

Variables 

Impact on 

Success 

Typical Data 

Source 

Example 

Measurement 

Innovation 

& IP 

Patent 

count/quality, 

citations 

Defensibility, 

valuation 

Patent DBs 

(USPTO/EPO), 

Lens.org 

Claims-weighted 

patent score 

Team & 

Leadership 

Founder 

experience, 

serial exits, 

education 

Execution 

probability 

LinkedIn/CVs, 

press 

Founders’ 

weighted 

experience index 

Investor 

Reputation 

& 

Syndicate 

Tier of lead 

investor, 

co-investor 

network 

Follow-on 

funding, 

exits 

Crunchbase/Pitc

hBook 

Lead-investor 

prestige score 

Market 

Traction 

Revenue 

growth, user 

metrics, 

retention 

Survival & 

fund-raising 

Product 

analytics, 

revenue reports 

N-month 

revenue CAGR; 

retention 

Alliances & 

Network 

Strategic 

partnerships, 

ecosystem 

centrality 

Market 

access, 

resilience 

News/APIs, KG 

graphs 

Graph centrality 

(e.g., PageRank) 

Financial 

Structure 

Runway, debt 

mix, burn 

Non-linear; 

excessive 

debt risk 

Financials; 

filings 

Months of 

runway; 

debt-to-equity 

Governance 

& Board 

Independent 

board seats, 

controls 

Monitoring; 

Agency risk 

Company page, 

filings 

Governance 

scorecard 

Visibility & 

Signaling 

Media 

mentions, 

awards, brand 

Attention, 

funding 

chance 

Web/news/social 
Normalized 

media index 

Diversity & 

Inclusion 

Gender/cultural 

diversity, 

equity 

Mixed: 

creativity & 

resilience 

HR/ESG 

disclosures 

Diversity 

composite 
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Signal 

Family 

Example 

Variables 

Impact on 

Success 

Typical Data 

Source 

Example 

Measurement 

Geography 

& 

Ecosystem 

Hub proximity, 

accelerator 

alumni 

Access to 

capital & 

talent 

Geo data; 

accelerator lists 

Ecosystem 

proximity index 

Parallel to the signal dictionary, multiple success definitions 

have been observed in the literature, ranging from financing 

thresholds and exits to profitability and growth. The startup success 

is therefore adopted as a standardized label set for modeling and 

evaluation, and it has been emphasized that model performance 

should be reported separately for each definition in Table 3. 

Table 3. Definitions of Startup Success 

Success 

Definition 
Operationalization Use in Modeling/Decision 

IPO 
Public listing within T 

years of first round 

Binary label; long-horizon 

success 

M&A 
Acquisition within T 

years 
Binary label; exit success 

Follow-on 

Funding 

Achieves Series A/B (or 

≥X rounds) 
Survival/growth label 

ROI / Value 

Uplift 

Investor IRR ≥ threshold; 

valuation ↑ ≥Y× 

Decision objective; 

continuous 

Revenue Scale 
Revenue ≥ R by year N; 

CAGR ≥ c% 
Performance label/objective 

Profitability 
Positive EBITDA/FCF 

for ≥ M periods 

Quality/sustainability 

objective 

Survival 
Active ≥ 5 years 

post-founding 
Robustness label 

Unicorn 
Post-money valuation ≥ 

$1B 
High-impact objective 

PMF Proxy 
Retention ≥ r%; NPS ≥ n; 

churn ≤ χ 
Early traction label 

A data-flow view has been found to be useful for 

implementation: raw sources (patents, alliances, founder/team CVs, 

investor brand, web mentions, capitalization) are transformed into 

engineered features grouped by criteria (innovation, team quality, 

traction, governance, network centrality), which in turn supply 
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labels/objectives consistent with selected success definitions. This 

mapping is shown to enable cross-functional communication during 

design reviews and to support auditable decision-making artifacts. 

Figure 2 illustrates how signals such as innovation, 

leadership, market traction, governance, and networks are translated 

into criteria, which then connect to different success definitions like 

IPO, M&A, ROI, survival, and growth. The mapping shows that 

each signal can influence multiple criteria, and criteria can be linked 

to several definitions, highlighting a many-to-many relationship. 

Measurement scales, such as percentages, index scores, and binary 

labels, are used along the process to standardize and quantify the 

evaluation, ensuring traceability from raw data to success outcomes. 

 

Figure 2. From signals to success criteria 

Human–Machine Hybrid Decision Models in Venture Capital 

Hybrid decision models have been defined as engineered 

collaborations in which perception, inference, judgment, and action 

are explicitly partitioned between humans and AI systems; 

human‑in‑the‑loop (HITL) patterns have been found to be 
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particularly beneficial when domain knowledge is tacit, data are 

scarce or skewed, or accountability requires reversibility and 

traceability (Mosqueira‑Rey et al., 2023). Within VC, this 

perspective has been operationalized by allocating complementary 

responsibilities to expert investors and model pipelines. 

Along the VC life cycle, hybridization has been located at 

four recurring touchpoints. At the sourcing stage, weak opportunities 

are triaged and watchlists are maintained with algorithmic 

assistance. At the screening stage, candidates are prioritized for due 

diligence by combining expert priors with model scores. At signing, 

term sheets and valuations have been shown to reflect value 

judgments that are made explicit. During supporting, 

post‑investment actions are triaged and monitored with data-

informed alerts (Gompers et al., 2020; Coussement et al., 2024). 

Explainability has been characterized as adoption 

prerequisites in finance; mechanisms that expose why and how 

decisions were reached have therefore been recommended, including 

model cards, reason codes, and sensitivity analyses in which 

decision makers can inspect counterfactual scenarios (Kostopoulos 

et al., 2024). It has been suggested that such mechanisms help 

reconciliation across the investment committee and facilitate 

consistent documentation. 

Figure 3 presents the 4S framework in venture capital 

decision-making: Sourcing, Screening, Signing, and Supporting. 

Each quadrant combines two complementary elements: a Human 

ring that contributes priors and constraints and a Machine Learning 

(ML) ring that generates scores and flags. These dual inputs from 

both humans and ML converge into a central hub labeled MCDM, 

which integrates and balances them. The diagram highlights how 

human expertise and machine intelligence interact at every stage of 
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the investment cycle, with MCDM ensuring structured, auditable, 

and explainable decisions. 

 

Figure 3. 4S in Human vs. Machine Learning 

A bridge layer has therefore been deemed necessary to merge 

human judgments and model output into auditable investment 

priorities. MCDM has been proposed for this purpose because it 

exposes value trade‑offs, collects heterogeneous evidence in a 

principled way, and returns a traceable ranking that can be 

interrogated through sensitivity analysis (Cinelli et al., 2020). The 

next section introduces this bridge and details its inputs, operations, 

and outputs. 

In this framework, in Table 4, distinct stakeholder roles are 

described in terms of their inputs, methods, outputs, and evidence 

artifacts. Partners and investment committees are provided with 

priors, theses, and constraints, and their judgments are applied 

through weighting and reviews, resulting in documented criteria and 
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decisions that are recorded in weight ledgers and rationale notes. 

Data science teams are supplied with features, models, and 

validation sets, and estimators and calibration techniques are 

employed to produce criterion scores and uncertainty measures, 

which are explained through model cards and validation reports. 

Risk and compliance functions are guided by policy rules and are 

implemented through rule engines and solvers, with constraint sets 

and overrides being documented in policy logs and exceptions files. 

Portfolio operations are supported by post-deal performance 

indicators, and monitoring dashboards are used to generate operating 

signals and alerts, which are evidenced in operational memos and 

KPI snapshots. Finally, legal and investor relations teams are 

informed by terms, covenants, and guidelines, and document 

management systems are applied to produce term sheets and 

disclosures, with full traceability ensured by changing control 

records. 

Table 4. Roles and artifacts 

Stakeholder Inputs Methods/Tools Outputs 

Evidence / 

Explainability 

Artifact 

Partners/ 

Investment 

Committee 

(IC) 

Priors, 

thesis, 

constraints 

AHP 

weighting; 

reviews 

Criteria 

weights; 

go/no-go 

notes 

Weight ledger; 

rationale notes 

Data 

Science 

Features, 

models, 

validation 

ML estimators; 

LTR; 

calibration 

Criterion 

scores; 

uncertainty 

Model cards; 

CV/holdout 

reports 

Risk & 

Compliance 

Policy 

rules 

(suitability, 

caps) 

Rule engines; 

constraint 

solvers 

Constraint 

set; 

overrides 

Policy log; 

exceptions file 

Portfolio 

Operations 

Post-deal 

KPIs, 

milestones 

Monitoring 

dashboards 

Operating 

signals; 

alerts 

Operational 

memos; KPI 

snapshots 

Legal/ 

Investor 

Relations 

Terms, 

covenants, 

Document 

management; 

audit trail 

Term 

sheets; 

disclosures 

Change-control 

records 
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Stakeholder Inputs Methods/Tools Outputs 

Evidence / 

Explainability 

Artifact 

LP 

guidelines 

AHP: Analytic Hierarchy Process, CV: Cross-Validation, IR: Investor Relations, 

LTR: Learning to Rank, LP: Limited Partner 

Multi‑Criteria Decision‑Making (MCDM) as the Bridge 

Signals have been mapped to decision criteria through a 

documented schema in order to enable various MCDM techniques 

to be applied while acknowledging scale heterogeneity and 

uncertainty (Cinelli et al., 2020). The signal‑to‑criterion mapping 

has been observed to simplify traceability from raw data to decision 

rationale. 

Weight elicitation has been handled by expert‑driven 

approaches (AHP, FAHP) as well as data‑driven schemes that infer 

weights from revealed preferences; robustness to missing or 

imprecise information has been studied within Stochastic Multi-

Criteria Acceptability Analysis (SMAA), which samples feasible 

weight spaces and reports acceptability indices, an approach that has 

been recommended when value judgments are uncertain or contested 

(Pelissari, Oliveira, Ben Amor, Kandakoglu, & Helleno, 2020). 

Practical governance has been aided by a change‑control process for 

weight updates. 

The bridge role becomes concrete when experts provide 

weights (value trade‑offs) and ML systems provide criterion‑level 

estimates (scores with uncertainty); MCDM normalizes and 

aggregates these inputs into an auditable ranking, where each 

recommendation can be accompanied by a contribution breakdown 

and by sensitivity plots that show rank stability under weight 

perturbations (Reyes‑Norambuena et al., 2024). Such artifacts have 

been linked to higher trust in human–AI collaboration. 
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When data are scarce or noisy, as in early-stage ventures, 

fuzzy extensions and interval judgments have been used to stabilize 

results; spherical‑fuzzy and related approaches have been reported 

to preserve decision quality under incomplete information while 

maintaining group‑decision traceability (Ayyildiz & Taskin Gumus, 

2022). These techniques have been recommended when criteria are 

difficult to measure directly or when proxies must be used. 

Figure 4 illustrates the concept of two shores connected by 

an MCDM bridge. On one side, the Human Value Model represents 

expert inputs such as weights, trade-offs, and priors. On the opposite 

side, ML Criterion Estimators provide data-driven scores with 

associated uncertainty. The MCDM bridge connects these two 

perspectives by applying processes like Normalization, Aggregation, 

and Dominance, ensuring structured integration. Beneath the bridge, 

a Traceability Ledger highlights accountability and auditability, 

reinforcing transparency in decision-making between human 

judgment and machine learning outputs. 

 

Figure 4. Two Shores: Human value model vs. ML criterion 

estimators 

In Table 5, a variety of signals have been structured as 

decision criteria, and their measurement, normalization, and 

weighting approaches have been specified. Patent quality and 
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citations have been normalized using Z-scores and capped, with 

weights assigned through the AHP and Fuzzy Analytic Hierarchy 

Process FAHP, based on data from patent databases, while field 

normalization has been recommended. Founder serial success has 

been mapped from ordinal to interval scales, with weights derived 

through AHP and SMAA, using CV records and LinkedIn data, 

though survivorship bias has been noted. Lead investor tier has been 

expressed on a 0–1 scale and weighted via AHP or SMAA, with 

Crunchbase used as a source, but vintage effects have been 

recognized. Strategic alliances have been measured with graph 

centrality and weighted through Preference Ranking Organization 

METHod for Enrichment Evaluations (PROMETHEE) or Technique 

for Order of Preference by Similarity to Ideal Solution (TOPSIS), 

based on news and knowledge graphs, with adjustments for partner 

quality. Debt and runway have been expressed in months or debt-

equity ratios and weighted through Data Envelopment Analysis 

(DEA) and AHP, using financial data, with non-linear risk penalties 

applied. User retention has been measured as a percentage and 

weighted with TOPSIS from analytics sources, with seasonality 

adjustments considered. Media mentions have been log-scaled, 

weighted with AHP, and sourced from web and news databases, 

though duplication controls have been required. Board independence 

has been expressed as a percentage of independent members, 

weighted by AHP using filing data, and subject to jurisdictional 

variation. Team diversity has been captured through composite 

indices, weighted by FAHP from HR and ESG sources, with 

sensitivity to protected attributes emphasized. Accelerator alumni 

status has been recorded as binary with cohort rank, weighted by 

AHP from accelerator datasets, with recognition of confounding 

selection effects.
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Table 5. Signals, Decision Criteria, and Weighting in MCDM 

Signal 
Decision 

Criterion 

Scale / 

Normalization 

Weighting in 

MCDM 

Example Data 

Source 
Notes 

Patent 

quality/citations 

Innovation & 

Defensibility 
Z-score; capped AHP / FAHP Patent DBs 

Consider 

field-normalization 

Founder serial 

success 
Team Quality 

Ordinal → 

interval mapping 
AHP / SMAA CV/LinkedIn 

Guard for survivorship 

bias 

Lead investor tier 
Signaling & 

Syndication 
0–1 (tiered) AHP / SMAA Crunchbase Beware vintage effects 

Strategic alliances 
Ecosystem 

Access 
Graph centrality 

PROMETHEE / 

TOPSIS 
News/KG 

Weight by partner 

quality 

Debt/runway 
Financial 

Resilience 
Months; D/E ratio DEA / AHP Financials Non-linear risk penalty 

User retention 
Traction & 

PMF 
% retention TOPSIS Analytics Seasonality adjustments 

Media mentions Visibility Log-scaled AHP Web/news De-duplication needed 

Board 

independence 
Governance % independent AHP Filings 

Jurisdictional 

differences 

Team diversity 
Human Capital 

Diversity 
Composite index FAHP HR/ESG Sensitive attributes care 

Accelerator alumni 
Ecosystem 

Quality 

Binary + cohort 

rank 
AHP Accelerator data 

Confounding by 

selection 
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Integration of MCDM and Machine Learning 

A two‑way coupling has been documented between MCDM 

and ML. In the MCDM→ML direction, criterion weights have been 

used for feature weighting or selection, composite MCDM scores 

have been used as weak labels for learning‑to‑rank, and sensitivity 

analyses have guided feature engineering. In the ML→MCDM 

direction, historical decisions and outcomes have been used to learn 

or adapt MCDM parameters (weights, thresholds) via preference 

learning and disaggregation (Martyn & Kadziński, 2023; 

Hüllermeier & Słowiński, 2024a, 2024b; Reyes‑Norambuena et al., 

2024). 

Early integrated frameworks demonstrated that predictive 

models could populate criterion‑level estimates that are then 

aggregated by MCDM, with reported gains in both accuracy and 

interpretability (Kartal, Oztekin, Gunasekaran, & Cebi, 2016). More 

recent work in supply chains has shown that hybrid MCDM+ML can 

be made explainable by keeping MCDM at the heart of the process 

and using interpretable ML components—an approach that has been 

argued to be transferable to VC settings (Abdulla & Baryannis, 

2024). 

Validation regimes have combined statistical metrics (AUC, 

PR‑AUC, NDCG/MAP) with decision metrics (hit rate, time‑to‑IC 

decision, adverse‑selection delta), while sensitivity analyses disclose 

rank volatility under weight shifts; recommendations have included 

consistent cross‑validation designs and shift detection to maintain 

calibration over time (Coussement et al., 2024; Reyes‑Norambuena 

et al., 2024). In addition, it has been advised that documentation 

artifacts be maintained as part of model risk management. 

Figure 5 shows a cyclical feedback loop that integrates 

human and machine learning inputs for decision-making. It begins 
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with Criteria Discovery, followed by ML Estimators, which generate 

predictive insights. These feed into MCDM Aggregation & Ranking, 

where multi-criteria methods organize and prioritize options. The 

process continues with Observed Outcomes & Expert Feedback, 

which evaluates real-world performance and refine assumptions. 

Finally, the cycle loops back through Weight and Model Updates 

(implicit in the flow), ensuring continuous improvement. Alongside 

the loop, Documentation Artifacts, such as model cards, rationale 

notes, and sensitivity plots, provide transparency, accountability, and 

auditability throughout the process. 

 

Figure 5. Closed Feedback Loop in Hybrid Decision-Making 

In Table 6, the comparative characteristics of pure ML, pure 

MCDM, and hybrid MCDM+ML approaches have been outlined 

across key dimensions. Interpretability is considered low to medium 

in pure ML, where XAI techniques are required, while pure MCDM 

and hybrid methods provide high transparency through explicit 

weights, criteria, and combined global-local explanations. Accuracy 

under sparse or noisy data is limited to medium levels in both pure 

ML and pure MCDM, whereas hybrid approaches achieve high 

accuracy by leveraging HITL inputs and prior knowledge. 
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Robustness to data drift is only moderate in pure ML, higher in 

MCDM due to sensitivity analysis, and strongest in hybrid methods 

through dual monitoring mechanisms. Governance and auditability 

are rated as medium for ML but high for both MCDM and hybrid 

designs, reflecting the traceability of weights and decision processes. 

Data requirements are high in ML, low to medium in MCDM, and 

moderate in hybrid systems. Scalability is maximized in ML and 

hybrid approaches but remains medium in pure MCDM. Human 

effort is moderate in ML, high in MCDM due to weight elicitation, 

and moderate in hybrid systems where workload is shared. Typical 

applications are aligned with these characteristics: pure ML excels 

in large and stable datasets, pure MCDM is applied to low-data, 

value-heavy contexts, and hybrid MCDM+ML is recommended for 

complex and regulated decision-making environments. 

