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FOREWORD

As one of the most fundamental and universal sciences in
human history, mathematics continues to be one of the key drivers
of scientific progress with both its theoretical depth and practical
power.

This academic book, titled Advanced Studies in Differential
Geometry, Functional Analysis and Algebraic Systems, brings
together a collection of studies that reflect the diversity of modern
mathematical research. The chapters span differential geometry,
functional analysis and algebraic structures. Although each topic
stands on its own, they collectively illustrate how different branches
of mathematics often intersect and enrich one another. The aim of
this book is to offer readers a clear and accessible overview of these
contemporary themes. Whether the focus is on geometric models,
analytical methods or algebraic systems, the chapters highlight both
foundational ideas and advanced techniques.

We hope this book serves as a helpful resource for students
and researchers interested in exploring the breadth and unity of
today’s mathematical landscape.

As editor, I would like to thank all our authors who
contributed to the scientific content of this work and all stakeholders
who contributed to the publication process.

Prof. Dr. Siikran KONCA

Izmir Bakir¢ay University
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CHAPTER 1

SOME FUNCTIONAL ANALYTICAL ASPECTS OF
ALMOST CONVERGENCE METHOD

MAHMUT KARAKUS!

1. Introduction and Preliminaries

The multiplier form of a series ), Xxj in a normed space X
associated with an arbitrary real or complex sequence a = (ay) is
given as )., ayX; and is important to understand the behaviors of the
series Y X in X, (Karakus & Basar, 2020a). For simplicity in
notation, here and after, the summation without limits runs from 1 to
0. A series ), Xj in a Banach space X is weakly unconditionally
Cauchy (wuC) or unconditional convergent (uc) series if and only if
Yk arxy is convergent for every null or bounded sequence a =
(ay). Let us recall, a series ), x; in a Banach space X is said to be
unconditionally convergent (uc) or unconditionally Cauchy (uC) if
the series X Xy converges or a Cauchy series for every
permutation 1 of elements of N, the set of positive integers. It is
called weakly unconditionally Cauchy (wuC) if for every
permutation 7 of elements of N, the sequence (Xx=q Xr(k)) is a
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weakly Cauchy sequence or alternatively, Y., xj is wuC if and only
if Y [x"(x)| < oo for all x* € X*, the space of all bounded linear
functionals defined on X. It is well known that every wuC series in
a Banach space X is uc if and only if X contains no copy of ¢y, the
space of null sequences; (Diestel, 1984) and (Albiac & Kalton,
2006).

One of the most significant applications on theorem of Hahn-
Banach rises the concept of Banach limits. These are non-negative,
normalized, and shift-invariant linear functionals defined on £,
(Karakus, 2025b). Banach limits generalize the ordinary limit and
have numerous applications in various mathematical fields,
(Eberlein, 1950; Lorentz, 1948; Semenov & Sukochev, 2010;
Semenov et al., 2019). In their research paper on functional
characteristics and extreme points of the set of Banach limits on £,
Semenov et al. provide a thorough introduction to recent results and
developments in the theory of Banach Ilimits and almost
convergence, (Semenov et al., 2019). Banach limits effectively
extend the limit functional on the space of convergent sequences, c,
to €. An important result in this area is due to Lorentz (Lorentz,
1948), who, in 1948, presented an effective characterization of
almost convergence by using Banach limits. Additionally, Eberlein
introduced the concept of the Banach-Hausdorff limit, emphasizing
the invariance of Banach limits under regular Hausdorff
transformations, (Eberlein, 1950). The reader can refer to (Boos,
2000; Basar, 2022) and (Mursaleen, 2014) for the recent results and
related topics in summability.

Quite recently, the authors investigated some new problems
related to f;-convergence which is a generalization of almost
convergence, (Karakus & Basar, 2019; 2020b). The authors
established some results on unconditionally convergence and weakly
unconditionally Cauchy series in (Karakus & Basar, 2022b). The



authors also obtained some new characterizations related to the
classical properties of a normed space such as completeness,
reflexivity, Schur property, Grothendieck property, and the property
of containing a copy of the space c,, by means of the f;-convergence
and invariant means, in (Karakus & Basar, 2022a; 2024). By
employing the concept of invariant summability, the author
establishes a version of Hahn—Schur type theorem and proves
several functional-analytic results concerning the multipliers of
operator-valued series, (Karakus, 2025a; 2025b).

By w, we denote the space of all real or complex valued
sequences and any vector subspace of w is also called as a sequence
space. The sequence spaces £, ¢ and ¢, of bounded, convergent and
null sequences are Banach spaces, with || x ll.o= supyen|xx|. By bs
and cs, we also denote the Banach spaces of all sequences x = (xi)
such that the series ), xj is bounded and convergent, respectively,
with || x lps= SUppen| X1 Xk|; (Basar, 2022).

Let X and Y be two normed spaces. By w(X), we denote the
space of all X-valued sequences. By €, (X), c(X), ¢o(X), cs(X) and
bs(X), we also denote the spaces of all X-valued bounded,
convergent, null sequences, and convergent sums and bounded sums
in a real normed space X, respectively, (Karakus, 2019). ¢p(X) is also
the space of X-valued finitely non-zero sequences. If V is a vector
space of X-valued sequences equipped with a locally convex
Hausdorff topology, then the definition of K space is similar to scalar
case, that is, V is a K space if the maps x = (xi) =~ x; from V into
X are continuous for all k € N. If x € X, then by e* ® x, we denote
the sequence whose only non-zero term is x in the k" place for all
k € N. By B(X:Y), we denote the space of all bounded and linear
operators defined from X into Y. If V is a space of X-valued
sequences such that ¢(X) € V, it is said that the series ), Tj is V-
multiplier convergent or V-multiplier Cauchy if the series Y Tj X



converges or is a Cauchy series, i.e., the partial sums of the series
Yk Tex, form a norm Cauchy sequence in Y for all (xi) €V,
(Karakus & Basar, 2020a).

The shift operator P is defined on w by (Px),, = x,44 forall
n € N. A Banach limit L is defined on ¢, as a nonnegative linear
functional such that L(Px) =L(x) and L(e) =1, where e =
(1,1,1, ...); (Banach, 1978). A sequence x = (xj) € ¥ is said to be
almost convergent to the generalized limit [ € C if all Banach limits
of x are [, and is denoted by f — limx;, = . The reader can refer to
(Boos, 2000; Basar, 2022), for details. Lorentz proved that a
sequence (xi) € ¢ is almost convergent to the point [ € C if and
only if

m
X
lim z ntk _
e m 1
k=0

holds uniformly in n € N, (Lorentz, 1948).

By f, we denote the space of all scalar valued almost
convergent sequences. It is well-known that a convergent sequence
is almost convergent such that its ordinary and generalized limits are
equal, (Karakus & Basar, 2019). For the following definitions
regarding vector valued almost or weakly almost convergence of a
sequence and almost sum or weakly almost sum of a series in a
normed space, we refer to (Aizpuru, Armario & Pérez-Fernandez,
2008) and (Aizpuru et al., 2014).

Definition 1.1 A sequence x = (Xy) in a real normed space
X is said to be almost convergent or weakly almost convergent to
Xo € X which is called the almost limit or weakly almost limit of x,
and is denoted by f — limx;,, = x, or wf — limx;, = x,, if



lim

m—oo

n+m

m+1
k=n
or

+

Z X (xk) — X" (%)

=0

lim

m-—-oo

holds uniformly in n € N, for every x* € X*, (Aizpuru, Armario &
Pérez-Fernandez, 2008).

By f(X) and wf(X), we denote the space of all almost
convergent and weakly almost convergent X-valued sequences. So,
every convergent sequence is almost convergent, every weakly
almost convergent sequence is bounded and every almost convergent
sequence is weakly almost convergent, that is, the following
inclusions hold:

c(X) © f(X) € wf(X) & Lo (X).
Definition 1.2 A series )}, X in a real normed space X is said
to be almost convergent or weakly almost convergent to x, € X
which is called the almost sum or weakly almost sum of the series
Yk Xk, and is denoted by f — Y X = xo or Wf — X X = X, if

n+m

D i
m+1

k=n

=0

lim

m—oo

or

n+m

x"(Sk)
Z m+1 — X (%)

k=n

lim =0

m—oo




holds uniformly in n € N, for every x* € X, respectively, where
Sk = Z?zl x; forall k € N.

By fs(X) and wfs(X), we denote the space of all X-valued
sequences x = (xj) such that the series ),;, x; is almost convergent
and is weakly almost convergent. Therefore, the inclusion relations
cs(X) c fs(X) c wfs(X) c bs(X) hold. Besides, by some easy
calculations, x = (x;) € fs(X) with x, € X if and only if

n 1 m
T}llirgo[z xk+m_|_lkz1 (m—k+1)xn+k] = X,

k=1

uniformly inn € Nand x = (x;) € wfs(X) with x, € X if and only
if

m-o m

n 1 m
lim [Z x*(x) + 1 Z (m—-k+ 1)x*(xn+k)] = x"(xp),
k=1 k=1

uniformly in n € N for all x* € X*, (Aizpuru, Armario & Pérez-
Fernandez, 2008).

Prior to giving the required definitions and main results, we
present the following lemma which states a well-known result of
characterization of a wuC series in a normed space X.

Lemma 1.3 In a normed space X, a formal series ), x,, is a
wuC series if and only if there exists a positive real H such that

H = sug{IIZﬁzl apxill:lag]l < 1,k € {1,2,...,n} € N}. (1)
ne

Regarding a formal series )., x, in a Banach space X is uc
(respectively wuC) series if and only if for any (t,;) € Yo
(respectively for any (t,,) € ¢g), Yon tnX, converges, that is, Y., x,
is an £ -(respectively a cy-) multiplier convergent series, (Diestel,
1984).



2. Results on My (3 Ty)

We give the definitions of almost convergence and weakly
almost convergence with association of an operator valued series in
the vector valued multiplier spaces, and obtain some results on the
characterizations of c¢y(X)- and £, (X)-multiplier convergent
(Cauchy) series. Firstly, we introduce the almost convergence in a
vector valued multiplier space and the summing operator §
associated with an operator valued series.

Definition 2.1 Let X and Y be two normed spaces, and T}, €
B(X:Y) for all k € N. The almost convergence in a vector valued
multiplier space M¢° (X« Ty) associated to the operator valued series

Yk Ty is defined by

Mg Xk Ti):= {x = (xx) € oo (X): f — Xk Tiexy exists} (2)
endowed with the sup norm and the summing operator S is also
given as

S : M]?o(zk Tk) — Y

x=) = S5G)=f— S Texe ©)

It can be easily checked that the inclusions
P(X) M (X Tie) S 4o (X) (4)
hold, (Karakus & Basar, 2020a).

Theorem 2.2 Let X and Y be any two Banach spaces, and
T, € B(X:Y) for all k € N. Then, the series Y Ty is co(X)-
multiplier convergent if and only if M¢° (¥ Ty) is a Banach space,
(Karakus & Basar, 2020a).



Proof. Let us suppose that the series Y Ty is co(X)-
multiplier convergent. Then, there exists a positive real H such that

n

Z Tyxy

k=1

N x IS1,k€{l2,..,n}cN

= sup{
neN
from (1).

If (x;*) is a Cauchy sequence in Mg° (¥ Ty) then we have

= (x) € £, (X) such that x™ — x°, as m — oo, since £, (X) is

a Banach space (recall that X is a Banach space) and the relation (4)

holds. Now, we prove that x° € M¢° (X Ty). Let us define y,, =

f — 2k Trxy* forall m € N. Now, for every € > 0 there exists m, €

N such that || x? —x? I< €/(3H) for all p,q = m,. So, if p,q =

m, are fixed, then there exists m € N such that the following
inequalities hold;

1 €
Yp = [27;1 Tixi + — Xk=y (m—k + 1)Tn+kxﬁ+k] <z O
n q 1 -
Y = [Sher Tl + g By (= k+ DTl || <5 )
k+1
2k=1 Tk(xiz: ) + Xk mm "+k(xrl:+k - xg+k) < g’ )

uniformly in n € N. So, for every € > 0 there exists ny € N such
that

Iy, —yq IS (B)+(6) +(7) <e€

for all p, g = ny. Since Y is also a Banach space, there exists a y, €
Y such that y,, = y,,asm — . Letus show that f — Y Tpx = y,.
We see for every € > 0 and fix j that || x/ — x° |I< €/(3H) and

1y —yo <= (8)

Therefore, there exists my € N such that



[y = [Zres Tex] + 5 20 n—k + DTuexl ][ <5 @

uniformly in n € N, for all m = m,. By taking account y; = f —

Yk Tkx,]c. for all j € N, we have from Lemma 5.3 that

llocd =0 m+ oS =0

[Zk LT k(xk xk) Zm m— k+1T (xn+k xn+k)] H, (10)

since Y Ty is a co(X)-multiplier convergent series. So, for every
€ > 0 there exists my € N such that

m—k+1 0
Z Tyxe + ) ———TnirXnsx

— <®+©)

m-—-k+1 j 0
Z Tk(xk xk) + Tm+1 Tnvre(Xpix — Xnak)

< 2 +1I x o1 (10) < 2 +— -H=
3t =2t A0 = 5+ 55 ©
uniformly in n €N, for all m>m, Hence, x°=(x))€

Mr(Xg xk)-

Conversely, let us suppose that the space Mg (X Ty) is
complete and take x = (xj) € cy(X). Then, we have cy(X) S
Mg (Xk Ti) since the space M (Xx Ty) is closed and ¢(X) c
Mg (Xk Ti). Therefore, the series Y Tyexy is almost convergent for
all x = (xi) € co(X). From the monotonicity of ¢, (X), we have that
the series Y, Tjxj is subseries almost convergent, and so is weakly
subseries almost convergent. As a consequence of Orlicz-Pettis
theorem, Y,;, Ty X) is subseries norm convergent. This completes the
proof.

Corollary 2.3 Let X and Y be Banach spaces, and T €
B(X:Y) for all k € N. Then, the series Y., Ty is co(X)-multiplier



convergent if and only if the inclusion co(X) € Mg (¥ Ty) holds,
(Karakus & Basar, 2020a).

Let X be a Banach space, Y be any normed space and T}, €
B(X:Y) for all k € N. Consider the space CM*® (Y, T)) defined by

CMw(Z Ty):= {x = (x;) € {’OO(X):Z T xy — is Cauchy}.
K K

Proposition 2.4 Let X be a Banach space, Y be a normed
space and Ty € B(X:Y) for all k € N. Then, the following holds,
(Karakus & Basar, 2020a):

CMP(Y T =MP() T)nCM(Y T) = M2() Ty)
K K K K
Proof. If x = (x,) € M Xk Ty), therefore, one can see that

x = (xx) € M (Xk Ti) N CM” (X Ty). This leads us to the
inclusion M* (X T) € CM° (X Tyo)-

Let us suppose that x = (x) € CM° (Xk Tx). So, Xx TrXy
is almost convergent and also is a Cauchy series. Therefore, ).j, Ty X
converges from Theorem 4.1 of (Aizpuru et al, 2014). This
completes the proof.

Theorem 2.5 Let X be a Banach space, Y be any normed
space and T}, € B(X:Y) for all k € N. Then, Y is a Banach space if
and only if M¢° (X Ty) is a Banach space for every co(X)-multiplier
Cauchy series, (Karakus & Basar, 2020a).

Theorem 2.6 Let X and Y be two normed spaces, and T}, €
B(X:Y) for all k € N. Then, the summing operator § defined by (3)
is continuous if and only if the series Y., Ty is co(X)-multiplier
Cauchy, (Karakus & Basar, 2020a).

--10--



Proof. Let us suppose that S is continuous and define the set
G by

G:={lIXk=1 Texxll: Il x; 1< 1,k € {1,2,..,n} € N}. (11)

Since the inclusion ¢(X) © Mg (X Ty) holds, the series Y Ty is
co(X)-multiplier Cauchy from the inequality H = sup,enG <Il S Il

Conversely, let us suppose that Y., Ty is co(X)-multiplier
Cauchy series. Therefore, the set G defined by (11) is bounded and
s0, H =suppenG. If x = (xx) € M{°(X Ty), then the proof

follows from the inequality
I SC) 1= IIf — Xk Texiell < H Il x Il

Theorem 2.7 Let X be any normed space, Y be a Banach
space and T, € B(X:Y) for all k € N. Then the series Y., T) is
? o (X)-multiplier convergent if and only if the summing operator &
defined by (3) is compact (weakly compact), (Karakus & Basar,
2020a).

Proof. Let us suppose that § is compact. If x = (x;) €
£ (X), then the set

H:= {Z ei ® X0 finite and Il X < 1} = M}DO(Z Tk)
k

i€

is bounded. By the hypothesis,

S(H):=

f - z Ty xy: o finite and || x; I< 1}

keo

is relatively compact. Therefore, the series Y., TyX) is subseries
norm almost convergent, and so is weakly subseries almost
convergent. Further, by a consequence of Orlicz-Pettis theorem, the

-11--



series ), Ty Xy is subseries norm convergent, that is, the series Y, Ty
is € (X)-multiplier convergent.

Conversely, suppose that the series Yp Ty is o (X)-

multiplier convergent. Let us define 5,{ by

S0 MPGT) — Y
x=(0) = S00=f- T Tt
for every n € N. It is sufficient to prove that lim || 5,{ -Sl=0.
n—->oo

Since Y Ty is £ (X)-multiplier convergent, then the series
Yk Tixy is uniformly almost convergent for || x;, I< 1. Therefore,

B INE

= Tlll_{?o“f — Yken+1 Texell = 0.

lim ||S,{ —5” = lim
n—->0oo n—co

3. Results on My (3 Ty)

From the study (Karakus & Basar, 2020a), we may give the
multiplier space of weak almost convergence associated to the series
Y2k Tx and give the corresponding results similar to the previous
theorems and corollaries. Since their proofs are very similar to the
proofs of the above results, in order to avoid the repetition of the
similar statements we will give them without proof.

Definition 3.1 Let X and Y be normed spaces, and Tj €
B(X:Y) for all k€ N. The vector valued multiplier space
My (X Ty) of weakly almost convergence associated to the

operator series )., T is defined by

--12--



M‘Z’f(z Ty): = {x = (xp) € Lo (X):Wf — z Th Xy exists}
K K

and the summing operator S is also given by

S M\?:f(Zk Ty) — Y
x = (xg) = S(x) =wf — Xk T

Since the inclusion Mg (X Ti) € My (i Ty) clearly
holds, we have the following, (Karakus & Basar, 2020a):

dX) € M (B Tie) © Myr Xk Tie) € oo (X). (13)

(12)

Theorem 3.2 Let X and Y be any given Banach spaces, and
T, € B(X:Y) for every k € N. Then, the series Y Ty is ¢o(X)-
multiplier convergent if and only if M- (¥, Ty) is a Banach space,

(Karakus & Basar, 2020a).

Corollary 3.3 Let X and Y be Banach spaces, and T €
B(X:Y) for all k € N. Then, the series Y, Ty is co(X)-multiplier
convergent if and only if the inclusion ¢y (X) € M,r(Xx Ty) holds,
(Karakus & Basar, 2020a).

Remark 3.4 Let X and Y be any given Banach spaces, Tj, €
B(X:Y) for all k € N and the series ), T be a cy(X)-multiplier
convergent. Then, the series )., y*(Tkxy) is convergent for all x =
(xx) € cy(X) and for all y* € Y*, that is, the series is weakly
convergent. It is known that x = (x) € Mg (Xk Tx), and so x =

(xx) € My (X Ty). This means that there exists y, € Y with wf —
Yk Tixr = vy, such that

D YT =f =) v T =y o)
k k

13-



Therefore, the inclusion Mg (X Ti) € My (X T)  holds.
However, we have no an idea on the sufficient conditions for the
reverse inclusion. By using the similar technique, the sum f —
Yk (Texy) exists for x = (xi) € co(X). Hence, for y* € Y, the sum
f =Yk v*(Tix;) exists. It is also known that the series Y, Ty Xy is
Cesaro convergent, and so is weakly Cesaro convergent. If there
exists yo € Y such that wC — Y, Tixx = Vo, then we have

C— Z v (Texx) = f — Z V* (Texk) = ¥* Vo)
k k

Therefore, the inclusion M (X Tyx) € My r(Xk Tx) also holds.

However, we have no an idea on the sufficient conditions for the
reverse inclusion, (Karakus & Basar, 2020a).

Theorem 3.5 Let X be a Banach space, Y be any normed
space and T, € B(X:Y) for all k € N. Y is a Banach space if and
only if the space Myr (X Ti) is Banach for every co(X)-multiplier

Cauchy series, (Karakus & Basar, 2020a).

Theorem 3.6 Let X and Y be normed spaces, and T), €
B(X:Y) forall k € N. Then, the summing operator § defined by (12)
is continuous if and only if the series Y., Ty is co(X)-multiplier
Cauchy, (Karakus & Basar, 2020a).

Proof. Let us suppose that the summing operator § is
continuous and consider the set G given by (11). Then, the desired
result follows from the inequality

supG = |wf — Xk Tixil SIS I,

neN

since the inclusion ¢ S, (X Ty) holds.

--14--



Conversely, if Y Ty is co(X)-multiplier Cauchy series, then
the set G is bounded and so H = sup,eyG. If x = (xi) €
Mr(Xk Ti), then the proof follows from the inequality

I SC) 1= 1f =Xk ¥ (Texi )| < H I x |l
forevery y* €Y.

Theorem 3.7 Let X be any normed space, Y be a Banach
space and Tj, € B(X:Y) for all k € N. Then, the series Y Ty is
? o (X)-multiplier convergent if and only if the summing operator &
defined by (12) is compact (weakly compact), (Karakus & Basar,
2020a).

Remark 3.8 Let ¢ and 7 be two linear topologies on the
vector space X such that 7 is linked to o. If a Cauchy sequence x =
(xr) € X is convergent to x in (X, 0), then it is convergent to x, in
(X, 1), (Swartz, 2009)

Proposition 3.9 Let X and Y be normed spaces. If Y. Ty is
{o(X)-multiplier ~ Cauchy, then MZ(Xx Ti) = Mg (X Tio),
(Karakus & Basar, 2020a).

Proof. Let X and Y be normed spaces, and x = (x;) €
Myr(Xk T). From hypothesis, the partial sums of the series
Yk Tix; form a Cauchy sequence in Y which is also weakly almost
convergent to, say y € Y. So, it is almost convergent to y € Y with
the norm topology since weak topology is linked to norm topology
from Remark 3.8. Therefore, x = (x;) € Mg (X T).

--15--
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CHAPTER 2

ON Bp-DUALS OF Z-SPACES OF SEQUENCES
WITH BICOMPLEX TERMS
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Abstract

This study examines the [f-dual spaces of certain Z-spaces
defined on sequences with bicomplex terms. The notions of Z-spaces
and duality frameworks developed by E. Malkowsky and E. Savas
for scalar sequence spaces are extended to the bicomplex setting. By
employing functional analytic methods presented in A. Wilansky’s
Summability through Functional Analysis, the f-dual structures of
classical sequence spaces are systematically characterized.
Furthermore, the structural properties of the [-dual spaces of
Cesaro-type sequence spaces are analyzed using techniques
developed by P. N. Ng and P. Y. Lee. In the bicomplex context, new
p-dual spaces are introduced through idempotent decomposition and
the fundamental properties of hyperbolic numbers, and the essential
characteristics of these spaces are rigorously established.
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INTRODUCTION

Bicomplex numbers were introduced in (Segre, 1892), and
the spaces generated by these numbers have subsequently been
studied within the framework of functional analysis. The theoretical
foundations and fundamental properties of bicomplex spaces were
presented in detail in (Luna-Elizarraras & et al., 2015). The [-dual
structures of classical sequence spaces defined over scalar fields play
a central role in summability theory and functional analysis. This
approach has been extended to bicomplex sequence spaces by means
of idempotent decomposition and the intrinsic properties of
hyperbolic numbers. Within this context, the bicomplex counterparts
of classical Z-spaces and the structural properties of their associated
Pp-dual spaces are investigated. In addition, the duality properties of
sequence spaces defined via paranorms have been examined in
(Altay & Basar, 2006) and (Maddox, 1968), and the topological
structures of these spaces, particularly with respect to continuity and
convergence, have been analyzed in (Altay & Basar, 2007) and
(Maddox, 1969). For a broader theoretical perspective, the reader is
referred to (Luna—Elizarraras & et al., 2015) and (Toksoy & Sagir
2024).

1.Bicomplex Numbers and Their Properties

Let C be the set of complex numbers with i as the imaginary
unit, and let j be another imaginary unit satisfying the conditions i #
j,ij = ji =&, i* = j* = —1. In this case, the set represented by

BC = {Zl +jZ2:Z1,Z2 € C}

is the set of all bicomplex numbers and each element of this set is
called a bicomplex number. Furthermore, there is the equality 2 =
(ij)? = 1. Therefore, bicomplex numbers are "complex numbers
with complex coefficients," which explains the name "bicomplex".
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BC is a commutative ring with unity 1gc =1+ -0 =1 (Luna-
Elizarraras & et al., 2015).

In addition, when z, = 0 in z = z; + jz,, that is, z = z4, the
set of these numbers is represented by C(i). If the coefficients z; and
Z, are real numbers, that is, z = x + jy with x, ¢4 € R, then the set
of these numbers is represented by C(j). The sets C(i) and C(j) are
isomorphic fields.

We take into account the bicomplex numbers e; =
(1+41ij)/2 and e, = (1 —ij)/2. It can be easily seen that e; - e, =
e, - e, = 0 and there are also equations (e;)" = e; and (e,)" = e,
withn € N. For any « = u4 + ju, € BC, we have

u = (ul - i/bbz)el + (/bLl + iuz)ez = 6181 + 6262

with §; = (uq — iu,) and &, = (uq + iu,) in C(i). This is named
as C(i)-idempotent representation of the bicomplex number u (Isik
& Duyar, 2023).

The set of hyperbolic numbers is described by
D={g+¢&h:g heRE=1ij}

where ¢ is a hyperbolic imaginary unit with §2 = 1. The following
subsets D and D*\{0} of D are called as

non-negative and positive hyperbolic numbers, respectively:
D*={g+¢h:g?—h*=0, g=0},
D*\{0} = {g + éh: g* —h* > 0,g > 0}.

Similarly, non-positive and negative hyperbolic numbers are
defined as follows:

D™ ={g+¢&h:g*—h*=0,g <0}
and

D\{0} = {g + ¢h: g2 — K2 > 0,g < OL.
--21--



Letm,p € D*. If m — p € D*, then we write ™ > p or p < 7,
and say that r is D-greater than p or D-equal to p, or that p is D-less
than 7 or D-equal to 7. If m — p € D*\{0}, then we write ™ > p or
p < m, and say that i is D-greater than p, or that p is D-less than .
If m=mes+ me, and p = pie1 + pe; with real numbers
Ty, T2, p1 and p, we can write p <X T & p; <miandp,; <
m, (orp < m & p; < mqyand p, < m,). If  is a (strictly) positive
hyperbolic number, then it is inversible and its inverse is also
positive. Additionally, if = > 0 = Oe; + Oe, and ™ < p, then p™* >
0 = Oe, + 0e, and p~! < ™ (Luna—Elizarraras & et al., 2015).

Similarly, along with the coefficients in C(j), there is also a
representation of the bicomplex number u with respect to e; and e,.

As a result, any bicomplex number has an idempotent
representation with its coefficients in C(i) or C(j), that is,

u =1, + 8,6, = pieg + paey,
where 61,6, € C(i) and p4, p2 € C(j).

If a function |.|; from BC to D" is defined as |u|s =
|u1|e1 + |uz|e, for each w = w,e4 + uze; € BC and provides the
following properties, then it is called as a D-norm or a hyperbolic-
valued norm:

a) Since |u4]| = 0 and |u,| =0 for a « = (uq1e1 + uze;) €
BC,

|’Mr|f = |’I/L1|el + |’LL2|€2 = Oel + 062 = 0.
b) |’Mr|f = |u1|61 + |’uz2|€2 = e = 091 + 062 lf and Only lf
|2¢1] = 0 and |u2| = 0, and so
u = 0eq + 0e, = 0.

¢) |Auls = (|A1ler + |Az]ex)(|usler + |uz|ez) = |A]g|uls
for A € .
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d) |utv|<|uls+|v|s for u=wue;+uze,v =
1€, + 1v,e; € BC (Luna—Elizarraras & et al., 2015).

Ifthereisap € Dsuchthatm < p(p < m) forall T € G, then
it is said that a subset G € D is a D-bounded from above(below).
This number p € D is called a D-upper(D-lower) boundary of G. If
G c D is a D-bounded set from above, then we describe the its ID-
supremum showed by supp G, the smallest upper bound of G, and its
D-infimum showed by infp G, largest lower bound of G. Let G € D
be a subset, let the sets G; and G, be defined by

Gl = {7'[1: 1641 + e, € G}
and
Gz = {77,'2:77:191 + me;, € G}

If G is a D-bounded set from above(below), then the suppG
(infp G) can be computed by the formula

SuplD)G = Squlel + Squzez (lnfDG = inf6161 + inszez).

If G and H are two D-bounded set from above, then so is G +
H and

supp(G + H) = suppG + suppH.

