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FOREWORD 

As one of the most fundamental and universal sciences in 

human history, mathematics continues to be one of the key drivers 

of scientific progress with both its theoretical depth and practical 

power. 

This academic book, titled Advanced Studies in Differential 

Geometry, Functional Analysis and Algebraic Systems, brings 

together a collection of studies that reflect the diversity of modern 

mathematical research. The chapters span differential geometry, 

functional analysis and algebraic structures.  Although each topic 

stands on its own, they collectively illustrate how different branches 

of mathematics often intersect and enrich one another. The aim of 

this book is to offer readers a clear and accessible overview of these 

contemporary themes. Whether the focus is on geometric models, 

analytical methods or algebraic systems, the chapters highlight both 

foundational ideas and advanced techniques.  

We hope this book serves as a helpful resource for students 

and researchers interested in exploring the breadth and unity of 

today’s mathematical landscape. 

As editor, I would like to thank all our authors who 

contributed to the scientific content of this work and all stakeholders 

who contributed to the publication process. 

 

Prof. Dr. Şükran KONCA 

Izmir Bakırçay University 
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SOME FUNCTIONAL ANALYTICAL ASPECTS OF 
ALMOST CONVERGENCE METHOD 

MAHMUT KARAKUŞ1 
 

1. Introduct൴on and Prel൴m൴nar൴es 

The mult൴pl൴er form of a ser൴es ∑௞ 𝑥௞ ൴n a normed space 𝑋 
assoc൴ated w൴th an arb൴trary real or complex sequence 𝑎 = (𝑎௞) ൴s 
g൴ven as ∑௞ 𝑎௞𝑥௞ and ൴s ൴mportant to understand the behav൴ors of the 
ser൴es ∑௞ 𝑥௞ ൴n 𝑋, (Karakuş & Başar, 2020a). For s൴mpl൴c൴ty ൴n 
notat൴on, here and after, the summat൴on w൴thout l൴m൴ts runs from 1 to 
∞. A ser൴es ∑௞ 𝑥௞ ൴n a Banach space 𝑋 ൴s weakly uncond൴t൴onally 
Cauchy (𝑤𝑢𝐶) or uncond൴t൴onal convergent (𝑢𝑐) ser൴es ൴f and only ൴f 
∑௞ 𝑎௞𝑥௞ ൴s convergent for every null or bounded sequence 𝑎 =

(𝑎௞). Let us recall, a ser൴es ∑௞ 𝑥௞ ൴n a Banach space 𝑋 ൴s sa൴d to be 
uncond൴t൴onally convergent (𝑢𝑐) or uncond൴t൴onally Cauchy (𝑢𝐶) ൴f 
the ser൴es ∑௞ 𝑥గ(௞) converges or a Cauchy ser൴es for every 

permutat൴on 𝜋 of elements of ℕ, the set of pos൴t൴ve ൴ntegers. It ൴s 
called weakly uncond൴t൴onally Cauchy (𝑤𝑢𝐶) ൴f for every 
permutat൴on 𝜋 of elements of ℕ, the sequence (∑௡

௞ୀଵ 𝑥గ(௞)) ൴s a 
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weakly Cauchy sequence or alternat൴vely, ∑௞ 𝑥௞ ൴s 𝑤𝑢𝐶 ൴f and only 
൴f ∑௞ |𝑥∗(𝑥௞)| < ∞ for all 𝑥∗ ∈ 𝑋∗, the space of all bounded l൴near 
funct൴onals def൴ned on 𝑋. It ൴s well known that every 𝑤𝑢𝐶 ser൴es ൴n 
a Banach space 𝑋 ൴s 𝑢𝑐 ൴f and only ൴f 𝑋 conta൴ns no copy of 𝑐଴, the 
space of null sequences; (D൴estel, 1984) and (Alb൴ac & Kalton, 
2006). 

One of the most s൴gn൴f൴cant appl൴cat൴ons on theorem of Hahn-
Banach r൴ses the concept of Banach l൴m൴ts. These are non-negat൴ve, 
normal൴zed, and sh൴ft-൴nvar൴ant l൴near funct൴onals def൴ned on ℓஶ, 
(Karakuş, 2025b). Banach l൴m൴ts general൴ze the ord൴nary l൴m൴t and 
have numerous appl൴cat൴ons ൴n var൴ous mathemat൴cal f൴elds, 
(Eberle൴n, 1950; Lorentz, 1948; Semenov & Sukochev, 2010; 
Semenov et al., 2019). In the൴r research paper on funct൴onal 
character൴st൴cs and extreme po൴nts of the set of Banach l൴m൴ts on ℓஶ, 
Semenov et al. prov൴de a thorough ൴ntroduct൴on to recent results and 
developments ൴n the theory of Banach l൴m൴ts and almost 
convergence, (Semenov et al., 2019). Banach l൴m൴ts effect൴vely 
extend the l൴m൴t funct൴onal on the space of convergent sequences, 𝑐, 
to ℓஶ. An ൴mportant result ൴n th൴s area ൴s due to Lorentz (Lorentz, 
1948), who, ൴n 1948, presented an effect൴ve character൴zat൴on of 
almost convergence by us൴ng Banach l൴m൴ts. Add൴t൴onally, Eberle൴n 
൴ntroduced the concept of the Banach-Hausdorff l൴m൴t, emphas൴z൴ng 
the ൴nvar൴ance of Banach l൴m൴ts under regular Hausdorff 
transformat൴ons, (Eberle൴n, 1950). The reader can refer to (Boos, 
2000; Başar, 2022) and (Mursaleen, 2014) for the recent results and 
related top൴cs ൴n summab൴l൴ty. 