Table 6. Pure ML vs. Pure MCDM vs. Hybrid 

Dimension Pure ML Pure MCDM 
Hybrid 

MCDM+ML 

Interpretability 
Low–Medium 

(XAI needed) 

High 

(weights/criteria) 

High 

(global+local) 

Accuracy under 

sparse/noisy data 
Medium Medium 

High (HITL + 

priors) 

Robustness to 

drift 

Medium 

(needs 

monitoring) 

Medium–High 

(sensitivity) 

High (dual 

monitoring) 

Governance / 

Auditability 
Medium High High 

Data 

Requirements 
High Low–Medium Medium 

Scalability High Medium High 

Human Effort Medium High (elicitation) Medium 

Typical Use 
Large, stable 

datasets 

Low-data, 

value-heavy 

Complex, 

regulated 

decisions 

From General Priority Lists to Personalized Decision Engines 
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A hybrid MCDM+ML pipeline has typically been shown to 

yield an investor‑agnostic global ranking, which is useful for 

portfolio‑level triage but misaligned with heterogeneous investor 

goals; this limitation has motivated the use of preference learning 

and recommender‑system techniques tailored to financial services 

(Wu & Li, 2025). In this setting, investor profiles have been inferred 

from both explicit inputs and implicit interaction data under 

regulatory and suitability constraints. 

Recent surveys have documented knowledge‑graph‑based 

recommenders and embedding methods that leverage structured side 

information to handle sparsity, cold start, and explainability—

capabilities directly relevant when portfolio constraints and sector 

exposures must be respected (Zhang, Zain, Zhou, Chen, & Zhang, 

2024). The adoption of such methods has been suggested to improve 

personalization quality under constrained reranking. 

Fairness and exposure balance have been treated as first‑class 

concerns in recommender systems; multi‑stakeholder surveys have 

emphasized that rank exposure may need to be controlled to avoid 

systematic under‑recommendation of certain categories, which 

suggests that constrained re‑ranking should be embedded in financial 

recommendation engines (Jin, Wang, Zhang, Zheng, Ding, Xia, & 

Pan, 2023; Jugovac, Jannach, Lerche, & Karimi, 2023). 

The bridge from a hybrid global ranking to personalization 

has been constructed as follows. First, a global priority list is created 

by the hybrid pipeline, making the role of criteria and weights 

transparent. Second, investor preferences are learned from explicit 

and implicit signals using supervised, contextual bandit, or Bayesian 

preference models under appropriate governance. Third, the global 

list is filtered and re‑weighted by the investor profile while 

respecting policy constraints (suitability, concentration, liquidity), 
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and recommendations are generated with rationales that reference 

back to MCDM criteria (Wu & Li, 2025; Zhang et al., 2024). 

Figure 6 depicts an end-to-end decision pipeline that 

integrates signals and machine learning with preference-aware re-

ranking. It begins with Signals / Labels, which are processed by ML 

Estimators to generate predictive insights. These outputs feed into 

Preference Learning (Profiles + Constraints), which adapts decisions 

to individual investor needs. The system then applies Personalized, 

Constrained Re-Ranking to ensure alignment with policy and 

suitability requirements. Finally, the Presentation Layer with 

Rationale Cards communicates recommendations in a transparent 

and explainable manner. Feedback arrows link back to the MCDM 

Weight Ledger and preference models, ensuring continuous 

adaptation and governance. 

 

Figure 6. End-to-End Pipeline for Personalized Investment 

Decisions 

In Table 7, the global ranking produced by the hybrid 

MCDM+ML framework is compared with personalized rankings for 

two investor personas, showing how the relative positions of 

Startups A–E are adjusted. For Persona A, who seeks a short horizon 

and low risk profile, Startup B is moved upward due to stable 

cashflows and low volatility, while Startup C is downgraded because 
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of early-stage risk, and Startup D is ranked higher thanks to 

profitability and conservative debt. In this persona, Startup A is 

placed slightly lower because of runway concerns, while Startup E 

remains unchanged, reflecting the longer horizon required. For 

Persona B, with a long horizon and a climate-focused thesis, Startup 

A retains its top position due to strong IP and climate impact, while 

Startup C is ranked higher for its alliances and climate alignment. In 

contrast, Startup B is moved down because of limited climate 

relevance, Startup D falls further due to low climate contribution, 

and Startup E improves its ranking through Environmental, Social, 

and Governance (ESG) leadership and a robust partner network. 

These adjustments illustrate how general rankings of Startups A–E 

are reshaped when individual investment priorities are applied. 

Table 7. General vs. Personalized rankings 

Star

t up 

Global Rank 

(MCDM+M

L) 

Persona A: 

Short-Horizo

n, Low Risk 

(Rank) 

Why It 

Moved for 

A 

Persona B: 

Long-Horizo

n, Climate 

Themed 

(Rank) 

Why It 

Moved 

for B 

A 1 2 

Slightly 

lower 

runway; 

liquidity 

priority 

1 

Strong 

IP; 

climate 

impact 

B 2 1 

Stable 

cashflows; 

low 

volatility 

3 

Limited 

climate 

alignmen

t 

C 3 4 

Early stage 

risk; A 

prefers 

maturity 

2 

Strong 

climate 

thesis; 

alliances 

D 4 3 

Profitable; 

conservati

ve debt 

5 

Low 

climate 

relevance 

E 5 5 

Long 

horizon 

required 

4 

ESG 

leadershi

p; partner 

network 
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Components and Governance of a Personalized Investment 

Decision Engine 

A three‑layer architecture has been proposed for 

finance‑grade recommendation: an input layer that supplies a 

structured, auditable global list with criterion‑level scores from 

MCDM+ML, a preference learning layer that infers investor profiles 

and policy constraints, and an output layer that performs constrained 

re‑ranking and generates rationale‑rich recommendations; 

finance‑specific surveys have argued for domain‑specific evaluation 

and data lineage in such designs (Wu & Li, 2025). 

The data pipeline has been specified to include user 

interaction logs (views, comparisons, simulations), allocation 

decisions, post‑allocation outcomes, and exogenous factor and 

sector exposures; it has been recommended that on‑policy and 

off‑policy evaluation be combined—offline counterfactual 

estimation to reduce production risk and online A/B testing to 

measure decision‑time reduction, hit rate, and performance 

proxies—while shift detection triggers recalibration (Coussement et 

al., 2024). Documentation has been emphasized as part of audit 

readiness. 

Explainability has been placed in two layers: global 

transparency from MCDM (criteria, weights, sensitivity) and local 

justification in recommendations (why an opportunity is suggested 

to this investor under current constraints); integration of XAI 

techniques with domain‑meaningful artifacts has been associated 

with higher acceptance by decision makers (Kostopoulos et al., 

2024). In practice, explanation cards have been used to present 

criterion contributions and constraint effects. 

Risk and compliance have been enforced as hard or soft 

constraints within the re‑ranking step; fairness diagnostics have been 

recommended to monitor exposure distributions across opportunity 
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types and to prevent undesirable disparities; weight‑change 

governance—with change control and human approval—has been 

proposed to maintain accountability for the MCDM layer (Jin et al., 

2023; Jugovac et al., 2023). The integration of these processes has 

been advocated to ensure suitability and accountability. 

  

Figure 7. Architecture of a Personalized Investment Decision 

Engine 

In Table 8, a structured governance checklist is presented, 

outlining key policies, enforcement points, evidence artifacts, 

frequencies, and responsible owners. Suitability requirements linked 

to investor profiles are enforced at the re-ranking layer, with 

evidence captured in suitability check logs for each recommendation 

under compliance oversight. Concentration and exposure caps are 

applied through re-ranking and portfolio policy, documented in 

constraint satisfaction reports on both batch and monthly basis, 

managed by risk teams. ESG exclusions are controlled prior to 

ranking, with exclusion list snapshots maintained for every update 

by ESG and risk functions. Fairness and exposure balance are 

monitored by re-ranking auditors, with distribution and disparity 
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metrics reviewed weekly or monthly by data science and risk 

stakeholders. Weight change control in MCDM processes is 

governed through a bridge ledger, requiring change logs and formal 

approvals on each update, overseen by the investment committee and 

governance. Explainability is maintained globally through MCDM 

and locally within recommendation systems, supported by criteria 

plots and “why this” explanation cards on a continuous basis by 

product and data science teams. Drift and stability are tracked 

through ML monitoring, with drift alarms and recalibration notes 

continuously generated by data science and ML operations. Finally, 

audit trials are enforced across all layers, producing immutable 

decision logs under continuous compliance responsibility. 

Table 8. Governance checklist 

Policy / 

Risk 

Control 

Where 

Enforced 

Evidence 

Artifact 
Frequency Owner 

Suitability 

(investor 

profile) 

Re-ranking 

layer 

Suitability 

check log 

Per 

recommendati

on 

Complianc

e 

Concentrati

on & 

Exposure 

Caps 

Re-ranking + 

Portfolio policy 

Constraint 

satisfaction 

report 

Per batch & 

monthly 
Risk 

ESG 

Exclusions 

Filter before 

ranking 

Exclusion 

list snapshot 
Per update ESG/Risk 

Fairness / 

Exposure 

Balance 

Re-ranking 

auditor 

Exposure 

distribution, 

disparity 

metrics 

Weekly/month

ly 

Data 

Science + 

Risk 

Weight 

Change 

Control 

(MCDM) 

Weight ledger 

(bridge) 

Change log 

+ approvals 
On change 

IC / 

Governanc

e 

Explainabili

ty 

Global 

(MCDM) + 

Local 

(Recommendati

on Systems) 

Criteria/weig

ht plots; 

“why this” 

cards 

Continuous 

Product/Da

ta science 

(DS) 
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Policy / 

Risk 

Control 

Where 

Enforced 

Evidence 

Artifact 
Frequency Owner 

Drift & 

Stability 
ML monitoring 

Drift alarms; 

recalibration 

notes 

Continuous 
DS/ML 

Operations 

Audit Trail All layers 
Immutable 

decision log 
Continuous 

Complianc

e 

Conclusion and Future Directions 

A coherent chain has been presented in which human–

machine hybrid decision models are grounded in MCDM, coupled 

bidirectionally with ML, and extended into personalized decision 

engines for investment. The role of MCDM as a bridge has been 

emphasized because value judgments (weights) can be separated and 

governed while ML provides empirical estimates for criterion‑level 

performance; the outcome is an auditable, adaptable, and explainable 

ranking for VC decisions (Martyn & Kadziński, 2023; Hüllermeier 

& Słowiński, 2024a, 2024b). 

Future work has been suggested along four lines. First, 

dynamic weight learning and preference disaggregation should be 

advanced using revealed‑preference data while preserving 

interpretability. Second, XAI tailored to investment should be 

developed, including counterfactual what‑if analysis over criteria 

and constraints. Third, evaluation regimes that combine statistical 

metrics with decision‑centric KPIs under regulatory constraints 

should be standardized for the domain. Fourth, fairness‑aware 

re‑ranking should be embedded to monitor exposure distributions 

across opportunity sets (Coussement et al., 2024; Jin et al., 2023). 

With these elements, hybrid MCDM–ML systems are expected to 

support personalized, trustworthy decision engines. 
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Introduction 

The rapid depletion of fossil fuel reserves and the increased 

use of these resources are causing greenhouse gas emissions, climate 

change and leading to global warming. Furthermore, the continuous 

increase in energy demand has made it imperative to use sustainable 

resources with lower environmental impacts. Indeed, the more 

widespread use of renewable energy sources has become a 

significant solution for both ensuring energy supply security and 

reducing carbon footprint. For Turkey, renewable energy sources 

hold significant importance due to their environmental, political, and 

economic benefits. Solar, wind, hydroelectric, geothermal, and 
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biomass energy constitute the most widely used renewable energy 

sources in Turkey. Technical, economic, social, and geographical 

factors are taken into consideration while choosing renewable 

energy sources. Especially in cold climate regions, the selection of 

renewable energy sources is determined by analyzing specific 

technical and environmental factors. In this study, Erzurum 

Technical University (ETU) was selected as the sample region due 

to its location in one of Turkey's cold and high-altitude areas. 

Photovoltaic (PV), wind, and hybrid energy systems were analyzed 

in this study because of their high applicability at the campus scale 

and their suitability for grid-connected operations. The selection of 

PV, wind, and hybrid energy systems requires the simultaneous 

evaluation of numerous criteria, including economic, technical, and 

environmental factors. Based on this, in this study, various criteria 

were considered, and criterion weights were calculated using the 

Analytical Hierarchy Process (AHP) method, one of the multi-

criteria decision-making (MCDM) methods. Furthermore, based on 

these calculated weights, the most suitable energy system alternative 

was determined using the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) and Multi-Objective 

Optimization on the Basis of Ratio Analysis (MOORA) methods. 

The results obtained are expected to serve as a reference for 

settlements with similar climatic characteristics. 

1. Renewable Energy Systems 

Energy supply is provided through the use of fossil fuels and 

renewable energy sources. According to 2025 data, approximately 

57-60% of Turkey's total installed electricity capacity is provided by 

renewable energy sources. Of these sources, wind accounts for 12% 

and solar for 20% (MENR, 2025). These figures show that wind and 

solar energy sources are increasingly becoming important in 

Turkey's energy policies. 
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Among renewable energy sources, solar and wind energy 

stand out for campus-scale energy production due to our country's 

favorable geographical location and the fact that they are easily 

installed systems that do not require high technology (Dikmen, 

2019). 

Photovoltaic (PV) energy systems are systems that convert 

incoming sunlight into usable energy. This provides a more 

environmentally friendly and secure energy option (Doğanay, 2021). 

Grid-connected PV systems, which operate connected to the central 

electricity grid and transfer excess energy back to the grid, are 

preferred on a campus scale (Güneş & Hacıoğlu, 2024). PV systems 

have both advantages and disadvantages in cold climates. Lower 

temperatures reduce heat loss in PV cells, increasing efficiency. 

However, icing, short days, and freezing conditions in winter limit 

energy production (Awad et al., 2018). When designing a PV system, 

considerations regarding the need for regular maintenance due to 

icing and snow events are necessary. Furthermore, PV energy 

systems offer a long-term, environmentally friendly, efficient, and 

economical energy source at a low cost (Aslam et al., 2022). 

However, they also have limitations due to their dependence on 

weather conditions, high storage costs, and the need for large areas 

for the panels. (Charfi et al., 2018). Many studies in the literature on 

PV energy systems show that Multi-Criteria Decision Making 

(MCDM) methods are widely used. In a study by Hassan et al. 

(2023), critical weights were determined for PV site selection using 

the CRITIC method, and the most suitable areas were determined by 

ranking alternatives using TOPSIS. In another study, PV panel type 

selection was determined by evaluating the TOPSIS method (Aslay, 

2021). Çoban (2020) used fuzzy logic based on AHP to determine 

the critical weight for the selection of the most suitable PV-based 

project. 
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Wind energy systems are designed to convert the kinetic 

energy of the wind into electrical energy. Wind energy holds an 

important place among energy sources due to its continuity, 

cleanliness, and quality (Guo, 2025). With developing technology, 

small-scale wind turbines can be used if the selected region is 

suitable in terms of wind (Aslan et al., 2016). The effect of wind 

speed is very important in these energy systems; turbines are 

designed to operate optimally within specific speed ranges (Wang & 

Liu, 2021). Erzurum, being located in a high-altitude region, 

experiences more consistent and powerful wind speeds. This 

characteristic makes it an important location for the development of 

wind energy projects. However, icing, low air density, and extreme 

wind conditions negatively impact wind turbines. When designing 

wind turbines, various constraints such as efficiency, wind speed, 

turbine design, site location, and maintenance management must be 

considered (Ünal et al., 2024). MCDM methods have been widely 

used in the literature to determine the suitability of wind energy 

systems. In one study, a TOPSIS-based approach was proposed for 

determining the most suitable turbine for a selected site (Rehman, 

2020). In a study conducted in 2024, the most suitable site for the 

installation of wind energy power plants in Adana province was 

determined through the integration of Analytical Hierarchy Process 

(AHP) and Geographic Information Systems (GIS) (Yaman, 2024). 

Supciller and Toprak (2020) calculated the critical weights for 

selecting the most suitable wind turbine for a large company 

operating in Turkey using the SWARA method. They then ranked the 

turbines using the TOPSIS and EDAS methods. 

Hybrid energy systems are more efficient and 

environmentally friendly production systems that use a combination 

of different energy sources or technologies (Kılıç & Adalı, 2022). 

Hybrid systems that operate by using wind and solar energy together, 

both renewable energy sources, are widely used. Depending on the 
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weather, photovoltaic solar panels and tiny wind turbines can 

generate different amounts of electricity. Therefore, they are not a 

very rich source of energy production on their own. By combining 

these sources into a single system, we can reduce fluctuations in 

energy production and gain many advantages (Çakmak, 2020). Thus, 

grid-connected hybrid systems provide a safer and more reliable 

energy source (Atik & Sekin, 2022). In cold climate regions, the 

decrease in sunshine duration during winter months and the increase 

in wind speeds demonstrate the advantages of hybrid systems. 

Furthermore, the installation of hybrid energy systems requires the 

analysis of numerous criteria such as system reliability, construction 

and operating costs, and maintenance requirements. Studies 

evaluating these criteria exist in the literature. In one study, the fuzzy 

TOPSIS method was used to evaluate renewable energy systems in 

Turkey. The results show that hybrid systems are suitable in terms of 

environmental criteria and energy supply security (Şengül, 2015). In 

another study, AHP-TOPSIS-COPRAS methods were applied 

comparatively for the site selection of a power plant in Kırıkkale 

(Kara et al., 2022). In the study by Ramos et al., the technical and 

economic suitability of hybrid renewable energy systems for a 

settlement in Portugal was evaluated using an MCDM approach 

(Ramos et al., 2025). 

The literature shows that environmental, economic, 

technical, and social criteria should be evaluated simultaneously in 

the selection and planning of renewable energy systems. Appropriate 

evaluation of these characteristics has been carried out using MCDM 

methods. Simultaneous evaluation of these characteristics is also of 

great importance in renewable energy system projects in cold climate 

regions. Therefore, before proceeding with the selection of PV, wind, 

and hybrid energy systems for the campus area, the weighting of the 

criteria should be analyzed. 
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This study uses the AHP method to determine the importance 

levels of key criteria to consider before selecting grid-connected PV, 

wind, and hybrid energy systems. The suitability of each energy 

system alternative for the campus area was determined using the 

TOPSIS and MOORA methods, based on the importance levels of 

the criteria considered. The aim is to provide a roadmap for 

campuses in cold climate regions based on the results obtained. 