If two subsets G € D* and H c D* are D-bounded from
above, then sois G - H and

supp (G - H) = suppG - suppH.

For the D-bounded subsets from below of D, the last two equations
are still true when infp, is written instead of supp (Isik & Duyar,
2023).

2.Sequence Spaces with Bicomplex Terms

Definition 2.1. Let W be the set of all sequences with the terms in
C(10). The set defined as
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wge = {w = (w(s))|wy, w, € W}

with w(s) = wq(s)e; + w,(s)e, for all s €N is the set of
sequences with bicomplex terms written according to idempotent
representation. This set is a commutative group under the D-addition

operation with @: wgc X wge = Wge, w @ x = (w(s) + x(s)),
where

w(s) +x(s) = Bi(wi(s) + x:(5))e;
with the unit element 8 = Oe; + Oe,, and the additive inverse
—w = (—’W(n)) = (—w(s)e; —wr(s)ey)

of each w = (w(s))__, € Wac-
Furthermore, let the D-scalar multiplication ©: C(i) X wge = Wge
withz Q w = (zw(s)) be defined as

zQw(s) = Xi(z - wi(s))e;
In this case, wy is a linear space over the field C(i).

Now, let the D-vector product wge X wye = wpc be defined
asw Q@ x = (w(s) -x(s)) with

w(s) - x(s) = Lioy wi(s)xi(s)e;.

Under this operation, the wge becomes a commutative and unitary
algebra over the field C(i).

Definition 2.2. Let w = (w(s)) with w(s) = w;(s)e; +
w (s),e, and let cop = coe; + ocoe,. Then, the set ¢ defined by

Pyc = {’W € W]Ba(cisu§|w(5)|§ < OO]D)}
SE

=y, {wi € W:sup|w;(s)| < 00} e, (2.1

SeN
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is the set of D-bounded sequences with bicomplex terms and each of
its elements is called a D-bounded sequence.

For all wr, x € ®pc and z € C(i), since supp|w @ x|; < cop and

supp|z © w; < cop, we have w @ x € Ppc and z O w € Py,

therefore, the @y is a subspace of the set wgc. Also, according to
the (2.1),

(pIB(C = ‘Booel + fooez (2.2)

is written, where £, is the space of the well-known bounded
sequences of scalars.

Definition 2.3. Let (w(s)) be a bicomplex sequence with w (s) =
wy(s)ey + wy(s)e, for every s € N. If, given any & = g,e; +
g,e, € D*\{0}, there exists at least one s, € N such that
| (s) —wyls < € forall s > s, then the sequence (w(s)) is said
to be D-convergent to w, = wy€1 + Wy, € BC with respect to
the hyperbolic-valued norm.

Again, if, given any € € D*\{0}, there exists at least one
So € N such that |w(s) —w(t)|s < e forevery s,t > s,, thenthe
sequence (w(s)) is said to be D-Cauchy with respect to the
hyperbolic-valued norm (Luna—Elizarraras & et al., 2015).

Since |w(s) — wyle < € if and only if [w;(s) — wypq| <
&1 N |wy(s) — wy,| < &y, it is observed that the D-convergence of
the sequence (w(s)) depends on the convergence of the sequences
(w1 (s)) and (wz (s)) in C(i). If (w1 (s)) or (wz (s)) diverges in
C(i), then the sequence (w(s)) is also D-diverges in wyc. Now, let
the set Cpc be defined by

Crc = {w € wgc: | € BC, limpl|w(s) — s = 6}.
S—00
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If w(s) = wy(s)ey + wy(s)e, forall s € N and [ = lje; + Lye,,
then we can write

Coe = Ti1{wi € Wil; € C lim () = il = O ;. (23)

Let us take any w, x € Cyc and z € C(i). Since w @ x € Cpc and
z O w € Cyc, Cyc 1s a complex subspace of wgc. If we use (2.3)
and the space C of convergent sequences with complex terms, then
we can write

CIB(C = C61 + Cez . (2.4)

The space Cpc is the space of D-convergent sequences with
bicomplex terms.

Similarly, the set
Cpe = {w € WIBS(C:SH_)HOIOID)IW(S)IS = 9}

is defined. If C, represents the set of sequences with complex terms
that converge to zero, then

Chc = Coeq + Coes. 2.5

can be written. The space Coc is the space of bicomplex sequences
that converge to the zero 6 € BC, say D-zero.

Let 1 < p <o and let w(s) = w;(s)e; + w,(s)e, for
each s € N. Then, the following equality is observed

Lffé(c = {w € wpc: Z;x;o(l/ur(s)lg)z’!J < OO]D)}
=Y {w; € W: T olwi(s)]? < oole;.

Here, if €, is the set of p-absolutely summable sequences

with complex terms, then we can write

LE. =4 e+ 1,6 (2.6)
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and Lfg(c is the set of p-absolutely D-summable sequences with
bicomplex terms.

For 1 < p <o, let w,x € L. and w(s) = wy(s)e; +
w(s)e,, x(s) = x,(s)e; + x,(s)e, for every s€ N. Then, we can
write Z;":O(Iw(s)lg)ﬁ < oop and Z;";O(Ix(s)lf)‘p < oop. This
implies that }}02 |w; (s)|# < o0 and Y22 ,|x;(s)|# < oo fori = 1,2,
then we have

52 (160 ® 2)©)g)” = 220 (|87 (wi() + 2i()el])

= Y2 0(EE lwi(s) + x;(s)|e)”

= T2 0(Ch lwi(s) + 2;,(s)|7e;)

= Y21 (TR olwi(s) + 2;()|P)e;

< T2 E2o(wi ()] + 2:()D?e;

< Y220 277 (lwi ()17 + |2:()[#))e;

_op-1y2 [ Qszolwi(s)P)e;
=2 12i:1(+(2§";o|xi(5)|”)ei)

et [ QZolwr (97 + Xeiolx1 (5)1%) ey o
= 1{+(Z§";0|w2(s)|5” +Z§O=0|x2(5)|p)ez}< P

Furthermore, for any z € C(i), we can write
220(1iz O w)()e)” = TR0 (TLs lzllw;(s)le)”
= |z1? 2o Eiilwi(s)|7e))
= IzI”Z?=1((2;’°=olwi(s)lﬂ’)ei) < ®p.
Thus, it is shown that the set Lfg(c is a subspace of wyc.

The space of convergent series with complex terms is
denoted by CS. For every s €N, let 7(s) = 7,(s)e; + 72(5)e,.

Then
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CSpe = {7: (r(k)) = (X¥-07(s)) € Cic}
= {r: (1(0) = ((To ta())es + (TEo72(5))ez ) € Cic
={t, e W: (1:(k)) = (Tk_y71(5)) € Cley
+{T2 EW: (Tz(k)) = (Z§=0 TZ(S)) € C}ez
and in this case, it is written
CSpc = CSe, + CSe,. Q.7)

Furthermore, due to its closure under D-addition and D-
scalar multiplication, the set CSpc is a subspace of the space wgc.
Thus, CSp 1s the space of the D-convergent series with bicomplex
terms.

The space of bounded series with complex terms is denoted
by BS. For every s € N, let w(s) = w,(s)e; + w-(s)e,. The D-
bounded series space of bicomplex terms is defined as

BSpc = {w € Wpc: supD|Z’s‘=O fw(s)|E < ooD},
keN
If some properties of BC are used, we have

BSpc = {Wl € W: sup|2§=0w1(8)| < oo} €1
KEN

+ {wz € W:sup|Tk o w,(s)| < 00} e,.
keN

In this case, it is obviously written
BSgc = BSe, + BSe,. 2.8)
Now, let w = (w(s)) and x = (x(s)) with  w(s) =
wy(s)e; + w,(s)e, and x(s) = x,(s)e; + x,(s)e, for all s €N
be two elements of BSpc. Then
supDIZé‘:oMf(s)If < oopy and supD|Z§=0x(s)|E < 0Op.
keN keN
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This implies that
sup|%¥_o w;(s)| < o0 Asup|B¥_,x;(s)] < oo
keN keN

for i = 1,2. Also, we have

supp| X5 w (s) @ #(s)|, =

keN

su { (lZ?:owl(S) +x1(5)|)91 }
ven® |+ (|0 w (5) + 22(5)] e

{ (IZ80wni (9] + [Zo21(9)]Jes }
+(|Z§=0 wy (5)| + |le(=o x5(s) |)92

= {sup(|2§=o ’W1(S)| + |Z§=0 xl(s)|)} €1
KeEN

< Supp
keN

+{]§1€1§(|Z§=0w2(s)| + |Z§=oxz(5)|)}92'
and, for any z € C(i),

supp|Xk_o(z © w)(s)|f = supp{(|Z¥_ oz, (5)|)es +
KkeN keN
(lzls,(:o Z’WZ(S)Dez}

= Izl ({sup(|Zkeo i () s + sup(|tco wa () )] ez ).

Thus, it is seen that the set BSp 1s closed under D-addition
and D-scalar multiplication, and therefore, it is a subspace of the
space Wgc.

The space of sequences of bounded variation with complex
terms is denoted by BV. Let 7 = (T(s)) with 7(s) = 7,(s)e; +
T,(s)e, for every s € N. The set called the D-bounded variation
series space with bicomplex terms is represented as

BVge = {1: 22117(s) — 7(s — D¢ < oop}
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= {1, eW: X Z1|t1(s) = 74(s = 1| < o0}ey
+H1z EWi XL [T2(8) — T2(s — D] < o}e;.
Therefore, it is clear that
BVgc = BVe; + BVe, 2.9)
can be written.

For proving that BV is a subspace of wy, if it is taken two
arbitrary sequences wr,x € BVpc, this explicitly states that their
membership in BV implies for their complex components with
Yoeqlwi(s) —wi(s —1)| < o and Y iZq|x;(s) —x;(s — 1| < oo
for i = 1,2. The next steps in a full proof would involve showing
that the sum of two sequences in BV is also in BVp (closure under
D-addition) and that a scalar multiple of a sequence in BV is also
in BVp (closure under D-scalar multiplication). These proofs would
follow a similar pattern to the £§(c and BSpc proofs, utilizing the
component-wise nature of the bicomplex operations and standard
inequalities from real/complex analysis.

The fundamental concept is that sequence spaces with
bicomplex terms can be expressed as sums of idempotent
representations that take the sequence spaces with complex terms as
components. This means that whether you are working with
convergence, boundedness, summability, or bounded variation in the
bicomplex space, the behavior of these sequences can be
decomposed into two independent, parallel behaviors of their
complex components. The idempotent basis (e,, e,) allows for this
elegant decomposition. It effectively simplifies the analysis of
bicomplex sequence spaces by transforming them into a well-
understood framework for complex sequence spaces.

Lemma 2.1. For every s € N, let w(s) = wy(s)e; + w,(s)e,.
The sequence (w(s)) is a D-Cauchy sequence in the space wy if
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and only if the sequences (wr(s)) and (wr,(s)) are Cauchy
sequences in the field C(i) (Isik & Duyar, 2023).

Definition 2.4. A transformation ||-||gc from any linear space X c
wpc to the set D* is called a D-valued D-norm (or simply a D-norm)
if it satisfies the following properties:

a) For every w € wye, ||[wllgc =0 © w =6,

b) For any A €Dt and w € WERc» ”A ®’I«U’”]B;@ = Illf ®
lw g,

c¢)Forall w, x € wgg, [|lw @ x[lpc < |lw e @ x|l pc(D-
triangle inequality).

If every D-Cauchy sequence in X is D-convergent with
respect to D-norm, then it is called a D-Banach space.

Lemma 2.2. If (X3, ||+]|;) and (X5, ||-]|,) are two normed subspaces
of W, then the transformation ||-||gc defined from the space X =
X,e, + Xye, to DY with ||x||gc = 121]l1€1 + |22l 2e, for all x =
(x(s)) = (x,(s)e; + x,(s)e,) € X is a D-norm and consequently,
(X, I llge) is a D-normed space.

Proof. 1t's straightforward to show that the D-norm axioms are
satisfied by the construction presented in Lemma 1.2. The theorem
essentially guarantees that this structure always produces a valid D-
norm.

Lemma 2.3. Let (X3, [|-|l1), (X3, [I]l2) and (X, ||-]lgc) be given as
in Lemma 1.2. The space (X, ||*||gc) is a D-Banach space if and only
if the spaces (X3, I-|l1) and (X, [|-||2) are Banach spaces.

Proof. Assume that X is a D-Banach Space, then every D-Cauchy
sequence in X converges (in the D-norm) to an element within X .
Let (x;(s)) be one each Cauchy sequences in X; for i = 1,2. Given
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any € > 0, we can write € = €e; + e, € D*. According to the
hypothesis, there exists an 7 € N such that

l2(s) — 2(O)llpc = Xizall#i(s) —x;(O)llie; <&
for s,t > r. Thus, (x (s)) is a D-Cauchy sequence in X and since X'

is a D-Banach space, this sequence (x(s)) must D-converge to some

element @ = a,e; + aze, € X. This means that ||x — af|gc — 6
and so

Iy — aqlly = O Al — ayll, = 0. (2.10)

This shows that the Cauchy sequences (xl(s)) and (xz(s))

converge to a; € X; and a, € X, respectively. This proves that
(X4, 1I111) and (X5, ||+]],) are Banach spaces.

Conversely, assume X; and X, are Banach Spaces, then
every Cauchy sequence in X; converges in X; for i = 1,2. Now, let
(x(s)) be a D-Cauchy sequence in X. Then, given any & = 1€, +
&,e, > 0, there exists an r € N such that ||x(s) — x(t)||gc < € for
all s,t > r. Thus, we have ||x;(s) —x,(t)||; < & and [|x,(s) —
x,(t)]|, < &, forall s,t > r. Hence (xi(s)) are Cauchy sequences
in X; fori = 1,2. Since X; and X, are one each Banach spaces, these
Cauchy sequences must converge to some a; € X; and a; € Xy,
respectively. Let a = a;e; + aze, € X. It is easily seen that
arbitrary ID-Cauchy sequence (x(s)) in X converges to a € X.
Thus, (X, ||"llgc) is a D-Banach space.

If Lemma 2.2 and Lemma 2.3 are applied, then the spaces
®@pc, Cpe and CP are D-Banach spaces with respect to the D-norm
defined as || x||gc = supp|x(s)l¢, the space Lfg(c, 1< p<owisaD-

seEN

Banach space with respect to the D-norm defined by

2112, = (Z2o(l2(s)1)”)?,
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the spaces BSpc and CSpc are D-Banach spaces with respect to the
D-norm defined as

lxllge = llxllge = SUPDIZmox(S)Ig,
meN

and the space BV is a D-Banach space with respect to the D-norm
defined by

2115 = supp (Siole(s) — (s — D). with (~1) = 8

3.Multiplier and B-Dual Spaces of Sequence Spaces with
Bicomplex Terms

Definition 3.1. Assume that two subspaces X = X,e; + X,e; C
wge and Y = Y,e; + Y,e, € wye. Let w = (w(s)) and x =
(2(s)) be two sequences in wg¢ with w(s) = w,(s)e; + ws(s)e;
and x(s) = x,(s)e; + x,(s)e, foreach s € N. Then, the set defined
by

Mpc(X,Y) ={w e wge:Vx € X, w ® x € Y}

can be expressed according to the idempotent representation as
follows

Mpc(X,Y) = {w1:Vx; € Xy, w2, € Yyleg
+{WZ: sz (S Xz,waz € yz}ez
= M (X1, Y1)e; + M (X3, Y,)e,. 3.1)

This set is called the D-multiplier space of X and Y. If we
specifically take Y = CSpc, then we can write

M (X, CSpe) = M(Xy,CS)e; + M (X, CS)e,  (3.2)

This particular set is called the fp-dual of X'. Furthermore, the Sp-
dual of the space X is, by virtue of (3.2), the linear combination of
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the f-duals of X; € W and X, € W, with respect to idempotent
bases. Thus, it is written
XPD = Myc(X,CSpe) = XPey + XFe,.

Definition 3.2. For every s,t €N, let a(s,t) = a,(s,t)e; +
a,(s,t)e, with a(s,t) € BC. In this case, Agc = (a(s, t)) is called
as a infinite matrix (or a double sequence) with bicomplex terms.
Furthermore, using the infinite matrices A; = (6L1 (s, t)) and A4, =

(cLZ (s, t)) with complex terms, we can write
Agc = (a(s, 1) = (ay(s, t)ey + ay(s, t)ey)
= (a,l(S, t))el + ((12(8, t))ez = A161 + A262 (3.3)

The product of two infinite matrices Agc and Byc with
bicomplex terms is expressed as

ApcBpc = (4161 + Aze,)(Bies + Byey)
= (41By)e; + (A3B3)e;. 3.4)

This definition essentially states that a matrix with bicomplex
terms can be decomposed into two matrices with complex terms,
each multiplied by idempotent units e, or e,, and their multiplication
is performed component-wise.

Definition 3.3. Let X' € wg¢ and Y < wy. Also, let x = (x(s)) €
X =X e, + X,e, with x(s) = x,(s)e; + x,(s)e, for every s €
N.If Ak (x) = X2, a(k,s) ® x(s) forevery k € N and x € X is

D-convergent and (A’ﬂ%(c (x))k \ € Y, then the class of all infinite
€

matrices Agc with bicomplex terms is denoted by (X, Y). Thus, for
all k € N and all x € X, we write

(X,Y) = {Apc: Afc € X0 A (4fc(0)) €Y} (5

Definition 3.4. The set defined as
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Xige = {10 € wie: (Af,;(c(w))keN e x| (3.6)

is called the domain of the matrix Agc over the space X.

Definition 3.5. Let u= (u(s)) € wge with u(s) = u,(s)e; +
Uy (s)e, for every s € N. The set defined as

u X ={w €wpge: u @ w € X} 3.7

is called the D-reflection of the bicomplex sequence u over the space
X.

Furthermore, the set of all bicomplex sequences y = (u(s))
with 1 (s) # 0 and p,(s) # 0 for every s € N is denoted by Upc.
The multiplicative inverse of each « € Up is written as

1 1

W mea T Lee

(Isik & Duyar, 2023).

(3.8)

For any negative index s, we use the rule w(s) = 0, namely
w1(s) = 0 and w,(s) = 0. The symbols Agc and Aj;c denote the
following operators:

Agcw = (ABcw(s)) = (w(s) —w(s— 1))
= (A, (s)ey + Awy(s)e,)
= Awqeq + Auwrye, 3.9)
and
Ahew = (Mfcw (s)) = (w(s) —w(s + 1))
= (A*wl (s))e1 + (A+w2 (s))ez
= Atwie; + ATwse, . (3.10)

In essence, these definitions introduce backward and forward
difference operators for bicomplex sequences. They work by taking
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the difference between consecutive terms of the sequence, and this
operation is applied independently to each idempotent component
(e1 and e,) of the bicomplex numbers in the sequence.

Definition 3.6. Let t(k,s) = t,(k,s)e, + t,(k,s)e, forallk,s € N.
A infinite matrix Tc = (t(k, s))ks‘EN with bicomplex terms is

called a D-triangular matrix, if its entries satisfy the following
conditions:

e Ifs >k, then t(k,s) = 0 (equivalently ¢, (k,s) = 0 and
tz (k, S) = O)
e Ifs=k, thent(k,s)+ 0.

In simpler terms, a D-triangular matrix is an infinite matrix
with bicomplex terms, where all entries above the main diagonal are
zero and the entries on the main diagonal are non-zero. This is
analogous to the definition of a lower triangular matrix in standard
matrix theory, extended to bicomplex numbers and their idempotent
representation.

Definition 3.7. For every k,s €N, let A(k,s) = A,(k,s)e; +
hz(k, S)ez € BC with

1, 0<s<k

0, otherwise =12

Aulles) = |

and let Hyc = (h(k, s)) . seN’ Given any u, v € Upc and the subset
R =R, e; + Rye, C wpc, the space defined by
Zpe = Zpc(u, 5 R) = o7 (™ * R) gy, @3.11)
is called a bicomplex Z-space.
The equality (3.11) can be expanded as follows:
Zpe = v x (T * R) gy,
={w e wgei v @ w € (u™! * R) gy}
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= {w € wge: Hac (v @ w) € u™t + R)
= {w € wpc:u ® Hpc(v @ w) € R}
For every s € N, since
u(s) ® (Hie(v @ w))
= u(s) ® (To Als, k) ® (v(k) ® w(k)))

=u(s) ® (Ti=o(vr () @ w(k)))
= X1 (ui(s) Zi=o vi(kR)w(Kk))e;,
the Zpc-space can be expressed as
{w: B (wi(s) Ti=o vi () wi(k))e)§Z, € R}
= {w1 € W: (u1(s) Xi=o 1 (w1 (k)50 € Ri}e
+{wy, € Wi (uy(s) Y=o v (K)w,(k))sZ, € Ryle,.

Consequently, this proves that the Zc-space with bicomplex
terms can be written as the linear combination of two complex Z-
spaces as follows:

Z]B(C(’I/L, 1, R) = Z(ul,’lfl; Rl)el + Z(’uzz,’v'z;jez)ez (3.12)

This derivation shows that operations on bicomplex sequence
spaces often split into independent operations on the corresponding
idempotent components, which simplifies the analysis considerably.

Example 3.1. Let ¢ = (c(s)) be a sequence with ¢(s) = ¢,(s)e; +
c,(s)e, = le; +1e, = 1 for all s € N. If «u = v = ¢, then, we
have Zpc(c, ¢; Cpc) = CSpc and Zpc(c, ¢; Ppc) = BSpc-

Solution. It is a known result that Z(c,c;C) =CS and
Z(c,c;tw) = BS (Malkowsky & Savas, 2004). Thus, we have

Zrcle, c; Cye) = Zycle,c; Ceq + Cey)

= Z(cy,¢150)er + Z(cy,¢2;C)e,y
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= CSe, + CSe, = CSp
and
Zgcle, c; Pre) = Zrele, c; ey + Lwey)
=Z(cp,c13tw)es + Z(cy,c054u)e
= BSe, + BSe, = BSpc.

For every s€N, let q(s)=q,(s)e; +qy(s)e, > 0.
Consider the sequences v = q = (q (s)), Q:(m) =Y ,q:(s) and

Q2(m) = XM q2(s). Let the sequence Q = (Q(m)) with Q(m) =
Q:(m)e; + Q,(m)e, for every me€ N and « = 1/Q be given. In this
scenario, if we use equation (3.12), then, for any T = 7,6, + 7,6, €
Zpc, We get

TE Z(ul,/lrl;le)el + Z(’Mzz,’v'z;jzz)ez
ST € Z( ,ql,Rl)/\Tz € Z( ,qz,Rz)

Additionally, the following equalities have been established for i =
1,2 (Jarrah & Malkowsky, 1998):

e Z (Qii,CIi; Co) = (v, CIi)O
. Z(Qii,qi; C) = (W, q;)

b Z( 4t ) (N QL)

Using these equalities and (3.12), we can write the bicomplex Z-
spaces as

1 — |0
Zpc (‘JI: Cﬁc) = (N»Q)M

Q
_Z( ;CI1;C0)91+Z( 'QZ'CO)

= (W, q1) e + (W, a2) ez (3.13)
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e (62~ (0,
—Z( ,ql,C)e1+Z( 42:C) &z
= (M, q1)es + (W, qz)ez, (3.14)
Zc (54 Pac) = (V)
—Z( RYS )e1+Z( G2 ) €

=(M,q.) ei + (IV,q2)_e.. (3.15)

These sets are the sets of D-null, D-convergent, and D-
bounded sequences of D-weighted means with bicomplex terms,
respectively.

Lemma 3.1. Let X = xlel + xZez C Wpge, f = flel + fzez c

wie, Y = Y1 + Yoe; € wye and Y = Yye; + Yae, © wy, and
also let u € Upc. The following propositions hold:

a) If X < X, then M (X, Y) € Mpc(X,Y).
b) Ify C ‘y’\, then MB((:(X,'y) C MBC(X,@).
C) MIBC(u_l * x! y) = (1/%)_1 * M[B(C(xl y)
Proof. a) Assume X < X. This implies that X; € X; and X, © X,.
It is a known result in (Malkowsky & Savas, 2004) that if X; c X;
for i = 1,2 and T © W, then M (X, T) € M(X;, T). Using (3.1),
we have
Mpe(X,Y) = M (X1, Y1)es + M (X2, Yz)e,
C M(fl,yl)el + M(fz,yz)ez

= Mgc(X,Y).
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b) Assume Y < Y. This implies that Y; € Y, and Y, € Y. Itis a
known result in (Malkowsky & Savas, 2004) that if Y; € U; and
P c W, (a general complex sequence space), then M (P,Y;) c
M(P,T;). Thus,

Mpc(X,Y) = M (X1, Yy)ey + M (X3, Yze,
c M (X1, T)es + M(X,,T,)e,
= MIB(C(XI@)
is obtained.

c) First, let us show the equality «™1* X = (u; 1 x X )e; +
(uy71 % Xy)e,. Let v € u™t « X. By (3.7), we get

veEUlx X ouQQveEX =Xe +Xe,

S u e + uyvye, € Xieg + Xye,
S uvy € Xy Auyvy, € X,
Sv Eu kX ANvy Euy, X
v € (uy ™t * Xpey + (17! * Xp)e,.

Thus, the desired is achieved. Also, using (3.1), we have

Mpc(u™ *X,Y)

= M (w7 * Xy, Ypey + M (uy ™t * Xy, Yp)e,.

Itis known that M (w; ™1 * X, Y;) = (1 /)"« M(X;,Y;) fori =
1,2, (Malkowsky & Savas, 2004). Substituting this into the
bicomplex expression, we have

Myt X,Y) = Xy ((1/w) ™ =« M0, YD) )e:.

Let A = A,e; + Aye, € Mpc(u™t « X,Y)). Then, we get, for i =
1,2,

i € (L/u) '+ M(X;,Y) & (L/u)h € M(X;,Yy)
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S (1/u) @ 1 € Mpc(X,Y)
S 1€ (1/u)™! * Mpc(X, ).
This completes the proof of part c).
Lemma 3.2. The following equalities are true:
(a) Mpc(Cae Cre) = Pae
(b) Mpc(Cre Coe) = Cae
(¢) Mpc(Ppe, Crgc) = CIB?(Ca
(d) If1<q < oo, Mpe(LEe Chc) = P
Proof. Tt is well known that M (Cy, Cy) = 4o, M(C,C) =C,
M, C) =Cy and if 1<g <oo, then M(#%Cy) =4
(Malkowsky & Savag, 2004). Let us use Lemma 2.1.
(a) Mic(Coe, Cpe) = Mpc(Coer + Coey, Coey + Coe)
= M (Co, Co)ey + M (Cy, Co)e,
=ftpe; +Lyne, = Py,
(b) Mpc(Cre, Coe) = Mpc(Cey + Cey, Cey + Cey)
=M(C,Cle; + M(C,C)e,
=(Ce; + Ce, = Cpg,
(©) M (Ppc, Cpe) = Mpc(Lawer + Loy, Coer + Coez)
=M, Cyles + M (£, Cpe,
= Coe; + Coe, = Chc,
@ Miac(Lge Coc) = Mac(£%e; + £e5, Coey + Coer)
= M(£%,Cy)es + M(£%,Cy)e,

= {’ooel + fooez = @B@.
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Lemma3.3. Let X = X, e; + X;e; € wgcand Y = Xy . Also, let
Ky = (xﬁn)%(c, K, = Mpc(X, Cge) and K3 = Mpc(X, Cyo).
Then

K NK, cYPo (3.16)
and if X is a D-normal set, then

YPo = K, N K. (3.17)
Moreover, for every a = (a(s)) € YPr and y = (y(s)) € U,

220 a(s) ® #(s) = o dpc(als)) @ Hic(y).  (3.18)

Proof. Let any 4 = (4(s)) = (y1(s)ey + ¢2(s)e;) € Y be given.
Then }[B@(/g») € X and

Hie(y) = = (5, k) @ y (k) = Tioy (k) = w(s),
w = (w(s)) € X.

Also, for all s € N, we have
w(s) = Bk=o (k) — CiZow (k)
= Zi:o(w(k) —w(k - 1))
= Y=o Apcw (k) = Xj=o ¢ (k) = Hpc(y).
Thus, using Y = Xy, We can write

w €X & w =Hpc(y) €EX © ¢y € Xy, (3.19)

Additionally, for each a = (a,(s)) = (a.(s)e; + a,(s)e,) € wyc,
we get

k=0 a(k) ® ¢ (k) = Xy=oa(k) ® Agcw (k)
= (Zi:o a, (k)(A’W1(k)))e1 + (Zi:o a; (k)(A’Wz (k)))ez- (3.20)

Also, using Auw;(—1) = 0, we have
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Y=o @i () (A (R)) = imp s (k) (wi (k) — wi(k — 1))

= Yk=oai(k)w;i(k) — X0 a;(k)w;(k — 1)

= Yicoai()wi(k) + a;()wi(s) — Xizb ai(k + Dy (k)

= Yizolai (k) — a;(k + D} (k) + a;(s)w(s)

= Y=o a; (k) )w(k) + a;(s)w;(s).
If we substitute this in (3.20) and use (3.10), then we obtain

k=0 a(k) & y(k)
= Y=o Ahcak) @ w (k) @ a(s) @ w(s). (3.21)

Now, let an arbitrary @ = (a(s)) € K; N X, be given. Then,
sincea € K, = (X BD) At s Wecan write Afca € XPp. Accordingly,
BC

for every wr € X, we have Ajjc(a) ® w € CSpc, and so
Y2 o(Afcals)) ® w(s) < oop,. (3.22)
Also, we can write
(Aficals) ® w(s)) = Aje(a) ® w
= Apc(@) @ Hpc(y) € CSpc. (3.23)
Furthermore, since a € K, = Mpc(X, Cge), by (3.19), we have
a@w =aQ Hpc(y) € Cpc (3.249)

for every w € X. If (3.21), (3.22), and (3.24) are used, then we get
Yreoalk) ® y(k) < oop, which means a ® ¢ € CSpc for every
y € Y. This shows that a € YPP, and (3.16) is proved.