Qu൴te recently, the authors ൴nvest൴gated some new problems 
related to 𝑓ఒ-convergence wh൴ch ൴s a general൴zat൴on of almost 
convergence, (Karakuş & Başar, 2019; 2020b). The authors 
establ൴shed some results on uncond൴t൴onally convergence and weakly 
uncond൴t൴onally Cauchy ser൴es ൴n (Karakuş & Başar, 2022b). The 
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authors also obta൴ned some new character൴zat൴ons related to the 
class൴cal propert൴es of a normed space such as completeness, 
reflex൴v൴ty, Schur property, Grothend൴eck property, and the property 
of conta൴n൴ng a copy of the space 𝑐଴, by means of the 𝑓ఒ-convergence 
and ൴nvar൴ant means, ൴n (Karakuş & Başar, 2022a; 2024). By 
employ൴ng the concept of ൴nvar൴ant summab൴l൴ty, the author 
establ൴shes a vers൴on of Hahn–Schur type theorem and proves 
several funct൴onal-analyt൴c results concern൴ng the mult൴pl൴ers of 
operator-valued ser൴es, (Karakuş, 2025a; 2025b). 

By 𝜔, we denote the space of all real or complex valued 
sequences and any vector subspace of 𝜔 ൴s also called as a sequence 
space. The sequence spaces ℓஶ, 𝑐 and 𝑐଴ of bounded, convergent and 
null sequences are Banach spaces, w൴th  ∥ 𝑥 ∥ஶ= sup௞∈ℕ|𝑥௞|. By 𝑏𝑠 
and 𝑐𝑠, we also denote the Banach spaces of all sequences 𝑥 = (𝑥௞) 
such that the ser൴es ∑௞ 𝑥௞ ൴s bounded and convergent, respect൴vely, 
w൴th ∥ 𝑥 ∥௕௦= sup௡∈ℕ| ∑௡

௞ୀଵ 𝑥௞|; (Başar, 2022). 

Let 𝑋 and 𝑌 be two normed spaces. By 𝜔(𝑋), we denote the 
space of all 𝑋-valued sequences. By ℓஶ(𝑋), 𝑐(𝑋), 𝑐଴(𝑋), 𝑐𝑠(𝑋) and 
𝑏𝑠(𝑋), we also denote the spaces of all 𝑋-valued bounded, 
convergent, null sequences, and convergent sums and bounded sums 
൴n a real normed space 𝑋, respect൴vely, (Karakuş, 2019). 𝜙(𝑋) ൴s also 
the space of 𝑋-valued f൴n൴tely non-zero sequences. If 𝒱 ൴s a vector 
space of 𝑋-valued sequences equ൴pped w൴th a locally convex 
Hausdorff topology, then the def൴n൴t൴on of 𝐾 space ൴s s൴m൴lar to scalar 
case, that ൴s, 𝒱 ൴s a 𝐾 space ൴f the maps 𝑥 = (𝑥௞) ↦ 𝑥௞ from 𝒱 ൴nto 
𝑋 are cont൴nuous for all 𝑘 ∈ ℕ. If 𝑥 ∈ 𝑋, then by 𝑒௞ ⊗ 𝑥, we denote 
the sequence whose only non-zero term ൴s 𝑥 ൴n the 𝑘௧௛ place for all 
𝑘 ∈ ℕ. By 𝐵(𝑋: 𝑌), we denote the space of all bounded and l൴near 
operators def൴ned from 𝑋 ൴nto 𝑌. If 𝒱 ൴s a space of 𝑋-valued 
sequences such that 𝜙(𝑋) ⊂ 𝒱, ൴t ൴s sa൴d that the ser൴es ∑௞ 𝑇௞ ൴s 𝒱-
mult൴pl൴er convergent or 𝒱-mult൴pl൴er Cauchy ൴f the ser൴es ∑௞ 𝑇௞𝑥௞ 
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converges or ൴s a Cauchy ser൴es, ൴.e., the part൴al sums of the ser൴es 
∑௞ 𝑇௞𝑥௞ form a norm Cauchy sequence ൴n 𝑌 for all (𝑥௞) ∈ 𝒱, 
(Karakuş & Başar, 2020a). 