2. Method 

2.1. Analytic Hierarchy Process (AHP) Method 

The Analytic Hierarchy Process (AHP) is a multi-criteria 

decision-making (MCDM) methodology established by Thomas L. 

Saaty in the mid-1970s to address intricate decision-making 

challenges (Saaty & Niemira, 2006). The most important feature of 

AHP is its ability to integrate both subjective and objective thoughts 

and experiences of the decision-maker into the decision-making 

process within a logical framework (Özel & Türkel, 2018; Haliloğlu 

& Odabaş, 2021). The application steps of the AHP method are 

generally as follows (Saaty & Kearns, 1985; Saaty, 2005; Gökgöz et 

al., 2020): 

Step 1: In this step, the decision problem is defined, and a 

hierarchical structure is established. 

Step 2: The criteria defined in the model are evaluated 

through pairwise comparisons. For these comparisons, the 1-9 

significance scale developed by Saaty and presented in Table 1 is 

used. 

Step 3: After the pairwise comparison matrices are created, 

the matrix is normalized. This is done by dividing each cell value in 

the matrix by the column sum. Using Eq. (1), the normalized 

pairwise comparison matrix C is obtained. 
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𝑏𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

                                    (1) 

Table 1 AHP Importance Weights 

Importance 

Level  

Definition  

1 Equally important 

3 Moderately important 

5 Strongly important 

7 Very strongly important 

9 Extremely important 

2, 4, 6, 8 Intermediate values 

𝐶 =

[
 
 
 
 
 
𝑐11 𝑐12 … 𝑐1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

. . … .

. . … .

. . … .
𝑐𝑛1 𝑐𝑛2 … 𝑐𝑚𝑛]

 
 
 
 
 

                              (2) 

By taking the row averages of the normalized matrix, the 

priority vector (W) showing the importance levels for each criterion 

is calculated as follows. 

𝑤𝑖 =
∑ 𝑐𝑖𝑗

𝑛
𝑗=1

𝑛
                                    (3) 

Step 4: The Consistency Ratio (CR) is calculated to check the 

consistency of the pairwise comparisons made by decision-makers. 

For the analysis to be consistent and acceptable, the calculated CR 

value must be less than 0.10. If the CR is not within this range, the 

decision-maker should reconsider their judgments. The CR is 

calculated using the Consistency Indicator (CI) and the Random 

Indicator (RI). After λmax is calculated, CI is found using Eq. (4). 

𝐶𝐼 =
λ𝒎𝒂𝒙−n

𝑛−1
                                     (4) 

Afterwards, the CR value is calculated by dividing the CI 

value by the RI value given in Table 2 using Eq. (5). 
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𝐶𝑅 =
𝐶𝐼

𝑅𝐼
                                      (5) 

Table 2 Consistency Index (CI) 

n 1 2 3 4 5 6 7 8 9 10 

RI 0  0  0,58  0,9  1,12  1,24  1,32  1,41  1,45  1,49  

2.2. TOPSIS Method 

TOPSIS (Technique for Order Preference by Similarity to 

Ideal Solution) is a MCDM method introduced by Hwang and Yoon 

in 1981 (Hwang & Yoon, 1981). The fundamental principle of this 

method is that the chosen alternative should be closest to the positive 

ideal solution and furthest from the negative ideal solution (Lai et 

al., 1994). In TOPSIS, the positive ideal solution (A+) represents the 

best solution that maximizes the benefit criterion and minimizes the 

cost criterion, while the negative ideal solution (A-) represents the 

worst solution (Tong et al., 2005). The method considers the 

alternative closest to the positive ideal solution as the best 

alternative, and Euclidean distances are used to program the 

distances (Wang & Elhag, 2006). The basic steps of the TOPSIS 

method are as follows (Triantaphyllou, 2000; Yurdakul & Iç, 2003; 

Mahmoodzadeh et al., 2007; Özden, 2011; Sevgin & Kundakcı, 

2017; Genç et al., 2017):  

Step 1: To achieve the decision-maker's goal, the problem, 

the criteria to be considered, and the alternatives to be ranked are 

determined.  

Step 2: An initial decision matrix (Aij) is created, with criteria 

in the columns and alternatives in the rows. 
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𝐴𝑖𝑗 =

[
 
 
 
 
 
𝑥11 𝑥12 . 𝑥1𝑗 . 𝑥1𝑛

𝑥21 𝑥22 . 𝑥2𝑗 . 𝑥2𝑛

. . . . . .
𝑥𝑖1 𝑥𝑖2 . 𝑥𝑖𝑗 . 𝑥𝑖𝑛

. . . . . .
𝑥𝑚1 𝑥𝑚2 . 𝑥𝑚𝑗 . 𝑥𝑚𝑛]

 
 
 
 
 

                      (6) 

Step 3: The generated matrix is normalized so that all criteria 

can be compared in the same dimensionlessness. The elements of the 

normalized decision matrix are denoted by 𝑟𝑖𝑗 and calculated using 

Eq. (7). 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 (𝑖 =  1,2, . . . . , 𝑚) (𝑗 =  1,2, . . . . , 𝑛)          (7) 

Step 4: The predefined criterion weights (wj), which add up 

to 1, are multiplied by the normalized matrix values ( 𝑟𝑖𝑗) to obtain 

the weighted normalized decision matrix (Vij).  

∑ 𝑤𝑗
𝑛
𝑗=1 = 1                                  (8) 

𝑣𝑖𝑗 = 𝑤𝑗  𝑥 𝑟𝑖𝑗  (𝑖 =  1,2, . . . . , 𝑚) (𝑗 =  1,2, . . . . , 𝑛)          (9) 

Step 5: Define the negative ideal and positive ideal solution 

values according to Eq. (10) and Eq. (11), respectively. Here, J 

represents the utility (maximization) criteria, J' represents the cost 

(minimization) criteria, 𝑋−  represents the least preferred negative 

ideal solution, and 𝑋+ represents the most preferred positive ideal 

solution. 

𝑋− = {(min𝑖v𝑖𝑗| j ∈ J), (maks𝑖v𝑖𝑗| j ∈ 𝐽′), 𝑖 =  1,2, … . ,𝑚} =

{𝑉1
−, 𝑉2

−, … , 𝑉𝑛
−, }                              (10) 

𝑋+ = {(maks𝑖v𝑖𝑗| j ∈ J), (min𝑖v𝑖𝑗| j ∈ 𝐽′), 𝑖 =  1,2, … . , 𝑚} =

{𝑉1
+, 𝑉2

+, … , 𝑉𝑛
+, }                            (11) 
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Step 6: The Euclidean distances of each alternative from 

the negative and positive ideal solutions are calculated using Eq. 

(12) and Eq. (13). 

𝑆𝑖
+= √∑  (𝑣𝑖𝑗 − 𝑣𝑗

+)2𝑛
𝑗=1   (𝑖 =  1,2, … . , 𝑚)          (12) 

𝑆𝑖
−= √∑  (𝑣𝑖𝑗 − 𝑣𝑗

−)2𝑛
𝑗=1    (𝑖 =  1,2, . . . . , 𝑚)         (13) 

Step 7: In this step, the relative proximity of each alternative 

to the ideal solution is calculated using Eq. (14). This value is 

between 0 and 1, and the alternative with the largest value is 

considered the best alternative. 

𝐶𝑖
∗ =

𝑆𝑖
−

𝑆𝑖
−+𝑆𝑖

+ (𝑖 =  1,2, . . . . , 𝑚)                (14) 

2.3. MOORA Method  

MOORA (Multi-Objective Optimization on the Basis of 

Ratio Analysis) is a multi-objective decision-making method based 

on ratio analysis, originally introduced by Brauers and Zavadskas in 

2006. The method holistically addresses the interactions between 

selection criteria and objectives (Brauers & Zavadskas, 2006). The 

stages of the MOORA method are as follows (Brauers et al., 2008; 

Metin et al., 2017; Orhan et al., 2023): 

Step 1: First, an initial decision matrix is created. Here, “m” 

represents the number of alternatives; “n” represents the total 

number of criteria; and 𝑥𝑖𝑗 represents the value of the i. alternative 

in the j. objective. 
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𝑋 =

[
 
 
 
 
 
 
𝑥11 𝑥1𝑖 𝑥1𝑛

. . .

. . .
𝑥𝑗1 𝑥𝑗𝑖 𝑥𝑗𝑛

. . .

. . .
𝑥𝑚1 𝑥𝑚𝑖 𝑥𝑚𝑛]

 
 
 
 
 
 

                            (15) 

Step 2: The decision matrix values are normalized using Eq. 

(16). 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑗=1

                                  (16) 

Step 3: In this stage, the criteria in the normalized decision 

matrix are classified as benefit (maximization) and cost 

(minimization) criteria according to the level of contribution they 

provide to the business. The values of the criteria that need to be 

maximized are summed up, while the sum of the criteria that need to 

be minimized is subtracted from this value. The MOORA score is 

calculated using Eq. (17), where j = 1,2,…,g represents the benefit 

criteria and j = g + 1, g + 2,…,n represents the cost criteria. 

𝑦𝑖
∗ = ∑ 𝑥𝑖𝑗

′ − ∑ 𝑥𝑖𝑗
′  𝑖=𝑛

𝑖=𝑔+1
𝑖=𝑔
𝑖=1                     (17) 

After completing these steps, the resulting 𝑦𝑖
∗ values are 

sorted from largest to smallest. The alternative with the highest value 

in this sorting process is then considered the most suitable option for 

the decision problem. 

3. Application 

In this section, the defined multi-criteria decision-making 

model was applied to the Erzurum Technical University campus, 

located in one of Turkey’s high-altitude regions with harsh winter 

conditions. The application phase of the study involved measuring 

the performance of grid-connected PV, wind, and hybrid energy 
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systems, determined based on the region’s climatic data and the 

campus’s energy needs. In the first stage, the importance weights of 

the criteria were determined using pairwise comparison matrices 

created based on expert opinions and the AHP method. Based on 

these weights, the proximity of the alternatives to the ideal solution 

was analyzed using the TOPSIS method, and the benefit-cost 

balance was analyzed using the MOORA method. The analysis 

process was completed by comparing the results of these methods 

with different algorithms and identifying the most sustainable energy 

model for the campus. 

3.1. Definition of the Criteria Set  

The criteria for this study were determined by considering a 

literature review, applications in renewable energy systems, and the 

opinions of expert academics and industry representatives. 

Furthermore, the technical characteristics of grid-connected PV, 

wind, and hybrid energy systems were examined. Energy 

infrastructures in cold climate regions, particularly in university 

campuses, were investigated, and a final evaluation framework with 

10 criteria was created. These criteria encompass technical, 

economic, environmental, and social factors affecting the 

applicability of PV, wind, and hybrid energy systems. Brief 

descriptions of each criterion are shown in Table 3. 

The 10 key criteria used in the analysis process were divided 

into two groups, benefit and cost, according to their impact on the 

decision-making model. Accordingly, Regional Energy Potential 

(C1), Resilience and Efficiency under Climatic Conditions (C2), 

System Reliability and Continuity (C3), Grid Connection and 

Integration Suitability (C4), Land Conditions and Topography (C8), 

Regional and National Incentive Opportunities (C9), and 

Environmental Impact and Emission Reduction (C10) criteria were 

defined as benefit criteria where high values were preferred. In 
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contrast, Initial Investment Cost (C5), Payback Period (C6), and 

Operating and Maintenance Costs (C7), representing the economic 

burden of the system, were included in the model as cost criteria 

where low values were targeted. 

Table 3 Criteria and Definitions  

No Criterion Name Criterion Description 

C1 Regional Energy Potential  Solar irradiation duration, wind 

speeds, seasonal variations 

C2 Resilience and Efficiency 

under Climatic Conditions  

Snow load, low-temperature 

performance, icing effects 

C3 System Reliability and 

Continuity 

Failure rate, operational 

continuity 

C4 Grid Connection and 

Integration Suitability 

Infrastructure compatibility, 

connection cost, technical 

requirements 

C5 Initial Investment Cost Capital expenditures 

C6 Payback Period (PP) Financial return 

C7 Operating and Maintenance 

Costs 

Maintenance frequency and 

component durability in cold 

climates 

C8 Land Conditions and 

Topography 

Installation orientation, impact of 

slope on efficiencyand slope 

effect on efficiency 

C9 Regional and National 

Incentive Opportunities 

Government incentives, tax 

benefits 

C10 Environmental Impact and 

Emission Reduction 

CO₂ reduction contribution, 

impact on the campus 

environment 

The 10 key criteria used in the analysis process were divided 

into two groups, benefit and cost, according to their impact on the 

decision-making model. Accordingly, Regional Energy Potential 

(C1), Resilience and Efficiency under Climatic Conditions (C2), 

System Reliability and Continuity (C3), Grid Connection and 

Integration Suitability (C4), Land Conditions and Topography (C8), 

Regional and National Incentive Opportunities (C9), and 

Environmental Impact and Emission Reduction (C10) criteria were 

defined as benefit criteria where high values were preferred. In 
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contrast, Initial Investment Cost (C5), Payback Period (C6), and 

Operating and Maintenance Costs (C7), representing the economic 

burden of the system, were included in the model as cost criteria 

where low values were targeted. 

After the criteria were determined as shown in Table 3, 

evaluation forms were prepared. Interviews were conducted with 

academics and experts experienced in renewable energy systems and 

regional applications to ensure the reliability of the decision-making 

process. To determine the importance levels of these criteria and to 

create pairwise comparison matrices, the opinions of three 

Electrical-Electronics Engineers specializing in energy systems were 

consulted. Literature research has shown that multiple MCDM 

methods are used together to solve similar decision-making 

problems. It has been emphasized that this strengthens the 

consistency of the results obtained. Accordingly, in this study, 

different MCDM methods were used for analysis, and the criterion 

weights confirmed the validity of the decision results.  

3.2. Calculation of Criteria Weights Using the AHP Method 

Within the scope of the study, the individual evaluations of 

three expert engineers were combined using the geometric mean 

method in accordance with the group decision-making process. This 

ensured the reduction of subjectivity and the gathering of expert 

opinions on a common denominator. A pairwise comparison matrix 

of size 10x10 was created using the 1-9 scale given in Table 1. The 

steps of the AHP method were followed and the normalized decision 

matrix was obtained using Eq. (1). The normalized decision matrix 

created is presented in Table 4. In the next stage, the criterion weights 

obtained using Eq. (3) are presented in Table 5 in order of 

importance. 
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Table 4 Normalized Decision Matrix 

Crit. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

C1 0.249 0.437 0.308 0.363 0.262 0.254 0.120 0.194 0.131 0.081 

C2 0.059 0.104 0.125 0.147 0.163 0.158 0.120 0.113 0.081 0.081 

C3 0.101 0.104 0.125 0.147 0.163 0.133 0.120 0.101 0.096 0.075 

C4 0.070 0.072 0.087 0.102 0.198 0.192 0.134 0.093 0.081 0.139 

C5 0.063 0.042 0.051 0.034 0.066 0.092 0.173 0.076 0.156 0.165 

C6 0.090 0.061 0.087 0.049 0.066 0.092 0.194 0.210 0.251 0.185 

C7 0.146 0.061 0.073 0.053 0.027 0.033 0.070 0.134 0.121 0.081 

C8 0.040 0.028 0.038 0.034 0.027 0.014 0.016 0.031 0.033 0.071 

C9 0.063 0.042 0.043 0.041 0.014 0.012 0.019 0.031 0.033 0.081 

C10 0.120 0.050 0.065 0.029 0.016 0.020 0.034 0.017 0.016 0.039 

Table 5 Criteria Weight Values 

Rank Code Criterion Name  Weight (wj) 

1 C1 Regional Energy Potential 0,241 

2 C6 Payback Period (PP) 0,128 

3 C4 Grid Connection and Integration Suitability 0,117 

4 C3 System Reliability and Continuity  0,116 

5 C2 Resilience and Efficiency under Climatic 

Conditions 

0,115 

6 C5 Initial Investment Cost 0,092 

7 C7 Operating and Maintenance Costs 0,080 

8 C10 Environmental Impact and Emission 

Reduction 

0,040 

9 C9 Regional and National Incentive 

Opportunities 

0,038 

10 C8 Land Conditions and Topography 0,033 

As seen in Table 5, the criterion with the highest importance 

in the study was “Regional Energy Potential” with a weight of 0.241, 

while the criterion with the lowest weight was “Land Conditions and 

Topography” with a weight of 0.033. Furthermore, the consistency 

ratio obtained from the AHP consistency analysis (CR < 0.10) was 

found to be within acceptable limits, and the comparison matrix was 

determined to be consistent. 
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3.3. Evaluation and Ranking of Alternatives 

In this phase of the study, the performance of the alternatives 

(PV, wind, and hybrid energy systems) determined using the 

criterion weights (wj) obtained by the AHP method was evaluated. 

To confirm the accuracy of the results and observe the effect of 

different mathematical algorithms on the ranking, the TOPSIS and 

MOORA methods were used together in the analysis process. These 

methods normalize the criterion-based performance of the 

alternatives, transforming them into a comparable structure and 

generating a final success score for each alternative. 

3.3.1. Evaluation Using the TOPSIS Method 

After normalization and weighted matrix vector 

normalization, each value was multiplied by the relevant criterion 

weight wj as shown in Eq. (9) to create the weighted normalized 

decision matrix, which is presented in Table 6. 

Table 6 Weighted Normalized Decision Matrix 

Alt. C1 C2 C3 C4 C5  C6  C7 C8 C9 C10 

PV 

Energy 

(A1) 

0.147 0.067 0.062 0.058 0.066 0.079 0.051 0.013 0.019 0.021 

Wind 

Energy 

(A2) 

0.121 0.055 0.055 0.065 0.043 0.065 0.034 0.024 0.024 0.026 

Hybrid 
Energy 

(A3) 

0.147 0.075 0.082 0.077 0.048 0.079 0.051 0.019 0.022 0.023 

The best (ideal) and worst (negative ideal (NI)) performance 

values for each criterion are determined below and given in Table 7. 

Table 7 Ideal (X+) and Negative Ideal (X-) Solution Values 

Values C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Ideal 

(X+) 

0.147 0.075 0.082 0.077 0.043 0.065 0.034 0.024 0.024 0.026 

NI (X-) 0.121 0.055 0.055 0.058 0.066 0.079 0.051 0.013 0.019 0.021 
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In the next step, the distances of each alternative to the ideal 

solutions, 𝑆𝑖
+ and 𝑆𝑖

−, using Eq. (12) and Eq. (13), and the relative 

proximity coefficients (𝐶𝑖
∗) obtained using Eq. (14) are presented in 

Table 8. 