If C9¢ © Cgc and Lemma 3.1. (b) are used, we find
K3 = Mpc(X, Cpe) © Mpc(X, Cpe) = K5
and thus

K, NK; € Ky NK, cYPo (3.25)
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If X is a D-normal set and a € YAP, then a @ y =
(a(s) ® y(s)) € CSpc forevery ¢ € Y, and thus (a,(s)y1(s)) €
CS and (a,(s)y(s)) € CS. From this, we obtain a,(s)y,(s) - 0
and a,(s)y,(s) » 0 as s — oo. Thus, it is observed that a(s) &
4 (s) — 0. In this case, we get a ® Agcw € Ch for every w € X.
Now, let ¥ = (%(s)) with (s) = (—1)%|w(s)|¢ for all w € X and
s € N. Then, we have

DO |’W(S)|§|f < lwr(s)le

for every s € N and using the fact that X is a D-normal set, we
obtain ¥ € X', and so a & AgpcX € C[g(c. Also, since

a @ Apc((—1° O |w(s)l¢)
=a @ Agc((—1)%|w1(s)ley + (—1)%|w,(s)es)
= (—1)’QL1 ai®) (wi ()] + |wils = D)ey),
we  obtain  a,wy = (a(sH)wy(s)) >0 and  aw, =
(az (s)w, (s)) —0. Thus, a @ w — 6 for every w € X. This
shows that a € K3 = Mpc(X, Coe).
Furthermore, if we take the DD-limit of both sides of

expression (3.21) and use the fact that a ® w € Cg for every w €
X, then we get

limp Y=o a(k) y(k)

S—00

= limp, (523 (Ahca (k) ® w(k) @ als) ® w(s)).

S—00

and so
Yicoak) @ y(k) = Xizo(Ahcak)) ® w(k). (3.26)

On the other hand, since a € YPP, both sums are finite. Since this
holds for every w € X, then Afca = (Afca(s)) € XPp, and
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therefore a € (xﬁD)AEc = K. Thus, we have a € K; N K5 for
every a € YPp and therefore

YPo € K, N K, 3.27)
If (3.25) and (3.27) are used, we get YPp = K; N K.

Additionally, if the equality w = (w(s)) = (Hic(y)) =
Hyc(y) is used in expression (3.26), then (3.18) is true.

Lemma 3.4. For arbitrary sequences w = (w(s)) EX =Xeq +
X,e, € wye and u = (u(s)),/tr = (v(s)) € Ugc with w(s) =
wy(s)e; + wy(s)e,, u(s) =u,(s)e; +u,(s) e, and v(s) =
v1(s)e; + v, (s)e, for all s € N, the following equalities hold:

1 1
a) W®;=Z®w=%a
1 1 w
b) w®;®;=u®v’
c) w®%=w—§m.

Proof. For by # 0 # b,, the equality holds

ajeitaze; aq ap
— =€ + —= 82
b191+b292 b1 b2

exists (Luna—Elizarraras & et al., 2015). If this equation and the
vector multiplication operation defined on wy are used, (a), (b) and
(c) are easily obtained.

Lemma 3.5. Let X = X e; + X,e, C wge, © = (u(s)) € Ugc
and v = (v(s)) € Upc. If the set X is D-normal, then the set 2™ =
X is also D-normal. Furthermore, the following equality holds:

MIB%(C(’V_l * (ut x X)3tper CSIB(C)

= (1/0) 7 5 (™t * Xy, )™ (3.28)
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Proof. Let u = (u(s)) € w1+ X with u(s) = puy(s)e; + uy(s)e,
for every s € N, and [5(s)|¢ < |u(s)|;. In this case, u ® u € X,

161(s)| < |u1(s)| and |5, (s)| < |uz(s)| are obtained. Then, |[(« &
8)(s)|e < [(u @ w)(s)|¢ is written and if is used that the set X is
D-normal, then we obtain « @ 6 € X, hence

§ = (6(s)) € w™t » X. Thus, it is seen that the set ™1 * X is also
D-normal. By Lemma 3.1 (c), we get

M (v * (w0 * X350, CSpe)

= (1/v)71 * Mpe((w™ % X405, CSme)

= (1/v)" !+ ((u_l * x)}fm)ﬁm

Theorem 3.1. Let « = (u(s)) € Uge, v = (v(s)) € Uge, X =
X,eq + Xye, C wie and Zpc = Z[B;((:(’DL, v, JC) Then

1
zFe 5 {a; 2 ® A (3) € X0 N2 € Mipc (X, CB(C)} (3.29)
and if X is a D-normal set, then
1
zf2 = {a:= @ ¢ (2) € XPr A= € Mpe(X, G0} (3.30)

holds. Moreover, for a = (a(s)) € ngc” and T = (T(S)) € Zpc, We
obtain

S0 a(s) ® 7(s) = X0 Abe (53) ® Hisc(v @ 1) (3.31)

Proof Firstly, by (3.28), we can write Z = (1/v)~1 » YPp with
=(u 1« X)3cgc- In this case, we wrlte (1/v) ® a € YPr for

each a € Zlgg . Hence, there exists a ¢ = (% (s)) € YPP such that

y(s) = y1(s)e; + 42(s)e;
with
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a1(s)  ay(s)
oo P2 =5

If we take «~1 * X instead of X in Lemma 3.3, then X, K, and K5
are written as

¥ = ((wt = JC)B‘D)A%(C = ((1/u) 1= xBD)AC

y1(s) =

¥y = Myc((w™ * X), Cge) = (1/w) ™t * My (X, Cpe)
and

K3 = Mpc ((’bﬂ_l * X), CIS%(C) = (1/u)™" * Mpc(X, Cyo).
In this case, if (3.16) is used, then

Ky NK, = ((1/u)™ + XBD)AEC N{(1/u)™" * Mpc(X, Cpe)}

cYhr = (1/v) ® 2L2

holds. Accordingly,

v Qw € wye:w € ((i)_l * X'BD> ANw € {(i)_l *

Afc
M (X, CB(C)}} czb

If we receive v @ w = a and use Lemma 3.4, then we write
1 a a B
{a_ Z ® A%(C (;) € _X‘BID) A @ € M[Bc(x, CB(C)} C ZB(H():),
and thus (3.29) is obtained.

Now, let X’ be a D-normal set. If Lemma 3.5 and (3.17) are
used, we write

KN Ky =YPo = (1/0) @ ZEP
and thus
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. 1 a a _ B
{a:2 @ apc(2) € XPo A= € Mpe(X, G0} = 252,
This proves (3.30).

Ift= (T(k)) € Zpc, then, for s € N, as in Definition 3.7, we

write

xi(s) = u;(s) Lp=o vi(K)T;(k), i = 1,2
and so

(/1) (s) = Y=o vi(k)Ti(k), i =12

with x = (x(s)) = (x1(s)e; + x,(s)ey) € X. Also, for every s €
N,

vi(8)7i(s) = Xi=o v ()7, (k) — Y=o v, ()7, (k)
= (xi/u)(s) — (x;/u)(s — 1)
= A((ei/wi)(5)), i = 1,2
and hence
7(s) = (1/vi($NA((xi/ 1) (5))
is written. From this, for every s € N,
(s) = Xiop ti(s)e; = iy (1/ v (sNA((xi /1) (5))e;
= Ci1(1/vi(s)e) ® Apc(Xi-y (xi(s)/ui(s))e;)
= ((1/v) ® Agc(x/w))(s).

is obtained. Now, let a € Z[g(“g. If we take T € Zpc(u, v; X) with
T =(1/v) ® Agc(x/u), then we write

QXk=0a(k) @ 1(k))sZo

= ( k=0 (d(k) X (ﬁ) Q Apc (%)))w € Cpc
$=0
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and, by (3.21), we have
Li=oa(k) ® t(k)

a(k)

s— a(s)
=Zk=1< (k)® M( (k))>® (k) © s 5gum ¥(8). (332

Now, since a € ZE2, by (3.30), @ € Mpc(X, C3c), and, by
(3.32), we have

8 () = i a5 ()0 13

k=04 (k) u(k) v (k) u(k)
If x =u @ Hyc(vr @ 1) in (3.33) is used, then, for every k € N,
x(k)

E = }[‘Ié'c(’v’ ® T), thus

a(k)

Fizoall) ® T(k) = Tizo Ape (403

) X }[B(c(’lf X T)

is obtained.

Lemma 3.6. For £-dual spaces of some sequences with complex
terms,

cl=ct=18 =0, (3.34)
and
=1, (3.35)
with1 < g <o and (1/p) + (1/g) = 1 (Basar & Colak, 2011).

Theorem 3.2. Some spaces of sequences with bicomplex terms
satisfy the following equalities:

(C)Pe = cBo = af? = £}, (3.36)
and
B
(£E)™" = L2, (3.37)
withl < g <o and (1/p) + (1/g) =1, also
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(Lho)Pe = L2 = oLP.

Proof. 1If the equalities Mpc(X,CSpc) = M (X, CS)e; +
M (X,,CS)e,, and (3.34), (3.35) in Lemma 3.6 are used, then

(CRe)PP = Mipc(CRe, CSpe) = Mipc(Coey + Coez, CSpc)
= M(Cy, CS)e, + M(Co, CS)e,
=fie; + 16, = L,
C@S’ = Mpc(Cpc, CSpc) = Mpc(Cey + Ceyp, CSpc)
— M(C,CS)e, + M(C,CS)e,
=f.e; +t1e; = L,
fib@? = Mpc(Ppc, CSpe) = Mpc(fower + £z, CSpe)
= M (Lo, CS)e; + M (£e, CS)e,
= {1eq + 16, = Ly
and so (3.36) holds.
Now, let1 < g <o and (1/p) + (1/g) = 1. In this case,

we get
B
(L%(C) P = MB(C(L%(C' CSB«:) = MBC(f@el + f‘lez, CSB((:)
= M (£9,CS)e, + M(£%,CS)e,
={Pe, +4%e, = L1,
thereby yielding (3.37). Here, if g = 1 is taken, then (Lio)PP =

Lge = Cng":” is written.

Lemma 3.7. The spaces L. with 1<g <o and (1/p)+
(1/g) = 1, Cy¢ and @ are D-normal sets. Also, the space Cy is
not a D-normal set.
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Proof. First, let ¢ = (c(s)) € Cpc be given with c(s) = ¢;(s)e; +
cz(s)ez and |€(s)|s < |c(s)|¢ forevery s € N. In this case, we write
c1(s) » 0 and c,(s) = 0 in C. Furthermore, if the D-ordering is
used, then |¢;(s)| < lc;(s)| and |é,(s)| < |c,(s)| hold. Then,
¢,(s) >0, ¢,(s) >0 and thus ¢(s) = ¢;(s)e; + ¢,(s)e, — 0.
From this, & = (¢(s)) € CJ¢, and thus the space Cg is a D-normal
set.

If c = (c(s)) € Py is taken, then supp|c(s)|s < oop, and
SEN

thus sup|c;(s)| < oo for i = 1,2. Now, if [¢(s)|¢ < |c(s)¢ for all
SeN

s € N, then we get

supp|¢(s)|e = sup|¢;(s)|es + sup|c;(s)le,
SeN SeN SEN

< suplc;(s)|e; + suplcy(s)le;
SeEN SEN

= supp|c(s)|g < op
SEN

and hence @y 1s a D-normal set.
Again, let ¢ = (c(s)) € L%C and |€(s)|¢ < [c(s)|¢ for all
s € N. In this case, Z;"’:O(Ic(s)lf)% < oop, and thus Y.o2,|¢; (s)]% <
Yerolci(s)|® < oo for i = 1,2. Then
oo ~ 9 o |x

YeZo(16()Ns)” = B (ZeZolei()1% e;)

< Yosolcr ()% er + XZolca(s)|% e,

o 4

=Y2(lc(s)1¢)” < oop.
This shows that ¢ = (E(s)) € L%C and therefore L[‘;C is a D-normal
set.

Now, we show that Cgc is not a D-normal set. For this
purpose, let ¢ = (c(s)) and ¢ = (E(s)) be sequences with c(s) =
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(1 + i.) e; + (1 + i) e, and ¢(s) = ie; +ie, for every s € N.
Hence c(s) — le; + 1e; = 1 as s and |€(s)|s < |c(s)[¢ for every
s€N.Duetoc = (c(s)) € Cpc and € € Cpc, the space Cc is not a

D-normal set.

Corollary 3.1. Let u, v € Ugc, 1 < g <ooand (1/p) + (1/g) =
1. Then, the following equalities hold:

2) (Zpc(w,v; C[g(c))ﬁ") ={a:2 @ Afc (2) € Lic A==€ g,
b) (Zgc(u, v; ¢BC))BD = { (%) € Ly A s CIB;(C}
c) (ZBC(u, v; Lfé(c))ﬁn = { i (%) € Lpc N——€ cpm},

d) (Zpc(u, v; CIBB(C))ﬁD = {“ii ® Ajc (%) € L A @ € CIB(C}-

Proof. In Lemma 3.7, it was shown that the spaces Coc, ®gc and L%C
are D-normal sets. If Theorem 3.1, and (3.30), (3.36), (3.37) are
used, then (a), (b) and (c) are easily obtained.

For the sake of brevity in our calculations, we denote
B
(ZIB(C(’“/»’V; CIB(C)) 7=

Since Cp¢ is not a D-normal set, by (3.29) and Lemma 3.2,
we get

) {a,:i ® Afic (Z) echp A —— € Mic(Cpe, CIBS(C)}
, and so
F={aewpet®Afe (%) € Lhen ¢ Cac}. (3.38)

Also, Zpc(u, v; Ch¢) © Zpc(u, v; Cye) and by Lemma 3.1 (a), we
have

Mpc(Zpc(u, v; Cyc), CSpe) EZM]B(C (Zpc(u, v; Cyc), CSpe).



and so

Fc (Z]Bc(u,/tr; C[‘B?(C))ﬁ]m.
Hence, we write
Fc {a € wyei~ ® A (%) € L}M}. (3.39)

If (3.36) is used, then

. oo a(k)

F c {a.x € CIB(C'Zk:O( ) ® [B(C (U(k))> ® .'X'(k) < OO]DJ}
holds. Now, let @ € F. Then, given any T € Zgc(u, v; Cgc) witht =
(1/v) @ Agc(x/w), if (3.32) is used, then

k=0 a(k) & t(k)

= ( (u(k) ®A ]B(C 283) ® x(k)) v(s?gzb(S) ® x(s). (3.40)

Here, if

a(k)

GS = Zi=0 a’(k) ® T(k)s IS = Zi (k) ® [B(C (k) ® (k)
are taken and (3.39) is used, we write
a(s) N .
v (s)Qu(s) ® x(s) = Gs =1

thus, for every x € Cpc,

a(s)
u®4r ® <U(S)®u(s) ® x(s)> ( s Is) € C[B(C

and hence

s Ce) = Cac (3.41)
is obtained. Thus, if (3.39) and (3.40) are used

Fc{aewses® Ak (2) e Lhcn } G
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is written. Now, if the inclusions (3.38) and (3.42) are considered
jointly:
1
F:{a/EW[B«:;®AEg ()ELB(C ® EC]B(:}

Lemma 3.8. Let CS be the space of convergent series and BS be the
space of bounded series with complex terms. Then CS? = BV and
BSP = BV, = BV n C, hold (Malkowsky & Savas, 2004).

Theorem 3.3. The equalities C’S[g(ﬂg = BVpc and Bé‘g("g = BVpc =
BV N Coc hold.

Proof. If Lemma 3.8 are used, then we have
C’Slg(”g = Mpc(CSpc, CSpe) = Mpc(CSe; + CSe,, CSe; + CSe,)
= M(CS,CS)e; + M(CS,CS)e,
= BVe; + BVe, = BV,
BS@C” = Mpc(BSgc, CSpc) = Mpc(BSe; + BSe,, CSe; + CSe,)
= M (BS,CS)e, + M(BS,CS)e,
= BVye, + BVye, = BVgc N Coc
is obtained.

Example 3.2. For any a= (a,(s)) Ewge, let ¢;(s) =
l( i( 1)
Qi( )|a s) a;(s+

75 a6l & i = 1,2. Then the following equalities hold:

0 (0)) " = {0 Z20 s 01(5)) < oo A 222 € ),

b) (W, 4)s = {@: 52051 94(5)) < o0p A L2% € e,

c) ((W:CI);@) {ﬂ Y o(Xi1 9i(s)) < oop /\Q;m € CIBB(C}



Solution. First, let us recall the sequences v = q = (q(s)) such that
q(s) = q1(s)e; + q2(s)e; >0 and  Q = (Q(s)) = (Q1(s)e; +
Q2(s)ez ) with Q1(s) = Xk=0q1(k) and Q(s) = Xi—oq2(k) for
every s € N. Also, let u = (u(s)) be a sequence with u(s) =
1/Q(s), ie, u(s) =1/Q =1/Q,(s) e; + 1/Q,(s) e,. Using the

equation (a) in Corollary 3.1, we have

(Zmacc(%”: C]];(g(c))ﬁn = { T & IBB(C( ) € Lygc AT— 1® € d)m}

Now, according to the properties of bicomplex numbers written in
idempotent representation, since

1 _ 1@1+1€2 _ 181+1€2
I—( lej+iey )— 1 1
Q(s) Q1(s)e1+Q2(s)ez Q19 17 Q20972
= Q1(s)e; + Q2(s)e; = Q(s),
we have

a(s) _ ai(s)e;+az(s)e; _ a1(s)Q+(s) a;(s)Q2(s)
@ - 01(5)81+02(S)82 - s 1 s 2
5 (oarces) 1(s) v2(s)

_ a1(5)Q1(s)e+ay(s)Q2(s)e; _ al(s)®Q(s)

- vy (s)es+v,(s)e; T v

for every s € N and thus
((W, q);(c)ﬁm = {a: Q ® Afic (g) € Lic /\“%Q € c;bm}

{a 2520 |06) @ 5 (52)], <o 1422 ¢M}

= {0«1 Z?;o( 721 Qi(s) |(ai($) - ui(s+1))| ei) < oop A W%Q € Q’Btc}

qi(s) qi(s+1)

= (@SS 9i()) < 005 A 222 € ).
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Again, if the equality Mpc(Cge, Cpc) = Cpe is used for the set
(v, Cl)gﬂz and the equality Mpc(Ppc, Coc) = Cpc is used for the set

— o \Bp '
((]\f , q)[B <c) , then (c) and (b) are easily seen.

Example 3.3. Let @ = (w(s)) be given with w(s) = w,(s)e; +
w,(s)e, = 1ley + le, for every s € N. If the sequences ©+ = @ and

w = (u(s)) = (uy(s)ey + uy(s)ey) = (ﬁ e, + ﬁez) are

taken. Then for any a = (a,(s)) € wpc the following equalities
hold:

2) (Zac(u, v; L[%B(C))ﬁ U= {a, : suppm(s) < 00p A (u(s)) € cbm},
b)Forl<g<owand(g—1)(p—1) =1,
Pp
(Z[B([:(’LL, 1, L%(C))
={a: $2(m())” < oop A (u(s)) € Pyc},

c) (Zm(u, v; CDBC))ﬁD = {a P ez m(s) < oop A (u(s)) € C]B?(C},
wheret(s) = (s +1) © |A§(C(a,(s))|f, us) =(G+1) O als).

Solution. If Corollary 3.1 and Theorem 3.2 are used:

(Znaa(c(% v; Lxlm))ﬁm

- {“:i ® Al (f) € (Lyo)P? A ; € ‘DM}

uRv

1 a(s)e;taq(s)e a
= {d: (; X A%(C (#)> € d)IBB(C N @ € (DIBC}-

@y (s)e+w,(s)e;

1 a4(s) ay(s) a
= {a,: (; ® A%((:( 11 eq + 21 ez)) € (DB(C /\; € d)lBC}'
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= {07« : 5;16151]3)”(5) < oop A (u(s)) € ‘DBC},

Bp
(ZIB(C(/M" T, L]%%(C))

e @a(®) e (20 n:

= {CL: (T[(S)) € Lg«: A (,LL(S')) € ¢[B(C}

= {a:zgio(n(s))‘p < oop A (u(s)) € Ppcl,

(Z]Bg@(’bb, T, (p[Bc))BD = {CLZ i ® AHE;(C (%) € (plgg N u;ﬂ

= {a: (n(s)) € Lic A (u(s)) € Cic}
= {a: T2om(s) < cop A (u(s)) € Cic}

J

e}

are obtained.
4. Results and Discussion

In this study, bicomplex Zpc-spaces, which constitute
bicomplex generalizations of the classical Z spaces, have been
introduced and systematically investigated. In this framework, the
spaces Ppc, Cpc, Cpc, Lhe (1 < p < ®), CSpe, BSpe and BV
were defined and analyzed. These constructions extend the
topological structure of sequence spaces from the complex setting to
the bicomplex number framework, thereby enriching the theory of
sequence spaces with additional algebraic and topological features
arising from bicomplex analysis.

Subsequently, the Bp-duals of the newly defined bicomplex
Zpc-spaces were determined. In particular, it was shown that the fpy-
duals of Cg¢, Cgc, and @pc all coincide with the space L. This
result provides a precise characterization of bicomplex sequences
that generate convergent series when multiplied by elements of these
Zpc-spaces. From a functional-analytic perspective, this
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characterization plays a role analogous to that of classical duality
results in complex sequence space theory, while also reflecting the
intrinsic structure induced by the presence of zero divisors in the
bicomplex setting.

The findings of this work contribute to the development of
functional analysis over bicomplex numbers by supplying new
examples of bicomplex sequence spaces and by clarifying their dual
relationships. These results offer useful tools and insights for
researchers working on sequence spaces, duality theory, and related
aspects of bicomplex functional analysis. Moreover, the techniques
employed here may be adapted to the study of other classes of
bicomplex sequence spaces.

Future research directions include the investigation of
weighted bicomplex sequence spaces and the analysis of their duals
and matrix transformations. In addition, exploring potential
applications of bicomplex sequence spaces in areas where bicomplex
numbers naturally arise-such as signal processing, quantum
mechanics, and electromagnetism-appears to be a promising avenue
for further study.

Overall, this study establishes a foundational framework for
the analysis of Zpc-spaces in the bicomplex setting and opens new
perspectives for both theoretical advancements and applied research
in bicomplex functional analysis.
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CHAPTER 3

ON THE CONTINUITY OF THE WIGNER-VILLE
DISTRIBUTION IN H! AND BMO SPACES

AYSE SANDIKCI

Introduction

As a member of the Cohen class, the Wigner-Ville
distribution is a quadratic time-frequency representation used to
extract key signal characteristics, including marginal properties,
mean instantaneous frequency, and group delay. Unlike Short-Time
Fourier Transform -based spectrograms, Wigner-Ville distribution
does not require any windowing function, this eliminates biases
arising from window type selection in the analysis. Thanks to its
time and frequency shift invariance property, signal components
shifted on the time axis retain their morphological integrity in the
time-frequency plane. Wigner-Ville distribution offers superior
performance, particularly in situations requiring high time-
frequency resolution, where components are far apart, or where
feature extraction is required from single-component signals.

This study investigates the mapping properties of the
Wigner-Ville distribution, a fundamental tool in time-frequency

" Dog¢.Dr.,, Ondokuz Mayis University, Faculty of Science, Department of
Mathematics, Samsun, Tiirkiye Orcid: 0000-0001-5800-5558
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analysis, within the context of Hardy and BMO spaces, which are
standard frameworks for harmonic analysis.

For the purpose of conceptual clarity, the key terms are
defined below.

Let h denote a function on R. The modulation operator of h
is specified as M,h(y) = h(y)e*™ for u,y € R, while the
translation operator is on T, h(y) = h(y —u) for y € R. T and M
are sometimes known as the time and frequency shift operators,
respectively. Operators T, M, or M, T,, are known as time frequency

shifts. T and M do not commute. However, we observe instantly the
canonical commutation relations

M,T, = e*™HT,M,.

It is evident that L and M commute iff uu € Z.
The dilation operator, denoted by D,, is defined as

Dh(y) = %h G), where 2 > 0.

If p € [1, o, the Lebesgue spaces which is denoted by
LP(R), is defined as the set of complex-valued measurable
functions on R that satisfy

[ oy <o
R
If h € LP(R), the LP norm of h is defined by

1/p
lklle = lIRIl, = (f Ih(y)lpdy> < co.
R

Under the norm ||| 5, the set of functions LP (R) forms a complete
normed vector space.
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We define a complex-valued function h on R as locally
integrable provided that the condition leh(x)Idx < oo holds for

all compact K c R. Lj,.(R) denotes the spaces of locally
integrable functions.

Let h € L}(R), let us define / (or Fh) by

Fh(z) = h(z) = J h(x)e ?™*2dx, z€R.
R

The expression h denotes the Fourier transform of h, (Grochenig,
2001), (Debnath & Shah, 2015).

The following definition constitutes the cross-Wigner Ville
distribution of functionals h and g, which are elements of the
L*(R) space:

W(h, g)(u, 1) = f e~2mth(y + t/2)g(u — £/ 2)dt.

R

If we write h instead of g, then W(h, h) = Wh is known as the
Wigner distribution of h. In the context of analysing non-stationary
signals, it is imperative to employ both time and frequency
representations, as the Fourier analysis, a valuable instrument for
the study of stationary signals, is inadequate for the comprehensive
analysis of non-stationary signals. The Wigner distribution is the
most often used time-frequency representation because it offers a
high-resolution representation in both time and frequency for non-
stationary signals, (Wiener, 1932), (Gréchenig, 2001), (Debnath &
Shah, 2015).

There are significant connections between the theory of
Hardy Spaces and many areas of mathematical study, such as
Fourier analysis, harmonic analysis, operator theory and singular
integrals, signal and image processing, and control theory.
Research shows that for specific problems in harmonic analysis,
Hardy spaces offer a more suitable framework than Lebesgue



spaces. The maximal functions can be defined as follows, and this
will allow us to give an equivalent definition of H*(R): We are
going to take a function that is both integrable and smooth. This
function will be denoted by ' ¢ ' and its domain will be the Euclid
space, with its support lying in the unit ball. In addition, it should
be [,o=1. Let us set ¢.(y) =1/to(y/t), t>0. For an
integrable function h, the maximal operator, represented by the
symbol 117, is defined as follows:

/V/q;h(Y) = supesolh * @ (Y.

The H'(R) represents the linear space of all h € L*(R) if, for
some @ € S(R) with fpr =1, M,h is in L'(R), where S(R) is
the Schwartz space. If h belongs to Hardy Space, then both the

dilation operator D;h and the translation operator T, h are in Hardy
Space and fulfill

IDah |lpga = llRllg2 and  NIT,hllg2 = [[Rll 42

The space of Bounded Mean Oscillation, or BMO, consists
of functions whose average deviation from their mean over cubes
remains bounded, (also called the John-Nirenberg space). In (John
& Nirenberg, 1961), John and Nirenberg developed the space
BMO(R) of functions with bounded mean oscillation. BMO(R)

represents the space of all functions h € L}OC(R) such that
Ihllzmo = supecrlQI™ [ 1h(x) — Q(W)]dx < oo,

where the integral is over @ and the supremum is taken over the
balls Q in R of measure |Q|, and Q(h) stands for the mean of h on
Q, namely,

o(h) = |Q|-1]h(x> dx < QI j ()] dx < M < o,
Q Q
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One of the most significant results in harmonic analysis is that the
dual of the Hardy space is precisely the space BMO(R). These
spaces are thoroughly explored in the literature, particularly in
(John & Nirenberg, 1961), (Bennet & Sharpley, 1979), (Stein &
Murphy, 1993), (Edmunds & Evans, 2004), (Chuong & Duong,
2013), (Verma & Gupta, 2021).

Continuity of Wigner Wille Distribution on Hardy Space

We now examine the continuity of the Wigner-Ville
distribution on Hardy space.

Lemma 1.1. If he€L'(R), g€ L'(R)nNL*(R), then
W(h, )G, 1) € L(R).

Proof. For a fixed p in R, the function W(h, g)(u, n)
depends on u. By changing variable u — t/2 = z and applying the
Fubini’s Theorem, we have

Wk, g)C )l = fRIW(h,g)(u,u)I du

e e ol
_ > fR
<?2 fRLq(—Z) | <fR|h(2u —2)| du) dz

_ f 90 | ( f |D1/2Tzh(u)|du> iz
R R

~ [15G | 1D /2T,h 2
R

du

du

f e~ h(Qu — 2)g(z) e*™H4dz
R

Again, using the dilation invariant and translation invariant
properties of Lebesgue space, we obtain
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IW(h, 9)C = NIkl f l9@) | dz = lIrllyllgll;.
R

Hence, W (h, g)(-, 1) € L*(R).