The sh൴ft operator 𝑃 ൴s def൴ned on 𝜔 by (𝑃𝑥)௡ = 𝑥௡ାଵ for all 
𝑛 ∈ ℕ. A Banach l൴m൴t 𝐿 ൴s def൴ned on ℓஶ as a nonnegat൴ve l൴near 
funct൴onal such that 𝐿(𝑃𝑥) = 𝐿(𝑥) and 𝐿(𝑒) = 1, where 𝑒 =

(1,1,1, … ); (Banach, 1978). A sequence 𝑥 = (𝑥௞) ∈ ℓஶ ൴s sa൴d to be 
almost convergent to the general൴zed l൴m൴t 𝑙 ∈ ℂ ൴f all Banach l൴m൴ts 
of 𝑥 are 𝑙, and ൴s denoted by 𝑓 − lim𝑥௞ = 𝑙. The reader can refer to 
(Boos, 2000; Başar, 2022), for deta൴ls. Lorentz proved that a 
sequence (𝑥௞) ∈ ℓஶ ൴s almost convergent to the po൴nt 𝑙 ∈ ℂ ൴f and 
only ൴f  

lim
௠→ஶ

෍

௠

௞ୀ଴

𝑥௡ା௞

𝑚 + 1
= 𝑙 

holds un൴formly ൴n 𝑛 ∈ ℕ, (Lorentz, 1948). 

By 𝑓, we denote the space of all scalar valued almost 
convergent sequences. It ൴s well-known that a convergent sequence 
൴s almost convergent such that ൴ts ord൴nary and general൴zed l൴m൴ts are 
equal, (Karakuş & Başar, 2019). For the follow൴ng def൴n൴t൴ons 
regard൴ng vector valued almost or weakly almost convergence of a 
sequence and almost sum or weakly almost sum of a ser൴es ൴n a 
normed space, we refer to (A൴zpuru, Armar൴o & Pérez-Fernández, 
2008) and (A൴zpuru et al., 2014).  

Def൴n൴t൴on 1.1  A sequence x = (x୩) ൴n a real normed space 
X ൴s sa൴d to be almost convergent or weakly almost convergent to 
x଴ ∈ X wh൴ch ൴s called the almost l൴m൴t or weakly almost l൴m൴t of x, 
and ൴s denoted by 𝑓 − 𝑙𝑖𝑚𝑥௞ = 𝑥଴ or 𝑤𝑓 − 𝑙𝑖𝑚𝑥௞ = 𝑥଴, ൴f  
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lim
௠→ஶ

ะ ෍

௡ା௠

௞ୀ௡

𝑥௞

𝑚 + 1
− 𝑥଴ะ = 0  

or 

lim
௠→ஶ

อ ෍

௡ା௠

௞ୀ௡

𝑥∗(𝑥௞)

𝑚 + 1
− 𝑥∗(𝑥଴)อ = 0 

holds un൴formly ൴n 𝑛 ∈ ℕ, for every 𝑥∗ ∈ 𝑋∗, (A൴zpuru, Armar൴o & 
Pérez-Fernández, 2008). 

 By 𝑓(𝑋) and 𝑤𝑓(𝑋), we denote the space of all almost 
convergent and weakly almost convergent 𝑋-valued sequences. So, 
every convergent sequence ൴s almost convergent, every weakly 
almost convergent sequence ൴s bounded and every almost convergent 
sequence ൴s weakly almost convergent, that ൴s, the follow൴ng 
൴nclus൴ons hold:  

 𝑐(𝑋) ⊂ 𝑓(𝑋) ⊂ 𝑤𝑓(𝑋) ⊂ ℓஶ(𝑋). 

Def൴n൴t൴on 1.2 A ser൴es ∑௞ 𝑥௞ ൴n a real normed space X ൴s sa൴d 
to be almost convergent or weakly almost convergent to 𝑥଴ ∈ 𝑋 
wh൴ch ൴s called the almost sum or weakly almost sum of the ser൴es 
∑௞ 𝑥௞, and ൴s denoted by 𝑓 − ∑௞ 𝑥௞ = 𝑥଴ or 𝑤𝑓 − ∑௞ 𝑥௞ = 𝑥଴, ൴f  

lim
௠→ஶ

ะ ෍

௡ା௠

௞ୀ௡

𝑠௞

𝑚 + 1
− 𝑥଴ะ = 0 

or 

lim
௠→ஶ

อ ෍

௡ା௠

௞ୀ௡

𝑥∗(𝑠௞)

𝑚 + 1
− 𝑥∗(𝑥଴)อ = 0 

--5--



holds un൴formly ൴n 𝑛 ∈ ℕ, for every 𝑥∗ ∈ 𝑋∗, respect൴vely, where 

𝑠௞ = ∑௞
௝ୀଵ 𝑥௝  for all 𝑘 ∈ ℕ.  