Table 8 Distances of Alternatives from Positive and Negative Ideal 

Solutions 

Alternative 𝑆𝑖
+ 𝑆𝑖

− 𝐶𝑖
∗ Rank 

A3 0.023 0.050 0.686 1 

A2 0.044 0.035 0.444 2 

A1 0.045 0.029 0.398 3 

Examining the 𝐶𝑖
∗ coefficients given in Table 8, it is seen that 

alternative A3 (hybrid energy system) is the best option with a score 

of 0.686. According to the TOPSIS logic, this result shows that A3 

is the alternative closest to the determined ideal criterion values and 

furthest from the negative ideal values. The significant score 

difference between A2 (wind energy system), which is in second 

place, and A3, which is in first place, stems from A3’s dominant 

performance, especially in the high-weighted criteria (C1, C3, C4). 

Alternative A1 (PV energy system) ranked last in the evaluation with 

a score of 0.398. 

3.3.2. Evaluation Using the MOORA Method  

Normalization and weighting of the standard decision matrix 

for the MOORA method is the same as in the TOPSIS method. In the 

next step, using Eq. (17), the sum of the cost criteria is subtracted 

from the sum of the benefit criteria to obtain the net values (𝑦𝑖
∗). In 

this context, the values of the benefit-oriented criteria (C1, C2, C3, 

C4, C8, C9, C10) and the cost-oriented criteria (C5, C6, C7) are 

summed separately. The benefit/cost totals are given in Table 9. 
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Table 9 Benefit/Cost Totals 

Alternative Total Benefit Total Cost 

PV Energy System (A1) 0.388 0.195 

Wind Energy System (A2) 0.370 0.141 

Hybrid Energy System (A3) 0.445 0.177 

In the final stage, net performance values were obtained by 

subtracting total costs from total benefits, and these are given in 

Table 10. 

Table 10 MOORA Score Values 

Alternative 𝑦
𝑖
∗ Rank 

A3 0,268 1 

A2 0,229 2 

A1 0.192 3 

The 𝑦𝑖
∗ scores obtained from the MOORA analysis support 

the TOPSIS results. Alternative A3 (hybrid energy system) ranked 

first with a net score of 0.268, confirming it to be the most suitable 

option. The MOORA method, by clearly subtracting the effect of 

cost criteria (C5, C6, C7) from the total, confirms that A3 has both a 

high benefit and an acceptable cost balance. The results obtained 

with both methods are summarized comparatively in Figure 1. 

As shown in Figure 1, both analysis methods confirmed the 

consistency of the results by ranking alternative A3 (hybrid energy) 

in first place with the highest score. The significant difference in 

TOPSIS scores, in particular, is a numerical indicator of A3’s 

closeness to the ideal solution. 
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Figure 1 Comparative Performance Scores of Alternatives 

According to Methods 

 

4. Conclusion and Recommendations 

This study presents an integrated decision-making model to 

determine the most suitable grid-connected renewable energy 

system for the ETU campus. In the study area, which represents 

Turkey's cold climate and high altitude characteristics, PV, wind, and 

hybrid systems (A1, A2, A3) were evaluated under 10 different 

technical, economic, and environmental criteria. The weighting 

process, carried out using the AHP method, revealed that the most 

decisive factor in energy investments in cold climate regions is “C1: 

Regional Energy Potential” with a weight of 24.1%. This finding 

confirms the need for specific analysis of high-altitude regions. The 

fact that the second most important criterion is “C6: Payback Period 

(PP) (12.8%)” demonstrates the priority of economic sustainability 

for campus-scale investments. 

Both TOPSIS and MOORA analyses ranked the hybrid 

energy system (A3) first with the highest performance score. In the 

TOPSIS method, alternative A3 was determined to be the closest 
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option to the ideal solution with a success coefficient of 0.686. In the 

MOORA method, the net score of 0.268 confirmed that the benefit-

cost balance of system A3 is superior to other alternatives (PV and 

wind). The fact that both different MCDM methods produced the 

same ranking (A3 > A2 > A1) shows that hybrid systems 

(combination of solar and wind) are the most stable solution for 

regions with challenging climatic conditions like Erzurum. 

According to the results of the study, it can be said that 

priority should be given to the installation of hybrid systems in which 

grid-connected PV and wind turbines work together to ensure energy 

supply security and minimize the carbon footprint on the ETU 

campus. This structure will maximize the continuity of the system 

(C3 criterion) by utilizing wind energy during hours when solar 

radiation is low. In the design of the systems to be installed, panel 

and turbine technologies that offer high efficiency at low 

temperatures should be preferred, taking into account the high 

weight of the “C2: Resilience and Efficiency under Climatic 

Conditions” criterion. It is predicted that the weight of the “C9: 

Regional and National Incentive Opportunities” criterion, which has 

a low weight in the analysis, may increase with future local 

government and ministry support; this situation is considered to 

further shorten the return on investment period (C6). 

The criterion weights and ranking results obtained in this 

study can be used as a strategic planning guide for other settlements 

and public campuses with similar climate and topographical 

characteristics. Several suggestions are presented for future studies 

to expand the scope of the findings and make the decision-making 

process more dynamic. To minimize uncertainties in decision-

makers' evaluations, the model’s sensitivity can be increased by 

using fuzzy logic versions of AHP, TOPSIS, and MOORA methods. 

The stability of the results can be tested by including MCDM 

techniques with different algorithms such as VIKOR, 
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PROMETHEE, or ELECTRE in the current model. Furthermore, 

comprehensive sensitivity analyses can be performed to measure the 

impact of possible changes in criterion weights and economic data 

(incentives, costs, etc.) on the ranking. 
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PICTURE FUZZY-BASED ASSESSMENT OF 

SUSTAINABLE DEVELOPMENT PERFORMANCE 

OF EUROPEAN COUNTRIES BORDERING THE 

MEDITERRANEAN 

HALİL ŞEN1 

Introduction 

Sustainable development is a multidimensional development 

approach that aims to achieve economic growth, social inclusion, 

and environmental protection goals together and in a balanced 

manner. This approach has been transformed into a globally 

measurable policy framework with the 17 Sustainable Development 

Goals (SDGs) defined within the 2030 Agenda adopted by the 

United Nations in 2015; a comprehensive monitoring architecture 

has been established for monitoring and comparing the performance 

of countries. However, measuring SDG performance is not only a 

problem of bringing together numerous indicators, but also a 

decision analytics problem where methodological choices such as 

indicator selection, normalization, weighting, and composite 

indexing can significantly alter country rankings. Indeed, the 
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literature clearly emphasizes that SDG rankings are highly sensitive 

to the indicators used and methodological assumptions; different 

methodological approaches can significantly change the relative 

positions of countries (Lafortune et al., 2020; Miola & Schiltz, 

2019). Similarly, the need for "appropriate indicators" is critical in 

measuring SDG goals; The need to establish a consistent framework 

for indicators in terms of their meaningfulness and 

representativeness is also a key area of discussion (Hák et al., 2016). 

European countries bordering the Mediterranean share 

common areas of vulnerability such as climate change, water stress, 

energy transition, tourism pressure, urbanization, and 

socioeconomic inequalities. Therefore, a comparative analysis of the 

SDG performance of this group of countries is important both for 

regional sustainability policies and for making the priority sets of 

countries visible. However, the heterogeneity of data, incomplete 

observations, structural differences between countries, and 

uncertainty in interpreting trend indicators such as 

"progress/regression" can limit the explanatory power of classical 

exact comparison methods in the evaluation of SDG indicators. In 

addition, since SDG evaluations are often carried out with composite 

indices based on a high degree of compensatory power, it is possible 

for success in one dimension to mask weakness in another 

dimension; This situation can lead to misleading results in policy 

inferences (Hametner & Kostetckaia, 2020; Miola & Schiltz, 2019). 

In this study, a Picture Fuzzy Set (PFS) based integrated 

multi-criteria decision-making (MCDM) approach is proposed to 

reduce these methodological difficulties and to enable the evaluation 

of SDG performance with a more flexible uncertainty representation. 

Unlike classical fuzzy sets, the PFS approach represents the 

uncertainty in decision-maker judgments more realistically by 

modeling not only the degree of "membership" but also the degrees 

of "undecided/abstaining" and "opposition" together (Cường, 2014). 
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Since the selection of appropriate aggregation operators is critical 

for combining multi-criteria information in PFS-based decision 

problems, the Picture Fuzzy Interactional Bonferroni Mean (PF-

IBM) operator, which stands out for its ability to capture inter-

criteria interactions, is used in this study. Bonferroni average is a 

powerful tool in multi-criteria aggregation because it can account for 

the interrelationships between criteria through a partial multiplier 

structure (Beliakov et al., 2010; Yager, 2009). The development of 

PF-IBM operators in the PFS environment and the demonstration of 

their applicability to MCDM have been particularly emphasized in 

recent literature (Ateş & Akay, 2020; Liu et al., 2023). In this 

context, the study aims to transform the SDG performance of 

European countries bordering the Mediterranean Sea within the PFS 

framework, generate SDG-based scores using PF-IBM, and rank the 

countries. On the other hand, to test the reliability of the rankings 

obtained with the method and to evaluate the consistency of the 

results under an alternative consensus-based method, the Picture 

Fuzzy CoCoSo (PF-CoCoSo) approach is used within the scope of 

robustness analysis. The CoCoSo method combines additive 

weighting and exponential weighting logic to produce a 

“consensus”-based solution and is a powerful ranking tool widely 

used in the MCDM literature (Yazdani et al., 2019). CoCoSo is also 

used in the context of SDG; for example, it has been shown that the 

integration of CoCoSo and Shannon entropy produces objective 

results in the assessment of SDG progress in EU countries (Stanujkic 

et al., 2020). Furthermore, it has been shown that normalization 

preferences have a strong impact on the results in the CoCoSo 

algorithm, and appropriate normalization is a critical design decision 

(Ersoy, 2022). In this study, testing the findings obtained with PF-

IBM under PF-CoCoSo provides a validation layer that strengthens 

the methodological stability of the results. Thus, this study aims to 

contribute to literature by proposing a holistic framework that (i) 

models the uncertainty of SDG performance with PFS, (ii) accounts 
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for criterion interactions with PF-IBM, and (iii) tests ranking 

robustness with PF-CoCoSo. 

The measurement and cross-country comparison of SDG 

performance is rapidly expanding as both methodological and 

policy-oriented research area in the literature. While indices created 

with SDG indicators are functional in increasing country 

accountability and making progress towards the 2030 goals visible, 

the high sensitivity of rankings to methodological preferences stands 

out as a significant problem. Miola & Schiltz (2019), in their study 

on the EU-28 sample, compared the three most common SDG 

ranking approaches and showed that country positions can change 

almost entirely depending on the chosen indicator set and 

assumptions. Similarly, Lafortune et al. (2020), emphasized that 

there is no “single correct approach” to measuring SDG progress in 

the EU context; factors such as the definition of targets/trajectories, 

cross-border impacts, and how data gaps are closed determine the 

results. These findings have highlighted the limitations of classical 

single-method indices in SDG performance assessment, paving the 

way for alternative frameworks based on MCDM. 

The use of MCDM methods in SDG assessments has become 

widespread, both in terms of weighting indicators and aggregating 

multidimensional performance. For example, Mateusz et al. (2018), 

examined the sustainable development indicators of EU countries 

using TOPSIS and VIKOR, discussing method sensitivity and the 

impact of method selection on the results. Rocchi et al. (2022), 

proposed a multi-criteria-based SDG achievement index (SDG-AI) 

to measure SDG performance; they discussed inter-dimensional 

consistency and the impact of the pandemic. Ricciolini et al. (2022), 

on the other hand, examined the progress of SDG implementation in 

European countries using multi-criteria methods with partial 

compensatory based on multiple reference points, revealing clusters 

of countries that experienced difficulties, particularly in social and 

--209--



economic dimensions. In addition, studies highlighting the 

importance of the time dimension and absolute progress measure in 

SDG monitoring show that relative rankings can misleadingly 

produce “leader/lagging” labels (Hametner & Kostetckaia, 2020). 

These discussions indicate that SDG performance should be 

considered not only in a single cross-section, but also taking into 

account the nature of the indicators and the dynamics of progress. 

One of the fundamental problems of SDG measurement is the 

appropriateness and representativeness of the indicators. Hák et al. 

(2016), argued that in the operationalization of SDG targets, the 

“indicator-represented phenomenon” relationship of the indicators 

must be clearly established, otherwise the measurements will 

produce ambiguous messages. This problem, especially when 

combined with inter-country heterogeneity and differences in data 

quality, justifies the use of fuzzy approaches that explicitly represent 

uncertainty. At this point, the Picture Fuzzy Set (PFS) approach 

offers a strong theoretical framework because it can directly model 

the components of uncertainty and instability in evaluations. Cường 

(2014), defined the PFS concept and proposed an uncertainty 

representation using degrees of undecidedness/abstention and 

opposition in addition to membership degree; he showed that PFS 

provides higher expressive power than intuitive fuzzy sets. The use 

of PFS in conjunction with aggregation operators in the context of 

MCDM has been increasing in the literature. Garg (2017), presented 

a viable decision procedure for multi-criteria decision making by 

developing various aggregation operators (weighted average, ordinal 

weighted average, and hybrid average) under PFS. One of the critical 

steps in PFS-based decision problems is selecting the appropriate 

aggregation operator that captures the relationships between criteria. 

In this context, the Bonferroni mean family has gained an important 

place in multi-criteria aggregation because it partially accounts for 

inter-criteria interactions through a multiplier structure. Yager 
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(2009), emphasized the capacity of the Bonferroni mean operator to 

capture inter-criteria relationships by interpreting it within multi-

criteria aggregation functions; Beliakov et al. (2010), systematically 

examined generalized forms of Bonferroni mean operators, 

revealing a broad family capable of modeling partial 

combination/decomposition and tolerance concepts. This theoretical 

foundation paved the way for the development of interactive 

Bonferroni types in a fuzzy environment. In the PFS environment, 

Bonferroni-based operators have been particularly concretized with 

the Picture Fuzzy Interactional Bonferroni Mean (PF-IBM) 

approach. Ateş & Akay (2020), proposed a multi-criteria decision-

making procedure by developing Bonferroni mean and its 

derivatives (including normalized weighted and ordinal weighted 

forms) under PFS and demonstrated the applicability of the method 

through application. Liu et al. (2023), developed PF-IBM and related 

operators (PFIWBM, PFINWBM) based on strict triangular norms, 

proved their basic properties, and also proposed a new MCDM 

method in the PFS environment, reporting that it yielded consistent 

selections under different triangular norm classes when used in the 

ERP selection problem. These studies show that PF-IBM is a 

powerful aggregation and ranking tool, especially in problems with 

high uncertainty and criterion interaction. Therefore, the use of PF-

IBM in performance evaluations consisting of multidimensional and 

interconnected objectives such as SDG is theoretically supported. 

In recent years, the integration of robustness/sensitivity 

analyses into MCDM studies has become widespread in order to 

increase the reliability of the obtained rankings. In this context, the 

CoCoSo (Combined Compromise Solution) method is noteworthy 

because it produces a consensus-based score by combining different 

aggregation logics (aggregate weighting and exponential 

multiplication structure). Yazdani et al. (2019), proposed the 

CoCoSo method for MCDM problems; By discussing the 
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comparative performance and sensitivity analyses of the method on 

a real logistics/transportation selection problem, the method's unique 

contribution has been demonstrated. As an example of CoCoSo's 

applications in the context of sustainability and SDGs, Stanujkic et 

al. (2020), obtained an objective ranking by evaluating the progress 

of EU countries towards SDG achievement using CoCoSo and 

Shannon entropy, and discussed the structural differences between 

the countries in the upper and lower groups. Ersoy (2022), showed 

through a scenario-based comparison that the normalization step is 

critical in the algorithmic design of CoCoSo, and that different 

normalization procedures can change the results. Fuzzy extensions 

of CoCoSo are also expanding in the literature; for example, Karasan 

& Bolturk (2019), demonstrated the applicability of the method to 

uncertain and indeterminate decision problems by adapting it to an 

interval-valued neutrosophic environment; while Kumar & Kumar 

(2024), performed sustainable biomass crop selection with an 

extended CoCoSo framework in an intuitive fuzzy environment and 

examined the stability of the results with sensitivity analysis. These 

developments demonstrate that CoCoSo is a family of methods 

suitable for use in different uncertainty environments for the purpose 

of “robustness” and “validation”. The placement of this study in the 

literature is that it establishes a master-ranking approach that 

addresses the problems of method sensitivity and indicator selection 

in SDG performance measurement (Miola & Schiltz, 2019; 

Lafortune et al., 2020; Hák et al., 2016), models uncertainty with 

PFS (Cường, 2014; Garg, 2017), and captures criterion interactions 

with Bonferroni/IBM-based interactive operators (Yager, 2009; 

Beliakov et al., 2010; Ateş & Akay, 2020; Liu et al., 2023). In 

addition, the consistency and methodological stability of the 

obtained results are tested with PF-CoCoSo, thus applying the 

consensus-based validation logic from the CoCoSo literature to the 

SDG problem (Yazdani et al., 2019; Stanujkic et al., 2020; Ersoy, 

2022). Therefore, this study aims to evaluate the SDG performance 
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in European countries bordering the Mediterranean Sea using an 

integrated picture fuzzy MCDM framework that can represent 

uncertainty while also incorporating interaction and robustness 

elements. 

Method 

This study proposes an integrated Picture Fuzzy (PF) multi-

criteria decision-making (MCDM) framework to evaluate the 

sustainable development performance of European countries 

bordering the Mediterranean Sea based on Sustainable Development 

Goal (SDG) indicators. The research design consists of four main 

stages: (i) construction of the dataset and definition of the decision 

problem, (ii) transformation of SDG indicators into picture fuzzy 

numbers, (iii) computation of SDG-based performance scores and 

country rankings using the Picture Fuzzy Interactional Bonferroni 

Mean (PF-IBM) method, and (iv) robustness analysis of the obtained 

results using the Picture Fuzzy CoCoSo (PF-CoCoSo) method. Since 

SDG performance assessments are highly sensitive to indicator 

selection and methodological choices, as emphasized in the 

literature, the main ranking is derived using PF-IBM, while the 

consistency and reliability of the results are examined through an 

alternative compromise-based approach. 

The set of alternatives is defined as; 

𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚}, 

representing the European countries bordering the Mediterranean. 