Theorem 1.2. Let g be in L'(R) N L?(R). The function
h - W(h, g)(-, 1) defines a continuous operator from H!(R) to
itself. Moreover,

W (h, ) C g < NAll llglls.

Proof. Every function h in the Hardy space H(R) is also
an element of L'(R). Then By Lemma 1.1, we obtain W(h, g) €
L*(R). If Wigner Ville distribution rewrite in the following form

W(h, g)(u, p) = 2e*m™ fe““’ia“ h(a)g(a — 2u) da
R
— Ze4m’uu f e—47ti(z+2u)u h(Z + 2u)g(—z) dz
R
= 2emiun f M_,, h(z + 2u)§(2) dz,
R

where §(z) is defined as g(—z), we have

W(h, @) G, 1) * @) (x)
= f W(h,g)(x —y,1) 9:(y) dy
R
= f (26‘“’"(’“‘”” f M_p, h(z+2(x —¥))§(@) dZ> o:(y) dy
R R
=2 j e Y G(z) ( f lD;T_ZM_zﬂh(x - )o:(y) dy ) dz
R R 2

2

~ [ e ((D%T_ZM_zﬂh) “ g, ) (x)dz.
R
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Leveraging the translation and dilation invariance of Hardy space,
we obtain

W ()l = [ sup 100 9)C1) 0G0

R t>0
< leg(_z)I ( fR§3‘3 ((D%T_ZM_zﬂh)*qot> €9 dx)dz
- | 7@

dz
— IRl j 1G@)1dz = [l gl
R

DiT_,M_y,h
2 H1

Thus, the assertion is proved.
Theorem 1.3. Let ¢ and 7 belong to L'(R) n L*(R). If
h,, h, € HY(R), then

W (hy,0)C, 1) = W () C )|l 2
< o = Yllallhallgr + Nl llhy = hall .

Proof. Since W (hy,0)(u, ) — W (hy,tp)(u, ) =
W (hy — hy,00)(u, 1), we obtain

(W) 1) = W () () * () ()

= f e M=k G (7). ((DLT—ZM—ZHUH - h2)> * Q¢ ) (x)dz.
R 2

Then by Theorem 1.2, we get
IW (hy, ) C,w) = W (h, ) CW)llgr < Hlllallhy — hallpa. (1)

Moreover, it is evident that

W(h1,¢)(u, ﬂ) - W(hli,lv/}) (u, ,Ll) = W(h1,¢ - 77[}) (u' ,Ll)

and
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(W (hue) =W (h)) G * (D) ()

= f e VK (g — g,)(2) ((DlT—zM—zufh) * Pt ) (x)dz.
R 2

Again by Theorem 1.2, we write

W (hy,@)C, 1) = W (hy, ) ) Cwllga < 1o = dllallhall g (2)

Then from the equations (1) and (2), we obtain

W () 1) = W (o) i)l
< W Chy, ), ) = Wy, C )l

W () o) = W ) G )l
< 16 = Glllaallyn + 19l = Byl

Continuity of Wigner Wille Distribution on BM O Space

Now, we will investigate the BMO- countinuity of Wigner
Ville distribution. In order to proceed, the following lemma must
be established.

Lemma 1.4. Let us assume that g is a function belonging to
the L}(R) and is compactly supported (cs). If h € L},.(R), then

W(h,g)(, 1) € Li,(R).

Proof. Since W (h, g)(u, 1) is a function of the first variable
and

W (h, g)(u, W) =

2 p4miup f e—4mi(at+2u)pu h(a + Zu)g(—a) da
R

< 2f Ih(a + 2u)|[F(@)|da,
R

we can get for any compact ball B € R
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f W (h, 9)(w )] du < f |g(a)|< f |h(a+2u)|du> da.
B R B

Let K c a+ B. As K c suppg + B, where suppg is the closure of
the set {x € R%|g(x) # 0}, is a closed and bounded set in R and
h € L},.(R), hence we get

f W (h, ), )] du < f 5@ ( f |h(b)|db>da = Nllgll.
B R K

So, W(h,g) (-, 1) is a locally integrable function.

Theorem 1.5. Assume that g € L1(R) is a function whose
closed support is a compact set. The function h - W(h, g)(-, 1)
defines a continuous operatér from BMO(R) to itself. Moreover,

IW(h, 9)Cllemo < (lRllgmo + 2M) llglls.

Proof. Let Q c R be an arbitrary ball and h € BMO(R).
Then h € Lj,.(R) and so W (h, g) € L},.(R) by Lemma 1.4. From
Fubini’s Theorem, it follows that:

oWh ) = 101" f W(h, 9)(z 1) dz
Q

= |Q|—1f <2]h(a+Zz)g(a)e—4niu(a+22)e4m’uzda> dz
Q R

2] G(a) < Q|1 j M_,,h(a + 22)e4”i“zdz> da
R Q

1 .
2-[ g(a) < |Q|_1f EDl/zT_aM_Z#h(Z)e4nl#ZdZ> da
R Q

= f g(a)<|Q|_1szMDsz_aM_zuh(Z)dZ) da,
R Q

and from here, we write
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W (h, 9)C, i)l Bmo

= suplQ|™! f Wk, 9w ) — QW (h, )| du
Q

QcR

= f |§(a)|<Sup|Q|‘1f|(M2#D1/2T_a1\/1_2#h)(u)
R QcR )
— Q(MauD:/oT-oM_gih)| du) da

_ f G(@[| My, D1 /2T-oM_, 1| da,
R

also by using Lemma 2.2 in (Sandik¢i, 2023) and the dilation
invariance of BM O, we obtain

W (h, 9)C, i)llamo < j lg(@Ilhllzmo + 4M)da
R

= (Ihllgao + 2M) f 1§(a)]da
R

= (IIhllzmo + 2M) liglls-

Therefore, the premise has been established.

Theorem 1.6. Let ¢, 1 € L'Y(R) be two compactly
supported functions. If hy, h, € BMO(R), then we have

IW (hy, ) C, ) = W ha,0) G 1)l Bmo

< 1Y = ¢lli(lhallzmo + 4M) + llll1 (11 = h2llpmo + 4M).

Proof. Let ¢, ¢ € L'Y(R) be two cs functions and h;, h, €
BMO(R). So, hy, h, €L},.(R) and so W(hy,¥)C, w0,
W(hy,¢)( u) € L},.(R) by Lemma 1.4. Morever, since
W(hy ) (w, ) — W(hy,¢)(w, ) = W(hyp — ¢) (u, 1) and
W (hy, ) (w, ) — W (hy,0) (u, 1) = W(hy — hy, ) (w, ), we
obtain by Theorem 1.5,
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IW (hy, ) C, ) = W ha,0) C 1)l Bmo

< W (hy, ) G ) = W(hy, @) C, i)l Bmo
+ W (h,@) (1) = W (ha,0) C )l pmo

W (hy, ¢ = &) C, i)llmo + IIW (hy = ha, @) (i) |l o
1V = ¢ll1(lhillzmo + 4M) + lI@ll1(lRy — h2llgmo + 4M).
Consequently, the hypothesis is validated.

IA

Results and Discussion

In the present work, we examined how the Wigner Ville
distribution, a cornerstone of time-frequency analysis, maps onto
Hardy and BMO spaces. These spaces serve as the classical
environments for conducting harmonic analysis. This theoretical
foundation provides a framework for translating abstract concepts
into practical engineering solutions.
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CHAPTER 4

THE WEBER-FECHNER LAW AS AN
ANAGEOMETRIC MODEL

1. NUMAN YALCIN!
2. MUTLU DEDETURK?

Introduction

Non-Newtonian calculus was first introduced by Michael
Grossman and Robert Katz between 1967 and 1970 as an alternative
framework to classical calculus. The researchers initially described
an infinite family of calculi consisting of classical, geometric,
harmonic, and quadratic analysis, and later expanded this family by
defining the bigeometric, biharmonic, and biquadratic calculi. More
recently, this family has been further enriched by logarithmic—
geometric approaches such as anageometric calculus, a system in
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2 Asst. Prof., Giimiishane University, Department of Mathematical Engineering,

Orcid: 0000-0002-7943-9870
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which variations in function values are still evaluated through linear
differences, while changes in the independent variable are
interpreted through ratios rather than increments, providing a
multiplicative perspective not captured by classical methods. The
structure of anageometric calculus also resonates with the broader
efforts to unify discrete and continuous frameworks, such as Hilger’s
time scales theory introduced in 1988, which similarly reformulates
analytical concepts by altering the underlying measurement of
change. Since all these systems deviate fundamentally from classical
calculus, Grossman and Katz referred to them collectively as “non-
Newtonian calculi” (Grossman & Katz, 1972; Grossman, 1979,
1983).

Non-Newtonian calculi offer tools that are often more
suitable than classical calculus for capturing proportional change,
multiplicative growth, and scale-dependent behavior in
mathematical models. For this reason, they have found wide
application in differential equations, functional analysis, numerical
methods, biology, economics, image processing, artificial
intelligence, blood viscosity modeling, elasticity theory, and many
other fields (Bashirov et al., 2008, 2011; Cakmak & Basar, 2012;
Boruah & Hazarika, 2018).

Within this broad family, anageometric calculus has emerged
as another important member based on a geometric perspective of
variation. Anageometric calculus measures change not by additive
differences but by logarithmic differences, i.e.,

In(b) — In(a),

which represent multiplicative (geometric) change on the positive
real axis. This replaces the classical notion of distance with a
geometric distance, allowing the behavior of functions to be studied
in terms of proportional variation. In this framework, the
anageometric derivative quantifies the response of a function to
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infinitesimal multiplicative perturbations of its argument, whereas
the anageometric integral is formulated as a Stieltjes integral
weighted along the logarithmic axis.

Anageometric calculus provides a natural analytical setting
for problems involving the Weber—Fechner Law, stellar magnitude,
scale invariance in the argument, growth induced by proportional
variation in the argument, linearity in the logarithm of the argument,
and processes defined on the positive real axis. Because of these
properties, anageometric analysis offers a more suitable
mathematical model in many contexts where classical or geometric
calculus is insufficient.

In summary, anageometric calculus occupies a distinctive
position within the family of non-Newtonian calculi. It brings
together

e the multiplicative structure of geometric calculus,
e the limit, derivative, and integral concepts of classical
calculus,

to form a logarithmically grounded differential and integral
framework.

The Weber—Fechner law constitutes a foundational principle
of psychophysics by formalizing the relationship between the
physical intensity of a stimulus and its subjective perceptual
magnitude. Early experimental work by Ernst Heinrich Weber
demonstrated that the just-noticeable difference (JND) between two
stimuli is proportional to the baseline stimulus intensity rather than
being an absolute quantity, a relationship now known as Weber’s
law (Weber, 1834). Building on this empirical insight, Gustav
Theodor Fechner proposed a logarithmic formulation linking
physical stimulus intensity I to subjective sensation S, expressed as
S =klog I + C, thereby establishing the Weber—Fechner law

(Fechner, 1860). This logarithmic scaling implies that sensation
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grows arithmetically as stimulus intensity increases geometrically, a
mechanism often interpreted as an efficient sensory coding strategy
that compresses a wide dynamic range of environmental inputs into
a manageable internal representation (Portugal & Svaiter, 2011).
Although later empirical research, most notably Stevens’ power law,
has shown that a power function may better capture perception in
certain sensory modalities, the Weber—Fechner framework remains
a central theoretical model in perceptual psychology and cognitive
neuroscience, with influential applications in areas such as
numerical cognition and the logarithmic mental number line
described by Stanislas Dehaene (Dehaene, 2003).

In the following sections, we introduce the fundamental
concepts of anageometric analysis, including the anageometric
derivative, anageometric mean, and anageometric integral, and
discuss their relationship to classical calculus as well as their
potential applications. Finally we give the Weber-Fechner law as an
anageometric model.

1. Basic Concepts of Non-Newtonian Analysis

In this section, some fundamental definitions and concepts
used in anageometric analysis, which is one of the non-Newtonian
analytical approaches, will be introduced. These concepts have been
discussed in various studies in the literature and form the theoretical
foundation of alternative analytical systems based on multiplicative
changes in functions (Tirkmen & Basar, 2012; Cakmak & Basar,
2012).

Definition 1: A function a: Rey, — R which is bijective (one-to-one
and onto) and continuous is called a generator function.

Definition 2 : The non-Newtonian (N.N.) number sets are defined
as follows:
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N.N Number Sets Exponential
Number Sets

N.N real numbers | R, = {a(t)| t € R} Rexp = (0, 0),
N.N positive RE = {a(t)|t > 0} Réxp = (1,),
real numbers
N.N negative Ry = {a(t)| t < 0} Rexp = (0,1),
real numbers
N.N non-negative | R} = {a()|t >0} | Ry} = [1,),
real numbers:
N.N non-positive | RZ® = {a(t)| t = 0} | R = (0,1]

real numbers

Definition 3: The following operations define the a-arithmetic
non-Newtonian analysis:

e -addition:
e -subtraction:
e a-multiplication:

e q-division:

e -ordering:

x+y = a(at(x) + a7 1(y))
x=y =ala™(x) —a ()

XXy = a(a‘l(x) X a‘l(y))

x/y = a(a™ () + a7 (),

fory # a(y)

x<yoeallx)<al(y)

n

Definition 4: If the generator function is chosen as @ = exp then the
geometric arithmetic operations in non-Newtonian analysis for
alla,b € Reyp are given as follows (Grossman & Katz, 1972;

Grossman, 1979, 1983; Boruah & Hazarika, 2018a,b):

--78--



e Geometric addition:
a @ b = exp{ln(a) + In(b)} = e @1n®) = g p
e Geometric subtraction:
a© b = explin(a) ~ In(h)) = en@-n® = 2

e Geometric multiplication:
a ® b = exp{ln(a) - In(b)} = eN@1n®) = 5In®
e Geometric division:

In(a In(a) 1
a@b =exp {%} = eln(b) = gln(b), (b+1)

Additional properties of geometric (multiplicative) exponentiation,
roots, inverse elements, and absolute value are as follows

(For alla,b € Rexp, T € R)
° a2®=aOa=alna L4 |a®b|* S* |a|*®|b|*

e gbo = exp{(]n a)b}‘ ® |a @ bl* = |a|* @ |b|*

\/_ (lna)% ° |aeb|* = |a|*9|b|*
[ ] a* =e ,

° 1/a2® — |a| — e|ln(a)| b |a @ bl* = |a|* @ |b|*

1 ° b)=>» ,
. O = e (a%1) ©e®(aO©b) Oa

Tl = el
e aOQe=a®P1=aq, o leTl.=e",

a a>1

T —_ T )
* e Qa=d, o lal, = 1, a=1
l, a<l1.

a
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2. Fundamental Concepts and Theorems of
Anageometric Analysis

Classical calculus investigates change through linear
differences and limiting processes. In contrast, anageometric
analysis characterizes variation not by additive increments but by
geometric (multiplicative) changes in the argument. That is, a
change in the argument of a function is not understood as

x - x + Ax,
but rather as a proportional transformation of the form
x - x-Agx

Consequently, a change in the argument of a function is
quantified not by the classical difference x — a, but by In(x) —
In(a), which is sensitive to multiplicative increments. This leads to
a derivative and integral structure adapted to multiplicative
variation.

Functions on the Positive Real Axis and Geometric Intervals

Anageometric analysis is developed exclusively on the
domain of positive real arguments, that is on the set R* = (0, o).
This restriction is not merely technical; it emerges naturally from the
fact that anageometric change is measured through logarithmic
differences, which are only well defined for positive inputs.
Consequently, the fundamental objects replacing classical linear
intervals are geometric intervals.

For two points a < b in R™, the interval [a, b] is assigned a
geometric extent defined by G(a, b) = S. Unlike the classical notion

of interval length b — a, the geometric extent captures the geometric
displacement between the endpoints. Hence, the “size’” of an
interval is measured not by linear separation but by the ratio of its

endpoints. This shift from additive to multiplicative structure is
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central to the conceptual framework of anageometric calculus:
changes in arguments are evaluated through the induced logarithmic
variation

In(b) —In(a) =In (S),

which encodes the same multiplicative information.

Anageometrically Uniform Functions

A function f:(0,0) = R is said to be anageometrically
uniform if its classical increment is determined solely by the
geometric extent of the interval on which it is evaluated. Formally,
the function satisfies

b _d

2=2= f(b) - f(a) = f(d) - f(c),
for all positive quadruples a < b and ¢ < d. In other words, equal
multiplicative changes in the argument yield equal additive changes
in the value of the function.

An equivalent and structurally illuminating characterization shows
that every anageometrically uniform function necessarily has the
form

f(x) =In(Cx™) =InC+m-Inx,

where € >0 and m € R are constants. Thus, anageometrically
uniform functions are precisely those that appear as affine functions
on the logarithmic scale; when plotted on a semi-logarithmic axis
(logarithmic in x, linear in f (x)), such functions trace a straight line.
Their anageometric slope is exactly the parameter m.

A further consequence of this structure is that if the argument
values form a geometric progression, then the corresponding
function values form an arithmetic progression. This multiplicative-
to-additive correspondence is a defining hallmark of anageometric
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uniformity and explains why such functions serve as the “local linear
models’” in anageometric calculus the analogue of linear (affine)
functions in classical differential calculus.

Stellar Magnitude as an Anageometric Model

The stellar (apparent) magnitude scale used to quantify stellar
brightness originates from the ancient classification traditionally
attributed to Hipparchus (ca. 130 BCE), in which brighter stars were
assigned smaller numerical values, a convention that persists in
modern astronomy through a logarithmic formulation (Hearnshaw,
1996). In contemporary terms, the apparent magnitude m of a star is
defined in terms of the measured light flux F relative to a reference
(zero-point) flux F, by

F
m = —2.5log 4 (F_)
0

The negative sign preserves the historical convention that
brighter objects correspond to smaller (and possibly negative)
magnitude values, while the coefficient 2.5 encodes the Pogson
relation, according to which a difference of five magnitudes
corresponds to a factor of exactly 100 in flux (Norman Pogson, 1856;
Carroll & Ostlie, 2017). The reference flux F, is not universal but
depends on the adopted photometric system: in Vega-based systems,
it is calibrated so that the star Vega has approximately zero
magnitude in a given band (Johnson & Morgan, 1953), whereas in
modern systems such as the AB magnitude system, the zero point is
defined by a constant spectral flux density rather than by a specific
star (Oke & Gunn, 1983). This logarithmic formulation and its
physical interpretation constitute a foundational framework for
stellar photometry and are central to modern astrophysics and
observational cosmology (Ryden & Peterson, 2010).

The Anageometric Gradient on [a, b]
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Given a function f:(0,0) - R and two positive real
numbers a < b, the anageometric gradient of f over the geometric
interval [a, b] is defined as the slope of the unique anageometrically
uniform function that interpolates the points (a, f (a)) and (b, f (b)).

Since anageometrically uniform functions are precisely those
of the form

f(x) =In(Cx™) =InC+m-Inx,

their classical slope on a logarithmic x-axis is the constant parameter
m. The anageometric gradient of f over [a,b] is therefore
determined by selecting the value of m that makes f pass through
the two prescribed points. Solving

f(b) = f(a) = m(In(b) — In(a))
yields the explicit formula:

Gof = f(b) — f(a)

In(b) — In(a)

This expression generalizes the classical secant slope, but replaces
the linear increment b — a with the logarithmic increment In(b) —
In(a), reflecting the multiplicative geometry of the underlying
domain.

The definition exhibits two notable structural properties:
Invariance under unit transformations

Because it depends only on differences of logarithms, the
anageometric gradient is insensitive to rescalings of the input space.

A uniform scaling by a factor k leaves the logarithmic difference
invariant, since

In (kb) —In (ka) = In (b) —In (a)
by cancellation of the additive Ink terms. So, the anageometric
gradient is unchanged.
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This invariance is one rationale for adopting logarithmic
measures of change in anageometric calculus.

Limiting behavior and the emergence of the anageometric
derivative

When b — a, the expression

fb) - f(a)
In(b) — In(a)

develops the indeterminate form 0/0. The limit, when it exists, is
precisely the anageometric derivative of f at a, which will be
developed in detail in the next section. Thus the gradient serves as
the natural finite-interval analogue of the differential notion.

Interpretation on semi-logarithmic coordinates

If one plots f on a semi-logarithmic graph linear scale in the
vertical direction, logarithmic scale in the horizontal direction then

o the points (a,f(a)) and (b, f(b)) appear at horizontal
positions In(a) and In(b),

« and the anageometric gradient G2 f is exactly the classical
slope of the straight line joining these transformed points.

This graphical representation mirrors the role of secant lines
in classical calculus, and further highlights why logarithmic
differences play the role of ‘“geometric increments’” in the
anageometric framework.

We can give the correspondence between anageometric
gradient and gradient in the classical sense as follows:

Let a < b, and set
a =In(a), B = In(b)

Then the anageometric gradient



f(b) - f(a)
In(b) — In(a)

corresponds directly to the classical gradient of the transformed
function F(u) = f(e") over the interval [«, B]:

Gof =

oop = FB) = F(@)
p—«a
Thus:
Gbf =GLF

This identity highlights that anageometric gradients are
nothing more than classical gradients evaluated after mapping the
domain through the logarithmic transformation.

Logarithmic Foundations of Anageometric Differentiation

Classical differentiation measures infinitesimal change
relative to additive perturbations of the argument, that is, variations
of the form x — x + Ax. In contrast, anageometric analysis is built
upon the principle that meaningful change in the argument should be
assessed multiplicatively. Thus, the fundamental perturbation is

x - x-Agx, Agx € Rexp,

and the appropriate quantitative measure of this perturbation is the
induced logarithmic increment

In(x) —In(a) =In (g)

This multiplicative viewpoint leads naturally to a differential
operator that behaves as the classical derivative with respect to the
logarithmic coordinate In(x). In this sense, the anageometric
derivative captures the rate of change of a function under geometric
(i.e., scale-based) displacements of its input.

Definition of the Anageometric Derivative
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Let f:(0,00) > R be defined on a positive interval
containing the point a > 0. The anageometric derivative of f at a is
defined by the limit

f(x) —f(a)

Df(@) =l S — @

provided the limit exists.

This definition mirrors the classical secant ratio
f&x) = f(a)
X —a
but replaces the additive increment with its logarithmic counterpart.
When the above limit exists, we say that f is anageometrically
differentiable at a.

Geometric Increment and the Anageometric Derivative

Let a very small geometric increment of x be denoted by
Agx € Reyp and Agx — 1. In this case, x-Agx —» x, and the
anageometric derivative of a function f: (0,) — R at the point x
can be written as

D) = tim LE8e) ZFC)

Agx—-1 In (x AGx) In (x)

Using the logarithmic identity In (x - Agx) — In (x) = In (Agx),
this expression reduces to

DFG) = lim flx-A6x) = F(X)

A(;x—>1 ln (AGX)

If the geometric increment at x is denoted by K: = A x, then the
anageometric derivative takes the equivalent form

o fKx) - f(x)
Df(x) = lim In(K)
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which measures the rate of change under geometric (scale-based)
displacements.

The relation between geometric increment A; and additive
increment A is as follows

AGx — eA(lnx)

Definition 5: The geometric differential is defined as follows
dex = edlnx) — pdx/x
By the definition of the geometric differential we have
In(dgx) = d(Inx).
Relation to the Classical Derivative

Using the definition of Df (x), one obtains the fundamental

relation between classical and anageometric integral as

D = 4 = xf'
DF) = 2y = o )
or
Df (x) = xDf (x)
since —— = x . This shows that the anageometric derivative is

d(Inx) dx
equivalent to the classical derivative scaled by the argument.

Moreover we have
af
In(d;x)

Df(x) =
since In(dgx) = d(Inx).
Linearity Properties of the Operator D

The anageometric derivative operator satisfies the two
foundational linearity properties:

--87--



1. Additivity:
D(f +g) =Df +Dg.
2. Homogeneity:
D(c-f)=c-Df, ceR
These properties mirror those of the classical derivative and ensure

that the anageometric differential calculus forms a consistent linear
theory.

Constantness of the Derivative and Uniformity

In direct analogy with classical calculus, the source
establishes that:

e If f is anageometrically uniform, then Df is constant.

« Conversely, if Df is constant throughout Ry, then f must

be anageometrically uniform.
Given the explicit form f(x) = In(Cx™), we find

Df(x) =mforall x > 0.

This result reinforces the classification of log affine functions as the
“linear objects’” in the anageometric setting.

Example: The Function h(x) = mx

Let h(x) = mx, x > 0. Its anageometric derivative satisfies the
identity

Dh = h.

Indeed,
Dh(a) = ah'(a) =a-m=ma = h(a).
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This equality highlights the fundamentally different behavior of the
anageometric derivative compared to the classical one: The
multiplicative structure of the domain ensures that linear functions
preserve their form under anageometric differentiation; this behavior
is analogous to that of exponential functions in classical calculus.

Transition to Anageometric Integration

The anageometric derivative serves as the infinitesimal
counterpart to the anageometric gradient introduced earlier. As the
geometric increment In(b) — In(a) shrinks to zero, the finite
gradient converges to Df (a). This convergence sets the stage for a

parallel development of integration, where averaging over geometric
partitions gives rise to the anageometric integral.

The next section will formalize this connection by introducing the
anageometric average and establishing the structural foundations for
the anageometric integral.

The Anageometric Average

Since anageometric calculus evaluates changes in arguments
through ratios rather than additive differences, the natural
discretization of an interval [a,b] < (0,0) must respect this
multiplicative structure. For this reason, the appropriate analogue of
a classical partition is a geometric partition.

Definition 6 (Geometric partition):

A geometric partition of [a, b] is any finite sequence
a=a,<a, < <a,=>b

such that the ratio

Ak+1
ag
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isconstant forall k =1,---,n — 1.

Equivalently, the points form a geometric progression. If the
sequence contains n points, it is called an n-fold geometric partition.
This structure is mandated by the multiplicative nature of
anageometric change: equal “steps’ in a geometric partition
correspond to equal increments of In(x). Thus geometric partitions
are precisely those partitions that become uniform in classical sense
when transferred to the logarithmic axis.

Definition of the Anageometric Average
Let f: [a, b] = R be a continuous function. For a geometric partition
ai, ap, ..., Ay,

consider the corresponding arithmetic mean of sampled values:

An(f) = = (far) + f(az) + -+ f(an)).

Because the partition points form a geometric progression, these
sample points reflect equal spacing in logarithmic coordinates,
making A, (f) the natural analogue of Riemann sums in classical
calculus.

Definition 7 (Anageometric average):
The anageometric average of f over [a, b] is defined by

MEf = lim A, (f),
provided the limit exists (which it does for all continuous f). Thus,
1~V1}1’f represents the limiting mean value of f sampled along
increasingly refined geometric partitions of [a, b].
Comparison with the Classical Arithmetic Average

It is important to emphasize that the anageometric average is
not identical to the classical arithmetic average over an interval. The
difference arises from the fact that geometric partitions weight the
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domain multiplicatively, introducing a distortion relative to the
uniform linear discretization used in standard calculus.
Below is an example that illustrates this distinction:
Let f(x) = x. Then

MEF = b—a

~* " In(b) — In(a)
whereas the classical arithmetic mean over [a, b] is

a+b
2

The anageometric average privileges the behavior of f under
geometric scaling, not under translation.

Mgf =

For a continuous function f, the anageometric average over [a, b]
satisfies:

MEf = MEF
where F(u) = f(e"), and the right-hand side is the classical average
of F over [a = In(a),B = In(b)].
That is:
B
MPF = Lf F(w) du
a - ,B —a

a

This identity reveals that anageometric averaging corresponds
precisely to classical averaging under the logarithmic
reparameterization.

It also reflects the fact that geometric partitions in [a, b] correspond
to uniform partitions in the logarithmic interval [«, B].

Linearity Properties of the Anageometric Average
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The operator LWS satisfies two essential structural properties
analogous to those in classical analysis:
1. Additivity:
M{(f +g) = MZf +MZg.
2. Homogeneity:
Mic-f)=c MIf (cER).
These properties follow directly from the additivity and
homogeneity of arithmetic means at each partition level.
Anageometrically Uniform Functions and Their Averages
For an anageometrically uniform function
h(x) =In(Cx™)=InC+m-Inx
the anageometric average admits a remarkable simplification:
« Itequals the arithmetic mean of the endpoint values:

h(a) + h(b)
2

« Italso equals the value of h evaluated at the geometric mean
of the endpoints:

MEh =

Mgh = h(Vab)

This property reflects the log-affine structure of uniform functions,
which behave linearly on the logarithmic scale. Thus, the
anageometric average generalizes the midpoint rule of classical
calculus, but in a multiplicative rather than additive framework.

Characterization Theorem for the Anageometric Average

The anageometric average is the unique operator that satisfies
three fundamental properties:
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1. Normalization on constants:
For every constant f(x) = ¢ € R,

Mif =c.
2. Monotonicity:
If f(x) < g(x) forall x € [a, b], then
Mif <MZg.