 By 𝑓𝑠(𝑋) and 𝑤𝑓𝑠(𝑋), we denote the space of all 𝑋-valued 
sequences 𝑥 = (𝑥௞) such that the ser൴es ∑௞ 𝑥௞ ൴s almost convergent 
and ൴s weakly almost convergent. Therefore, the ൴nclus൴on relat൴ons 
𝑐𝑠(𝑋) ⊂ 𝑓𝑠(𝑋) ⊂ 𝑤𝑓𝑠(𝑋) ⊂ 𝑏𝑠(𝑋) hold. Bes൴des, by some easy 
calculat൴ons, 𝑥 = (𝑥௞) ∈ 𝑓𝑠(𝑋) w൴th 𝑥଴ ∈ 𝑋 ൴f and only ൴f  

lim
௠→ஶ

൥෍

௡

௞ୀଵ

𝑥௞ +
1

𝑚 + 1
෍

௠

௞ୀଵ

(𝑚 − 𝑘 + 1)𝑥௡ା௞൩ = 𝑥଴, 

un൴formly ൴n 𝑛 ∈ ℕ and 𝑥 = (𝑥௞) ∈ 𝑤𝑓𝑠(𝑋) w൴th 𝑥଴ ∈ 𝑋 ൴f and only 
൴f  

lim
௠→ஶ

൥෍

௡

௞ୀଵ

𝑥∗(𝑥௞) +
1

𝑚 + 1
෍

௠

௞ୀଵ

(𝑚 − 𝑘 + 1)𝑥∗(𝑥௡ା௞)൩ = 𝑥∗(𝑥଴), 

un൴formly ൴n 𝑛 ∈ ℕ for all 𝑥∗ ∈ 𝑋∗, (A൴zpuru, Armar൴o & Pérez-
Fernández, 2008). 

Pr൴or to g൴v൴ng the requ൴red def൴n൴t൴ons and ma൴n results, we 
present the follow൴ng lemma wh൴ch states a well-known result of 
character൴zat൴on of a 𝑤𝑢𝐶 ser൴es ൴n a normed space 𝑋. 

Lemma 1.3 In a normed space 𝑋, a formal ser൴es ∑௡ 𝑥௡ ൴s a 
𝑤𝑢𝐶 ser൴es ൴f and only ൴f there ex൴sts a pos൴t൴ve real 𝐻 such that  

𝐻 = sup
௡∈ℕ

{‖∑௡
௞ୀଵ 𝑎௞𝑥௞‖: |𝑎௞| ≤ 1, 𝑘 ∈ {1,2, … , 𝑛} ⊂ ℕ}. (1) 

Regard൴ng a formal ser൴es ∑௡ 𝑥௡ ൴n a Banach space 𝑋 ൴s 𝑢𝑐 
(respect൴vely 𝑤𝑢𝐶) ser൴es ൴f and only ൴f for any (𝑡௡) ∈ ℓஶ 
(respect൴vely for any (𝑡௡) ∈ 𝑐଴), ∑௡ 𝑡௡𝑥௡ converges, that ൴s, ∑௡ 𝑥௡ 
൴s an ℓஶ-(respect൴vely a 𝑐଴-) mult൴pl൴er convergent ser൴es, (D൴estel, 
1984).  
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2. Results on 𝑴𝒇
ஶ(∑𝒌 𝑻𝒌) 

 We g൴ve the def൴n൴t൴ons of almost convergence and weakly 
almost convergence w൴th assoc൴at൴on of an operator valued ser൴es ൴n 
the vector valued mult൴pl൴er spaces, and obta൴n some results on the 
character൴zat൴ons of 𝑐଴(𝑋)- and ℓஶ(𝑋)-mult൴pl൴er convergent 
(Cauchy) ser൴es. F൴rstly, we ൴ntroduce the almost convergence ൴n a 
vector valued mult൴pl൴er space and the summ൴ng operator 𝒮 
assoc൴ated w൴th an operator valued ser൴es.  

Def൴n൴t൴on 2.1 Let 𝑋 and 𝑌 be two normed spaces, and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. The almost convergence ൴n a vector valued 
mult൴pl൴er space 𝑀௙

ஶ(∑௞ 𝑇௞) assoc൴ated to the operator valued ser൴es 

∑௞ 𝑇௞ ൴s def൴ned by  

𝑀௙
ஶ(∑௞ 𝑇௞): = {𝑥 = (𝑥௞) ∈ ℓஶ(𝑋): 𝑓 − ∑௞ 𝑇௞𝑥௞ exists} (2) 

endowed w൴th the sup norm and the summ൴ng operator 𝒮 ൴s also 
g൴ven as  

𝒮 : 𝑀௙
ஶ(∑௞ 𝑇௞) ⟶ 𝑌

𝑥 = (𝑥௞) ⟼ 𝒮(𝑥) = 𝑓 − ∑௞ 𝑇௞𝑥௞.
 (3) 

  

 It can be eas൴ly checked that the ൴nclus൴ons  

 𝜙(𝑋) ⊆ 𝑀௙
ஶ(∑௞ 𝑇௞) ⊆ ℓஶ(𝑋) (4) 

hold, (Karakuş & Başar, 2020a). 

Theorem 2.2  Let 𝑋 and 𝑌 be any two Banach spaces, and 
𝑇௞ ∈ 𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the ser൴es ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-
mult൴pl൴er convergent ൴f and only ൴f 𝑀௙

ஶ(∑௞ 𝑇௞) ൴s a Banach space, 

(Karakuş & Başar, 2020a).  
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Proof. Let us suppose that the ser൴es ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-
mult൴pl൴er convergent. Then, there ex൴sts a pos൴t൴ve real 𝐻 such that  

𝐻 = sup
௡∈ℕ

൝ะ෍

௡

௞ୀଵ

𝑇௞𝑥௞ะ : ∥ 𝑥௞ ∥≤ 1, 𝑘 ∈ {1,2, … , 𝑛} ⊂ ℕൡ 

from (1). 