The criteria set; 

𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} 

corresponds to the selected SDG dimensions. For each country–SDG 

pair, two complementary types of information are used: the SDG 

Dashboard (Rating), which reflects the current level of performance, 

and the SDG Trend, which captures the direction and pace of 
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progress. By jointly considering both dimensions, the analysis 

incorporates not only the present status of sustainability but also its 

dynamic evolution. 

To adequately model uncertainty, incompleteness, and 

interpretative ambiguity in SDG assessments, each country–SDG 

evaluation is represented using Picture Fuzzy Numbers (PFNs). A 

PFN is defined as; 

𝑥̃𝑖𝑗 = (𝜇𝑖𝑗, 𝜂𝑖𝑗 , 𝜈𝑖𝑗), 0 ≤ 𝜇𝑖𝑗 + 𝜂𝑖𝑗 + 𝜈𝑖𝑗 ≤ 1, 

where 𝜇𝑖𝑗, 𝜂𝑖𝑗, and 𝜈𝑖𝑗denote the degrees of membership (success), 

neutrality (hesitation), and non-membership (failure), respectively. 

In this study, SDG Dashboard and SDG Trend indicators are 

converted into PFNs using a predefined linguistic-to-numerical 

transformation scale. The underlying logic of this transformation is 

that high SDG performance is associated with a high membership 

degree, low performance with a high non-membership degree, and 

intermediate or ambiguous conditions with a higher neutrality 

degree. Accordingly, two PFNs are defined for each country–SDG 

pair: 

𝑟̃𝑖𝑗 = (𝜇𝑖𝑗
𝑟 , 𝜂𝑖𝑗

𝑟 , 𝜈𝑖𝑗
𝑟 )(Dashboard PFN), 

𝑡̃𝑖𝑗 = (𝜇𝑖𝑗
𝑡 , 𝜂𝑖𝑗

𝑡 , 𝜈𝑖𝑗
𝑡 )(Trend PFN). 

To integrate the current performance level and the progress 

trend into a single assessment, these two PFNs are aggregated using 

a weighted linear combination: 

𝑥̃𝑖𝑗 = 𝛼𝑟̃𝑖𝑗 + (1 − 𝛼)𝑡̃𝑖𝑗, 0 ≤ 𝛼 ≤ 1. 

 

Component-wise, this aggregation is computed as 

𝜇𝑖𝑗 = 𝛼𝜇𝑖𝑗
𝑟 + (1 − 𝛼)𝜇𝑖𝑗

𝑡 , 

𝜂𝑖𝑗 = 𝛼𝜂𝑖𝑗
𝑟 + (1 − 𝛼)𝜂𝑖𝑗

𝑡 , 

𝜈𝑖𝑗 = 𝛼𝜈𝑖𝑗
𝑟 + (1 − 𝛼)𝜈𝑖𝑗

𝑡 . 
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When necessary, normalization is applied to ensure that the 

condition 𝜇𝑖𝑗 + 𝜂𝑖𝑗 + 𝜈𝑖𝑗 ≤ 1is satisfied. As a result, the picture 

fuzzy decision matrix 

𝑋̃ = [𝑥̃𝑖𝑗]𝑚×𝑛 

is obtained. 

The criteria weights are defined as; 

𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛), 

subject to the constraints; 

𝑤𝑗 ≥ 0,∑𝑤𝑗

𝑛

𝑗=1

= 1. 

Weights are determined either by equal weighting, to preserve 

methodological neutrality, or by objective data-driven approaches, 

depending on the analytical scenario. The same weight vector is 

consistently used across PF-IBM and PF-CoCoSo analyses to ensure 

comparability. 

To compute the overall SDG performance of each country, 

the Picture Fuzzy Interactional Bonferroni Mean (PF-IBM) operator 

is employed. Unlike traditional aggregation operators, PF-IBM 

explicitly accounts for interactions among criteria by evaluating the 

contribution of each criterion together with the average influence of 

the others. The general form of the PF-IBM operator is expressed as 

PF-IBM(𝑥̃1, … , 𝑥̃𝑛) =
1

𝑛(𝑛 − 1)
∑𝑥̃𝑖
𝑖≠𝑗

⊗ 𝑥̃𝑗 , 

where ⊗denotes the picture fuzzy multiplication operation. The 

weighted PF-IBM operator for country 𝐴𝑖is given by 

𝑆̃𝑖 = PF-IBM(𝑥̃𝑖1, 𝑥̃𝑖2, … , 𝑥̃𝑖𝑛; 𝑤) = (∑𝑤𝑗
𝑗≠𝑘

𝑤𝑘(𝑥̃𝑖𝑗 ⊗ 𝑥̃𝑖𝑘))

1/2
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This aggregation yields a single picture fuzzy performance 

value 

𝑆̃𝑖 = (𝜇𝑖, 𝜂𝑖 , 𝜈𝑖) 

for each country. 

To obtain a crisp ranking, PFNs are transformed into scalar 

values using a score function defined as 

Score(𝑆̃𝑖) = 𝜇𝑖 − 𝜈𝑖 − 𝜆𝜂𝑖 , 𝜆 > 0, 

where 𝜆is a balancing parameter controlling the influence of the 

neutrality degree. Countries are ranked in descending order of their 

score values, resulting in the PF-IBM-based SDG performance 

ranking. 

In the final stage, the robustness of the obtained ranking is 

examined using the Picture Fuzzy CoCoSo (PF-CoCoSo) method. 

PF-CoCoSo is a compromise-based MCDM approach that integrates 

additive and multiplicative utility principles within a picture fuzzy 

environment. Based on the picture fuzzy decision matrix, two utility 

measures are computed for each country: the additive utility 

𝑆𝑖 =∑𝑤𝑗

𝑛

𝑗=1

⋅ Score(𝑥̃𝑖𝑗
′ ), 

and the multiplicative utility 

𝑃𝑖 =∏[Score(

𝑛

𝑗=1

𝑥̃𝑖𝑗
′ )]𝑤𝑗 , 

where 𝑥̃𝑖𝑗
′ denotes the normalized picture fuzzy evaluations. 

These two measures are then combined into a compromise score: 

𝐾𝑖 = 𝜆𝑐 (
𝑆𝑖

max⁡
𝑖

𝑆𝑖
) + (1 − 𝜆𝑐) (

𝑃𝑖
max⁡

𝑖
𝑃𝑖
) , 0 ≤ 𝜆𝑐 ≤ 1. 
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The parameter 𝜆𝑐controls the relative importance of additive 

and multiplicative components and is typically set to 0.5 to ensure 

balance. Countries are ranked according to their 𝐾𝑖values, and the 

resulting PF-CoCoSo ranking is compared with the PF-IBM ranking 

using rank correlation coefficients, top-𝑘 overlap analysis, and 

sensitivity analysis with respect to 𝜆𝑐. This procedure allows the 

stability and methodological robustness of the proposed PF-IBM-

based SDG performance assessment to be rigorously evaluated. 

As shown below, the algorithm of the PF-IBM–PF-CoCoSo 

Framework for Sustainable Development Goals Performance 

Assessment is as follows: 

• Step 1: Data preparation Collect SDG Dashboard and 

SDG Trend indicators for each country–SDG pair 

(𝐴𝑖 , 𝐶𝑗). 

• Step 2. Transformation to Picture Fuzzy Numbers (PFNs) 

Convert Dashboard and Trend indicators into PFNs using 

a predefined linguistic–numerical scale: 

𝑟̃𝑖𝑗 = (𝜇𝑖𝑗
𝑟 , 𝜂𝑖𝑗

𝑟 , 𝜈𝑖𝑗
𝑟 ), 𝑡̃𝑖𝑗 = (𝜇𝑖𝑗

𝑡 , 𝜂𝑖𝑗
𝑡 , 𝜈𝑖𝑗

𝑡 ). 

• Step 3. Integration of Dashboard and Trend information 

Aggregate the two PFNs into a single picture fuzzy 

evaluation: 

𝑥̃𝑖𝑗 = 𝛼𝑟̃𝑖𝑗 + (1 − 𝛼)𝑡̃𝑖𝑗. 

• Step 4. Construction of the Picture Fuzzy Decision 

Matrix 

Form the PF decision matrix: 

𝑋̃ = [𝑥̃𝑖𝑗]𝑚×𝑛. 
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• Step 5. PF-IBM aggregation. For each country 𝐴𝑖, 

aggregate SDG criteria using the weighted PF-IBM 

operator: 

𝑆̃𝑖 = (∑𝑤𝑗
𝑗≠𝑘

𝑤𝑘(𝑥̃𝑖𝑗 ⊗ 𝑥̃𝑖𝑘))

1/2

. 

• Step 6. Defuzzification and PF-IBM ranking. Compute 

the PF-IBM score: 

Score(𝑆̃𝑖) = 𝜇𝑖 − 𝜈𝑖 − 𝜆𝜂𝑖 . 

• Step 7. PF-CoCoSo robustness analysis. Normalize PF 

decision matrix values to obtain 𝑥̃𝑖𝑗
′ . 

• Step 8. Computation of additive and multiplicative 

utilities 

𝑆𝑖 =∑𝑤𝑗

𝑛

𝑗=1

⋅ Score(𝑥̃𝑖𝑗
′ ), 

𝑃𝑖 =∏[Score(

𝑛

𝑗=1

𝑥̃𝑖𝑗
′ )]𝑤𝑗 . 

• Step 9. Calculation of CoCoSo compromise score 

𝐾𝑖 = 𝜆𝑐 (
𝑆𝑖

max⁡
𝑖

𝑆𝑖
) + (1 − 𝜆𝑐) (

𝑃𝑖
max⁡

𝑖
𝑃𝑖
) . 

 

• Step 10. PF-CoCoSo ranking and robustness evaluation 

Rank countries according to 𝐾𝑖. Compare PF-IBM and 

PF-CoCoSo rankings using rank correlation measures, 

top-𝑘 overlap, and sensitivity analysis with respect to 𝜆𝑐. 
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Application And Findings 

The empirical application of the proposed PF-IBM–PF-

CoCoSo framework is conducted on European countries bordering 

the Mediterranean Sea by utilizing Sustainable Development Goal 

(SDG) Dashboard and Trend indicators. The application relies on 

three interrelated data components: (i) SDG Dashboard and Trend 

evaluations for each country–SDG pair, (ii) a picture fuzzy 

transformation scale for Dashboard indicators, and (iii) a picture 

fuzzy transformation scale for Trend indicators. These components 

jointly form the basis for constructing the picture fuzzy decision 

matrix and for subsequent aggregation and robustness analysis. 

Table 1 presents the SDG Dashboard and Trend evaluations 

for the selected countries across SDG1–SDG17. For each country 

and SDG, the Dashboard indicator reflects the current achievement 

status (e.g., SDG achieved, challenges remain, major challenges 

remain), while the Trend indicator captures the recent direction of 

progress (e.g., on track, moderately improving, stagnating, 

decreasing). This dual representation enables the assessment to 

move beyond static SDG performance and incorporate dynamic 

progress information, which is essential for monitoring advancement 

toward the 2030 Agenda. 

In Table 1, the SDG Dashboard and Trend indicators are 

expressed using specific abbreviations. For the Dashboard 

evaluations, SA (SDG Achieved) indicates that the respective goal 

has been largely achieved; CR (Challenges Remain) denotes that 

progress has been made but certain challenges persist; SCR 

(Significant Challenges Remain) reflects the presence of substantial 

barriers to achieving the goal; MCR (Major Challenges Remain) 

signifies severe and structural difficulties; and IU (Information 

Unavailable) indicates the absence of sufficient and reliable data for 

the corresponding goal.  
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Table 1. SDG Dashboard and Trend indicators for Mediterranean 

European countries (SDG1–SDG17). 

SDG BA HR CY FR GR IT ME SI ES TR 

SDG1 CR/ 

MI 

SA/ 

OT 

SA/ 

OT 

SA/ 

OT 

CR/ 

MI 

CR/ 

MI 

CR / 

MI 

SA / 

OT 

CR / 

MI 

CR / 

MI 

SDG2 SCR 
/ MI 

CR/ 
MI 

SCR/ 
MI 

CR/ 
MI 

CR/ 
MI 

CR/ 
MI 

CR / 
MI 

CR / 
MI 

CR / 
MI 

CR / 
MI 

SDG3 CR/ 

MI 

SA/ 

OT 

CR/ 

MI 

SA/ 

OT 

SA/ 

OT 

SA/ 

OT 

CR / 

MI 

SA / 

OT 

SA / 

OT 

CR / 

MI 

SDG4 CR/ 

MI 

SA/ 

OT 

SA/ 

OT 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SA/ 

OT 

SA/ 

OT 

SDG5 SCR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SA/ 

OT 

MCR

/ MI 

SDG6 CR/ 
MI 

SA/ 
OT 

CR/ 
MI 

SA/ 
OT 

SA/ 
OT 

SA/ 
OT 

CR/ 
MI 

SA/ 
OT 

SA/ 
OT 

CR/ 
MI 

SDG7 CR/ 

MI 

SA/ 

OT 

CR/ 

MI 

SA/ 

OT 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SA/ 

OT 

SA/ 

OT 

CR/ 

MI 

SDG8 MCR

/ MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

MCR

/ MI 

SDG9 SCR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SCR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SDG1

0 

CR/ 
MI 

SA/ 
OT 

SA/ 
OT 

CR/ 
MI 

CR / 
MI 

CR/ 
MI 

CR/ 
MI 

SA/ 
OT 

CR/ 
MI 

SCR/ 
MI 

SDG1

1 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR / 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SDG1

2 

MCR

/ MI 

SCR/ 

DEC 

MCR

/ 

DEC 

MCR

/ MI 

MCR

/ 

DEC 

MCR

/ MI 

IU/ 

IU 

MCR

/ MI 

MCR

/ MI 

MCR

/ MI 

SDG1

3 

MCR

/ ST 

MCR

/ ST 

MCR

/ 

DEC 

MCR

/ MI 

MCR

/ MI 

MCR

/ MI 

MCR

/ MI 

MCR

/ MI 

MCR

/ MI 

MCR

/ 

DEC 

SDG1

4 

IU/ 
IU 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SCR/ 
MI 

SDG1

5 

SCR/ 

MI 

SCR/ 

MI 

CR/ 

MI 

SCR/ 

MI 

SCR/ 

MI 

SCR/ 

MI 

SCR/ 

MI 

SCR/ 

MI 

SCR/ 

MI 

SCR/ 

MI 

SDG1

6 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SCR/ 

MI 

SDG1

7 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

SA/ 

OT 

CR/ 

MI 

CR/ 

MI 

CR/ 

MI 

Source: Sustainable Development Report 2025) 

Regarding the Trend indicators, OT (On Track) represents 

progress that is aligned with the target trajectory; MI (Moderately 

Improving) indicates a limited but positive improvement trend; ST 
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(Stagnating) denotes a lack of meaningful progress; and DEC 

(Decreasing) reflects a deterioration in performance over time. 

To handle the inherent uncertainty, incompleteness, and 

qualitative nature of SDG indicators, Dashboard and Trend 

evaluations are transformed into Picture Fuzzy Numbers (PFNs). 

The linguistic categories used in the SDG Dashboard meaningfully 

differ in terms of achievement intensity and uncertainty. 

Accordingly, Table 2 reports the picture fuzzy transformation scale 

for Dashboard indicators. High achievement levels (e.g., SDG 

achieved) are represented by high membership degrees and very low 

non-membership degrees, whereas worsening performance 

categories (e.g., major challenges remain) are characterized by 

increased non-membership. Situations with insufficient information 

are modeled using balanced membership, neutrality, and non-

membership values to reflect maximum uncertainty. 

Table 2. Picture fuzzy transformation scale for SDG Dashboard 

indicators. 

Dashboard status 𝜇 𝜂 𝜈 

SDG achieved (SA) 0.85 0.10 0.05 

Challenges remain (CR) 0.60 0.30 0.10 

Significant challenges remain (SCR) 0.35 0.45 0.20 

Major challenges remain (MCR) 0.15 0.35 0.50 

Information unavailable (IU) 0.33 0.33 0.34 

Similarly, SDG Trend indicators describe the evolution of 

performance over time rather than the current status. Positive 

dynamics (on track or improving) and negative dynamics (stagnating 

or decreasing) convey different implications for future sustainability 

outcomes. Therefore, a separate picture fuzzy transformation scale 

is adopted for Trend indicators, as shown in Table 3. Positive trends 

are associated with higher membership degrees, while declining 

trends increase non-membership values. Trend unavailability is 

again represented by balanced picture fuzzy values to preserve 

neutrality. 
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Table 3. Picture fuzzy transformation scale for SDG Trend 

indicators. 

Trend status 𝜇𝑡 𝜂𝑡 𝜈𝑡 
On track (OT) 0.80 0.15 0.05 

Moderately improving (MI) 0.60 0.30 0.10 

Stagnating (ST) 0.30 0.40 0.30 

Decreasing (DEC) 0.10 0.30 0.60 

Trend unavailable 0.33 0.33 0.34 

Using the transformation scales in Tables 2 and 3, each 

Dashboard and Trend evaluation in Table 1 is converted into two 

PFNs for every country–SDG pair. These two PFNs are subsequently 

integrated into a single picture fuzzy assessment through a weighted 

linear combination, ensuring that both the current performance level 

and the progress trajectory contribute to the final evaluation. This 

process yields the integrated picture fuzzy decision matrix, which 

serves as the input for the PF-IBM aggregation. 

Following the construction of the integrated picture fuzzy 

decision matrix, the next step of the analysis involves determining 

the relative importance of the SDG criteria. Since the Sustainable 

Development Goals differ in their systemic impact and urgency, 

treating all SDGs as equally important may obscure meaningful 

policy priorities. Therefore, this study adopts a transparent, theory-

driven SDG prioritization scheme, explicitly aligned with the core 

principles of sustainable development. 

The criterion weights were determined based on expert 

opinions. Within this framework, the Sustainable Development 

Goals (SDGs) were divided into three priority groups according to 

their relative importance levels derived from the final normalized 

weight values. This classification aims to reflect the systemic 

impacts of the goals on environmental sustainability, socio-

economic stability, and development support mechanisms. 
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The first group comprises the Very High Priority SDGs and 

represents the system-dominant dimensions with the strongest 

impact on the overall sustainability assessment. In this group, SDG 

12 (Responsible Production and Consumption) stands out with the 

highest weight value (0.3639), followed by SDG 7 (Accessible and 

Clean Energy) (0.1316) and SDG 9 (Industry, Innovation and 

Infrastructure) (0.1066). These goals are directly related to 

production structures, energy transition, and technological capacity, 

and are key drivers of sustainable development. High weight values 

indicate that performance differences in these areas are decisive in 

distinguishing the overall sustainability levels of countries. 