3. Logarithmic additivity across subintervals:
Forany a < s < b,

[In(s) — In(@)] Msf + [In(b) — In(s)] ML f
= [In(b) — In(a)] Mg f
This final property mirrors the mean-value structure of classical
integrals, but with logarithmic weights replacing linear lengths. It

also foreshadows the construction of the anageometric integral,
which appears naturally from this characterization.

Role of the Anageometric Average in the Calculus Framework

The anageometric average fits naturally into the structure of
anageometric calculus because:

o It reflects the multiplicative geometry of the domain.

e It provides the correct limiting behavior needed for
anageometric integration.

o It preserves the essential properties expected of a mean
operator in a geometrically structured space.

In particular, the basic theorem of anageometric calculus (developed
in the next section) hinges directly on the interplay between the
anageometric average and the anageometric derivative.

The Basic Theorem of Anageometric Calculus
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The anageometric average introduced in the previous section
acquires its full significance through its relationship with the
anageometric derivative. This relationship, parallels the classical
connection between averages of derivatives and secant slopes.

Let h: [a, b] — R be a function whose anageometric derivative Dh
exists and is continuous on [a, b]. Then the theorem states:

h(b) — h(a)
b —
Ma(DR) = In(b) — In(a)

That is the anageometric average of the anageometric derivative over
[a, b] equals the anageometric gradient of h over the same interval.

This result provides a multiplicative analogue of the classical fact
that the average of h' over [a, b] equals the slope of the secant line
between (a, h(a)) and (b, h(b)).

Here, however, the denominator is the logarithmic increment
In(b) — In(a), which encodes geometric displacement rather than
additive separation.

The theorem reveals several deep structural features:

(1) Consistency of the anageometric framework: It confirms that the
integral-like quantity

[in(b) - In(@)] ME (D)

recovers the finite change h(b) — h(a), which means that the
anageometric derivative and average are perfectly compatible dual
notions.

(2) Preparation for the Fundamental Theorems: This identity
functions as a precursor to the fundamental theorems of
anageometric calculus, just as the classical mean value relationships
support the development of standard integral calculus.

--04--



(3) Justification for the integral definition: Most importantly, it
motivates the definition of the anageometric integral, since one
wishes for an operator that inverts differentiation in the sense
captured by this theorem.

Thus, the basic theorem stands as the central conceptual bridge
between differentiation and integration in the multiplicative regime.

The Anageometric Integral

Definition 8 (Anageometric Integral):

Let f:[a, b] = R be continuous. The anageometric integral
of f over [a, b] is defined by:

b
[ r = m2tim@e) - @1 - 1)

The anageometric integral from a to a is set to be 0:

-

Thus, the anageometric integral is a logarithmically weighted
anageometric average. This matches the structure derived from the
basic theorem and ensures that integrating a derivative reproduces
the correct secant change of the original function.

Interpretation via Geometric Riemann Sums

The anageometric integral can be equivalently formulated as
the limit of a sequence of geometric Riemann sums.

Consider an n-fold geometric partition of [a, b],
a; = a, a,, .. =b
with common ratio
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k, = é—“ (independent of j)
7
Then the corresponding sum is:

Sn(f) = (In kn)f(al) + (In kn)f(az) + -+ (In kn) f(an-1)-

The anageometric integral is
b
| = Jim su)
a

This formulation parallels the classical Riemann sum construction,
except that:

« the increments are logarithmic (In k,,),
« the partition is geometric,
« and the integral sums over multiplicative displacements.

Such a structure naturally expresses integration with respect to
In(x), which is the Stieltjes measure underlying the anageometric
theory.

Relationship to Stieltjes Integration

f;f is the Stieltjes integral of f with respect to In(x):

b b
[ £= [ redanx

This clarifies that the underlying measure is

1
d(lnx) = o dx
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and hence the anageometric integral is essentially a weighted
classical integral, but one whose weighting precisely encodes
multiplicative scaling.

Using change of variables (u =1Inx), the relation between
anageometric and classical integral can be written as

In(b)

fb f= | rede

In(a)

If we define F(u) = f(e*) and @ = In(a), B = In(b) then we get

b B
ff=fF(u)du

Linearity and Additivity Properties

The anageometric integral satisfies the same algebraic laws
as classical integration:

1. Linearity:

J(c-f)=c-jf, ceER

a a

2. Monotonicity:
If f(x) < g(x) forall x € [a, b], then

b b
frefs

3. Additivity over subintervals:
Foranya <s < b,
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b
felr

b
Ji-
a s
These properties are identical to those in the classical theory but are
derived from the geometric nature of the underlying partitions and

the logarithmic weighting.

Zm\:m

The Fundamental Theorems of Anageometric Calculus

The anageometric derivative and the anageometric integral,
each developed as multiplicative analogues of their classical
counterparts, are connected through two foundational results that
mirror the fundamental theorems of classical calculus. The key
difference is that these results operate on the logarithmic geometry
of the positive real line.

The First Fundamental Theorem of Anageometric Calculus

Let f:[a, b] = R be continuous, and define a function g on
[a, b] by

g@)=ff

Then:
Dg(x) = f(x) forall x € [a, b].

This result asserts that anageometric integration is the inverse
operation of anageometric differentiation.

This theorem closely parallels the classical statement that

p| [r@ac | = e,
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but with integration and differentiation performed with respect to the
geometric measure d(In x).

The Second Fundamental Theorem of Anageometric Calculus

Let h: [a, b] = R be such that its anageometric derivative Dh
exists and is continuous. Then:
b

fgh = h(b) — h(a).

a

This identity is the multiplicative analogue of the classical
fundamental theorem:

b
f K (x) dx = h(b) — h(a).

Here the integral is taken with respect to d(Inx), and the identity
follows directly from the basic theorem of anageometric calculus:
h(b) — h(a)

M2(Dh) = ————.
Ma (D) In(b) — In(a)

Multiplying both sides by In(b) — In(a) yields exactly the desired
expression.

3. An Anageometric Model

In this section, firstly we give Weber-Fechner law in classical
analysis. Then we will present the Weber-Fechner law in
anageometric analysis.

Weber-Fechner Law in Classical Analysis

Definition 9 (Physical stimulus intensity): A physical stimulus
perceived by a sensory system is modeled as a positive intensity
variable
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1>0.

Definition 10 (Just-Noticeable Difference — JND): The
just-noticeable difference (JND) is defined as the smallest increment
in stimulus intensity that an observer can reliably discriminate
between two stimuli. The JND is an experimentally measured,
discrete quantity (Ernst Heinrich Weber, 1834).

Definition 11 (Sensation magnitude): The sensation magnitude is
defined as an abstract measurement variable depending on the
physical stimulus intensity,

S =S().
This variable is not directly measurable; it is defined only through
discrimination thresholds (Gustav Theodor Fechner, 1860).

Axiom 1 (Weber’s Law- Empirical Axiom): For a given sensory
modality, the ratio of the smallest discriminable stimulus increment
to the stimulus intensity is constant:

T

where ki, > 0 is the Weber fraction, an experimentally determined,
modality-specific constant (Weber, 1834; John C. Baird & Eiichi
Noma, 1978).

This law pertains solely to the physical stimulus space; the sensation
variable S has not yet been introduced.

Axiom 2 below is about Fechner’s Assumption (Measurement
Axiom).

Axiom 2 (Equal JND = Equal Sensation Increment): Each JND
corresponds to an equal increment on the sensation scale:

AS = ks,
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where ks > 0 is a scale constant depending on the chosen unit of
sensation (Fechner, 1860).

By an appropriate choice of units, one may set kg = 1; this is a
normalization convention.

Assuming that JNDs are sufficiently small, the discrete structure is
idealized as continuous:

Al - dI,AS — dS.

This transition is a standard idealization in continuous
psychophysical modeling (Stanley Smith Stevens, 1957).

Theorem 1 (Weber—Fechner Differential Law): Under Axiom 1
and Axiom 2, the following differential relationship holds between
sensation increment and stimulus increment:

ds =k a
=kr—
where
ks
kp:= E
Proof.
By Weber’s law, we have
Al = kyl.

for one JND. And By Fechner’s assumption, for the same JND, we
have

AS = kg.
For sufficiently small JND, they can be related as
ds _di/I
ks kw'
Hence,
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s — ks dl k dl
T ky I I
The proof is complete. O

Integrating the equation in Weber—Fechner differential law
we get Fechner’s formula.

Theorem 2 (Fechner’s Law): The following relationship holds
between sensation and stimulus:

S() = kgln I + C.

Proof. Integrating the relation in Theorem 1 yields the relation in
Theorem 2.

This result shows that sensation depends logarithmically on physical
stimulus intensity and represents the classical form of the Weber—
Fechner law (Fechner, 1860).

Weber-Fechner Law in Anageometric Analysis
Definition 12 (Geometric Change of Stimulus Intensity):

Let I > 0 denote a physical stimulus intensity. A geometric (scale-
based) change of I is defined by A1 such as

[—1-(0gD), Ag>0  Agd-1

where A;I is a dimensionless scaling factor. As the limit Azl — 1
we get an infinitesimal geometric (multiplicative) increment which
is denoted by d;I.

For a geometric increment [ — I - A;l, the natural step length is
In(AgD).

Axiom 3 (Anageometric Weber’s Law): For a given sensory
modality, the smallest discriminable geometric increment of
stimulus is an exponential positive constant:

Agl = k&f), k$) > 1 is constant.
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And k$) is called geometric Weber constant.
As A;I — 1 the discrete structure is idealized as continuous:
Agl > dgl,  AS - dS.

Theorem 3 (Anageometric Weber—Fechner Differential Law):
Under Axiom 3 and Axiom 2, the anagaeometric derivative of
sensation is a constant:

DS(I) = kr
where
ks
Proof.
By Fechner’s assumption, we have
AS = k.

And By Weber’s law, we have
In(Agl) = 1n(k$)).
For A;I — 1, they can be related as

s ks
n(deD) ~ In(k®)

Hence,

DS(I) = kr.

The proof is complete. O

Theorem 4 (Fechner’s Law in Anageometric Analysis): The
following relationships hold for sensation and stimulus:
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ﬂD:fm

S(I) = kpIn(I) + C.

Proof. Taking the anageometric integral of both sides of the
equation in anageometric Weber—Fechner differential law we write

fgqn:f@

which yields

S(I) =kgIn(I) + C.
Conclusion

In this study, the fundamental structure of anageometric
calculus is given. This structure forms a framework in which
variation on the positive real axis is measured not through linear
increments but through multiplicative (geometric) changes encoded
by logarithmic differences. The essential idea behind anageometric
analysis is that meaningful change on (0, o) is naturally expressed
through the quantity In(b) — In(a) which replaces the classical
linear displacement b — a. This shift establishes a calculus grounded
in the geometry of the logarithmic axis.

We first formalized the notion of positive intervals and their
geometric extent, defined by the ratio b/a whose logarithm provides
the measure of distance in anageometric calculus. This
reinterpretation shows that anageometric calculus is effectively
classical calculus re-expressed under the transformation x — In(x),
yet retaining a distinct geometric interpretation based on
proportional change.
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The anageometric derivative was then introduced as the limit

. f&x) —f(a)

Qf(a) B chl—r};ll Inx —Ina
which coincides with the classical derivative of f with
respect to Inx. Thus, the derivative captures the sensitivity of a
function to infinitesimal multiplicative perturbations of its argument.
This formulation also reveals that functions with constant
anageometric derivatives are precisely the logarithmic affine
functions, reinforcing their role as the “linear models’’ of the

multiplicative framework.

The development continued with the anageometric average,
defined via geometric partitions of an interval. Unlike classical
arithmetic means, this average samples the function with uniform
spacing in the logarithmic coordinate. As a consequence, the
anageometric integral

b
[ = ) - Gy Mty

emerges as a logarithmically weighted mean and is exactly the
Stieltjes integral with respect to Inx. This establishes a rigorous
connection between geometric scaling and integration.

Anageometric calculus is isomorphic to classical calculus
under the logarithmic change of variables:

e Every theorem of classical calculus yields a corresponding
theorem in the anageometric context via the substitution x =
ek,

e Conversely, every statement in anageometric calculus can be
translated into the classical setting by expressing the function

in logarithmic coordinates.
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The fundamental theorems of anageometric calculus
establish that differentiation and integration are mutually inverse
operations within a multiplicative geometric setting, operating
entirely through logarithmic increments.

The last part of the chapter is devoted to an application of
anageometric analysis which is Weber-Fechner law in anageometric
analysis. It is seen that Weber-Fechner differential law can be
formulated simply such that the anageometric derivative of sensation
is a constant in anageometric analysis. And Fechner law can be
stated as the sensation is equal to anageometric integral of some
constant.
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CHAPTER 5

CANAL SURFACES IN ANTI-DE SITTER 4-SPACE:
A DIFFERENTIAL GEOMETRIC APPROACH

1. FATMA ALMAZ!

1. Introduction

The Anti-de Sitter (AdS) space, which holds a significant
place in differential geometry and theoretical physics, is defined as
a Lorentzian manifold with a constant negative Riemannian
curvature. This distinguishes it from the positive-curvature de Sitter
space and the zero-curvature Minkowski space. In the context of
general relativity, it represents vacuum solutions to Einstein’s
equations with a negative cosmological constant.

The importance of the AdS space stems particularly from its
deep connections in theoretical physics. One of its best-known
applications is the groundbreaking AdS/CFT (Anti-de
Sitter/Conformal Field Theory) equivalence principle in string
theory and quantum gravity. This equivalence establishes a strong
link between a theory of gravity defined in an AdS space and a
conformal field theory defined on one of its boundaries, allowing for
the investigation of challenging quantum gravity problems through
more understandable boundary theories. It is also used as a

! Assist. Prof. Dr., Batman University, Faculty of Arts and Sciences, Department
of Mathematics Orcid: 0000-0002-1060-7813
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fundamental model space in fields such as supersymmetric field
theories, black hole thermodynamics, and cosmology.

In particular, the 4-dimensional Anti-de Sitter space (AdSs)
can be directly related to certain models of physical spacetime. This
means that many models in theoretical physics, especially a 4-
dimensional conformal field theory, can be formulated as a theory of
gravity in the 4-dimensional AdS; space. In this context, the
geometric and topological properties of AdS; play a critical role in
better understanding quantum gravity models and spacetime itself.

Given the AdS/CFT equivalence principle, the properties of
submanifolds (including canal surfaces) in the AdS space can be
vital for understanding the corresponding structures in limit theory.
For example, these surfaces can be interpreted as ’branes’ in the AdS
space and play a significant role in string theory or cosmological
models. Geodesics or minimal surface properties of channel surfaces
can be used to model specific physical processes within gravity
theory. Generalizing canal surfaces to AdS; expands the scope of
current canal surface theory. This opens up new research on how
canal surfaces can be classified for different centroids (time-like,
space-like, null) and radius functions.

In [1, 2, 3], tube surfaces, another form of channel surface in
different spatial forms, have been considered. In [4], the authors
investigates pseudo-Riemannian manifolds that share a common
family of geodesics and give some characterizations of the geometric
properties and structures of such manifolds, exploring the conditions
under which two or more distinct pseudo-Riemannian metrics can
induce the same set of unparameterized geodesics. In [6, 7], These
references focuses on the analysis of geodesics on various surfaces
embedded in Minkowski 3-space, a fundamental setting in
differential geometry with applications in relativistic physics.
Specifically, one line of inquiry investigates surfaces that share
common geodesics, aiming to characterize the geometric conditions
and properties under which distinct surfaces can possess the same
geodesic paths. Concurrently, the studies also delve into the
geodesics of tubular surfaces within this Minkowski geometry,
exploring how the unique structure of these surfaces influences their
geodesic behavior. By employing techniques from differential
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geometry, these research efforts contribute to a deeper understanding
of surface theory in pseudo-Euclidean spaces, offering new insights
into the classification, characterization, and kinematic properties of
surfaces based on their geodesic structures in Minkowski 3-space.

2. Preliminaries

4 —dimensional pseudo-Euclidean space with signature
(2,4) provided with an indefinite flat metric given by

()= _(d%)z - (dllz)z + (d/13)2(d/14)2.

where (44,45, 13, 4,) is a standart rectangular coordinate system in
pseudo-Euclidean 4-space.

Recall that an arbitrary vector v € EJ\{0} can have one of
three characters: it can be spacelike if g(v, v) > 0 or v = 0, timelike
if glv,v) <0andnullif g(v,v) =0and v # 0.

The norm of a vector v is given by || v I= /g (v, v) and two
vectors v and w are said to be ortogonal if g(v,w) =0 .

The pseudo-hyperbolic space H3 (x,,r) centered at x, € E5,
with radius r > 0 of E} is defined by

H3(x,7) = {x € E}: (x — x9,x — x¢) = —12%}.

The pseudo-hyperbolic space H3(x,,7) is diffeomorfic to
St x R2. The hyperbolic space H3(x,, 1) is defined by

H3(x0,1) = {x € Ey:{x — x0,x — xo) = —12%,x; > 0},
[5, 8,9, 10, 11].
The 3-dimensional Anti-de Sitter space is a Lorentz manifold
with constant negative sectional curvature. It is often described as a
hypersurface in a 4-dimensional Minkowski space (E; or E3).
A one-parameter anti-de Sitter space is given by the
following equation

H3(—sinh?0) = {x € E5: g(x,x) = —sinh?8.

Furthermore, let a:1 —» H3 be a spacelike curve such that
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(a'(t),a’(t)) > 0 holds. Therefore, since the curve is spacelike, it
can be parameterized at unit speed.

Furthermore, with (t'(s),t'(s)) # —1, the unit vector
n(s) = —||i'8:2gu and the vector e(s) = a(s) At(s) An(s) are
defined. Then, where k,(s) = |[t'(s) — a(s)|| is the geodesic
curvature, 7,(s) = —kg(s) ?det(a(s), a(s)’, a(s)", a(s)""), and
§ = sign(n(s)). Let {a(s), t(s),n(s),e(s)} be the non-null
moving Frenet frame along a unit speed non-null curve a in ADS5,
consisting of the tangent, principal normal, first binormal and second
binormal vector field, respectively. If a is a non-null curve with non-
null vector fields, then {a(s),t(s),n(s),e(s)} is a pseudo-
orthonormal frame and the Frenet equations gives

a'(s) = t(s)
t'(s) = a(s) + kg (s)n(s)
n'(s) = —6ky(s)t(s) + 8ry(s)e(s) (2.1)

e'(s) = dty(s)n(s),

[5,8,9,10, 11]. If {t'(s), t'(s)) = —1, then k4 (s) = 0 can be found.
In this case, it can be said that the curve a(s) given in H} is a
geodesic curve.

3. Characterization of canal surfaces created according to the
geodesic frame in the anti-de Sitter 4-space

In this section, the canal surfaces generated by arbitrary
curve are investigated according to mathematical approach. A canal
surface is expressed as the envelope of a setting out sphere with
exchanging radius, which is described by the orbit a(w(s)) (spine
curve) with its center and a radius function p in addition to its
parametrized through Frenet frame of the spine curve a(w(s)). If
the radius function p is a constant, then the canal surface is called as
a tube or tubular surface.

Let Y be a canal surface in H3. The curvature of the curve «
is non-zero, and using the frame {a(s),t(s),n(s),e(s)} where
01,02,03,0* € €™ are defined in the interval where the curve a is
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defined, the following equation can be written as

Y(s, &) — a(s) = Qi(s, O)a + Q%(s, )t
+03(s, O+ Q*(s,6)e. (3.1)

Furthermore, for the vector x(s) =
(xl(s),xz (s), x5 (s),x4(s)) where x; € C%,i € {1,2,3,4}, the
following equation is written

(x(), x())yz = x{(s) + x3(s) —x3(s) —x§().  (3.2)

Thus, the vector Y(s,8) —a(s) =
(Q1(s,6),0%(s,6),03(s,6),0%s,€)) given in (3.1) is also
considered in (3.2)

Y(s,8) — a(s) = (Q1(5,8)" + (22(s,8))" — (Q3(s,8))? —
Q%G 9)? (3.3)

Furthermore, from expression (3.3), we can say that the
surface Y (s, &) lies on the sphere with center a(s) and radius d(s).
Thus, the mathematical equations between the vector Y(s,§) —
a(s), which is normal to the canal surface in ADS5, and the vectors
Y and Y¢, which are tangent to the sphere on which the surface lies,
are given as

(Y(5,8) — a(s), Ys) = 0; (Y(5,8) — a(s), Y¢) = 0.

In this case, let’s examine the situations expressed by (3.3).
First, using the metric given in expression (3.3), we get

(Ql)Z + (QZ)Z _ (93)2 _ (94)2 — dZ-

If this last expression is also derived with respect to the
parameter s, we have

Q0! + 0202 — 0302 — Q0% = dd,. (3.4)
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In this case, if the Frenet framework is used by taking the
differential with respect to & in equation (3.1), we get

Y: = Q; HE E)T + OF £(s, f)N + Qg(s E)Bl + Q3 HE E)Bz (3.5)

If this last equality and (3.1) is used in the equality
(Y(s,€) — a(s),Yg) = 0, we have

101 202 3n3 414 __
010f + 0207 — 0°0 - 0*Qf = 0.  (3.6)

Furthermore, let’s try to express the channel surface given in
ADS; in a different way by finding the values of Q% Q3 from
equation (3.1). Thus, by finding the value of Y, and using the frame
{a(s), t(s),n(s), e(s)},we have

Y(s,8) —a(s) = Q(s, &) a + Q%(s, )t + Q3(s, H)n + (s, &)é
Y,(s,&) —a'(s) = Qla + Qla’ + Q2t + Q2 + Q3 + Q3
+Qie + Qte’

= Qla + Q' + 2t + Q%(a + kyn) + Q3n
+Q3(—0kyt + 674€) + Qe + Q*(S5t,7)

Ys(s, ) = a(Ql + 0?) +t(Q! + Q2 — 6k,0% + 1)
+7(ky Q% + Q2 + 67,0%) + &(67,0% + Q2). (3.7)
Thus, using the equality (Y(s, &) — a(s),Ys) = 0, we have
0=0'Ql +0%) +0%(Q' + Q2 — 5k, + 1)
—03(k 0% + Q2 + 67,0%) — Q*(67,0° + Q).  (3.8)
This can be written algebraically as follows
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Q+0*=0
Q'+ Q2 =6k, 0°+1=0
kg% + Q3 + 67,0 =0
51,0% +Qf = 0.

Also, using equations (3.8) and (3.4), we write

0 = Q05 + 0'0% + 020" + Q%202 — 06k, + Q2
-03k,0% — Q303 — 67,0%0% — 0*67,0° — 0*Q}

0= 010! + 0202 — Q303 — Q*Qf + 20102 — 026k,
+02 — 03k, 0% — 67,0403 — 0*67,03

0 = dd; + 0%(2Q" — 6k, + 1 — Q%k,) — 67,0403
dds = 67,0%0% — 0?(2Q" — 6k, + 1 — Q3k,).

Furthermore, if d =constant, then k,(s) = [|t'(s) — a(s)ll
is the geodesic curvature and Ty =
—kg_zdet(a(s),a(s)’,a(s)”,a(s)”’) is the geodesic torsion, we
can write

67,0403 = 0%(2Q — ky (6 + Q%) + 1); § = sign(n(s))

. 0220 + 1) — §7,0*Q°
9 Q%(6 + 03) ’

L = coshé (2dcoshécosb + 1) — 8t dsinh?Ecosb
9= coshé (8 + dsinhécosb) ’

Q%20 — ky(6 + Q%) + 1)
g = 60403 ’
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B coshf(choshEcosb — k4 (8 + dsinhécosb) + 1)
t9 = ddsinhZ&écosb ’

det(a(s), a(s)’, a(s)”, a(s)"")
0%k, (20" + 1 - ky(5 + 0))
60403

Also,
dZ — (Ql)Z + (QZ)Z _ (93)2 _ (94)2
d? = (dcoshécosb)? + (dcoshésinb)? — (dsinhécosb)?
— (dsinhé&sinb)?.

This last statement can be written in the form of the following
equation
O? = dcoshésinb; Q3 = dsinh&cosh; Q* = dsinh&sinb
Q! = dcoshécosh.

When we substitute the last given values (3.1), we create the
surface as follows

Y(s,§) — a(s) = Ql(s, )@ + Q%(s, )t + Q3(s, E)n + Q(s, §)é

Y(s,8) = a(s) + d coslhfcosba(:l- co.shfsnllbt(_ .dbER.
+sinhécosbn + sinhésinbe

Based on the information we have presented above, we can
write the following theorem.

Theorem Let the center curve of the canal surface in H3 be a unit
speed curve a:1 - H3 with the geodesic curvature kg(s) and
geodesic torsional curvature t4(s) in a one-parameter anti-de Sitter
space. Then, the canal surface can be parametrized as follows

coshécosh + coshésinbt
Y(s,$) = +d o .];d,beR (3.9
(5,8 = a(s) <+sinh§cosbn + sinhfsinbe) (3.9)
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and the curvatures of the canal surface are given

k _coshf(choshfcosb+1)—6‘rgdsinh2Ecosb 3.10
g cosh&(§+dsinhécosb) » (3.10)

- coshé(2dcoshécosb—kg(85+dsinh&cosb)+1) (3.11)
9 Sdsinh2&cosb ) ’
Example Let the center curve of the canal surface in H3 be a unit
speed curve a(s) = (3coss,3sins,5s,0) with the geodesic
curvature k,; and geodesic torsional curvature T, in a one-
parameter anti-de Sitter space. Then, the canal surface can be

parametrized as follows
3coss + dcoshécosb,

_ [ 3sins + dcoshésinb,
Y(s8) =\ c¢ 4 dsinhécosb,
dsinh&sinb

;d,b ER

Y1(s, xi) Y2(s, xi

Figure 1: Component graphs of the canal surface.
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Figure 2: 3D projection graph of the canal surface over any three

components

Simulation of the Canal Surface Q(s, §)

Figure 3: Canal surface in Antide sitter space generated by helix curve a.
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Figure 4: Rotational canal surface in Antide sitter space generated by

the arbitrary curve a.

4. Conclusion

This study presents a detailed investigation of canal surfaces
within the unique geometric structure of the 4-dimensional Anti-de
Sitter 4-space. The findings reveal the definitions, parameterizations,
and differential geometric properties of these surfaces. It has been
shown that the constant negative curvature and Lorentzian
characteristic of AdS; lead to canal surfaces exhibiting different
behaviours than their counterparts in classical Euclidean space.
These analyses have enabled new classifications of canal surfaces
and will make significant contributions to the field of pseudo-

Riemannian geometry, particularly to the development of
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submanifold theory in spaces with high-dimensional and special
geometries. Furthermore, it is thought that this will provide a
foundation for potential applications of such surfaces in theoretical
physics, especially in the context of string theory and the AdS;
equivalence principle. In our future studies, we will attempt to
express some physical concepts using this surface form.
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CHAPTER 6

Quasi Hemi Slant Submanifolds of Generalized
Kenmotsu Manifold

RAMAZAN SARI!
SULEYMAN DIiRiK?

1. Introduction

Globally framed metric f-manifolds, which are a generalization of
almost contact manifolds, were first introduced by H. Nakagawa
(Nakagawa, 1966) and developed by S. I. Goldberg and K. Yano in
1971 (Goldberg and Yano, 1971). In 1972 Vanzura (Vanzura, 1972)
defined almost s-contact structures on f-manifolds. Vanli and Sar1
generalized Kenmotsu manifolds to almost s-contact structures and
defined generalized Kenmotsu manifolds (Turgut Vanli and Sari,
2017). Vanli and Sar1 also showed that the generalized Kenmotsu
manifold can be written as a warped product of the Kaehler manifold
with R®. Moreover They studied invariant submanifolds of this
manifold (Turgut Vanli and Sar1, 2023).

! Assoc. Prof. Dr., Amasya University, Department of Mathematics, Orcid: 0000-
0002-4618-8243
2 Prof. Dr., Amasya University, Department of Mathematics, Orcid: 0000-0001-

9093-1607
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The geometry of slant submanifolds, a generalisation of invariant
and anti-invariant submanifolds, has been studied since 1990 and
continues to be studied. The subject of slant submanifolds of
Hermitian manifolds was introduced by B. Y. Chen (Chen, 1990).
Firstly, Lotta defined slant submanifolds of almost contact manifold
(Lotta, 196). After, Cabrerizo et all. studied slant submanifolds of
Sasakian manifold (Cabrerizzo, 2000). At¢ceken and Dirik studied
pseudo slant submanifolds of Kenmotsu manifold. Many authors
investigation on submanifolds (At¢eken and Dirik, 2014). Sar1 et all.
Investigated skew semi-invariant submanifolds of Kenmotsu
manifold (Sar1,Unal and Aksoy Sar1, 2018).

Quasi hemi slant submanifolds were studied by Prasad in 2020 as a
generalisation semi-invariant submanifolds, semi-slant
submanifolds and pseudo-slant submanifolds (Prasad, 2020). In this
book chapter, we study quasi hemi slant submanifolds of generalized
Kenmotsu manifold.