If (𝑥௞
௠) ൴s a Cauchy sequence ൴n 𝑀௙

ஶ(∑௞ 𝑇௞) then we have 

𝑥଴ = (𝑥௞
଴) ∈ ℓஶ(𝑋) such that 𝑥௠ → 𝑥଴, as 𝑚 → ∞, s൴nce ℓஶ(𝑋) ൴s 

a Banach space (recall that 𝑋 ൴s a Banach space) and the relat൴on (4) 
holds. Now, we prove that 𝑥଴ ∈ 𝑀௙

ஶ(∑௞ 𝑇௞). Let us def൴ne 𝑦௠ =

𝑓 − ∑௞ 𝑇௞𝑥௞
௠ for all 𝑚 ∈ ℕ. Now, for every 𝜖 > 0 there ex൴sts 𝑚଴ ∈

ℕ such that ∥ 𝑥௣ − 𝑥௤ ∥< 𝜖/(3𝐻) for all 𝑝, 𝑞 ≥ 𝑚଴. So, ൴f 𝑝, 𝑞 ≥

𝑚଴ are f൴xed, then there ex൴sts 𝑚 ∈ ℕ such that the follow൴ng 
൴nequal൴t൴es hold;  

ቛ𝑦௣ − ቂ∑௡
௞ୀଵ 𝑇௞𝑥௞

௣
+

ଵ

௠ାଵ
∑௠

௞ୀଵ (𝑚 − 𝑘 + 1)𝑇௡ା௞𝑥௡ା௞
௣

ቃቛ <
ఢ

ଷ
, (5) 

ቛ𝑦௤ − ቂ∑௡
௞ୀଵ 𝑇௞𝑥௞

௤
+

ଵ

௠ାଵ
∑௠

௞ୀଵ (𝑚 − 𝑘 + 1)𝑇௡ା௞𝑥௡ା௞
௤

ቃቛ <
ఢ

ଷ
, (6) 

ቛ∑௡
௞ୀଵ 𝑇௞(𝑥௞

௣
− 𝑥௞

௤
) + ∑௠

௞ୀଵ
௠ି௞ାଵ

௠ାଵ
𝑇௡ା௞(𝑥௡ା௞

௣
− 𝑥௡ା௞

௤
)ቛ <

ఢ

ଷ
, (7) 

un൴formly ൴n 𝑛 ∈ ℕ. So, for every 𝜖 > 0 there ex൴sts 𝑛଴ ∈ ℕ such 
that  

 ∥ 𝑦௣ − 𝑦௤ ∥≤ (5) + (6) + (7) < 𝜖 

for all 𝑝, 𝑞 ≥ 𝑛଴. S൴nce 𝑌 ൴s also a Banach space, there ex൴sts a 𝑦଴ ∈

𝑌 such that 𝑦௠ → 𝑦଴, as 𝑚 → ∞. Let us show that 𝑓 − ∑ 𝑇௞𝑥௞
଴ = 𝑦଴. 

We see for every 𝜖 > 0 and f൴x 𝑗 that ∥ 𝑥௝ − 𝑥଴ ∥< 𝜖/(3𝐻) and  

 ∥ 𝑦௝ − 𝑦଴ ∥<
ఢ

ଷ
. (8) 

Therefore, there ex൴sts 𝑚଴ ∈ ℕ such that  
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ቛ𝑦௝ − ቂ∑௡
௞ୀଵ 𝑇௞𝑥௞

௝
+

ଵ

௠ାଵ
∑௠

௞ୀଵ (𝑚 − 𝑘 + 1)𝑇௡ା௞𝑥௡ା௞
௝

ቃቛ <
ఢ

ଷ
, (9) 

un൴formly ൴n 𝑛 ∈ ℕ, for all 𝑚 ≥ 𝑚଴. By tak൴ng account 𝑦௝ = 𝑓 −

∑௞ 𝑇௞𝑥௞
௝  for all 𝑗 ∈ ℕ, we have from Lemma 5.3 that  

൤∑௡
௞ୀଵ 𝑇௞

(௫ೖ
ೕ

ି௫ೖ
బ)

∥௫ೕି௫బ∥
+ ∑௠

௞ୀଵ
௠ି௞ାଵ

௠ାଵ
𝑇௡ା௞

(௫೙శೖ
ೕ

ି௫೙శೖ
బ )

∥௫ೕି௫బ∥
൨ ≤ 𝐻, (10) 

s൴nce ∑௞ 𝑇௞ ൴s a 𝑐଴(𝑋)-mult൴pl൴er convergent ser൴es. So, for every 
𝜖 > 0 there ex൴sts 𝑚଴ ∈ ℕ such that  

ะ𝑦଴ − ൥෍

௡

௞ୀଵ

𝑇௞𝑥௞
଴ + ෍

௠

௞ୀଵ

𝑚 − 𝑘 + 1

𝑚 + 1
𝑇௡ା௞𝑥௡ା௞

଴ ൩ะ ≤ (8) + (9) 