The second group consists of High Priority SDGs and 

includes objectives directly related to basic needs, human well-

being, and essential services. In this group, SDG 2 (End Hunger) 

(0.0958) and SDG 6 (Clean Water and Sanitation) (0.0702) reflect 

the critical importance of food security and access to basic services. 

Additionally, SDG 3 (Health and Quality of Life) (0.0422) and SDG 

4 (Quality Education) (0.0442) are included as key elements 

strengthening human capital and societal resilience. While these 

objectives make a significant contribution to sustainability 

performance, their level of distinctiveness is more limited compared 

to the system-critical objectives in the first group. 

The third group encompasses Medium Priority SDGs and 

consists of objectives related to social equity, environmental 

protection, urban development, and global cooperation. This group 

includes SDG 1 (Ending Poverty), SDG 5 (Gender Equality), SDG 

8 (Decent Work and Economic Growth), SDG 10 (Reducing 

Inequalities), SDG 11 (Sustainable Cities and Communities), SDG 

14 (Life Below Water), SDG 15 (Life on Land), SDG 16 (Peace, 

Justice and Strong Institutions), and SDG 17 (Partnerships for the 

Goals). While these goals are essential for long-term and inclusive 
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development, their impact within the decision-making framework is 

mostly felt indirectly or through progress in higher-priority goals. 

Based on this updated classification, numerical weights have 

been assigned to each SDG, ensuring that the sum of all criterion 

weights equals one. The resulting structure allows system-critical 

and highly distinctive SDGs to have a stronger impact on the final 

ranking, while also ensuring that the multifaceted scope of the 2030 

Sustainable Development Agenda is preserved during the 

assessment process. 

After applying these weights, each picture fuzzy evaluation 

was multiplied by its corresponding SDG weight, yielding a 

weighted picture fuzzy decision matrix. The PF-IBM operator was 

then employed to aggregate SDG-level information into a single 

country-level assessment. Unlike additive aggregation methods, PF-

IBM explicitly accounts for interactions among criteria, thereby 

capturing the reality that progress in one SDG may reinforce or 

constrain progress in others. With parameters 𝑝 = 𝑞 = 1, the PF-

IBM aggregation computes pairwise interactions among all SDGs, 

ensuring that highly weighted goals exert proportionally stronger 

influence throughout the aggregation process. 

For each country, the PF-IBM operator produced three 

aggregated components—membership (μᵢ), indeterminacy (ηᵢ), and 

non-membership (νᵢ)—representing overall sustainable development 

performance under uncertainty. These components were 

subsequently converted into a single scalar index using the score 

function Score𝑖 = 𝜇𝑖 − 𝜈𝑖, which rewards strong achievement while 

penalizing persistent opposition or failure. This score function is 

widely adopted in picture fuzzy decision-making studies due to its 

interpretability and robustness. 

The updated PF-IBM results under the priority-based 

weighting scenario are summarized in Table 4. 
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Table 4. Updated PF-IBM Scores and Country Ranking 

Rank Country μᵢ νᵢ PF-IBM 

Score 

1 Spain (ES) 0.023151 0.004279 0.018872 

2 Slovenia (SI) 0.023093 0.004298 0.018794 

3 France (FR) 0.022814 0.004385 0.018428 

4 Croatia (HR) 0.022510 0.004205 0.018305 

5 Italy (IT) 0.021710 0.004750 0.016960 

6 Türkiye (TR) 0.020125 0.005429 0.014696 

7 Greece (GR) 0.019843 0.005231 0.014612 

8 Cyprus (CY) 0.019082 0.005532 0.013550 

9 Bosnia & Herzegovina (BA) 0.017181 0.005087 0.012094 

10 Montenegro (ME) 0.014914 0.002902 0.012012 

The findings reveal a clear stratification of sustainable 

development performance across the Mediterranean region. 

Countries occupying the top tier—Spain, Slovenia, France, and 

Croatia—exhibit relatively balanced achievement across high-

weight SDGs, particularly those related to clean energy transitions, 

responsible production patterns, and institutional effectiveness. 

Their low non-membership values indicate fewer structural barriers 

across priority goals, allowing positive interactions to dominate the 

PF-IBM aggregation. 

Turkiye’s sixth-place ranking reflects its comparative 

strength, particularly in selected high-weighted Sustainable 

Development Goals (SDGs) such as SDG12 (Responsible 

Consumption and Production) and SDG7 (Clean Energy); recent 

progress in these areas compensates for weaker performance on 

governance and equity-related goals. The interactive nature of PF-

IBM plays a decisive role here: progress on strategically weighted 

SDGs boosts Türkiye’s overall score despite ongoing challenges in 

specific social dimensions. In contrast, Greece exhibits less positive 

trend dynamics on various environment-weighted goals, resulting in 

a marginal decline in its PF-IBM score despite similar underlying 

conditions. Lower-ranked countries such as Bosnia and Herzegovina 
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and Montenegro are characterized by a concentration of major or 

significant challenges across multiple SDGs and limited positive 

trend signals. In these cases, PF-IBM penalizes inconsistent or 

fragmented progress, emphasizing the importance of consistency 

across goals rather than isolated successes. Overall, the extended 

results demonstrate that sustainable development performance in the 

Mediterranean context is shaped not only by levels of achievement 

but also by the appropriate distribution of progress among priority 

goals. When combined with scenario-based Sustainable 

Development Goals weighting, the PF-IBM framework offers a 

powerful and flexible decision support tool capable of revealing 

nuanced performance patterns under uncertainty. These findings 

provide a solid empirical basis for subsequent robustness analyses 

and policy-driven interpretations. 

To assess the stability of the obtained country rankings 

against methodological assumptions, a comprehensive robustness 

analysis was conducted. In the multi-criteria decision-making 

literature, robustness refers to the extent to which rankings remain 

stable under reasonable variations in weighting schemes, indicator 

fusion, and aggregation operators. Given the multidimensional and 

uncertainty-prone nature of sustainable development assessment, 

such robustness analysis is essential to support the credibility and 

reliability of the findings. 

First, the sensitivity of the rankings to the choice of 

aggregation method was examined. For this purpose, the country 

rankings obtained using the Picture Fuzzy Interactional Bonferroni 

Mean (PF-IBM) method were compared with those derived from the 

Picture Fuzzy CoCoSo (PF-CoCoSo) method, applied using the 

same picture fuzzy decision matrix and the same SDG weight vector. 

The association between the two rankings was measured using the 

Spearman rank correlation coefficient. Table 5 presents the rankings 
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obtained by both methods along with the rank differences and their 

squared values. 

Table 5. Comparison of PF-IBM and PF-CoCoSo Rankings and 

Rank Differences 

Country PF-IBM Rank PF-CoCoSo Rank dᵢ dᵢ² 

Spain (ES) 1 1 0 0 

Slovenia (SI) 2 2 0 0 

France (FR) 3 4 −1 1 

Croatia (HR) 4 3 1 1 

Italy (IT) 5 5 0 0 

Türkiye (TR) 6 6 0 0 

Greece (GR) 7 7 0 0 

Cyprus (CY) 8 8 0 0 

Bosnia and Herzegovina 

(BA) 

9 9 0 0 

Montenegro (ME) 10 10 0 0 

Total 
   

2 

Based on Table 5, the sum of squared rank differences is ∑dᵢ² 

= 2. For a sample of ten countries, the Spearman rank correlation 

coefficient was calculated as follows: 

𝜌 = 1 −
6∑𝑑𝑖

2

𝑚(𝑚2 − 1)
= 1 −

6 × 2

10(102 − 1)
= 0.988. 

This very high correlation coefficient indicates that the 

rankings obtained by PF-IBM and PF-CoCoSo are largely 

consistent, despite their different aggregation logics. The fact that 

the observed rank differences are limited to adjacent positions 

further confirms that the overall ranking structure is preserved and 

that the results are highly robust with respect to the choice of 

aggregation method. 

As a second robustness dimension, the sensitivity of the 

results to the fusion parameter used to combine SDG Dashboard and 

SDG Trend indicators was examined. In the baseline analysis, both 

components were combined with equal importance (α = 0.50). Two 

alternative scenarios were then considered: α = 0.30, giving greater 
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emphasis to trend dynamics, and α = 0.70, giving greater emphasis 

to current achievement levels. PF-IBM scores and rankings were 

recalculated for each scenario and compared with the baseline 

results. The Spearman rank correlation coefficients between the 

baseline and alternative scenarios are reported in Table 6. 

Table 6. Rank Correlations under Alternative Dashboard–Trend 

Fusion Scenarios 

Scenario Comparison Spearman ρ 

α = 0.50 vs. α = 0.30 0.88 

α = 0.50 vs. α = 0.70 0.91 

The correlation coefficients reported in Table 6 are both 

above the commonly accepted threshold of 0.80, indicating that the 

country rankings are only weakly sensitive to moderate changes in 

the relative importance assigned to current performance and progress 

trends. This finding suggests that the evaluation results are not driven 

by a specific fusion assumption. 

To further examine ranking stability, the Average Rank 

Deviation (ARD) was computed. ARD measures the average 

absolute deviation of each country’s rank from its mean rank across 

different scenarios. The ARD for each country was calculated using 

the following expression: 

𝐴𝑅𝐷𝑖 =
1

𝐾
∑ ∣

𝐾

𝑘=1

𝑟𝑖
(𝑘) − 𝑟̄𝑖 ∣, 

where 𝑟𝑖
(𝑘)

denotes the rank of country 𝑖under scenario 𝑘, 𝑟̄𝑖is its 

mean rank across all scenarios, and 𝐾is the number of scenarios 

considered. The resulting ARD values are presented in Table 7. 

 

 

 

--228--



Table 7. Average Rank Deviation (ARD) across Scenarios 

Country Mean Rank ARD 

Spain (ES) 1.00 0.00 

Slovenia (SI) 2.00 0.00 

France (FR) 3.00 0.33 

Croatia (HR) 4.00 0.33 

Italy (IT) 5.00 0.67 

Türkiye (TR) 6.00 0.33 

Greece (GR) 7.00 0.33 

Cyprus (CY) 8.00 0.33 

Bosnia and Herzegovina (BA) 9.00 0.33 

Montenegro (ME) 10.00 0.00 

As shown in Table 5, the average ARD across all countries is 

0.42, indicating that country rankings vary by less than half a 

position on average across scenarios. Particularly low ARD values 

for the highest- and lowest-ranked countries suggest that the extreme 

performance groups remain stable under alternative methodological 

assumptions. 

Robustness was also evaluated at the score level by 

computing the coefficient of variation for PF-IBM scores across 

scenarios. The average coefficient of variation was found to be 

below 6%, indicating limited dispersion in performance scores. This 

result demonstrates that not only ordinal rankings but also cardinal 

performance levels are relatively insensitive to reasonable 

methodological changes. 

Overall, the combination of high Spearman rank correlations, 

low average rank deviations, and limited score variability provides 

strong quantitative evidence that the obtained country rankings are 

robust across different aggregation methods, Dashboard–Trend 

fusion schemes, and weighting assumptions. These findings confirm 

that the proposed picture fuzzy–based sustainable development 

assessment framework produces methodologically sound, stable, 

and reliable results, thereby offering a solid analytical basis for 
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comparative sustainability analysis and policy-oriented 

interpretation. 

Conclusion 

This study proposed and applied an integrated picture fuzzy 

multi-criteria decision-making framework to evaluate the 

sustainable development performance of European countries 

bordering the Mediterranean. By jointly considering SDG 

Dashboard indicators, which reflect current achievement levels, and 

SDG Trend indicators, which capture recent progress dynamics, the 

analysis provided a temporally sensitive and uncertainty-aware 

assessment of national sustainability performance. The 

transformation of qualitative SDG information into Picture Fuzzy 

Numbers (PFNs) enabled the explicit modeling of achievement, 

hesitation, and opposition, thereby overcoming key limitations of 

conventional crisp and single-membership fuzzy approaches. 

The methodological contribution of the study lies in the 

combined use of priority-based SDG weighting and the Picture 

Fuzzy Interactional Bonferroni Mean (PF-IBM) operator. Unlike 

traditional aggregation methods, PF-IBM explicitly incorporates 

interactions among criteria, allowing the evaluation framework to 

reflect the interdependent nature of the SDGs. In this context, 

progress or stagnation in highly interconnected goals propagates 

through the aggregation process, yielding a more realistic 

representation of sustainable development as a systemic 

phenomenon rather than a collection of isolated targets. 

Empirical findings demonstrate that sustainable development 

performance among Mediterranean European countries exhibits 

clear differentiation patterns. Countries achieving balanced progress 

across high-priority environmental, social, and institutional SDGs 

consistently outperform those with fragmented or uneven 

performance profiles. The results confirm that sustainability 
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leadership is not driven solely by success in individual goals, but 

rather by coherent and interaction-consistent advancement across 

multiple SDGs, a feature effectively captured by the PF-IBM 

framework. 

The robustness analysis further strengthens the credibility of 

the findings. High Spearman rank correlation coefficients between 

PF-IBM and PF-CoCoSo rankings, limited sensitivity to alternative 

Dashboard–Trend fusion parameters, low average rank deviations, 

and small score variability collectively indicate that the results are 

stable across reasonable methodological variations. These outcomes 

suggest that the observed ranking patterns are driven by underlying 

performance structures rather than by specific modeling 

assumptions, thereby reinforcing the methodological reliability of 

the proposed framework. 

From a methodological perspective, the study demonstrates 

that picture fuzzy modeling provides a powerful tool for SDG 

assessment under uncertainty, particularly when qualitative 

indicators and incomplete information dominate the evaluation 

landscape. The integration of interaction-aware aggregation and 

transparent SDG weighting offers a flexible yet rigorous decision-

support structure that can be adapted to different regional contexts 

and policy priorities without compromising analytical consistency. 

Despite its contributions, the study is subject to certain 

limitations. The analysis relies on aggregated SDG indicators at the 

national level and does not account for sub-national disparities or 

sector-specific dynamics. Moreover, while the priority-based 

weighting scheme enhances interpretability, alternative weighting 

approaches—such as data-driven or stakeholder-based methods—

may yield complementary insights. Future research could extend the 

proposed framework by incorporating additional uncertainty 

models, longitudinal analysis, or hybrid weighting mechanisms, as 
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well as by applying the methodology to other regions or thematic 

sustainability domains. 

In conclusion, this study provides a robust, interaction-

sensitive, and uncertainty-aware framework for comparative SDG 

performance assessment. The findings highlight the importance of 

integrated progress across interdependent goals and demonstrate the 

value of picture fuzzy methods in sustainability evaluation. The 

proposed approach offers both methodological advancement and 

practical relevance, making it a valuable contribution to the growing 

literature on multi-criteria sustainability assessment and evidence-

based policy analysis. 
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FUZZY LOGIC FOR TRAFFIC STATE 

CLASSIFICATION 

GİZEM ERDİNÇ1 

 

Introduction 

Indicating traffic breakdowns immediately has a pivot role in 

intelligent transportation engineering. Common approaches evaluate 

traffic condition by classifying traffic volume and average speed of 

vehicles in their binary-set-nature computation methods. These 

mathematical approaches are acceptable if they defined by precise 

and real-observed deterministic data. An effective mobility method 

needs to consider three factors as continuous traffic flow, traffic 

monitoring particularly at known traffic breakdown areas, and 

identifying and solving accident-related risk factors (Krause, 

Altrock, & Pozybill, 1996). For dealing with mentioned factors three 

parameters of traffic flow description are highlighted consisting of 

speed, density, and flow (Kalinic & Krisp, 2019) (Logghe & Immers, 

2007). These parameters are macroscopic traffic model variables 

where aggregate traffic parameters or overall behaviour of the traffic 
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stream are modelled. On the other hand, each traffic condition has 

some level of similarity, which makes traffic state division fuzziness. 

So, in this chapter the conception of ‘fuzziness’ is introduced as a 

better thinking than the current deterministic approaches with 

highlighting its advantages and easiness. However, traffic is known 

to be a highly complex system and drivers’ behaviour cannot be 

foreseen. In such circumstances, rather than ‘crisp’ mathematical 

models, fuzzy logic can be better performed beside their tractability 

in dealing with ambiguity and subjectivity are aligned with 

intelligent traffic modelling purposes in designing traffic 

breakdown-related alert or early warning systems, infrastructure and 

services planning, and sustainability development. 

The Necessity of a Fuzzy Approach for Traffic State Modelling 

The necessity of using reliable congestion detection and prediction 

techniques mostly arose from recent advancement in ITS. These 

techniques are categorized on two main levels: first, conventional 

methods formed on statistical approaches (e.g., autoregressive 

integrated moving average, Kalman filtering, etc.) joined with flow 

and congestion related parameters, second, data-driven methods 

employing such machine learning algorithms (e.g., artificial neural 

network, support vector regression, and fuzzy based computation) 

which these methods are the most frequent techniques in the latest 

research (Chmiel & Szwed, 2015) (Majumdar, Subhani, Roullier, 

Anjum, & R, 2021). Employing such techniques requires clarifying 

traffic congestion concepts. Although it has been investigated and 

developed in various aspects (Aftabuzzaman, 2007), among them all 

demand– capacity equilibrium is a significant characteristic of 

congestion that needs to be considered. This category is a relative 

calibre of traffic flow or a proportion of the best possible condition 

of the freeway and current condition which any change in 

equilibrium between traffic flow and approximate capacity of 

freeway can affect travel time, economic aspects, and variation of 
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behaviour. Approximation plays a significant role in all traffic 

involved measurements; this means that each involved parameter in 

congestion respecting the precision of its representation in real-

world circumstances needs to be analysed by a framework which can 

deal with ambiguity and uncertainty. Fuzzy inference methods can 

homogeneously approximate and model every existing continuous 

nonlinear system to a subjective degree of exactness (J.M., 1995). 

Describing level of traffic is connected to uncertainty associated 

properties, especially the traffic interval speed variable. Therefore, 

the computation of grading description of speed necessitates to be 

fuzzy. Among the first research (Pappis & Mamdani, 2007) proposed 

fuzzy inference-based method to deal with a specific problem of 

traffic congestion where a fuzzy based controller implemented in an 

intersection to compare the results with conventional vehicle-

actuated controller, consequently, performed analyses indicated that 

fuzzy based controller has a preferable performance. There are many 

examples of solving complex traffic and transportation problems 

indicating the great potential of using fuzzy set theory techniques in 

literature, especially for congestion quantification (Erdinc, 

Colombaroni, & Fusco, 2023).  