2. Generalized Kenmotsu Manifolds

Let B be (2n+s)-dimensional differentiable manifold, ¢ is tensor
field, {&,, ..., &} are vector fields and {n?, ...,n°} are 1-forms. Then
B is said to be almost s-contact metric manifold by

p* = -1+ n'®&, n'(§;) = 6y (1)
9(@X, oY) = g(X,Y) — Ti_ 0" (XOn'(Y). 2)

Therefore, ® is said to be the fundamental 2-form, ®(X,Y) =
g(X,@Y), forany X,Y € I'(TB). Moreover, an almost contact metric
manifold is normal if

[p, ] +2Y5_,dn'®&; = 0.
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Theorem 1. Let (B, ¢, &;, 1%, g) be a normal almost s-contact metric
manifold. Then B is generalized Kenmotsu manifold if and only if

(V@)Y = Xi_1{g(X, V)& + n' (V) pX}. A3)

Corollary 1. Let (B,¢,&,n',9) be a generalized Kenmotsu
manifold. Then we have

Vxéi = —¢*X. )

3. Quasi Hemi Slant Submanifolds of Generalized
Kenmotsu Manifolds

In this section, we define and study quasi hemi slant submanifolds
of generalized Kenmotsu manifold. We investigate geometric
properties of distributions.

Definition 1. Let B be submanifold of generalized Kenmotsu
manifold B. B is said to be quasi hemi-slant submanifold if

e TB=D®D'*®DDSp{&,, ..., &,
e ¢oD=0D,
e @Dt cTB*

e The angle 6 betwen X and the space D? is constant
for X e T(D?), where {D,D*,D%} is orthogonal
distribution and ¢; are tangent to B.

Example 1. (R*™*S,¢,7n%, &, g) will denote the manifold R?"+S
with its usual generalized Kenmotsu structure given by

o1 c 9
n=s5 dZi—Zl}’idxi ’Ei:za_zi
i=
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]aZ 1(Yla_

( o (Xio— +Y-—)+Z

d
Xia_yi) +Z 12 1Y‘y‘az

g = e2Ti=n %I (dx; ®dx; + dy,®dy,) + X5, 1/ ®n,

where  (Xq, ..., X, V1, -» Vs Z1, -, Zs)  denoting the Cartesian
coordinates on R?™*S, Let N be submanifold of R'? defined by

N = X(S; t, u,v, k: w, Z1: ZZ)

= ¢ 2 Zj-17) (5,0,u,t,v,k,cos w,sinw, zq, z,)
Then local frame of TN
El = 6_22?=1Zj i, EZ = 6_22?=lzj il
0x4 0y,
E,=¢€ 2Yj=17j i, E, = e—221=12j i'
0x3 0y
d 0 0
Eg=e ?lim%—  Eg=e 2Yi=17 (sm w—+ cos W—)
0xy 0y3 0Ys
d 2 d
E, = 22] 1%j _— Es. = _22j=1zj—
7 dz," 8 ¢ dz,
and
El* — ZZ] 1Zj i’ EZ* — 6_22?=1zji
0x; 0y3

from a basis of TN'. We determine D, = sp{E;, E,}, D, =
sp{E3, E4} and D3 = sp{Es, E¢}, then Dy, D, and D5 are invariant,
anti-invariant and slant distribution, respectively. Therefore TN =
D,®D,®D;®Sp{&,,é,} is a quasi hemi-slant submanifold of R1°.

Now we define Gauss and Weingarten formulas for submanifolds.
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Let V be the Levi-Civita connection of B. Therefore Gauss and
Weingarten equations are given by

VyY = V'Y — o(X,Y) (5)
ViV = —AyX + V'5Y (6)

where, X,Y € I'(TB), V € I'(TB'), o is the second fundamental
from, V** is the connection in the normal bundle and Ay is the
Weingarten endomorphism. Therefore we have

For every tangent vector field X on B we can write
X =TX + NX (®)

where TX and NX denote the tangent and normal components of ¢X,
respectively. For every normal vector field V, we can state

oV =tV +nV 9)

where tV is the tangent component of @V and nV is the normal
one.

On the other hand , let B be a quasi hemi-slant submanifold of
generalized Kenmotsu manifold B. The projection morphisms of TB
to the distributions D, D+ and D are denoted respectively by P, Q
and R. Then for each W € I'(TM) we have

X =PX + QX + RX + n(X)¢. (10)
Thus from (8) we get TX = TPX + TRX and NX = NPX + NQX.

By using (5), (6) and (10) and several computations we obtaion
following propositions.

Proposition 1. For all Y € I'(TB) we have
g(PX,Y) =g(X,PY), forany X,Y € I'(D) (11)
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g(QXx,Y) = g(X,QY), foranyX,Y eI(D*+) (12)

g(RX,Y) = g(X,RY), foranyW,Y er(D%) (13)

Vyé =PX, h(X,§) =0 foranyW er(D) (14)

Vyé =0, h(X,§) = QX foranyX e '(Dt) (15)

Vx€ = TRX, h(X,§) = ¢NRX for any X € I'(D%). (16)

Theorem 2. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B . The distrbution D is not integrable.

Proof Forall X,Y € T(D) we get
g([X,Y],§) = g(VxY, &) — g(VyX, )
=—g (¥, Vx&) + g(X, Vy$).
From equation (14), we have
9(X,Y],$) = g(Y,PX) — g(X,PY)
= 2g(X, PY).

Thus D is integrable if and only if g(X, PY) = 0. From (11) the proof
is completed.

Theorem 3. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B. The distribution D is always integrable.

Proof Forall X,Y € I'(D), we have
g(VyX, &) = —g (X, Vyd).
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On the other hand, for all X,Y € T'(D), we have

or
There proof follows from (15).

Theorem 4. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B. The distribution D? is always integrable.

Proof Forall X,Y € F(D9 ), we have
g(VWyX,§) = —g(X, Vy&).

From equation (16), we get
g(X,YL,$) = —g(¥,TQW) + g(X, 9TQY).
Then we get following equation by (2)
9([X,Y],§) = g(eQY,TQW) — g(QW,TQY).
After some calculations, we have
9([X,Y],§) = g(TQY, TQW) — g(TQW,TQY).
This completes the proof.

Theorem 5. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B. The distrbution D @ {¢} is always
integrable if and only if h(X, @Y) = h(Y, pX).

Proof Forall X,Y € T(D @ {&} ) we have
o([X,Y]) = VxY — @VyX
= VxoY — (Vx@)Y — VypX — (Vy0)X.
Then we obtain following equation by (5) and (6)
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o([X,Y]) = VxoY — h(X, pY) — g(@X,Y)§ —n(Y)pX
+VypX — h(Y, pX) — g(@Y, X)) —n(X)eY.

Then we give [X,Y] € T(D @ {¢}) if and only if h(X,@Y) =
h(Y, pX), where @([X,Y]) shows the component of VyY from
ortogonal complementary distribution of D @ {£} in B.

Corollary 2. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B. The distribution Dt @ {&} is always
integrable if and only if A,y X = AyxY.

Theorem 6. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B. The distribution D @ D+ is not integrable.

Proof Forall X,Y € T(D @ Dt ) we get

From equation (11), we have
=2g(Y,PX) —2g(X,QY).

Thus D @ D* is integrable if and only if g(¥,PX) = g(X, QY).
This completes the proof.

Corollary 3. Let B be quasi hemi-slant submanifold of generalized
Kenmotsu manifold B. The distribution D @ D? and D+ @ D? is
not integrable.

4. Conclusion

Generalized Kenmotsu manifolds have potential for applications in
many fields of mathematics and physics. Researchers have increased
studies on this field from different areas in recent years. In this study,
the geometric properties of distributions arising from the definition
of quasi hemi slant submanifolds of generalized Kenmotsu manifold
are examined. The works on this subject will be useful tools for the
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applications of quasi hemi slant submanifold with different
manifolds.
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CHAPTER 7

A NOTE ON FIBRATION OF CROSSED SQUARES
OVER PAIRS OF CROSSED MODULES OVER LIE
ALGEBRAS

1. KORAY YILMAZ!
2. HATICE TASBOZAN?

1.Introduction

Crossed modules have long been used as models for low-
dimensional homotopy types and have origins in the algebraic study
of homotopy theory. The definition of a crossed module (Whitehead,
1949) initially given by Whitehead and offers an algebraic
representation of homotopy 2-types. Its adaption to Lie algebras,
which was initially proposed by Gerstenhaber (Gerstenhaber, 1964)

! Dog. Dr., Kiitahya Dumlupimar Universitesi, Matematik, Orcid: 0000-0002-
8641-0603 )
2 Dog. Dr., Hatay Mustafa Kemal Universitesi, Matematik, Orcid: 0000-0002-
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and later developed by Ellis and Loday (Ellis, 1988, Ellis, 1993b),
(Loday, 1982) offers an optimal setting for studying low-
dimensional homotopical situations using Lie theoretic methods.
The categorical aspects like limit, fibration, pullback on Lie algebras
were studied in (Y1lmaz et al., 2021, Tasbozan et al., 2022, Ulualan,
2007). Extensions to higher dimensions, including quadratic
modules, crossed squares and 2-crossed modules serve as the
algebraic model on homotopy 3-types and are known categorical
equivalent under appropriate functors. Some related studies on
commutative algebras could be seen in (Porter, 1987, Yilmaz et al.,
2020).

Grothendieck's notion of a fibred category has proven helpful for the
categorical analysis of algebraic structures defined over a fixed base.
In particular, fibration applications in a category allow one to control
how objects vary with respect to morphisms in an underlying
category by means of pullbacks as cartesian morphisms. This
viewpoint has already been successfully used to quadratic modules
and crossed squares in several algebraic settings where fibration
structures are given by forgetful functors to lower-dimensional
structures.

The main purpouse of this work is to give a practical method to
construct crossed squares over Lie algebras from appropriate pairs
of crossed modules and to accurately prove that the resulting
structures satisfy all axioms necessary for a crossed square over Lie
algebras. After recalling the classical definitions and results due to
Ellis we then introduce the categorical setting of pairs of crossed
modules over Lie algebras, which serves as natural base of our
construction. In this manner we define the associated crossed square
and obtain a verification of its conditions.
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2.Preliminaries

We will retain the definition of crossed modules over Lie algebra
from (Ellis, 1993a).

Definition 2.1 Let C and R be two Lie k-algebras and R acts on C.
The morphism

0:C->R
of Lie k-algebra is called pre-crossed module over Lie algebra if
d(rAx) = [r,0(x)]

for x im € and r in R where A:RXC-
Cis the Lie action of R on C. In addition if d : C — R satisfy

d(x")Ax = [x,x']

0: C — Ris called crossed module of Lie algebras and denoted with
(C,R,0).

Definition 2.2 Suppose we are given Lie algebras together with
structure maps arranged so that the resulting diagram is

D —— F

commutative and assume that R acts on the Lie algebras E, D, and C.
Let

h: C XE ->D
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be a bilinear map.

This data is crossed square over Lie algebras if the following
conditions hold:

1.
2.

8.

9.

o,n, 1, A, and po = An are crossed modules over Lie algebras.

o and n preserves the action of R.

. h is k-bilinear:

h(kx,e) = h(x,ke) = kh(x,e)

. h is linear in the first variable:

h([x,x'],e) = h(x,e) — h(x',e)

. h is linear in the second variable:

h(x,[e,e']) = h(x,e) — h(x,e")

. h is compatible with the action of R:

r » h(x,e) = h(r Ax,e) = h(x,rOe)

.o (h(x,e)=x"e.

n (h(x, e))=e - x.
h(x,7(d)) = x - d.

10. h(o (d),e) = e - d.

where A:RXC—->C, »:RxXxD - D,0:R XE — E are the actions.

Such a structure form crossed square category over Lie algebras. We
will show such a crossed square with

E R

DC‘

Let

--136--



¢:(D,E,C,R) — (D',E',C",R')

be a morphism of crossed squares over Lie algebras. The morphisms
gp:D - D' e E - E'
gc:C—- C',sg :R—> R

are crossed modules over Lie algebra making the diagram

CxFE h

I

C'x E' W

D C

/

E}' RI

commutative and the homomorphisms €, €., € are ez-equivariant.
We will denote this category by Crs?.

3. Crossed Squares over Lie Algebras from Pairs of Crossed
Modules over Lie Algebras

In (Brown& Sivera, 2009) Brown and Sivera mentioned bifibration
of crossed squares over pairs of crossed modules. In this section, we
will give the notion of the category: pairs of crossed modules for Lie
algebras.

Definition 3.1 Lett: C —» Pand w: E — P be crossed module
over Lie algebra. The category, pairs of crossed modules over Lie

algebra, XMod? consists of objects
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and with the morphisms preserving the action of P on E and C.
Shortly we will write (C, E, P, T, w) for a pair of crossed modules.

Let

E P

DS|

be a crossed square and the morphism
a = (a,a,,a3): (P, E"S,t",w') > (P,E,S,r , W )

in XMod? as given by

i, I 2
\EH;*P,

We define
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a*={x"r,shYe E' x PP x §': o'(x) = 7'(s"),ay(x")
= n(d), az(s") = o(d)}

and o,(x',s’,d") =c’,0,(x',s",d") =x" to give the next
proposition where u:D — S, i:D = E.

Theorem 3.1 The diagram

fss C."

EF — P

is an object in Crs?.
Proof:

1. From the definition T" and w " are crossed module over Lie

algebras. First, let us obtain that o, is a crossed module of
Lie algebras.

o,(x"A(e,x",d) = (0.7'(x") - e, x"x,az(x") - d)
— [x//,xl]
= [x",0,(e',x',d)]

forx"" € C',(e',x',d) € a*and
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o, ((e",x",d) A (e x",d) = x"A(e",x",d)

= (t'(x") - e’ x'x",az; x"") - d)
= (w'(e) - " xx",pu(ad) - d)
= (e'e", x'x", dd"

= [(e',x",d),(e",x",d")]

for (e',x',d),(e",x",d") € a*. Similar way ©®, becomes a
crossed moduleover Lie algebras. Since composition of two
crossed modules 7'®,, w'©, are crossed modules and from the

definition of a* itis clear that t'0; = w'o©,.
2. o, and o, preserves the action for ' € R and
(e',x',d) € a*
0 (1" (e',x',d)) = w,(r'me’, v’ Ax,a (7)) - d)
= r'oe

= r'on,(e,x',d)
3. Define
h:E xC - E xC xD
(e'x) = (TN oe,w'(e) Ax", h(az(e),a’ (x)))

where h: E X C — D isthe h-map of

D C
E R

Forx' € C',e' € E'andk € k wehave

k.h'(e',x")
= k.(t'(xX)oe,w'(e)Ax", h(ay(e),as; '(x')))

= (k.t'(x)oek.w’'(e)Ax", k.h(ay(e),as; '(x')))
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= ('(x)oke’,w'(ke") Ax", h(kay(e"),as ' (x')))
= (') oke’,(keHx", h((ke"),as; ' (x')))
= h'(ke',x")
k.h'(e,x") = k.(tT'"(xXNoe’,w'(e)Ax" h(a(e),as ' (x")))
= (k.T'(xX)oek.w'(e)Ax" k. h(ay(e),as '(x")))
= (W(kx")oe', w'(ke) Akx", h(ay(e), kas'(x")))
= (Wkx")oe,w'(e") Akx", h(ay(e"),asz '(kx'")))
= h'(e, kx")
4. Forx',x'"" € C'ande’ € E'

hr(er' [xrlxn])
= (T r([x!’XH]) a erj w’(ef)ﬂ ([Xr’ X”]), h(az(e’)» a3 ' ([XfJX”])))

= ([r'xDHoe’,7'x"Hoe’], [w'(eNAx",w'(e")AX"],
h(ay(e"), [az(x"), az(x")])
= ('xHoe + '&NHoe, ') - e))
+ w'(e", h((az(e), as" (x1), h(ay)(eNas" (x'))

= (') e, 7(X) - e h(ay(e) a’ (x)) + (T'(x")
e w'(e) - X h(ay(e)as’ (X))

= h'(e",x") + h'(e",x"")
5. Forx’ € C'ande’,e” € E’, itcan be seen similarly.
6. Forx' € C',e’ € E'and 1’ € R,
r R x)=1r - - (@T&)oe,w'(e)Ax", h(ay(e), as’ (x))
=(r"- (@'(xNme"),r" - (o' (eNAx"), 7" - h(ay(e",ab(x"))
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=((r" 7&))oe’, (r' o'(eN)Ax", h(r'oay(e), as(x)))
= ') e, o' e)YAx" h(a,(r"Oe), a3’ (X))
= (') - (Foe)o'(roe)Ax", h(a(r'oe), a3’ (x1))

= h'(r'oe,x")

' h(Ee,x) = - @(XHoe, ')A X' ha,(e"), a3’ (x)
=7 - (@(xHoe)r - (')A X)), 1 hiay(e),a;" (X))
= (MATX)) - e, (" - W' () AX" h(r' oa,(e), as’ (X))
= (r’(r’x’)- e',(w'(e"): rHA x’,h(crz(e’),ag(r’x’)))
= (T'(r'Ax") - e, w'(e") - (r' AX"), h(az(e"), a3’ (r' Ax")))
= h'(e/,r" AX)
7. Forx' € C',e'’ € E'andr’ € R
A x)=r - (T&)oe,w'(e)Ax", h(a(e), a3’ (X))
=7r - ({'&)oe)r - (' (e)AX),r « h(az(e), a3’ (X))
= (- TE)) e W'(@))ART R az(€), a3’ (X))
= (&) -1 e (re) AX", h(az(r' O e), a5’ (X))

= (') (Foe),o'(roe)AX" h(a,(r'oe"), a3’ (X))
= h'(r'oe,x"

e R(EX) = ' () oe,w'(e) AX h(ay(e), a5’ (X))
=71 @&X)oe)r - (0'(E)AX"), 7" h(az(e) a3’ (X))

= (7 - TE) - e 0 W) AXLRCT - (e, @’ (X))
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= (@@'x) - e, (') - ) Ax, h(az(e), a3" (r'x')))
= (@' Ax) - e w'(e) - (' Ax), h(ay(€), as’ (r' Ax")))
= K(, " Ax")

8. Forx' € C',e' € E'andr’ € R;

r - K\ x) = - 'x)oe, w'(e) AX", h(a,(e), a3’ (X))
=7 - (@&)ae)r - (@'(e)Ax"),r" - h(ay(e) a3’ (X))
= (' -7 oe, " - o'(@)AX, h(r - ay(e), a3’ (X))
= (@) - e, o' () A h(ay(r'Oe), a3’ (X))
= (X)) - ('oe), o' (" oe’) AX", h(a,(r' O e"), a;’ (X))
= h'(roe,x)

r' - h(Eex) = - (@E&E)oe, o' (eNAx", hay(e), as’ (X))
=7 - ({@E)age),r - (' (e)Ax"),r" - h(ay(e), a3z’ (X))
= (- 7)) -0 W' (@) AKX R - ay(€), a3 (X))

(T('x) - €, (0'(e) - ) AX, h(ay(e), a3’ (r'X')))

= (' - x) - €,0'(e) - (" AX), h(ay(€) a3’ (r' Ax)))

= h'(e’,r' AX")
9. For(e',x',d) € a* ande’ € E';
h'(e',0.(e',x',d)) = h'(e”,x")
= (@) me" W (@) A, h(ay(e"), a5 ("))
= ('(e") - €",0'(e") Ax', h(az(e"), n(d))
= (e - e’ e - ¥, ay(e") - d)

= " . (e',x',d)
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10. For (e, x',d) € a*andx”" € C';
h'(0,(e',x',d),x") = h'(e,x)
= ((x")oe.w'(e)Ax", haz(e), az" (x)))
= (x" - e, 7)) - x',h(A(d), a3’ (x)))

— (XH . e.” X! . X”, (13(}(”) . d)
= x" . (e',X,d)
4. Conclusion

In this work, we examined how crossed squares of Lie algebras can
be obtained from pairs of crossed modules by using the structural
relations that link their actions and homomorphisms. Beginning with
the classical definitions of crossed modules and the basic properties
recalled in the preliminary section, we developed the categorical
approach in which pairs of crossed module over Lie algebra are
given. Within this manner, we give the construction and showed that

it naturally yields a crossed square when the required conditions are
hold.

The main result demonstrates that the data arising from a morphism
in pairs of crossed modules maps to an object in Crs?. Each of the
axioms defining a crossed square from the pairs of crossed module
conditions verified explicitly. Also some equivalent structures with
crossed squares were worked in (Yilmaz, 2022, Soylu Yilmaz et al.,
2022, Yilmaz et al., 2019).

The method presented here for producing crossed squares from pairs
of crossed modules over Lie algebras. Such constructions
strengthens the connections between crossed module notion and
higher Lie-algebraic structures. These results may serve as a starting
point for further results involving Lie 3-algebras, higher
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homotopical structures, and non-abelian cohomology, providing a
way for future work in the non-abelian algebra of Lie algebras.
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CHAPTER 8

A PERSPECTIVE ON ISOMORPHISM PROBLEMS
THROUGH G-SET MODULES

MEHMET UC!
Introduction

Group rings have played a fundamental role in both the
analysis of algebraic structures and the development of
representation theory since the mid-20th century. The group ring RG,
defined for a ring R and a group G, is a powerful tool for translating
the structure of G to the algebraic plane. In particular, studies of
integral group rings ZG have revealed profound problems
concerning the extent to which a finite group can be determined
solely from ring-level information.

Isomorphism problem in group rings is summarized in the
literature by the following question: Does the isomorphism RG =
RH always yield G = H? This question has been answered in the
affirmative in some important cases. Perlis and Walker (1950)
showed that finite Abelian groups are determined by group rings
over the rational numbers. Deskins (1956) obtained a similar
determinability result for finite Abelian p-groups over fields with

' Dr. Ogr. Uyesi, Burdur Mehmet Akif Ersoy Universitesi, Matematik Béliimi,
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characteristic p. Higman (1940) gave important positive results for
integral group rings in the context of abelian groups and Hamiltonian
2-groups. Results by researchers such as Sandling (1974, 1985),
Whitcomb (1968), and Weiss (1991) showed that the result ZG =
ZH = G = H is valid for metabelian, nilpotent, and certain linear
groups.

On the other hand, the examples given by Dade (1971)
showed that the isomorphism problem can be answered negatively
for all fields, so the strongest version, the complete group ring
conjecture, came to the fore: ZG = ZH = G = H. This conjecture
is not completely solved today, but it has been verified for a wide
class of groups such as abelian, metabelian, nilpotent, Hamiltonian
2-groups, and simple groups (Sehgal and Milies, 2002).

Zassenhaus’ conjectures (Sehgal, 1996) concerning the
normalized unit group of ZG, rational conjugacy of torsion units,
behavior of finite subgroups, and structural constraints on
automorphisms, generated a vast body of research. Significant
progress has been made by Hughes—Pearson (1972), Milies (1973),
Luthar and Passi (1989), Luthar and Trama (2007), Dokuchaev—
Juriaans (1996), and many others.

The normalizing conjecture began with Coleman (1964) and
was later expanded by Li, Parmenter and Sehgal (1999). The
problem of the existence of free subgroups was studied by
researchers such as Hartley and Pickel (1980), Gongalves (1984),
and Passman (1996) and revealed the complexity of unit groups of
integral group rings.

The concept of a group ring has extensive generalizations,
such as skew group rings, cross products, semigroup rings, loop
rings, and partial group algebras. In particular, Goodaire and Milies
(1988, 1989, 1996) obtained extensive results on isomorphism
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problems on alternating loop rings and on the validity of Zassenhaus
conjectures.

The concept of a group module was first introduced by Kosan
et al. (2014) and was subsequently developed and generalized in later
studies Kosan (2020), Uc and Alkan (2017). Isomorphism problems
arising in the context of group modules are a natural generalization
of the classical group ring isomorphism problem. Given a ring R and
an R-module M, the fundamental question is whether modules MG
and MH are isomorphic, and whether this isomorphism yields G =
H. It is known that, in general, G = H = MG = MH always
holds, while the converse is not true; that is, G * H can exist even
though MG = MH. Therefore, determining all groups H such that
MG = MH for a given M is crucial for understanding the extent to
which module-theoretic methods determine group structure. Uc and
Mercan (2025) provided a fundamental starting point in this area by
showing that MH = MG for isomorphic groups H and G. Moreover,
the question of whether two non-isomorphic groups can form
isomorphic group modules under the same module M lies at the heart
of isomorphism problems in group modules and reveals the deep
relations between group theory and module theory.

The concept of a G-set module was first introduced in a
systematic framework by Uc and Alkan (2023) and is considered a
natural generalization of the classical group module approach. This
structure allows us to examine the MS module, which results from
the interaction of a group G on a G-set S combined with an R-module
M. This allows for a richer analysis of the interaction between group
influence and module structure. This chapter addresses isomorphism
problems in G-set modules, specifically exploring how G-set
isomorphisms are reflected in module isomorphisms, the conditions
under which isomorphic modules necessitate G-set isomorphism,
and the extent to which module-theoretic structures determine group
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influence. The main results of this chapter include the proof that a G-
set isomorphism induces an RG-module isomorphism of the form
MS — MT, the converse results obtained through characterization
of modules, the application of character theory and the Maschke
decomposition to G-set modules, and the proof of fundamental
theorems concerning whether non-isomorphic groups can generate
the same G-set module. These results provide a holistic approach to
isomorphism problems in G-set modules by revealing both the
structural properties of G-set modules and how group influence is
encoded at the module level.

Preliminaries

In this section, we present a restructured formulation of the
concept of a G-set module, inspired by earlier work, most notably
Kosan et al. (2014), but rewritten to provide a broader, clearer, and
more general framework suitable for this book chapter. Throughout,
G denotes a finite group with identity element e, R is a commutative
ring with unity 1, M is a left R-module, and RG is the corresponding
group ring. The notation H < G indicates that H is a subgroup of G,
while S represents a G-set equipped with an action of G on S.
Whenever N is an R-submodule of M, the notation Ng < My will be
used. Given a G-set S, the G-set module MS is defined as the
collection of all formal finite sums of the form ),¢cs mgs, where each
coefficient mg belongs to M and only finitely many coefficients are
nonzero. Equality of two such expressions u = 7 is interpreted as
coefficientwise equality, meaning mg = ng for all s € S. The
addition in MS is defined componentwise that is pu+n =
Yises MgS + Dses NS = Des(mg + ng)s. The scalar multiplication
by r € Risgiven by ru = r(Qses mgS) = Yses(rmg)s. Under this
operation, MS becomes an R-module. If p = }5¢; g8 is an element
of the group ring RG, then its action on MS is defined by
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pu = (dec reg) (ZsesmsS) = ZSES(Fms)(gS)

which makes MS a left RG-module.

This module will be denoted (MS)gg, and in its purely R-
linear form by (MS)g. The structure (MS)gg is called the G-set
module of S by M over RG. Since the action of G on S naturally
extends to MS, the structure of a G-set is also inherited by MS. If S is
an H-set for a subgroup H < G, then MS becomes an RH-module.
Furthermore, if S is both a G-set and a group, and if M = R, then RS
coincides with the classical group algebra. Likewise, when a group
acts on itself by multiplication, we obtain (MS)grg = (MG)Rgg,
showing that MG is the basic example of a G-set module.

Since the actions of G on a set S correspond bijectively to
homomorphisms G — Xg (where Xg denotes the full permutation
group on S), G-set modules form a wide and rich class of RG-
modules. In this sense, MG, introduced in Kosan et al. (2014) in the
case where G acts on itself, may be viewed as the earliest instance of
a G-set module. Consequently, the structure MS provides a natural
generalization of several classical constructions: group rings and
group modules. The theory of G-set modules thus unifies these
frameworks and extends the range of module-theoretic questions one
can ask regarding RG-modules. This generalized perspective offers a
broader and more flexible approach for studying the structural
behavior of group

Main Results

Theorem 1. Let G be a group, R aring, and M an R -module.
Let S and T be G-sets which are isomorphic via a G-set isomorphism
a: S — T.Then the associated G-set modules are isomorphic as R-
modules equipped with a compatible G-action that is MS = MT.

--152--



Proof. a: S —» T is a G-set isomorphism; that is « is
bijective,and a(g-s) = g-a(s) forallg € Gands € S. Our aim
is to construct an isomorphism such that a* : MS — MT between
the associated G-set modules. An element x € MS is a finite formal
sum of the form x = ) csmgS, where each mg € M and only
finitely many coefficients mg are nonzero. Similarly, an element y €
MT may be written uniquely asy = Y.t n.t, with n, € M.

Define the map a': MS - M, a*'(Qgesmgs) =
Y.ses Mg a(s). To prove a* is well defined, we must show that if
Yises Mg * S = DisesMgs as elements of MS, then a*sends these two
expressions to the same element of MT. Applying o we obtain
A" (UsesMsS) = Xses Ms a(s) and o (Yses MsS) = Yses M A(S).
Since mg = mgfor all s, these two sums are equal in MT. Hence, o*
is well-defined.

Let x=),sesmgS and y = Y5 NS in MS. Then,

a'(x+y)=a (Zsesmss + Zsesnss) =o* (Z (mg + ng)s

SES
=) g+ n)a() = ) mea(s) + ) nga(s)
SES SES SES
= o*(x) + a*(y).
Thus, a* is additive.
Let r €R, then a*(r.x) = oa*(r. Ygesmg S) =

A" (Dses(rmg) s) = 1Y sesmga (s) = ra*(x). So, a* is an R-module
homomorphism.

The G-action on MS is defined by g-(ms) = m(gs),
extended linearly. Since « is a G-set isomorphism,

a’(gx) = o* (g (Zsesms s)) = Zsesmsa(g S)
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- Zsesmsga( S) N g(zsesmsa( S)) - ga*(X)'

Hence of commutes with the G-action.