+ ะ෍

௡

௞ୀଵ

𝑇௞(𝑥௞
௝

− 𝑥௞
଴) + ෍

௠

௞ୀଵ

𝑚 − 𝑘 + 1

𝑚 + 1
𝑇௡ା௞(𝑥௡ା௞

௝
− 𝑥௡ା௞

଴ )ะ < 

<
2𝜖

3
+∥ 𝑥௝ − 𝑥଴ ∥⋅ (10) ≤

2𝜖

3
+

𝜖

3𝐻
⋅ 𝐻 = 𝜖, 

un൴formly ൴n 𝑛 ∈ ℕ, for all 𝑚 ≥ 𝑚଴. Hence, 𝑥଴ = (𝑥௞
଴) ∈

𝑀௙(∑௞ 𝑥௞). 

Conversely, let us suppose that the space 𝑀௙
ஶ(∑௞ 𝑇௞) ൴s 

complete and take 𝑥 = (𝑥௞) ∈ 𝑐଴(𝑋). Then, we have 𝑐଴(𝑋) ⊆

𝑀௙
ஶ(∑௞ 𝑇௞) s൴nce the space 𝑀௙

ஶ(∑௞ 𝑇௞) ൴s closed and 𝜙(𝑋) ⊂

𝑀௙
ஶ(∑௞ 𝑇௞). Therefore, the ser൴es ∑௞ 𝑇௞𝑥௞ ൴s almost convergent for 

all 𝑥 = (𝑥௞) ∈ 𝑐଴(𝑋). From the monoton൴c൴ty of 𝑐଴(𝑋), we have that 
the ser൴es ∑௞ 𝑇௞𝑥௞ ൴s subser൴es almost convergent, and so ൴s weakly 
subser൴es almost convergent. As a consequence of Orl൴cz-Pett൴s 
theorem, ∑௞ 𝑇௞𝑥௞ ൴s subser൴es norm convergent. Th൴s completes the 
proof.  

Corollary 2.3 Let 𝑋 and 𝑌 be Banach spaces, and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the ser൴es ∑௞ 𝑇௞ ৻s 𝑐଴(𝑋)-mult൴pl൴er 
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convergent ൴f and only ൴f the ൴nclus൴on 𝑐଴(𝑋) ⊆ 𝑀௙
ஶ(∑௞ 𝑇௞) holds, 

(Karakuş & Başar, 2020a).   

 Let 𝑋 be a Banach space, 𝑌 be any normed space and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Cons൴der the space 𝐶𝑀ஶ(∑௞ 𝑇௞) def൴ned by  

𝐶𝑀ஶ(෍

௞

𝑇௞): = ൝𝑥 = (𝑥௞) ∈ ℓஶ(𝑋): ෍

௞

𝑇௞𝑥௞ − is Cauchyൡ. 

Propos൴t൴on 2.4  Let 𝑋 be a Banach space, 𝑌 be a normed 
space and 𝑇௞ ∈ 𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the follow൴ng holds, 
(Karakuş & Başar, 2020a):  

𝐶𝑀௙
ஶ(෍

௞

𝑇௞) = 𝑀௙
ஶ(෍

௞

𝑇௞) ∩ 𝐶𝑀ஶ(෍

௞

𝑇௞) = 𝑀ஶ(෍

௞

𝑇௞). 

Proof. If 𝑥 = (𝑥௞) ∈ 𝑀ஶ(∑௞ 𝑇௞), therefore, one can see that  

𝑥 = (𝑥௞) ∈ 𝑀௙
ஶ(∑௞ 𝑇௞) ∩ 𝐶𝑀ஶ(∑௞ 𝑇௞). Th൴s leads us to the 

൴nclus൴on 𝑀ஶ(∑௞ 𝑇௞) ⊆ 𝐶𝑀௙
ஶ(∑௞ 𝑇௞). 

Let us suppose that 𝑥 = (𝑥௞) ∈ 𝐶𝑀௙
ஶ(∑௞ 𝑇௞). So, ∑௞ 𝑇௞𝑥௞ 

൴s almost convergent and also ൴s a Cauchy ser൴es. Therefore, ∑௞ 𝑇௞𝑥௞ 
converges from Theorem 4.1 of (A൴zpuru et al., 2014). Th൴s 
completes the proof.  

Theorem 2.5  Let 𝑋 be a Banach space, 𝑌 be any normed 
space and 𝑇௞ ∈ 𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, 𝑌 ൴s a Banach space ൴f 
and only ൴f 𝑀௙

ஶ(∑௞ 𝑇௞) ൴s a Banach space for every 𝑐଴(𝑋)-mult൴pl൴er 

Cauchy ser൴es, (Karakuş & Başar, 2020a). 