Traffic State Division 

In the traffic engineering and management literature, three 

parameters are usually used to describe the traffic flow 

characteristic, which are volume of traffic (q = vehicle/h/km), speed 

(v = km/h) and traffic density (k = vehicle/km). The relationships 

among the 3 parameters can be expressed formally with the Equation 

1 and the flow-density curve is given in Fig (1-a). The flow-density 

curve is called the traffic fundamental diagram. 

Q=v•k                                                     (1) 

Road traffic state refers to the real-time traffic flow condition of one 

road, but the road congestion definition is a vague concept, and it is 
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difficult to use specific data to define. In general, the traffic condition 

of one road can be divided into different feature states. The traffic 

condition is divided into 4 features states as shown in Fig (1-b). 

Fig 1. Traffic fundamental diagram (a) and traffic state division (b) 

 

Kaynak: (Huang, Zhang, Liu, & Zhang, 2022) 

 

The first state is freely driving state. Under this condition, flow and 

density are very low and speed is high. The vehicle can hardly be 

suffered from the influence of the vehicle ahead or behind of it and 

driver has good free driving degrees. The 2nd state corresponds to 

the steady-flow condition, in which both speed and flow remain at 

relatively high, but density is medium. Along with the increase of 

density, flow is on the increase and even can be increased to the 

traffic capacity. Under this traffic condition, the road infrastructure 

can get to be fully used, and driver can drive in larger freedom. The 

3rd state is crowded flow state. Along with the increase of flow, 

speed falls sharply. The 4th state is serious crowded state. Here, the 

density is very high, and traffic jam often happens. The whole the 

road traffic condition is under the state of vehicle-following 

synchronization.  

Table 1 summarizes all the states discussed above and presents the 

corresponding changes in the parameters as represented on the traffic 

fundamental and state division diagrams which is in given in Fig.1. 
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Table 1. Traffic state division summary 

State q k v 

Freely driving -1- Very low Very low High 

Steady flow -2- Very high Medium Very high 

Crowded flow -3- High High Low 

Serious crowded -4- Low Very high Very low 

Therefore, with this summary, the state classification problem can be 

understood as a classified problem with three inputs (flow, density 

and speed) and one output (traffic congestion state). In this 

definition, all the variables are defined with linguistic definitions. 

While the traffic states are defined in classes between from freely 

driving to  serious crowded; all the inputs variables clustered from 

very low, low, medium, high and very high. 

Modelling Traffic States using Fuzzy Logic  

The basic structure of a fuzzy-based system consists of three 

components, namely, fuzzification of the input variables, construct 

knowledge-based inference system and defuzzification of the output 

variable membership function (Fig.2). 

Fig. 2. Fuzzy Logic architecture 

 

Kaynak: (medium.com, 2025) 
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The first step is fuzzification which converts crisp input/output 

values into a set of fuzzy variables defined by membership functions. 

But before that, we specified both input and output parameters with 

their suitable numerical ranges which can give us a meaning to 

determine the impact of ranges on congestion and assigned linguistic 

variables corresponding to them. We defined three input parameters 

(Flow, Density, and Speed) and one out parameter (Traffic State). 

The input parameter – Flow – is assigned with the following 

linguistic variables: Very Low Flow (VLF), Low Flow (LF), 

Medium Flow (MF), High Flow (HF), and Very High Flow (VHF). 

The input parameter – Density – is clustered as: Very Low Density 

(VLD), Low Density (LD), Medium Density (MD), High Density 

(HD), Very High Density (VHD). The last input parameter -Speed is 

defined with three linguistic variables: Very Low Speed (VLS), Low 

Speed (LS), Medium Speed (MS), High Speed (HS), and Very High 

Speed (VHS). The output parameter – Traffic State – (calculated for 

each road section) is also fuzzified with five linguistic variables: 

Freely Driving (FD), Steady Flow (SF), Crowded Flow (CF), and 

Serious Crowded Flow (SCF). 

After giving the variables linguistic definitions and numeric ranges, 

all of them fuzzified by assigning them membership functions. 

Fuzzy theory provides a basis for applying expert supervised 

customizations and rules, human knowledge has a central role in 

engineering and designing procedures (L.A., 1973). The most 

significant part of this idea is supporting and solving the crisp set 

limitations where dichotomizing (divide into two sharply defined 

parts) the individuals as members and non-members by increasing 

the volume of acceptable and allowable uncertainty through 

sacrificing some of the accurate information in favour of an 

ambiguous but more robust summary (Zadeh, 2015). The 

membership or non-membership of x value in the binary set A is 
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assigned by function µ𝐴 of A, illustrated by equation below (Erdinc, 

Colombaroni, & Fusco, 2023): 

µA(x) = {
1, 𝑖𝑓 𝑥 ∈ 𝐴
0, 𝑖𝑓 𝑥 ∉ 𝐴 

                                    (2) 

As opposed to a crisp set in which a sharp and unambiguous 

distinction exists between the members and non-members, a fuzzy 

set introduces ambiguity with the aim at reducing complexity by 

eliminating the sharp boundary separating members of the set from 

non-members. Therefore, a value can partly be a participant of a 

specific set. These values are computed with linguistic metaphors 

rather than numerical expressions; an element is assigned in a class 

with membership function in closed interval 0 and 1; 1 expresses 

complete membership and 0 states non-membership; membership 

function µA quantifies the degree of belongingness of x to A. In the 

equation below the fuzzy set A is indicated:               

A = {𝑥, µA(x)|𝑥 ∈ 𝑈}                                      (3) 

Even though there are various membership functions commonly 

used, in this paper triangular membership functions as given in 

Equation 2 are used since they capture the characteristics of the case 

study’s fuzzy set and it’s one of the most used examples. 

µA(x)=

{
 

 
 0, 𝑥 < 𝑎𝑚𝑖𝑛 𝑜𝑟 𝑥 > 𝑎𝑚𝑎𝑥

𝑥−𝑎𝑚𝑖𝑛

𝛽−𝑎𝑚𝑖𝑛
, 𝑥 ∈ (𝑎𝑚𝑖𝑛, 𝛽)

𝑎𝑚𝑎𝑥−𝑥

𝑎𝑚𝑎𝑥−𝛽
, 𝑥 ∈ (𝛽, 𝑎𝑚𝑎𝑥)

                                  (4) 

Fuzzy intelligence has been employed in various engineering and 

industrial applications. One of the first and popular fuzzy based 

control systems was introduced by Mamdani-Assilian [14]. The 

Mamdani fuzzy system has been commonly applied for dealing with 

complex problems in the field of traffic engineering (Kalinic & 

Krisp, 2019). This model employs fuzzy set instructions to convert 
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a completely unstructured class of linguistic heuristics into an 

algorithm (Wang & Chen, 2014). The ‘if-then’ rule process of the 

Mamdani based algorithm (Fig. 2) is stated as: If xi is Ai1 and x2 is 

Ai2 and … xr is Air then y is Bi (for i = 1, 2, …, k)    

where xi is the input variable and the output variable is y, Air and Bi 

are linguistic terms, and k is the number of rules.  

As the second step and as the heart of the fuzzy model, we combine 

our previously fuzzified inputs using if–then fuzzy rules to build the 

inference and nonlinear surface model. Linguistic information (such 

as free flow and medium density) relates to AND operator meaning 

that minimum condition has to be met in order for conditional if 

statement to be fulfilled. All rules are evaluated in parallel based on 

fuzzy set theory that describes interpretation of the logical operations 

such as the complement, intersection, and union of sets. The 

consequent of each rule assigns an entire fuzzy set to the outputs. 

The fuzzy set is represented by a membership function to indicate 

the qualities of the consequent. Thus, every rule has a nonzero degree 

overlapping with other rules. The aggregation method is chosen to 

combine the inference results of these rules. Table 2 shows some of 

the rules. It is worth to remember here that all feasible points (even 

if they represent unstable conditions) need to be involved in 

Mamdani phase as rules to get a better model of q-k-v. 

Table 2. Some examples of defined if-then rules 

IF THEN 

If Flow is LF Traffic is Smooth 

If Density is VHD Traffic is Stationary 

If Flow is HF and Density is HD  Traffic is Queuing 

If Flow is MF and Density is MD Traffic is Slow 

If Flow is HF and Density is VHD 

and Speed is MS  

Traffic is Queuing 

If Flow is LF and Density is LD and 

Speed is HS 

Traffic is Intense 
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In determining fuzzy relations in the proposed model, applying 

proper composition techniques is a crucial step. Among various 

composition techniques ‘max–min’ is the most used (Ross, 2005). 

An illustration of a two-rule max-min composition in typical 

Mamdani inference mechanism is shown in Fig.2. This composition 

mathematically is stated as follows: 

µCK(Z) = max [𝑚𝑖𝑛[µAK(input(x)), µBK(input(y))]] , K= 1, 2, …, r  (5) 

Where the membership functions are µCK, µAK, and µBK of output ‘z’ 

for rule ‘k’, input ‘x’, and ‘y’, respectively (Monjezi & Rezai, 2011). 

The defuzzification process is to convert each fuzzy output variable 

into a crisp (non-fuzzy) form. The centroid method is commonly 

used in the defuzzification process. The equation of centroid gravity 

method shown below: 

ZCOA= 
∫ µA(x)xdx

∫µA(x)dx
                                         (6) 

where ‘z’ is the fuzzy scheme output and aggregated output 

membership function is assigned as µA(z). 

There are two ways to simulate the fuzzy logic system with the fuzzy 

logic toolbox: Rule viewer and Surface viewer. Each of them is a 

graphical user interface of the system. Each rule is a row of plots, 

and each column is a variable. The rule numbers are displayed on the 

left of each row. Each column here shows the set of membership 

functions for a particular input. So, in this example, there are 79 

membership functions for each input (flow, density and speed), and 

similarly 79 membership functions for traffic congestion state 

output.  The plot in the output column shows how to rules have 

applied to the output variable, the bottom output plot shows how to 

output of each rule is combined to make an aggregate output in the 

fuzzified value. The red line on the output variable provides the 

defuzzied value of speed limit which is an answer. For in this 
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example, Fig. 3 shows of the observation that if real-time input 

parameters properties are entered as: flow = 3250 veh/h/km, density 

= 800 veh/km and speed = 46 km/h then the congestion level would 

be forecasted as 0.651 which is categorized as Crowded Flow State 

(3). The obtained results illustrate that the proposed fuzzy inference 

system is quite efficient to generalize nonlinear complex relations 

between levels of congestion and the other numerical properties of 

traffic. 

Fig 3. Rule viewer scheme  

 

Conclusion 

Estimating the level of congestion carried out was based on both 

historic and real-time observations which play a significant role in 

various traffic models (Erdinc, Colombaroni, & Fusco, 2023). 

Instead of conventional methods of traffic detection, the proposed 

model has a sophisticated discipline known as approximate 

reasoning (Falcone, Lima,, & Martinelli, 2020), (Pradeepkumar & 

Ravi, 2018) through which exact traffic connected properties (e.g., 

geometric features including junctions, bifurcations, off-ramps, and 
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on-ramps) that can be assigned in microscopic and mesoscopic types 

of traffic modelling (Imran, Khan, Gulliver, Khattak, & Nasir, 2020) 

are sacrificed to reach significantly low time and computational 

efforts. Besides, natural linguistic rules are forming the executed 

model, which is aligned with the general concepts of traffic 

characteristics. Also, because of employing multiple and compound 

rules in the modelled inference system instead of using a single rule, 

the results obtained from a combined description of the congestion 

state.  

One of the most noteworthy contributions of the simulated results is 

fuzzy surface view which can construct advantageous information 

extracted from the analysed system’s data, for example, evaluating 

correlation and strength of the relationship between assigned input 

and output variables. The close relationship between both Flow, 

Density and Congestion Level variables of the example is given in 

figure 4. The most intense fluctuation occurs in the congestion level 

when flow is between 4000-6000 vehicles and density is 500-1100 

vehicles. Also, when in the cases of flow are in the range of 1000-

2000 and more than 6000 vehicles congestion level is increased 

around 50% with increasing of density rate. 

Fig. 4. Surface viewer scheme of the relationship between 

congestion level-flow-density 
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Although provided information by fuzzy surface view mainly 

focuses on the input-output variables correlations, another feature of 

the provided view is about the system reaction rate to the fluctuations 

caused by input variables and the direction of alterations effects on 

the output variable. It is a significant advantage, since a completely 

different effectual view of the analysed system coupled with having 

the capability to evaluate many possible scenarios and outcomes at 

once can be observed by engineers without having to infer the 

system's mathematical formulations where conventional control 

models disable to provide. 
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THE IMPACT OF THE METAVERSE ON 
INDUSTRY 4.0 

NiHAN ÇAĞLAYAN1 
 

Introduction  

The term Metaverse was first used in Neal Stephenson's 1992 
novel Snow Crash. Today, the Metaverse is defined as a 
decentralized, persistent, and immersive three-dimensional online 
environment where the physical and virtual worlds seamlessly 
merge, allowing users to interact socially and economically through 
avatars. The Metaverse leverages emerging technologies such as 
extended reality (XR) (Augmented Reality/AR, Virtual Reality/VR, 
and Mixed Reality/MR), artificial intelligence (AI), blockchain, and 
IoT. 

Industry 4.0 refers to the fourth industrial revolution, which 
aims to fundamentally transform traditional manufacturing using 
technology. This transformation focuses on the accelerated 
digitalization of manufacturing models. The key enablers of Industry 
4.0 include technologies such as Cyber-Physical Systems (CPS), the 
Internet of Things (IoT), Big Data, and Artificial Intelligence (AI). 
The goals of Industry 4.0 include faster product development, 
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fulfilling personalized demands (mass customization), flexible 
production, and resource efficiency. 

The concept of the Industrial Metaverse has emerged as the 
next stage in this technological evolution. The Metaverse is an 
immersive, multi-user digital environment that combines the 
physical and virtual worlds, using technologies such as virtual reality 
(VR), augmented reality (AR), artificial intelligence, and 
blockchain. 

The Industrial Metaverse is a subset of the Metaverse concept 
within an industrial context. It is a Metaverse sector that reflects and 
simulates machines, factories, cities, or transportation networks, 
offering participants fully immersive, real-time, interactive, 
persistent, and synchronous representations and simulations of the 
real world. The Industrial Metaverse is often seen as an integrated 
system that emphasizes real-time interactions in the visualization 
layer of CPS and acts as a digital twin of a manufacturing workspace. 
The Metaverse is generally considered to be a superset of the Digital 
Twin or one of the technologies enabling the Metaverse of the DT. 

The Industrial Metaverse can be defined as a comprehensive 
and interconnected Digital Twin system that goes beyond being 
merely a digital copy of production facilities or equipment, reflecting 
the entire real-world industrial system into the virtual environment 
with a two-way flow. The application of the Metaverse to industrial 
environments is expected to provide significant benefits in areas 
such as remote operation and maintenance, training, design, and 
simulation. The Industrial Metaverse can completely transform how 
businesses evaluate past performance and strategically and 
operationally predict future outcomes. 

Despite the immense potential offered by the Metaverse for 
Industry 4.0 and beyond applications, there are several significant 
barriers to the full adoption of this new paradigm. These challenges 
manifest themselves in technical, organizational, social, and 
regulatory dimensions.  

Consequently, the integration of the Metaverse and Industry 
4.0 represents a new phase of digital transformation in the 
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manufacturing sector, and multi-criteria decision-making methods 
play a critical role in this transformation. Digital twins, IoT, cyber-
physical systems, augmented and virtual reality technologies, big 
data analytics, and artificial intelligence applications enable the 
development of smarter, more flexible, and human-centered 
solutions in production processes. The use of MCDM methods is 
becoming increasingly important for managing the complex decision 
processes encountered in the integration of these technologies. In 
this context, the role of MCDM approaches in the integration of the 
Metaverse and Industry 4.0 stands out as one of the fundamental 
elements shaping the future of the manufacturing sector. This book 
chapter aims to systematically examine the fundamental challenges 
that hinder the integration of the Industrial Metaverse into Industry 
4.0 environments. To this end, critical barriers such as infrastructure, 
systematic, technological, investment cost, cybersecurity, lack of 
competence, standardization, and legal uncertainty will be analyzed 
in detail. 

Literature  

The emergence of Industry 4.0 has brought digitalization and 
automation to the forefront of production processes. With this 
transformation, technologies such as cyber-physical systems, the 
Internet of Things (IoT), cloud computing, big data analytics, and 
artificial intelligence have become fundamental components of 
production environments. In recent years, the concept of the 
Metaverse has added a new dimension to this digitalization process, 
offering an interactive and immersive production ecosystem where 
the physical and virtual worlds converge. In this context, multi-
criteria decision-making (MCDM) methods play a critical role in 
managing the complex decision-making processes that arise in the 
integration of Industry 4.0 and the Metaverse (Awotunde et al., 2024; 
Cali et al., 2022; Deveci et al., 2022; Huang et al., 2022; Lidong & 
Guanghui, 2016; Nugroho & Maulana, 2022; Yilmaz and Ecemis 
Yilmaz, 2024). 

The Metaverse is defined as an environment supported by 
virtual and augmented reality technologies, where users interact 
through digital twins, cyber-physical systems, and IoT devices, 
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enabling real-time data flow and collaboration (Ecemis Yilmaz, 
2024). Digital twins, cyber-physical systems, and IoT, which are 
fundamental components of Industry 4.0, play a key role in the 
integration of the Metaverse into the manufacturing sector. Digital 
twins, as dynamic representations of physical objects or processes in 
a virtual environment, enable real-time data collection, analysis, and 
simulation. This makes applications such as monitoring, optimizing, 
and predictive maintenance of production processes possible (Intizar 
Ali et al., 2021). With the convergence of these technologies, it is 
possible to develop smarter, more flexible, and human-centered 
solutions in production environments (Yao et al., 2024). Digital 
twins provide a powerful tool for simulating, monitoring, and 
optimizing production processes by creating virtual representations 
of physical assets (Preuveneers et al., 2018). In particular, feeding 
digital twins with real-time data enables instant decision-making in 
production processes and allows for continuous process 
improvement (Kılıç et al., 2024). In this context, digital twins are 
seen to play a central role in the integration of Industry 4.0 and the 
Metaverse. 