Suppose o (X) = a* (Dges MgS) = Diges Mgat(s) = 0. In the
formal sum structure of M T, distinct basis labels a(s) impose that all
coefficients must vanish. Thus mg = 0 for every s € S, which
implies x = 0. Therefore o is injective.

Lety = Yiern:t € MT. Because a is bijective, for every t €
T there exists a unique s € S such that t = «(s). Write y =
YsesNgs)a(s)and  define  YgesnNgs)s € MS.  Then a™(x) =
o (XsesNu(s)S) = Xses N(s)(s) = y.Thus, a is surjective. Since
the map a* is well-defined, an RG-module homomorphism, injective
and surjective, a* is an RG-module isomorphism of G-set modules.
Hence MS = MT.

Example 1. Let G = S;, the symmetric group on three
elements. We construct two G-sets S and T, each of which contains
one nontrivial transitive orbit and two trivial orbits. Define S = V U
W ={vq,v,,v3}U{w;,w,} and T=A U B={a;,a,az}u
{by, by }. The action of S3 on V is the standard permutation action that
I8 0+ Vi = Vg(j) for 0 € S3 and i = 1,2,3. The action of S3 on W is
trivial that is 0 - w; = wj for 0 € S3 and j = 1,2. Similarly, 0 - a; =
ag(i) and o - b; = b;. Thus, each G-set contains one transitive orbit

(size 3), and two trivial orbits (each size 1).

Define o by a(vy) = aj,a(vy) = a,, a(vs) = az, a(wy) =
by, a(w;,) = b,. This map is bijective, orbit-preserving (transitive
orbit maps to transitive, trivial to trivial) and G-equivariant. The
following verifies the equivariance for V and for W, respectively.

a(o - vi) = a(Ve(i)) = ag() = 0 - a; = 0 - a(vy).
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a(o - wj) = a(w;j) =b; =0-bj =0 a(w)).

Hence, a(g-s) = g- a(s) forall g € S; and s € S, proving a is a G-
set isomorphism.

LetR = Zand M = Z as an Z-module. Define MS = ZS =
{Dsesmgsimg € Z}, and MT =ZT = {},erniting € Z}.  For
example, u = 4v; —v3 + 2w; — 5w, € ZS, and v=4a; —az +
2b; — 5b, € ZT. By Theorem 1, the induced map o* is defined by
A" (XsesMss) = Xsesms afs). Explicitly, o (vi) = aj, a’(wj) =
b;. For example, a*(4v, —v3 + 2wy — 5w,) = 4a; —az + 2by —

5b,. We now verify each algebraic property in detail.

If Yses MgS = Y.ses Mgs, then, since {vy, v,, V5, Wy, W, } form
a formal basis, we have mg = mj for all s € S. Applying a*, we get
Yises Mg a(s) = Ygesmg als). So, o is well-defined.

Let X =)ssmsS,y = YsesNgS. Then, o*(x+y)=
o (Xses MsS + XsesNsS) = O(*(Zses(rns + ng)s = Dses(mg +
ng)a(s) = Yses mga(s) + Xgesnga(s) = o*(x) + a*(y). Hence, a*
preserves addition.

o is Z-linear, because for any integer k € Z, a*(kx) =
O(*(kZSES I’I’ISS) = ZseS(kms)a(s) = kZSES mSO((S) = ka" ().

Let 0 € S and x = Y gegm,sS. Then, 6 - X = Ygesmg(0 - S).
Hence, a’(0-x) = a"(Uses Ms(0 - 5)) = Lsesmsx(0 - 5) =
YisesMg(0 - a(s)) =0 Ygesmga(s) = o o (X). Thus, o
commutes with the G-action that is a*(0 - x) = o - " (x).

Assume a*(x) =0. Write x =myv; + m,v, + m3vs +
n,w; + n,w,. Then, a(X)=m;a; + m,a,+ mza; +n;b; +
n,b, = 0. Since the elements a;,a,, az by, b, are formally
independent, their coefficients must all vanish that is m; = m, =
m3 = 0; n; = n, = 0. Thus, x = 0, proving «* is injective.
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Let y =rja; +rpa, +rzaz +s;b; +s,b, € ZT. Define
X =T1Vy + IV +13V3 +S;wy +S,w, €EZS.  Then, o'(x) =
a*(ryvy + 1ryvy +1r3vs + 51wy + 5,w,) = rya(vy) + rya(vy) +
rza(vs) + s;a(wy) + s,a(w,)=ria; + rpa, + rzaz + s;b; +
s,b, =y. Hence, o is surjective.

We have verified that a* is well-defined, additive, Z-linear,
G-equivariant, injective and surjective. Therefore, o is an
isomorphism of G-set modules, and MS = MT.

Theorem 2. Let R be a field, let G be a finite group, and let S
and T be finite G-sets. Let M be a nonzero left R-module on which G
acts trivially. Consider the corresponding G-set modules MS: =
Dses M+ s, MT: =@ M - t where the G-action is given by g-
(ms) = m-(g-s) forallme M, s € S,g € G. If MS and MT are
isomorphic as RG-modules, then S and T are isomorphic G-sets.

Thus, for any nonzero M with trivial G-action, the
construction S = MS is faithful on isomorphism classes of finite G-
sets.

Proof. Since M is nonzero finite dimensional R-vector space
on which G acts trivially, the RG-action on MS and MT arises solely
from the permutation actions of G on S and T. This allows canonical
identifications M@gR(S) and M®gR[T], where R(S) and R(T)
denote the premutation modules with bases indexed by S and T.

If dim(M) = d > 0, thenM = RY, and consequently MS =
(R(S))? and MT = (R(T))Y as RG-modules. Thus, MS = MT
implies (R(S))¢ = (R(T))4.

Since R has characteristic zero and G is finite, Maschke’s
theorem ensures that the group algebra RG is semisimple. Therefore,
every finite-dimensional RG-module decomposes uniquely (up to
ordering) as a direct sum of simple modules.
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Write the simple decomposition of R(S) as R(S) =
Vir@V,2@... @V, X, where V; are non-isomorphic simple RG-
modules and each a;>0. Similarly, write R(T) =
Vlk”EBVZbZEB...@VlEk. Taking d copies, we obtain (R(S))9 =
ViV, @V and (R(T)? = VIrevi2e... VI Pk,
The isomorphism (R(S))? = (R(T))9 forces d.a; = d.b; for each i.
Since d > 0, this yields a; = b;, and hence R(S) = R(T) as RG-
modules.

Over a characteristic-zero field, permutation modules are
determined by their characters. The character xg of R(S) is given by
Xs@@) = |Fixs(g)|, the number of elements of S fixed by g € G.

Similarly, XT(g) = |F1XT(g)|

Since R(S) = R(T), their characters coincide such that
Xs(g) = X1(g) for all g € G. Therefore, each element of G fixes the
same number of points in S and in T. The fixed-point data forall g €
G determines the orbit decomposition of a finite G-set. Each
transitive G-set is of the form G/H for some subgroup H < G, and
two such sets G/H and G/K have identical permutation characters if
and only if H and K are conjugate subgroups. Thus, S and T must
consist of the same multiset of orbit types G/H, with identical
multiplicities. Constructing a G-equivariant bijection orbit by orbit
produces an explicit G-set isomorphism S = T.

Example 2. Let R = C, the field of complex numbers. Let
G = S;, the symmetric group on three letters, which has six
elements. Let M = C considered as a 1-dimensional C-vector space
with trivial G-action. We construct two G-sets S and T, show that they
are isomorphic as G-sets, and then build the permutation RG-modules
CS and CT. Finally, we construct an explicit CG-module
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isomorphism and explain why Theorem 1 guarantees that such an
isomorphism force S = T as G-sets.

Define T = {1, 2, 3}, equipped with the natural action of S;.
For any permutation o0 € S; and any element i € T, the action is
defined by o -+ i = o(i). This makes T a transitive G-set of size
three. Next, construct another G-set S as the left coset space G/H,
where H = {id, (12)} is the subgroup of S; of order two. The left
cosets of Hin Gare H; = H, H, = (13)H, Hy3 = (23). Thus S =
{H;,H;, H3} and the action of G on S is by left multiplication: o -
(gH) = (og)H. This produces another transitive G-set of size three.

Define a bijection o: S - T by setting a(H;) =
1,a(H,) = 2,a(H3) = 3. To verify that a is a G-set isomorphism,
we must show that it is G-equivariant that is a(o - x) = 0 - a(x)
for all 0 € S3 and all x € S. Since both S and T are transitive G-
sets of size three, the verification may be done using generators of
S;. For example, consider o = (123). Then, (123) - H; =
(123)H = H,, so a((123) - H;) = a(H,) = 2. On the other
hand, a(H;) = 1 and (123) - 1 = 2. Thus, the equivariance
condition holds. A similar verification applies for o = (12), and
since these elements generate S5, a is fully G-equivariant. Therefore,
a is a G-set isomorphism S = T.

The permutation module CS is the C-vector space with basis
{H4, Hy, H3}, with G acting by linear extension of its action on S. That
is, for 0 € S; and basis element x € S, we have o - X = the
unique coset in S obtained by left multiplying x by o. Similarly, CT
is the C-vector space with basis {1,2,3}, with G acting by
permutation of the basis elements 0 - i = o(i). Both CS and CT are
CG-modules of dimension three.

Define a *: CS — CT by linear extension of a. Explicitly,
for any vector v = Yy csayXx € CS, set a*(V) = Yyesaya(x). On
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basis elements, this means that a*(H;) = 1,a*(H,) = 2,a*(H3) =
3. We now verify the properties that make o* an isomorphism of CG-
modules.

Every element of CS has a unique expression as a finite linear
combination of the basis elements H;, H,, H3. Defining o* on the
basis elements and extending linearly ensures the map is well-
defined. Its C-linearity follows immediately from the linear
extension.

To show o is a CG-module homomorphism, we must verify
that a* (o - v) = o - a" (v) for all 0 € G and all v € CS. It
suffices to check this on basis elements. For any x € S, we get
a'(c - x) =afc-x) =0-ax) =0 - a’'(x). By linearity,
this identity holds for all vectors. Thus a* is G-equivariant and hence
a CG-module homomorphism. Since a is a bijection of finite sets, its
linear extension o is a bijection between finite-dimensional C-
vector spaces of the same dimension. The inverse is the linear
extension of a1, Thus a* is a CG-module isomorphism.

In this example, S and T are isomorphic as G-sets, and the G-
set isomorphism a gives rise to a CG-module isomorphism a*: CS —
CT. The theorem discussed in the accompanying text states the
converse under appropriate hypotheses, namely, that if CS and CT
are isomorphic as CG-modules, then S and T must be isomorphic as
G-sets, provided R has characteristic zero and M is a nonzero finite-
dimensional R-module with trivial G-action. Thus, the present
example demonstrates both directions: a G-set isomorphism induces
a module isomorphism, and, by the theorem, any module
isomorphism of this form forces the underlying G-sets to be
isomorphic.

Conclusion
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This chapter systematically addresses isomorphism problems
for G-set modules defined on G-sets. The paper first clarifies the
fundamental structure of the G-set module concept with a
preliminary section reorganized from previous literature (especially
Uc and Alkan, 2023). It is shown that G-set modules generalize the
concepts of group ring and group module, thus unifying both the
group action on the set and the module structure.

The main contributions of the chapter are the detailed proof
of two fundamental isomorphism results. First, it is proven that a G-
set isomorphism between a G-set S and T translates into an RG-
module isomorphism between the corresponding G-set modules.
This result demonstrates that the G-set structure is fully reproducible
at the module level.

Second, it has been shown that modules are also inversely
deterministic under certain conditions: in particular, for a non-zero
module M with trivial G-action defined on a characteristic zero field,
the isomorphism MS = MT necessitates a G-set isomorphism S =
T. This result obtained using Maschke's theorem, character theory,
and permutation module decompositions, clearly demonstrates the
power of G-set modules to distinguish isomorphism classes.

The chapter also included illustrative examples that clarify
how G-set isomorphisms correspond to module isomorphisms,
thereby complementing the theoretical results with explicit
computations and constructions.

In conclusion, this work presents both advanced theoretical
methods and structural characterizations for isomorphism problems
on G-set modules, and it appears that this new class of modules
makes important contributions to the relations between group theory,
representation theory, and module theory.
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CHAPTER 9

A MULTIDISCIPLINARY SURVEY OF LINEAR
WEINGARTEN SURFACES

FERAY BAYAR!

Introduction

The classification of surfaces in three-dimensional space
constitutes one of the most enduring challenges in differential
geometry. From the foundational work of Euler and Monge to the
modern era of discrete differential geometry, mathematicians have
sought to characterize shapes not merely by their visual appearance,
but by the intrinsic and extrinsic properties of their curvature.
Among the myriad classes of surfaces defined over the last two
centuries, Weingarten surfaces occupy a distinguished position
(Lopez, 2008).

Defined initially by Julius Weingarten in 1861, these surfaces
are characterized by a functional relationship between their principal
curvatures, k; and k, (Weingarten, 1861). This implies that the
Jacobian of the curvature map vanishes everywhere, or equivalently,
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that the lines of curvature on such surfaces are intimately tied to the
variation of the surface normal (Hopf, 1951).

While the general Weingarten condition W (kq,k,) =0
allows for arbitrary complexity, a specific subset known as Linear
Weingarten (LW) surfaces has emerged as the focal point of
contemporary research. These are defined by a linear relation
between the Mean curvature (H) and Gaussian curvature (K) :

2aH +bK = ¢ (D

Despite the simplicity of this linear constraint, the resulting shapes
are geometrically rich. They generalize the classical theories of
minimal surfaces ( H = 0 ), Constant Mean Curvature (CMC)
surfaces ( H = c¢ ), and developable surfaces (K = 0).

In recent decades, the study of LW surfaces has transcended
theoretical mathematics. In architectural geometry, they act as a
"Holy Grail" for rationalization, enabling the fabrication of complex
double-curved skins using standardized panels (Pellis et al., 2021).
Simultaneously, in biophysics, the Helfrich spontaneous-curvature
model, which governs the shape of lipid bilayers and vesicles,
reduces to linear Weingarten conditions under specific symmetry
constraints (Helfrich, 1973).

Mathematical Foundations and Classification Results

The mathematical study of Linear Weingarten (LW) surfaces
is rooted in the differential geometry of principal curvatures. Let S
be a smooth, oriented surface in Euclidean space R3, and let k4, K,
denote its principal curvatures. A surface is termed a Weingarten
surface if there exists a smooth, non-trivial function W such that
W(kq, k) = 0.
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The specific class of Linear Weingarten surfaces arises when
this functional dependence is linear with respect to the mean

1 .
curvature H = E(Kl + k,) and the Gaussian curvature K = K k.

The general defining equation is:
2aH +bK = ¢ (2)
where a, b, c € R are constant not all zero.

The geometric behavior of LW surfaces is governed by the
algebraic structure of Equation (2). By substituting the definitions of
H and K, the relation describes a quadratic curve in the ( k1, k5 )
phase plane:

bkik, +a(k; +K,) —c=0 3)

Following Lopez (2008), the classification depends on the
discriminant A = a? + bc :

e Elliptic Type ( A > 0 ): The principal curvatures lie on a
hyperbola in the phase plane. This class includes surfaces of
constant mean curvature ( b = 0 ) and surfaces of constant
positive Gaussian curvature ( a = 0,¢/b > 0 ). Compact,
strictly convex LW surfaces in this regime are necessarily
spheres (Hopf, 1951).

e Hyperbolic Type ( A < 0 ): This regime allows for surfaces
with negative Gaussian curvature. Lopez (2009)
demonstrated that complete surfaces of this type in
hyperbolic space H3® exhibit complex branch behaviors,
distinct from the classical Euclidean pseudosphere.

e Parabolic Type (A =0) : This often corresponds to
degenerating cases or surfaces where one principal curvature
is linearly related to the other, leading to developable
surfaces or specific channel surfaces.
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Rotational Linear Weingarten Surfaces

Rotational symmetry simplifies the partial differential
equation (PDE) of the LW condition into a solvable ordinary
differential equation (ODE). Consider a surface of revolution
parametrized by:

xX(u,v) = (f (u)cos v, f(u)sin v, g(u)) (4)

where u is the arc length of the profile curve y(u) = (f (v),0, g(w)).
The principal curvatures are given by the meridional curvature k; =
f'g" —f"g" and the parallel curvature x, = g'/f. Substituting
these into Equation (2) yields a second-order non-linear ODE. Aydin
(2022) utilized the variational characterization of these profiles to
show that they correspond to the extremals of curvature-dependent
energy functionals. Specifically, when b # 0, the profile curves can
be expressed in terms of elliptic integrals, generalizing the classical
Delaunay unduloids and nodoids found in CMC theory.

Ruled Weingarten Surfaces

A ruled surface is generated by a line moving along a curve,
parametrized as x(u, v) = a(u) + vf(u). The classical theorem of
Beltrami implies that the only ruled Weingarten surfaces are
developable surfaces (where K = 0 ) and ruled helicoids.

In the context of the linear relation, Oztiirk et al. (2013)
provided a definitive classification in Euclidean 3-space. They
proved that a non-developable ruled surface satisfying
2aH + bK = c must be a helicoid. If b # 0, the relationship forces
the helicoid to be part of a restricted family where the pitch relates
to the coefficients a and c. In Minkowski 3-space, Dillen and Kiihnel
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(1999) extended this to show that ruled LW surfaces can also include
specific Lorentzian cylinders and cones.

Tubular Surfaces and Spacelike Tubes

Tubular surfaces (or canal surfaces with constant radius)
provide a rigid geometric setting. Geometrically, a tube of radius r
around a spine curve Y has one constant principal curvature, say
Kk, = —1/r. Substituting k; = const into the linear relation 2aH +
bK = c immediately constrains k, to be constant as well. Since «,
for a tube depends on the curvature of the spine y, this implies the
spine itself must have constant curvature.

Thus, as shown by Pulov et al. (2018), LW tubular surfaces are
restricted to:

e Tubes over straight lines (cylinders),
e Tubes over circles (tori),

e Tubes over helices.

Non-Euclidean Geometries and Singularities

Modern research extends LW theory to Riemannian space
forms (Hyperbolic space H? ) and Lorentzian space forms (de Sitter
space S$2 ).

Hyperbolic Space and Bryant Surfaces

In Hyperbolic 3 -space H3(—1), the LW condition is often

adapted to the background geometry, typically formulated as a (K —
D+26(H-1)+y=0.

A celebrated class of surfaces in H3 are those with constant
mean curvature H = 1, known as Bryant surfaces. These surfaces

are the hyperbolic cousins of Euclidean minimal surfaces. Bryant
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(1987) established a Weierstrass-type representation for these
surfaces. Just as Euclidean minimal surfaces are generated by
holomorphic data (g,®), a Bryant surface f:X — H® can be
constructed from a holomorphic null immersion F: ¥ — SL(2, C).

Theorem (Lawson Correspondence). There exists an
isometric correspondence between CMC surfaces in different space
forms. Locally, a Bryant surface in H?3 corresponds to a minimal
surface in R3.

This correspondence allows for the construction of "cousins"
of classical minimal surfaces (like the Enneper surface or Catenoid)
in the hyperbolic setting. Hauswirth et al. (2002) utilized this to solve
the asymptotic plateau problem, proving the existence of complete
Bryant surfaces bounding specific curves at infinity.

Lorentzian Geometry and Singularities

In Lorentzian space forms, such as de Sitter space S?, the
metric is indefinite (+, +, —). This fundamentally alters the surface
theory, as surfaces can be spacelike, timelike, or lightlike.

A crucial distinction in this setting is the generic presence of
singularities. In Riemannian geometry, singularities are often
defects. In Lorentzian geometry, they are intrinsic features known as
wave fronts. Yasumoto and Rossman (2020) studied "Bianchi-type"
LW surfaces in de Sitter space and classified their singularities:

e (Cuspidal Edges: A singularity where the surface folds back,
equivalent to the caustic of a light front.

e Swallowtails: A generic higher-order singularity appearing
in the evolution of wave fronts.

The study of these singularities links LW theory to singularity
theory and the topology of caustics (Saji et al., 2009).
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Discrete Differential Geometry and Computation

Translating LW theory into algorithms for architecture and
engineering requires Discrete Differential Geometry (DDG).

Discrete Curvature and Nets

On a discrete mesh M = (V,E,F), classical definitions of
curvature involving derivatives are unavailable. DDG defines
curvature via integrated quantities:

e Discrete Gaussian Curvature (K,,) : Defined by the angle
defect at a vertex v :

K,=2m-) 0 (5)

fav

e Discrete Mean Curvature (H,) : Defined via the Steiner
formula or the variation of surface area. For a mesh edge
e, it is often related to the edge dihedral angle.

Discrete LW surfaces are characterized as special parallel nets. A
key property utilized in computation is that for any Weingarten
surface, the gradients VK and VH are parallel. In the discrete setting,
this implies a specific relationship between the offset meshes. Pellis
et al. (2021) formulated discrete LW surfaces using the framework
of isotropic geometry, where the condition linearizes effectively.

The Guided Projection Algorithm

The state-of-the-art method for rationalizing a freeform
design into an LW surface is the Guided Projection Algorithm (Tang
et al., 2014). This is an iterative optimization method.
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Given a target surface Siyrge; , the algorithm seeks a mesh M that
minimizes the distance to Si,e; While satisfying the LW constraint.

e Constraint Formulation: Direct enforcement of aK + bH +
¢ = 0 is numerically unstable due to the rational nature of
curvature formulas.

e Implicit Constraint: The algorithm instead enforces the
collinearity of curvature gradients:

det(VK,VH) = 0 (6)

e Fairness: High-degree B-splines are often fitted to the
resulting mesh to ensure "Class A" surface quality,
characterized by the smooth flow of reflection lines (Pellis
et al., 2020).

Applications in Architecture and Physics

Architectural Geometry: The Economics of Mold Re-use

Modern architecture favors freeform skins, but the cost of
unique molds is prohibitive. LW surfaces provide a rigorous
geometric solution to this economic problem.

On a general freeform surface, the curvature at any point is a
pair (x4, k). The image of the surface in the k; — k, plane is a 2D
region. This means every panel has a unique intrinsic shape.
However, for a Weingarten surface, the relation W(kq,k,) =0
implies that the curvature image collapses to a 1D curve.

Theorem (Mold Re-use Principle): If a surface satisfies the
Linear Weingarten condition, its local patches fall into a one-
parameter family of isometries. Consequently, a facade of N panels
can be manufactured using approximately O (v/N) molds, rather than
O(N) (Pellis et al., 2020).
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Specifically, Gavriil et al. (2020) demonstrated that for cold-
bent glass, aligning panel strips with the asymptotic lines of a
hyperbolic LW surface minimizes the stress forming, allowing for
safe fabrication of complex double-curved facades.

Grid shells and Structural Mechanics

Grid shells are lightweight lattice structures that resist loads
through membrane action. Tellier et al. (2019) identified Isotropic
Linear Weingarten (iLW) surfaces as a structural optimum.

e Funicularity: A surface is funicular for a vertical load if the
stress state is purely axial (compression/tension) with no
bending. Tellier proved that iLW surfaces are the only
surfaces that are funicular for a uniform projected vertical

load while admitting a conjugate net discretization (Tellier,
2020).

e (Chadstone Shopping Centre: The roof of this structure in
Melbourne was designed using dynamic relaxation. The
resulting equilibrium shape is a discrete approximation of
an iLW surface, balancing structural efficiency with the
planarity of the glazing panels (Chadwick et al., 2017).

Soft Matter Physics: Helfrich Energy

In biophysics, the shape of lipid bilayers is determined by the
Helfrich curvature energy (Helfrich, 1973):

= 1k2 24+ kK|dA 7
E—L[EC(H—%HK %

where ¢, is the spontaneous curvature induced by lipid asymmetry
or proteins. The Euler-Lagrange equation for this energy is a
complex fourth-order PDE. However, for specific geometries crucial
to cellular function, such as membrane tethers and tubules, the
geometry simplifies. Pulov et al. (2018) showed that for axially
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symmetric membranes, the shape equation reduces to a first-order
integral that is equivalent to the Linear Weingarten condition. Here,
the "linearity" constants a, b, c are determined by the membrane's
physical moduli (kc, IE) and the internal pressure difference. This
reduction allows physicists to analytically predict the radius and
stability of membrane tubes pulled from cells.
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CHAPTER 10

ALPHA-COSYMPLECTIC PSEUDO-METRIC
MANIFOLDS ADMITTING RICCI SOLITONS

Hakan OZTURK!

Introduction

A systematic study of contact structures satisfying an associated
pseudo-Riemann metric was introduced by Calvaruso and Perrone
(Calvaruso & Perrone, 2010). This structure was first undertaken
by Takahashi in Sasakian structures (Takashi, 1969). Contact
pseudo metric structures (77, g) where 7 is a contact 1-form, and g
is a pseudo Riemann metric associated with it. These structures are
inherently generalizations of contact metric structures.

The class of almost contact metric manifolds, known as Kenmotsu
manifolds, was first introduced by Kenmotsu (Kenmotsu, 1972). It
is well known that Kenmotsu manifolds can be characterized
through their Levi-Civita connection. Kenmotsu defined a structure
closely related to the warped product, which was characterized by
tensor equations.

A comprehensive investigation of almost Kenmotsu pseudo-metric
manifolds remains outstanding in contemporary literature. Wang
and Liu initiated the study of the geometry of almost Kenmotsu
pseudo-metric manifolds (Wang & Liu, 2016). Their work
highlights the analogies and distinctions with respect to the

'Prof. Dr, Afyon Kocatepe University, Afyon Vocational School,
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Riemannian metric tensor and they investigate classification
results concerning local symmetry and nullity conditions.

Local symmetry is a substantial restriction for Kenmotsu
manifolds. Furthermore, if Kenmotsu's structure satisfies Nomizu's
condition (Nomizu, 1968), i.e., R-R =0 then it has negative
constant curvature. If the Kenmotsu manifold is conformally flat,
then the manifold is a space of constant negative curvature -1 for
dimensions greater than 3. The tensor product R - R = 0 defines the
notion of a semi-symmetric manifold. For all vector fields on,
where acts as a derivation on (Nomizu, 1968). Such a space is
called a "semi-symmetric space" since the curvature tensor at a
point is the same as the curvature tensor of a symmetric space
(which can change with the point p). Thus, locally symmetric
spaces are obviously semi-symmetric, but the converse is not true
(Calvaruso & Perrone, 2002). Ogawa obtained that if a compact
Kaehler manifold is semi-symmetric, then it is locally symmetric
(Ogawa, 1977). These spaces were studied in the sense of a
complete intrinsic classification by Szabd (Szabo, 1982).

We have a contact metric manifold (M,n,¢, g) with the contact
distribution

D = kern € TM,dimD = 2n (1)

Then we give the D-conformal curvature tensor B defined as
follows:

Definition 1. Let (M, g) be a (2n + 1)-dimensional Riemannian
manifold (n = 2). Then the D-conformal curvature tensor field on
M defined as follows:

B(X,Y)Z = R(X,Y)Z )
+——[S(X,2)Y = S(Y,2)X + g(X,2)QY — g(¥,2)QX
=SX, Z2)n(¥)¢ + S, Z)n(X)¢§ = n(X)n(Z)QY +n(¥)n(2)QX]
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— 229X, 2)Y — g(¥, 2)X]

2n-2
+ ﬁ [g(X, Z2)n(Y)E — g (¥, Z)n(X)¢ + n(X)n(Z2)Yn(¥)In(Z)X]

which is designed to measure conformal curvature only along D,

essentially ignoring the Reeb direction ¢ in a conformally invariant

r+4n .
way. Here, k = P and r is a scalar curvature of M (Chuman,

1983).

Instead of asking whether the whole manifold is conformally flat,
we ask: Is the induced conformal structure on D flat? B is
the contact metric adaptation of the usual Weyl tensor for this
restricted  question. k  adjusts the coefficients so
that B becomes conformally  invariant  with  respect  to
contact-metric conformal transformations (those preserving the
contact structure up to a conformal factor). D-conformally flat
means the contact distribution D carries an induced conformal
structure. That conformal structure is flat (locally conformally
equivalent to IR?" with the standard conformal structure). No
condition is imposed on the reeb direction. Then the manifold may
still have curvature in the vertical direction.