Theorem 2.6  Let 𝑋 and 𝑌 be two normed spaces, and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the summ൴ng operator 𝒮 def൴ned by (3) 
൴s cont൴nuous ൴f and only ൴f the ser൴es ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-mult൴pl൴er 
Cauchy, (Karakuş & Başar, 2020a).  
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Proof. Let us suppose that 𝒮 ൴s cont൴nuous and def൴ne the set 
𝐺 by  

𝐺: = {‖∑௡
௞ୀଵ 𝑇௞𝑥௞‖: ∥ 𝑥௞ ∥≤ 1, 𝑘 ∈ {1,2, … , 𝑛} ⊂ ℕ}. (11) 

S൴nce the ൴nclus൴on 𝜙(𝑋) ⊂ 𝑀௙
ஶ(∑௞ 𝑇௞) holds, the ser൴es ∑௞ 𝑇௞ ൴s 

𝑐଴(𝑋)-mult൴pl൴er Cauchy from the ൴nequal൴ty 𝐻 = sup௡∈ℕ𝐺 ≤∥ 𝒮 ∥. 

Conversely, let us suppose that ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-mult൴pl൴er 
Cauchy ser൴es. Therefore, the set 𝐺 def൴ned by (11) ൴s bounded and 
so, 𝐻 = sup௡∈ℕ𝐺. If 𝑥 = (𝑥௞) ∈ 𝑀௙

ஶ(∑௞ 𝑇௞), then the proof 

follows from the ൴nequal൴ty  

 ∥ 𝒮(𝑥) ∥= ‖𝑓 − ∑௞ 𝑇௞𝑥௞‖ ≤ 𝐻 ∥ 𝑥 ∥. 

Theorem 2.7  Let 𝑋 be any normed space, 𝑌 be a Banach 
space and 𝑇௞ ∈ 𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then the ser൴es ∑௞ 𝑇௞ ൴s 
ℓஶ(𝑋)-mult൴pl൴er convergent ൴f and only ൴f the summ൴ng operator 𝒮 
def൴ned by (3) ൴s compact (weakly compact), (Karakuş & Başar, 
2020a). 

  

Proof. Let us suppose that 𝒮 ൴s compact. If 𝑥 = (𝑥௞) ∈

ℓஶ(𝑋), then the set  

𝐻: = ൝෍

௜∈ఙ

𝑒௜ ⊗ 𝑥௜: 𝜎 ϐinite and ∥ 𝑥௜ ∥≤ 1ൡ ⊂ 𝑀௙
ஶ(෍

௞

𝑇௞) 

൴s bounded. By the hypothes൴s,  

𝒮(𝐻): = ൝𝑓 − ෍

௞∈ఙ

𝑇௞𝑥௞: 𝜎 ϐinite and ∥ 𝑥௞ ∥≤ 1ൡ 

൴s relat൴vely compact. Therefore, the ser൴es ∑௞ 𝑇௞𝑥௞ ൴s subser൴es 
norm almost convergent, and so ൴s weakly subser൴es almost 
convergent. Further, by a consequence of Orl൴cz-Pett൴s theorem, the 
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ser൴es ∑௞ 𝑇௞𝑥௞ ൴s subser൴es norm convergent, that ൴s, the ser൴es ∑௞ 𝑇௞ 
൴s ℓஶ(𝑋)-mult൴pl൴er convergent. 

Conversely, suppose that the ser൴es ∑௞ 𝑇௞ ൴s ℓஶ(𝑋)-

mult൴pl൴er convergent. Let us def൴ne 𝒮௡
௙ by  

 

𝒮௡
௙

: 𝑀௙
ஶ(∑௞ 𝑇௞) ⟶ 𝑌

𝑥 = (𝑥௞) ⟼ 𝒮௡
௙

(𝑥) = 𝑓 − ∑௡
௞ୀଵ 𝑇௞𝑥௞

 

for every 𝑛 ∈ ℕ. It ൴s suff൴c൴ent to prove that lim
௡→ஶ

∥ 𝒮௡
௙

− 𝒮 ∥= 0. 

S൴nce ∑௞ 𝑇௞ ൴s ℓஶ(𝑋)-mult൴pl൴er convergent, then the ser൴es 
∑௞ 𝑇௞𝑥௞ ൴s un൴formly almost convergent for ∥ 𝑥௞ ∥≤ 1. Therefore, 

lim
௡→ஶ

ฮ𝒮௡
௙

− 𝒮ฮ = lim
௡→ஶ

ะ൭𝑓 − ෍

௡

௞ୀଵ

𝑇௞𝑥௞൱ − ൭𝑓 − ෍

ஶ

௞ୀଵ

𝑇௞𝑥௞൱ะ 

      = lim
௡→ஶ

‖𝑓 − ∑ஶ
௞ୀ௡ାଵ 𝑇௞𝑥௞‖ = 0. 

 

3. Results on 𝑴𝒘𝒇
ஶ (∑𝒌 𝑻𝒌) 

From the study (Karakuş & Başar, 2020a), we may g൴ve the 
mult൴pl൴er space of weak almost convergence assoc൴ated to the ser൴es 
∑௞ 𝑇௞ and g൴ve the correspond൴ng results s൴m൴lar to the prev൴ous 
theorems and corollar൴es. S൴nce the൴r proofs are very s൴m൴lar to the 
proofs of the above results, ൴n order to avo൴d the repet൴t൴on of the 
s൴m൴lar statements we w൴ll g൴ve them w൴thout proof.  