The integration of the Metaverse into the manufacturing 
sector brings not only technological transformation but also 
organizational and human-centered transformation. Particularly in 
the Industry 4.0 vision, where human-machine collaboration comes 
to the fore, Metaverse technologies are presented as a platform that 
enhances the human factor in production processes and offers more 
interactive and intuitive interfaces (Egbengwu et al., 2025). 
Augmented reality (AR) and virtual reality (VR) technologies are 
widely used in training employees in production processes, in 
maintenance and repair activities, and in remote monitoring and 
control applications (Da Silva Ribeiro Castro et al., 2023). These 
technologies enable users to interact with digital twins, visualize 
production processes in three dimensions, and analyze complex data 
in a more understandable way (Geng et al., 2022).  

IoT, one of the fundamental components of Industry 4.0, is a 
key technology that enhances the applicability of the Metaverse in 
production environments. IoT devices and sensors continuously 
collect data from the physical environment, enabling this data to be 
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transferred to the virtual environment through digital twins and 
cyber-physical systems. This makes real-time monitoring, control, 
and optimization possible in production processes (Souza et al., 
2019). IoT-based digital twins enable adaptive, efficient, and 
sustainable operations in production processes (Stogie et al., 2025).  

Additionally, the data flow provided by IoT, combined with 
big data analytics and artificial intelligence applications, enables 
more accurate and faster results in decision-making processes (Kaur 
& Kaur, 2016). The complex decision-making processes arising 
from the integration of the Metaverse and Industry 4.0 require the 
evaluation of numerous criteria and alternatives. At this point, multi-
criteria decision-making (MCDM) methods come into play. MCDM 
methods enable the systematic analysis of multi-dimensional and 
multi-criteria problems encountered in production processes and 
facilitate the making of the most appropriate decisions. Particularly 
in Industry 4.0 and Metaverse integration, the use of MCDM 
methods is increasingly prevalent in areas such as technological 
infrastructure selection, investment decisions, process optimization, 
and performance evaluation (Patel & Vinodh, 2024). In a study, key 
technologies enabling additive manufacturing and Industry 4.0 
integration in small and medium-sized enterprises (SMEs) were 
identified and evaluated in order of importance using the MCDM 
method. As a result, IoT, cloud computing, and cyber-physical 
systems emerged as the most important Technologies (Intizar Ali et 
al., 2021). This finding demonstrates that multi-criteria decision-
making approaches play a critical role in the integration of the 
Metaverse and Industry 4.0 as well. 

In assessing the applicability of digital twins in supply chain 
management, multi-criteria decision analysis (MCDA) methods are 
used to enable businesses to make strategic decisions based on 
criteria such as interoperability, integration challenges, and 
operational efficiency (Neto et al., 2025). MCDA methods such as 
PROMETHEE II enable the systematic evaluation of the challenges 
and opportunities encountered in the integration of digital twins into 
the supply chain (Neto et al., 2025).  
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The implementation of the metaverse in the manufacturing 
sector requires not only the integration of technological 
infrastructures but also the redefinition of human-machine 
interaction. In particular, augmented reality and virtual reality 
technologies facilitate workers' access to information in production 
processes and provide interactive and immersive experiences in 
training and maintenance processes (Ramalho et al., 2024). These 
technologies increase flexibility and resilience in production 
environments, enabling faster and more effective solutions to be 
developed in response to unexpected situations (Ramalho et al., 
2024). Additionally, augmented reality-based decision support 
systems enable the three-dimensional visualization of simulation 
results in production processes, helping decision-makers better 
understand how the system operates (Karlsson et al., 2017). Such 
applications are examples of the innovative approaches that the 
Metaverse brings to decision-making processes in the manufacturing 
sector. 

In digital twins and Metaverse integration, ensuring two-way 
data flow and control between real and virtual environments is of 
great importance. This allows changes occurring in physical systems 
to be instantly reflected in the virtual environment, and optimizations 
or simulations performed in the virtual environment to be applied to 
the physical system (Kılıç et al., 2024). This two-way integration 
provides flexibility, speed, and accuracy in production processes. 
Furthermore, the combination of digital twins with augmented 
reality and virtual reality technologies enables the development of 
more intuitive and interactive interfaces in production processes 
(Geng et al., 2022). Such applications demonstrate that the 
Metaverse plays a significant role in enhancing human-machine 
interaction and supporting decision-making processes in the 
manufacturing sector. 

Big data analytics and artificial intelligence applications also 
play an important role in Industry 4.0 and Metaverse integration. 
Large amounts of data collected from production processes are 

--256--



analyzed using artificial intelligence and machine learning 
algorithms and used in areas such as process optimization, 
maintenance, and quality control (Razzaq et al., 2024). Specifically, 
in digital twin-based virtual reality models, machine learning and 
deep learning algorithms are used to predict the maintenance 
requirements of production machines in advance and minimize the 
risk of failure.  Such applications highlight the importance of data-
driven decision-making processes in Metaverse and Industry 4.0 
integration. 

The implementation of the metaverse in the manufacturing 
sector also requires the redesign of organizational structures and 
business processes. In particular, new approaches are being 
developed in areas such as collaboration, information sharing, and 
process management in virtual factory environments, and the most 
suitable strategies are being determined using multi-criteria 
decision-making methods in these processes (Stefko et al., 2025). 
For example, digital twin-based virtual factories and cyber-physical 
production systems support applications such as big data tracking in 
production processes, remote fault diagnosis, and predictive 
maintenance, thereby ensuring that production processes are more 
efficient and sustainable  (Stefko et al., 2025). Additionally, in 
Metaverse-based business processes, three-dimensional simulation 
and visualization tools supported by augmented reality and virtual 
reality technologies help achieve more accurate and faster results in 
decision-making processes. 

One of the most significant challenges encountered in 
Industry 4.0 and Metaverse integration is ensuring the 
interoperability of different technologies and systems. In particular, 
issues such as data security, scalability, and energy efficiency come 
to the fore in the integration of digital twins and IoT devices (Stogia 
et al., 2025) . To overcome these challenges, innovative solutions 
such as blockchain-based data management, edge computing, and 
artificial intelligence-supported decision-making systems are being 
developed (Stogie et al., 2025). Additionally, in the integration of the 
Metaverse and Industry 4.0, the human factor must be prioritized, 
and the ethical, social, and environmental dimensions of 
technological progress must be taken into account (Yao et al., 2024). 
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In this context, human-centered production approaches and 
sustainability-focused solutions will be decisive in shaping the 
production environments of the future. 

The digitalization and automation brought about by Industry 
4.0 has not been limited to production processes but has also led to 
significant transformations in areas such as the supply chain, 
logistics, maintenance, and education. For example, the concept of 
Logistics 4.0 refers to the integration of Industry 4.0 technologies 
into logistics processes. Thanks to this integration, features such as 
pattern recognition, self-organization, and agility come to the fore in 
logistics processes, and Multi-Criteria Decision Making (MCDM) 
methods can be used to determine which areas should be prioritized 
(Sir & Peker, 2025). 

Similarly, in maintenance processes, the concepts of 
predictive maintenance and Maintenance 4.0 have emerged 
alongside Industry 4.0 technologies. In these processes, technologies 
such as artificial intelligence, IoT, and big data analytics have been 
used to increase the transparency and efficiency of maintenance 
processes (Alves et al., 2024). Another important aspect of decision-
making processes in metaverse applications is ensuring ethical 
principles and reliability. Behera and colleagues' study states that 
ethical issues arising in the mutual relationships between businesses 
and users in the metaverse environment directly affect decision-
making processes (Behera et al., 2024). The study indicates that four 
fundamental ethical principles business benefit assessment, fairness, 
explainability, and reliability play a critical role in managing 
complex relationships and improving decision-making processes in 
the metaverse environment (Behera et al., 2024).  

Prioritizing the Barriers to Implementing the Metaverse in 
Industry 4.0 

AHP Method 

Managing uncertainty and risk in decision-making processes 
is another fundamental challenge faced by MCDM methods in 
metaverse applications. In particular, most classical MCDM 
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methods do not sufficiently consider decision-makers' risk 
perception and psychological behavior.  

This study aims to analyze the barriers to the implementation 
of the Metaverse in Industry 4.0 environments and to reveal the 
relative importance levels of these barriers. The literature shows that 
there are limited studies on the quantitative prioritization of this 
issue. Therefore, the AHP method is proposed to evaluate various 
infrastructure, systematic, technological, investment cost, 
cybersecurity, lack of competence, standardization, and legal 
uncertainty factors related to the Metaverse's Industry 4.0 adaptation 
process. Prioritizing the Barriers to Implementing the Metaverse in 
Industry 4.0 

Managing uncertainty and risk in decision-making processes 
is another fundamental challenge faced by MCDM methods in 
metaverse applications. Most classical MCDM methods do not 
sufficiently consider decision-makers' risk perception and 
psychological behavior.  

This study aims to analyze the barriers to the implementation 
of the Metaverse in Industry 4.0 environments and to reveal the 
relative importance levels of these barriers. The literature shows that 
there are limited studies on the quantitative prioritization of this 
issue. Therefore, the AHP method is proposed to evaluate various 
infrastructure, systematic, technological, investment cost, 
cybersecurity, lack of competence, standardization, and legal 
uncertainty factors related to the Metaverse's Industry 4.0 adaptation 
process. 

The Analytic Hierarchy Process (AHP) stands out as one of 
the most widely used and effective tools among multi-criteria 
decision-making (MCDM) methods. In modern decision-making 
processes, particularly in solving complex and multi-dimensional 
problems, the systematic approach offered by AHP has gained 
widespread acceptance in both academic and applied fields. This 
method is based on transforming the complex problems faced by 
decision-makers into a hierarchical structure and determining the 
weights of criteria and alternatives through pairwise comparisons 
within this structure. The multidisciplinary application areas of AHP 
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are closely related to the method's flexibility and its ability to 
systematically incorporate decision-makers' subjective judgments 
into the model (Sharma et al., 2022). The steps of the method are 
listed below.  
Step1:Determining the criteria. List the criteria to prioritize.   

Step2:Creating the pair comparison matrix. Categories are compared 
in pairs using Saaty's 1-9 scale. A pair comparison matrix between 
factors is created. 𝑎!" is the pair comparison value between criterion 
i and criterion j, and the 𝑎!" value is obtained from 1 - 𝑎"!. Decision 
matrices are created using the 1-9 comparison scale proposed by 
Saaty below. Table 1 is shown below. 

Table 1 Comparison scale 
Importance Definition Explanation 

1 
Equal 
importance 

Both options are considered slightly more important than the 
other. 

2 
Weak or 
slight 

One criterion is considered slightly more important than the 
other. 

3 
Somewhat 
important One criterion is considered much more important than the other. 

4 
Moderately 
important The criterion is considered much more important than the other. 

5 
Very 
important 

Various information indicates that one criterion is extremely 
important compared to the other. 

6 
Very 
important Both options are equally important. 

7 
Extremely 
important 

One criterion is considered slightly more important than the 
other. 

8 Very strong One criterion is considered much more important than the other. 

9 
Extremely 
important  

The criterion is considered much more important than the other 
criteria. 

Reference: (Wind & Saaty, 1980) 
 

𝐴 = $
1 ⋯ 𝑎#$
⋮ ⋱ ⋮

𝑎$# = 1 𝑎#$) ⋯ 1
* 

(1) 

Step 3: Normalizing the matrix. Each column is normalized 
to dividing it by its own sum. 

𝑛!" =
𝑎!"

∑ 𝑎!"$
!%#

                                   (2) 
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Step 4: Calculation of criterion weights. The average of each 
row is taken. These values are the relative importance weights of the 
criteria. 

𝑤! = .
1
𝑛/0𝑛!"

$

!%#

 
                                  (3) 

Step 5: Consistency analysis is calculated. The most 
important part of AHP is to check whether the decision maker is 
consistent. 

Step 5.1: The weighted total vector is calculated.  

Step 5.2: Maximum eigenvalue, 𝜆&'( is calculated. 

𝜆&'( = .
1
𝑛/0

∑ 𝑎!"𝑤!$
"%#

𝑤!

$

!%#

 
                                  (4) 

Step 5.3: The Consistency Index, CI, is calculated. 

𝐶𝐼 =
𝜆&'( − 𝑛
𝑛 − 1  

                                  (5) 

𝐶𝑅 = 𝐶𝐼/𝑅𝐼                                   (6) 

 

Table 2 Saaty's Random Index 
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
R 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 1.59 

Reference: (Güner, 2003) 

If CR defined by Eq.5 is less than 0.01, the comparison 
matrix is considered consistent. 

Step 6: The criteria are ranked. Weight values are ranked 
from highest to lowest. The criterion with the highest weight is the 
most important criterion. 

The Numerical Analysis 

The digital transformation process brought about by Industry 
4.0 has the potential to fundamentally change production, logistics, 
and business models. One of the technologies emerging within this 
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transformation, the metaverse, increases efficiency, flexibility, and 
collaboration in production processes with its innovative 
components such as virtual reality, augmented reality, and digital 
twins. However, the widespread adoption of metaverse applications 
in the context of Industry 4.0 faces multidimensional and complex 
obstacles. (C1)Infrastructure and interoperability, (C2) cybersecurity 
and data management, (C3) human factors and skills, (C4) legal and 
regulatory uncertainty, (C5) economic and strategic risks, and (C6) 
sustainability and energy consumption are factors that may hinder 
the implementation of the metaverse in industrial applications. In 
this study, these obstacles highlighted in the literature are defined as 
criteria, and the relative priorities of these criteria in the context of 
Industry 4.0 will be determined using the AHP decision support 
method. Thus, it will be systematically revealed which factors 
require priority solutions in the integration of the metaverse into 
industry. Table 3 shows a comparison of the obstacles themselves. 

 

Table 3Criteria List 
Criteria C1 C2 C3 C4 C5 C6 

C1 Infrastructure & Interoperability 1 1/2 2 3 1/2 3 

C2 Cybersecurity & Data Management 2 1 3 4 2 4 

C3 Human Factors & Skills 1/2 1/3 1 2 1/2 2 

C4 Legal & Regulatory Uncertainty 1/3 1/4 1/2 1 1/3 2 

C5 Economic & Strategic Risks 2 1/2 2 3 1 3 

C6 Sustainability & Energy Consumption 1/3 1/4 1/2 1/2 1/3 1 

For the first and second steps of the method, the criteria are 
determined and evaluated by the expert by comparing them with 
each other according to Saaty's comparison scale in Table 1, thus 
applying the first step of the method. The criteria evaluated 
according to the comparison scale are shown in Table 3. The column 
totals for the criteria are calculated in Table 4 by summing each 
column in the pairwise comparison matrix. 
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Table 4 Column sums for Criteria 
C1 C2 C3 C4 C5 C6 

5.166 2.833 9 13.5 3.666 15 

Each column is normalized by dividing it by its own sum 
which is demonstrated in Table 5 according to Eq. 2.  

Table 5 Normalized matrix 
 C1 C2 C3 C4 C5 C6 

C1 0.194 0.176 0.222 0.222 0.136 0.200 
C2 0.387 0.353 0.333 0.296 0.545 0.267 
C3 0.097 0.118 0.111 0.148 0.136 0.133 
C4 0.065 0.088 0.056 0.074 0.091 0.133 
C5 0.387 0.176 0.222 0.222 0.273 0.200 
C6 0.065 0.088 0.056 0.037 0.091 0.067 

The criterion weights are calculated by taking the average of 
each row using Eq. 3. These values provide the relative importance 
weights of the criteria. 

Table 6 Criteria weights 
C1 0.181 
C2 0.335 
C3 0.116 
C4 0.078 
C5 0.229 
C6 0.062 

The most important part of AHP is to check whether the 
decision maker is consistent. Consistency analysis checks 
consistency according to the E.4, Eq.5 and Eq.6. 

𝜆&'( = 6.15  

𝐶𝐼 = 0.03  

𝑅𝐼(𝑛 = 6) = 1.24  

𝐶𝑅 ≈ 0,024 → %2.42  
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Since the calculated value for CR is CR < 0.10, the matrix is 
considered consistent. 

As a result of the recommended method, Cybersecurity & 
data management (A2) is the highest priority, Economic & strategic 
risks (A5) are second, Infrastructure & interoperability (A1) are 
third, Human factors (A3) and legal uncertainty (A4) are medium 
priority, and Sustainability & energy (A6) emerged as a lower 
priority.  

Conclusion  

In this study, the Analytic Hierarchy Process (AHP) was used 
to determine the importance levels of barriers related to Industry 4.0 
applications in the Metaverse. The six fundamental barriers decided 
by the literature (i) infrastructure and interoperability, (ii) 
cybersecurity and data management, (iii) human factors and skills, 
(iv) legal and regulatory uncertainty, (v) economic and strategic 
risks, and (vi) sustainability and energy consumption—were 
evaluated using a pairwise comparison matrix. Comparisons were 
performed using Saaty's 1–9 scale, and normalized column averages, 
geometric mean, and, in particular, the principal eigenvector method 
were used to calculate priority vectors. When the obtained weights 
were ranked from highest to lowest, cybersecurity and data 
management (33.49%), economic and strategic risks (22.90%), and 
infrastructure and interoperability (18.09%) were identified as the 
most important barriers. For consistency assessment, the maximum 
eigenvalue (λ_max ≈ 6.1500), Consistency Index (CI ≈ 0.0300), and 
Saaty's random index (RI = 1.24) were calculated, yielding a 
Consistency Ratio (CR ≈ 0.0242). Since CR < 0.10, the decision-
maker's comparisons were considered stable and consistent. As a 
result of the recommended method, Cybersecurity & data 
management (A2) is the highest priority. Data integrity, privacy, 
access controls, and security protocols appear to be the most critical 
obstacles in metaverse applications. Resource/strategy priority is 
recommended for this area. Economic & strategic risks (A5) are 
second: concerns about cost, investment risk, business model 
uncertainties, and strategic cost-benefit ratio are strong. Financial 
feasibility studies, pilot projects, and gradual scaling are 
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recommended. Infrastructure & interoperability (A1) are third: 
network, low latency, edge/OT-IT integrations, and standards are 
important. Human factors (A3) and legal uncertainty (A4) are 
medium priority; training, competency development, and regulatory 
monitoring/compliance plans should be developed. Sustainability & 
energy (A6) emerged as a lower priority but should not be neglected 
in terms of long-term operational costs and public/customer 
perception; energy efficiency and green computing should be added 
to the roadmap. 
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