In differential geometry, evolution equations that deform
Riemannian metrics according to their curvature often reveal deep
insights into the structure and classification of manifolds. The best
known instance is Hamilton's Ricci flow, which was introduced in
1982. This flow evaluates the Riemannian metric g(t) on the
manifold M by the partial differential equation

%(g(t)) +25(g(®) =0, g(0) = go 3)

where g(t) is a one-parameter family of Riemannian metrics on a
smooth manifold M, and S denotes the Ricci curvature tensor of the

metric g(t). The Ricci flow deforms an initial metric go in the
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direction of its Ricci curvature, analogous to heat
diffusion smoothing irregularities in temperature distributions. This
curvature-driven flow tends to drive the metric toward a more
uniform, canonical geometry, thereby serving as a potent
instrument for probing the topological and geometric structure of
manifolds. Its mostrenowned application lies in Grigori
Perelman's proof of the Poincaré Conjecture, wherein the flow is
employed as a dynamical system to examine three-dimensional
manifolds. The Ricci flow functions as a natural geometric partial
differential equation, whose evolution encodes
profound information about the wunderlying manifold, with
singularities developing at locations of concentrated curvature that
subsequently reflect topological characteristics. Ricci solitons are a
key concept within the investigation of the Ricci flow. They
correspond to natural solutions whose structure is not affected by
anything other than the diffeomorphism and scaling, suggesting
that it is the fundamental geometric content of these solutions.
Ricci solitons are important for a number of reasons. As indicated
by Hamilton and stated in the precise form by Perelman, high-
curvature regions of a Ricci flow with singularities, when rescaled
uniformly (parabolic scaling) so as to "blow up" these regions,
converge to Ricci solitons. In order to understand singularity
formation and thus the subsequent surgery procedure in geometric
analysis, having good understanding of classification of solitons
(especially shrinking solitons) is tantamount.

In this context, the study of Ricci solitons including their existence,
classification, uniqueness, rigidity, and stability constitutes a
fundamental and dynamic area of research in contemporary
geometry. Exploring their properties or investigating their
topological consequences under different curvature conditions
(conformal flat, Weyl conformal tensor, D-conformal flat, or within
specific manifold classes) provides a deep insight into the
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relationship between curvature, topology, and geometric evolution
equations.

The study is organized as follows: In introduction section, we shall
give the short literature information of the study title. In
preliminaries section, we shall present the concepts of the manifold
theory and the next section is devoted to describe the basic
formulas and some propositions of alpha-cosymplectic pseudo-
metric manifolds. The last section contains the main results of the
study. We shall give some results of alpha-cosymplectic pseudo-
metric manifolds satisfying certain curvature tensor conditions. In
particular, D-conformal semi-symmetric, Ricci D-conformal semi-
symmetric, and D-conformal flat cases are considered on alpha-
cosymplectic pseudo-metric manifolds admitting Ricci solitons.

Preliminaries

Let M be a (2n + 1)-dimensional smooth manifold endowed with
a triple (¢, &,n), where ¢ is a type of (1,1) tensor field, & is a
vector field, n is a 1-form on M such that

N =1¢*=-I+nQ®&p(&) =0
ne¢ = 0,rank(p) = 2n 4)
If M admits a Riemannian metric g, defined by
g(@X, oY) = g(X,Y) —n(X)n(¥)
nX) =gX,$) %)

then M is called almost contact structure (¢@,¢&,n,g). Also, the
fundamental 2-form @ of M is defined by

D(X,Y) = g(X, 9Y) (6)
(Yano & Kon, 1984). If the Nijenhuis tensor vanishes, defined by

N, (X,Y) = [@X, oY] — @[pX,Y]
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—plX, oY1 + @?[X, Y] + 2dn(X,Y)¢ (7
then (M, ¢,&,n) is said to be normal (Blair, 1976). It is obvious
that a normal almost Kenmotsu manifold is said to be Kenmotsu
manifold. Let (M, g) be an n-dimensional Riemannian manifold.
We denote by V the covariant differentiation with respect to the
Riemann metric g. Then we have

R(X, Y)Z = VXVyZ - Vyvxz - V[X,y]Z (8)
The Ricci tensor of M is defined a
S(X) Y) = ?ZlR(XI eil Y, ei) (9)

where {e4, e5,...,e,} is a local orthonormal basis. Also, the Ricci
operator Q is a tensor field of type (1,1) on M defined by

g(@QX,Y) = S(X,Y) (10)
for any vector fields (Blair, 1976). Almost contact metric manifolds
such that n and @ are closed called almost cosymplectic manifolds.
Also, an almost contact metric manifold such that dn = 0 and
d® =2nA® is said to be an almost Kenmotsu manifold

(Kenmotsu, 1972). An almost contact metric manifold is said to be
an almost alpha-cosymplectic manifold if

dn =0,d® =2a(n A P) (11)

Here, a is a real constant (Kim & Pak, 2005). It is obvious that a
normal almost alpha-cosymplectic manifold is said to be an alpha-
cosymplectic manifold.

Alpha-Cosymplectic Pseudo-Metric Manifolds

This section is devoted to give fundamental concepts of alpha-
cosymplectic pseudo-metric manifolds. In particular, basic
curvature  properties of alpha-cosymplectic pseudo-metric
manifolds are presented. Here, « is given by a smooth function on
M such that da A1 = 0.
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A pseudo Riemannian metric g on M is said to be compatible with
the almost contact structure (¢,&,n) if g(@X,9Y)=gX,Y) —
en(X)n(Y) where € = +1. A smooth manifold M furnished with an
almost contact structure (¢,&,n) and a compatible pseudo
Riemannian metric g is called an almost contact pseudo metric
manifold which is denoted by (M, ¢,&,n,g). It is obvious that
9(@X,Y) = —g(X, 9Y),n(X) = eg(X,$), 9(§,$) = €. An almost
contact pseudo metric manifold satisfying Eq. (11) is said to be an
almost alpha-cosymplectic pseudo-metric manifold for a € IR.
When an almost alpha-cosymplectic pseudo-metric manifold M has
a normal almost contact structure, we can say that it is an alpha-
cosymplectic pseudo-metric manifold.

Proposition 1. Let (M,¢,¢,1,9) be a (2n+ 1)-dimensional
almost contact metric manifold. If M is an alpha-cosymplectic
pseudo-metric manifold, then we have

Vx§ = —ap’X = a[X — n(X)¢] (12)
(Vxp)Y = aleg(oX,Y)§ —n(Y)pX] (13)
for X,Y € y(M) (Oztiirk, 2020).

Proposition 2. Let (M,¢,¢,n,g) be an alpha-cosymplectic
pseudo-metric manifold. Then we have

RX,Y)§ = [a* + E(@)][n(X)Y — n(V)X] (14)

RX, Y = —[a® + §(@)][-eg (Y, X)¢ +n(N)X]  (15)

R(X,§)¢ — pR(9X,§)¢ = 2[a? + E(@)][-X + n(X)¢E] (16)
n(RX,Y)Z) = ela? + §(a)]

[-n(X)g(Y,Z) + n(V)g(X,Z)] (17)
S(X,&) = —2n[a® + &(a)In(X) (18)

Q¢ = —2ne [a® + ¢(a)] (19)

(VxmY = aleg(X,Y) —n(X)n(Y)] (20)
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S(@X, 9Y) = [a® + ¢(a)]
(eS(X,Y) = 2n[g(X,Y) — en(X)n(Y)]). (1)

Here, a is defined by a smooth function such that da An = 0 and
e = g(§,8), (Oztirk, 2021).

Definition 2. Let (M, ¢, ¢, 7, g) be an alpha-cosymplectic pseudo-
metric manifold. If the following condition holds

SX,Y) =2Ag(X,Y) + eun(X)n(¥) (22)

for any X,Y € y(M), then M is said to be an n-Einstein alpha-
cosymlectic pseudo-metric manifold. Here, 4 and p are the
arbitrary functions on M. In particular, M becomes an Einstein
manifold when y = 0 (Blair, 1976).

Ricci Solitons

This section contains the fundamental concepts and basic curvature
properties that will be used in the main results section.

Definition 3. Let (M,go) be a n-dimensional Riemannian
manifold. Then, the Ricci flow that evolves the metric tensor g in
the partial differential equation given by Eq. (3) is called the Ricci
flow (Hamilton, 1982). Here, t is the time parameter.

The Ricci flow is an extraordinary technique that entered the
history of mathematics due to Grigori Perelman's critical role in
solving the Poincaré Conjecture in 2002. At its origin, it can be
viewed as a partial differential equation governing the evolution of
a manifold's metric structure over time. In other words, this flow
reshapes the geometry of space according to Ricci curvature, much
like a sculptor shaping marble. This equation governs the time-
dependent change of the g metric tensor in accordance with the
curvature properties of the manifold. The fundamental philosophy
of the process is to smooth out the uneven curvature distribution of
space, much like an iron. Interestingly, this smoothing process
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behaves differently depending on the sign of the curvature. Regions
with positive curvature (spherical structures) shrink over time,
much like a balloon shrinks when exposed to hot air. On the other
hand, regions with negative curvature (hyperbolic structures)
expand over time, much like the wrinkles in a piece of paper
unfolding.

Definition 4. Let (M, g) be a complete Riemannian manifold. The
metric g is called a Ricci soliton if there exists a smooth vector

field X on M and a real constant A such that the following equation
holds

(Lyg)(X,Y) + 25(X,Y) + 24g(X,Y) = 0. (23)

Here, the vector field V is the potential vector field of the Ricci
soliton, and L,g is the Lie derivative of the metric g in the
direction of V. In this case, the Ricci soliton is denoted by
(M, g,V, ). For the Ricci soliton (M, g,V, 1), the cases where 1 <
0,4 =0, and 4 > 0 are called, respectively, the shrinking,
steady, and expanding Ricci solitons (Hamilton, 1988).

Ricci solitons, which hold a special role in Ricci flow theory, are
the rigid form solutions of this dynamic process. For example, like
a wave that travels through the ocean while maintaining its shape,
Ricci solitons also preserve their fundamental geometric character
throughout the flow. That is, they either remain completely
unchanged or undergo only a change of scale. These structures play
a key role in analyzing the long-term behavior of Ricci flow. The
term "soliton" was first used in wave mechanics to describe self-
preserving, localized solutions. Geometrically, a Ricci soliton
reflects the self-similarity property of the metric tensor under the
Ricci flow.
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Definition S. Let (M, g) be a n-dimensional Riemannian manifold.
The Lie derivative associated with the metric g in the V direction is
defined by

(Lyg)(X,Y) = g(VxV,Y) + g(X, "y V) (24)
(Yano & Kon, 1984).

Definition 6. Let (M, g,V, ) be a Ricci soliton. If the potential
vector field V is a Killing vector field (L, g = 0), then (M, g,V, A)
is said to be a trivial Ricci soliton (Chen 2015).

Definition 7. Let (M, ¢, &, 7, g) be an alpha-cosymplectic pseudo-
metric manifold. If there exists a Ricci soliton (g,V, ) on M, then
(M, g,V,A) is called an alpha-cosimplectic pseudo-metric manifold
admitting a Ricci soliton (Hamilton, 1988), (Kenmotsu, 1972).

Proposition 3. Let (M,¢,{,1,9) be a (2n+ 1)-dimensional
alpha-cosymplectic pseudo-metric manifold. Then the Ricci
curvature tensor field holds

SX,Y)=—A+a)gX,Y) + ean(X)n(Y) (25)

on (M, g,¢,A) Ricci soliton, where a is assumed to be parallel
along the characteristic vector field §.

Proof. In view of Proposition 2, Eq. (23) and Eq. (24), the proof is
obvious.

Proposition 4. Let (M,9,¢,n,9) be a (2n+ 1)-dimensional
alpha-cosymplectic pseudo-metric manifold. Then the following
curvature properties of (M, g, &, 1) Ricci soliton are held

S(X,8) = —[e(A+ a) — aln(X) (26)
QX = —(a+ DX + an(X)¢ (27)
Q¢ = - —a(l—e)s (28)

S, 8) = —¢l (29)
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r=ea—(2n+e¢e)(a+ ). (30)

Here, a is assumed to be parallel along the characteristic vector
field €.

Proof. As a result of Proposition 3, the proofs can be obtained by
simple calculations. These are left entirely to the readers.

Main Results

In this section, some curvature tensor fields are studied on alpha-
cosymplectic pseudo-metric manifolds admitting Ricci solitons. In
particular, several results are obtained using the D-conformal
curvature tensor field. Thus we state the following results:

Theorem 1. Let (M, ¢,¢,71,g) be a (2n + 1)-dimensional alpha-
cosymplectic pseudo-metric manifold (n=>2). If the D-
conformally semi-symmetric tensor product holds on (M, g,¢&, 1)
Ricci soliton and « is parallel along the characteristic vector field &
then the following statements satisfy:

(a) If € is space-like, then no Ricci soliton exists on M,

(b) If @ = 0 and ¢ is time-like, the Ricci soliton behaves on M as
follows:
(by) r=0>(g,¢ 1) is expanding,

4n?+14n-6
4n2-e6n+1"’

(b)) r>0=(g,¢,4) isexpanding if 0 <7 <

4n?+14n-6
4n2-6n+1’

(b3) r> 0= (g,¢& A) is shrinking if r >
(by) 7 <0=(g,& A) is expanding.

(c) If @ # 0 and ¢ is time-like, the Ricci soliton behaves on M as
follows:

(c1)r=0=(g,¢ 1) is expanding,

(cp)r>0and a > 0= (g,¢, 1) is expanding, shrinking or

steady,
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(cz) 7 >0and a < 0= (g,¢,4) is expanding, shrinking or
steady,

(cy) < 0= (g,¢, 1) is expanding.

Proof. According to the hypothesis, we suppose that M is an alpha-
cosymplectic ~ D-conformally semi-symmetric  pseudo-metric
manifold. Now, let us introduce the D-conformal curvature tensor
field B. If the D-conformal curvature tensor field B holds

R(X,Y)-B=0 (31

then M is said to be a D-conformal semi-symmetric manifold (n >
2) (Taleshian et al., 2011). In other words, we have

(RX,Y)-B)(Z,U)V = 0. (32)
Then making use of Egs. (31) and (32) we get
R(X,Y)B(Z,U)V — B(R(X,Y)Z,U)V
—B(Z,R(X,Y)U)V —B(Z,U)R(X,Y)V =0. (33)
With the help of Egs. (14) and (25) by X = £, we deduce
[a? + E(@]n(B(Z, U)V)Y — eg(B(Z,U)V,Y)§ —n(Z)B(Y,U)V]

+la? + §(@)]leg(Y,Z)B(E, U)V —n(U)B(Z,Y)V
+eg(Y,U)B(Z,§)V]

+[a? + E(@)][-n(V)B(Z,U)Y + eg(V,Y)B(Z,U)E] = 0. (34)

Then putting the inner product of both sides of Eq. (34) with
respect to &, we have

la? + §(@)][en(BW,V)UIn(Z) — g(BW,V)U,Z) —
en(W)n(B(Z,V)U)] (35)

+a? + §(@)][g(Z W)n(B(E, VIU) — en(VIn(B(W, Z)U)
+9ZVn(BW,HHU)]

+a? + E(@)][-en(Un(BW,V)Z) + g(U, Z)n(B(W,V)E)] = 0.
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Taking Y = Z and £(a) = 0 in Eq. (39), it yields
en(B(Z, U)V)n(Z) — g(B(Z,U)V,Z) — en(Z)n(B(Z,U)V)
+9(Z, Z2)n(B(S, U)V) — en(U)n(B(Z,Z2)V)
+9(Z,U)n(B(Z,$)V)
—en(V)n(B(Z,U)Z) + g(V,Z)n(B(Z,U)$) = 0. (36)
Furthermore, using Eq. (2) it follows that
n(B(Z, V)V = Llg(Z,V)n(W) —gW,VIn2)]  (37)
where L is defined by

1+ea’(n-2)

L= 2(n-1)

(3%)

Taking into account of Egs. (36) and (37), we find

g(B(Z, DV, Z)
=¢e9(Z, Z)[Ln(U)n(V) — Lg(U, V)]
+¢e9(Z,U)[Lg(Z,V) — Ln(Z)n(V)]

—en(V[Ln(Wg(Z,2) — Ln(2)g(Z,V)]. (39)
In view of Eq. (39) we deduce
9(B(Z,U)V,2) = eLlg(Z,U)g(Z,V) — g(Z,Z)g(U,V)]. (40)

Let Ej ={ey,,en@ey, -, pey&}, j=1,--,n be a local
orthonormal ¢-basis. Then taking contraction in Eq. (40) with
respect to Z = Ej, we get

2t g(B(Ej, U)V,E) =eF(1—e(2n+ 1)g(U, V). (41)
Also, using Eq. (2), it follows that
st g(B(E;, U)V,E) = S(U,V) (42)
+L [25(U,V) — e(2n + 1)S(U,V) — rg(V U) +eS(U,V) +
rn(V)n(U) + 2na’n(V)n(U)[e + 1]] - [ v,0) -
e(2n+1)gV,U)] +—[ eg(V,U) + (1 - Zne)n(V)n(U)]
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By the help of Egs. (41) and (42), we have
SU,V) =FgU,V)+ GnUn) (43)

where F and G are defined as

_ —2r(n—-1)+2(1—&)+4ne(k—-1)—k(1+2¢)

F 2n(e—1)
n (e—1)(na2—2212(:);211(1—710:23) (44)
and
G = r+2na2(;:(1€)j—f)(1—2ne) ’ (45)
respectively.
Additionally, from Eq. (43) with V = &, we get
SU,¢) =Fen(U) + Gen(U) (46)
and Eq. (26) can be written as
5,8 =—[e( + a) —aln(U). (47)
So if we consider Egs. (46) and (47) together, we have
A=—-e(1—-—a)— (F+0G). (48)
r+4n

We note that k = p—
(44), (45) and (48), we obtain

1

, n=2,aA€ IR . Taking account of Egs.

= — — — 2
A=1—-a 2n(‘g_l)[r( 2n+3)+2n+3+ (n+2)a’]
s[—3—4n+w+(—2n2+3n—2)a2]
_ n- . (49)
2n(e-1)

From Eq. (49), we can be easily seen that when € = 1 (£ is space-
like) the real solution for A can not be calculated. Therefore, the
first part of the theorem is proved. Now, let us consider Eq. (49) for
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a = 0. The solutions of Eq. (49) depending on the sign of r. So,
there are three cases. If we choose ¢ to be time-like we have

A=1+—

[4n2+14n—6]
4in

2n—1

(50)

for r = 0. This means that A > 0. Also, if r > 0, using Eq. (49)
becomes

—an? _ 2 -
1=1 +i[( an“+6n—1)r+(4n“+14n 6)]. (51)
4n 2n-1

Then the solutions of A are as follows:

. 4n?%+14n-6
A>0 if 0<r<—1210
in“—6n+1
4n?+14n-6
= 1 = 52
A 1 lf 4n2-6n+1 ( )
. 4n?%+14n-6
A<0 if ”;—n
4nc—6n+1

Under the condition of r < 0, with the help of Eq. (49) it follows
that 4 > 0. Thus, it completes the second part of the proof, as
shown in Egs. (50) and (52). Finally, we investigate the case of
a # 0 and ¢ is time-like depending on . If r = 0, then 4 > 0. In a
similar way, when a > 0 (or ¢ < 0) and r < 0, the A values are
still positive. However, when r > 0, the case becomes more
complicated. For example, if ¢« <0 and r > 0, we have the
following cases. If r <r; > 1> 0,Va < 0. Also, if r > ry, then
the sign of A depends on a as follows:

a<a > A>0
a=a; > A=0 (53)

g <a<0= A1<0.
4n%+14n—6

4n?-6n+1
analogy holds for the case where a > 0. Thus, the proof ends.

Here, r; = and @, is the negative root of A(a) = 0. The

Theorem 2. Let (M, ¢,&,1,g9) be a (2n + 1)-dimensional alpha-
cosymplectic pseudo-metric manifold (n = 2) and Ve = 0. If the
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Ricci D-conformal semi-symmetric tensor product holds on
(M, g, &, A) Ricci soliton, then the following statements satisfy:

(a) If @ = 0 and ¢ is space-like, (g, &, 4) is shrinking,

(b) If « = 0 and ¢ is time-like, (g, ¢, A1) is expanding,

(¢) If a#0 and & is space-like (or time-like), (g,&,4) is

expanding, shrinking or steady depending on a.

Proof. Assume that M is a Ricci D-conformal semi-symmetric
pseudo-metric manifold which means

B(X,Y)-S(Z,U)=0 (54)
for n > 2. Thus Eq. (54) becomes
S(B(X,Y)Z,U)+S(Z,B(X,Y)U) = 0. (55)
Then taking X = U = ¢ in Eq. (55) we have
S(B(§,Y)Z,§) +S(Z,B(§,Y)§) = 0. (56)
where £(a) = 0. Furthermore, from Eq. (37) we deduce
B($,Z2)U = L[en(U)Z - $g(Z,U)] (57)
and
B(§,2)¢ = LIZ — en(Z)§]. (58)
Taking into account of Egs. (57) and (58) in Eq. (56) we get
S(Y,Z) = —2na’eg(Y,Z). (59)
On the other hand, using Eq. (59) with Z = &, we have
S(Y,§) = —2na’n(Y) (60)
and Eq. (26) can be written as
S¥,8) =—-[e(A+ a) —aln(¥). (61)
So from Egs. (60) and (61), we obtain
A=¢[-1+a(l+ 2na)]. (62)
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Then if @ = 0 and ¢ is space-like in Eq. (62), we get
A<0, A=-1,
and if @ = 0 and ¢ is time-like in Eq. (62) we have
A>0, A=1,
where A is defined by
A=—-2na®—a+1.

Thus, the proof of the first two cases are obvious. When a # 0 and
& are space-like (or time-like), the last case depends on a. If we
apply the same methodology as in the last case of Theorem 1, we
obtain A > 0 or A < 0. It completes the proof.

Theorem 3. Let (M,9,¢,n,9) be a (2n + 1)-dimensional D-
conformally flat alpha-cosymplectic pseudo-metric manifold (n >
2). If a is parallel along the characteristic vector field ¢ then the
following statements satisfy on (M, g, ¢, 1) Ricci soliton:

(a) If € is space-like, then no Ricci soliton exists on M,

(b) If € is time-like, the Ricci soliton behaves on M as follows:
(b)) a <1=(g,¢&, ) is expanding,
(by) a = 0= (g,¢,4) is expanding,
(b3) x =1= (g,¢,A) is steady,
(bg) a > 1= (g,¢&,A) is shrinking.

Proof. According to the hypothesis, let us assume that M is a D-
conformally flat alpha-cosymplectic pseudo-metric manifold.
Namely, we have

B(X,Y)Z = 0. (63)
By the help of Egs. (2) and (63), it yields
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R(X,Y)Z = — ﬁ [SX,2)Y —S(Y,Z)X + g(X,Z)QY —
90, 2)QX = S, n(V)E + S, DnCOE = n(ON(2)QY +
n(YIN(2)QX] +5=[g(X, 2)Y — g(¥, 2)X]

— = [g(X, 2 (V)& — g(¥, ZD)n(X)§ +
n(Xn2)Y —n(¥n(Z)X]. (64)
Then taking the inner product on both sides of Eq.(64) with respect
to U, we get
IRX,V)Z,U) = ———[S(X,Z)g(Y,U) = S(¥,2)g (X, U) +
9(X,Z)g(QY,U) (65)

—9(Y,2)g(QX,U) — eS(X, Z)n(Y)n(U) +&S(Y,Z)n(X)nU) —
nXn2)g@Y,U) +n(Y)n(2)g(QX,U)]

-2

+22[g(X, 2)g (Y, U) — g(¥,2)g(X, V)]

———[eg (X, Z2)n(V)n(U) — g (Y, DnX)nU) +

nXn2)g(Y,U) —n(¥)n(Z2)gX,U)]

where R(X,Y,Z,U) = g(R(X,Y)Z,U). Taking into account of
Eqgs.(17) and (18), Eq. (46) provides

n(RX,Y)Z) = —¢la® + (@] n(X)g(¥,Z) + n(Y)g(X, Z)]

&

== {[e=Dn(MSX,2) + 1 - e)nX)S(Y,2)

—2n[a? + {(@](V)SX, Z) = n(X)SY, D]}
+-—=[n(NgX,2) = n(X)g (¥, 2)]
— £ [n()g(X,Z) = n(X)g (¥, 2)] (66)
for U = &. Putting Y = ¢ in Eq. (66) we have
———[(e ~ DeS(X, 2)
—2n[a? + E@]MXN(2) + eg(X, Z))] (67)
e[g(X, 2) = n(XM(2)] - 7= [9(X. 2) = n(X)n(2)]
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= [a® + {(@)][g(X, Z) — n(X)n(2)].
Next, simplifying Eq. (48) for &(a) = 0, we obtain

e I
4 (2:__12) [—s(k—zz):ic;angaZ 4 az] n(XOn(2). (68)

So Eq. (68) turns into

S(X,Z) = [2(“ L+ k| gx,2)

+ [Z(S_QZZTZM) - kl 0N ). (9)

Here, we defined by A and B

2(£—a2 +na?(s+ 1))
e—-1

—k

A=2e8 +k B =
e—

respectively. On the other hand, using Eq. (69) with Z = ¢, we
have

S(X,§) = e[A+ BIn(X) (70)
and Eq. (26) holds
S(X,8) = —[e(A+ a) — aln(X). (71)
In view of Egs. (70) and (71), we obtain

2na?(s+1)
e-1

A=—e(1—-a) - (72)

Then from Eq. (72), when € = 1, there is no Ricci soliton on M. If
we choose € to be time-like, we obtain

A=1-a (73)
Thus the proof is clear using Eq. (73) as follows:
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A>0 & a<l1
A=0 © a=1 (74)
<0 © a>1.

Theorem 4. Let (M,¢,&,1n,9) be a (2n + 1)-dimensional ¢-D-
conformally flat alpha-cosymplectic pseudo-metric manifold (n >
2). If a is parallel along the characteristic vector field ¢ then the
following statements satisfy on (M, g, ¢, A) Ricci soliton:

(a) If @ = 0 and ¢ is space-like, (g, &, 4) is shrinking,

(b) If @ = 0 and ¢ is time-like, no Ricci soliton exists on M,

(¢) If ¢ # 0 and ¢ is space-like (or time-like), (g, &, 4) is expanding

or shrinking depending on a.

Proof. Let us suppose that M is an alpha-cosymplectic pseudo-
metric manifold satisfying the ¢@-D-conformally flat condition.
Then M holds

9(B(eX,9Y)9Z, V) = 0. (75)
Making use of Eqgs.(2) and (75), we get
gR(@X, Y)@Z, V) + Zn%z [S(@X, 9Z)g (oY, V) —
S(@Y,9Z)g(pX,pV) (76)
_;rS (oY, V) g(@X, 9Z) — S(9X, V) g(@Y, ppZ)]
=55 190X, 0Z)g(@Y, 9V) — g(@Y, 9Z) g(¢X, pV)] = 0.
Taking into account of Egs.(17) and (21), Eq. (76) takes the form

ela® + E(@)][g(eX, eW) g (@Y, pdpU) — g(@Y, W) g(eX, pU)]

+ 12O o5, 2)g (v, V) — 2ng (X, 2)g (v, V) +

T e on@g V)
=SX, Z2n(¥Y)n(V) + 2nen(Y)n(V)g(X,2) — S(Y,Z)g(X,V)
+2ng(X,V)g(Y,Z) = 2nen(Y)n(2)g(X,V) + S, Z)n(X)n(V)
=2nen(X)n(V)g(Y,Z) + eS(Y,V)g(X,Z) — 2ng(X,Z)g(Y,V)
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+2nen(Y)n(V)g(X,Z2) =S¥, VIn(X)n(Z)
+ 2nen(X)n(2)g (Y, V)

—eSX,V)g(¥,Z) + 2ng(X,V)g(Y,Z) — 2nen(X)n(V)g(Y, Z)
+SX, VIn(Y)n(Z) + 2nen(Y)n(Z)g(X, V)]
XD g (X, 2)g (Y, V) — g(X, Zn(¥V)n(V) —

2n-2
g, Vin(X)n(Z)
—eg(Y,2)g(X,V) + g(¥, Z)nOn(V) +
g, Vin(¥)n(2)] = 0. (77)
Let Ej ={ey, -, en @ey, ", pen &}, j=1,--,n be a local
orthonormal ¢-basis on M. Then taking contraction in Eq. (77)
with respectto X =V = Ej and &(a) = 0, we obtain

$(r,2) = = 9(¥,2) = ()N (@) (78)

Here, the functions as shown in Eq. (78) are as follows:

E,=a*[e+2(n+ 1)] +b(2ne — 1) — aa®(6n + r)
+ 2naa’e(4n + 1)
E, = a?(2ne —1) —b(2n—1) + a[a?r — 4na*(2n — 1)
+ 2na®(e + 1)]

Es = [a - n)]’ - 2n1—2' - 21:1_—22’ ke = ;::Z
On the other hand, make use of Eq. (78) with Z = ¢, we find
S(Y,§) = = [Ex + ExIn(Y) (79)
and Eq. (26) satisfies
5,8 =—-le(A+ a) —aln(¥). (80)

In view of Egs. (79) and (80), we have

n-1 —4n+r+e(8n?+4n—r)
A= [(Zn +1)(e+ 1)+ o
n-1 n(r+2)(e-1) . 2n(2n-1) o . a
e-n [(n—l)(Zn—l)o:2 n-1 a ] et e’ (81)
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Then from Eq. (81), if e =1 and a = 0, we obtain 1 < 0. Also,
when € = —1 and a = 0, there are no Ricci solitons because A is
undefined. If e = 1 and a # 0, then we can write

—4n?+(4n?-2n)a’
n-1

A=—-4n-3+a+

(82)

The solutions of Eq. (82) depends on the value of a. In this case,
the following relations are held:

a<aqora>a,=> A>0
a<a<a, = A<0

where a; < 0 < a, are roots of
2n(2n—1a*+ (n—Da+ (-8n*+n+3)=0.

Thus completes the proof.
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