Def൴n൴t൴on 3.1 Let 𝑋 and 𝑌 be normed spaces, and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. The vector valued mult൴pl൴er space 
𝑀௪௙

ஶ (∑௞ 𝑇௞) of weakly almost convergence assoc൴ated to the 

operator ser൴es ∑௞ 𝑇௞ ൴s def൴ned by  
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𝑀௪௙
ஶ (෍

௞

𝑇௞): = ൝𝑥 = (𝑥௞) ∈ ℓஶ(𝑋): 𝑤𝑓 − ෍

௞

𝑇௞𝑥௞ existsൡ 

and the summ൴ng operator 𝒮 ൴s also g൴ven by  

 
𝒮 : 𝑀௪௙

ஶ (∑௞ 𝑇௞) ⟶ 𝑌

𝑥 = (𝑥௞) ⟼ 𝒮(𝑥) = 𝑤𝑓 − ∑௞ 𝑇௞𝑥௞.
 (12) 

 S൴nce the ൴nclus൴on 𝑀௙
ஶ(∑௞ 𝑇௞) ⊆ 𝑀௪௙

ஶ (∑௞ 𝑇௞) clearly 

holds, we have the follow൴ng, (Karakuş & Başar, 2020a):  

𝜙(𝑋) ⊆ 𝑀௙
ஶ(∑௞ 𝑇௞) ⊆ 𝑀௪௙

ஶ (∑௞ 𝑇௞) ⊆ ℓஶ(𝑋). (13) 

Theorem 3.2  Let 𝑋 and 𝑌 be any g൴ven Banach spaces, and 
𝑇௞ ∈ 𝐵(𝑋: 𝑌) for every 𝑘 ∈ ℕ. Then, the ser൴es ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-
mult൴pl൴er convergent ൴f and only ൴f 𝑀௪௙

ஶ (∑௞ 𝑇௞) ൴s a Banach space, 

(Karakuş & Başar, 2020a). 

Corollary 3.3 Let 𝑋 and 𝑌 be Banach spaces, and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the ser൴es ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-mult൴pl൴er 
convergent ൴f and only ൴f the ൴nclus൴on 𝑐଴(𝑋) ⊆ 𝑀௪௙

ஶ (∑௞ 𝑇௞) holds, 

(Karakuş & Başar, 2020a).  

Remark 3.4 Let 𝑋 and 𝑌 be any g൴ven Banach spaces, 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ and the ser൴es ∑௞ 𝑇௞ be a 𝑐଴(𝑋)-mult൴pl൴er 
convergent. Then, the ser൴es ∑௞ 𝑦∗(𝑇௞𝑥௞) ൴s convergent for all 𝑥 =

(𝑥௞) ∈ 𝑐଴(𝑋) and for all 𝑦∗ ∈ 𝑌∗, that ൴s, the ser൴es ൴s weakly 
convergent. It ൴s known that 𝑥 = (𝑥௞) ∈ 𝑀௙

ஶ(∑௞ 𝑇௞), and so 𝑥 =

(𝑥௞) ∈ 𝑀௪௙
ஶ (∑௞ 𝑇௞). Th൴s means that there ex൴sts 𝑦଴ ∈ 𝑌 w൴th 𝑤𝑓 −

∑௞ 𝑇௞𝑥௞ = 𝑦଴ such that  

෍

௞

𝑦∗(𝑇௞𝑥௞) = 𝑓 − ෍

௞

𝑦∗(𝑇௞𝑥௞) = 𝑦∗(𝑦଴). 
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Therefore, the ൴nclus൴on 𝑀௙
ஶ(∑௞ 𝑇௞) ⊆ 𝑀௪

ஶ(∑௞ 𝑇௞) holds. 

However, we have no an ൴dea on the suff൴c൴ent cond൴t൴ons for the 
reverse ൴nclus൴on. By us൴ng the s൴m൴lar techn൴que, the sum 𝑓 −

∑௞ (𝑇௞𝑥௞) ex൴sts for 𝑥 = (𝑥௞) ∈ 𝑐଴(𝑋). Hence, for 𝑦∗ ∈ 𝑌, the sum 
𝑓 − ∑௞ 𝑦∗(𝑇௞𝑥௞) ex൴sts. It ൴s also known that the ser൴es ∑௞ 𝑇௞𝑥௞ ൴s 
Cesàro convergent, and so ൴s weakly Cesàro convergent. If there 
ex൴sts 𝑦଴ ∈ 𝑌 such that 𝑤𝐶 − ∑௞ 𝑇௞𝑥௞ = 𝑦଴, then we have  

𝐶 − ෍

௞

𝑦∗(𝑇௞𝑥௞) = 𝑓 − ෍

௞

𝑦∗(𝑇௞𝑥௞) = 𝑦∗(𝑦଴). 

Therefore, the ൴nclus൴on 𝑀஼
ஶ(∑௞ 𝑇௞) ⊆ 𝑀௪௙

ஶ (∑௞ 𝑇௞) also holds. 

However, we have no an ൴dea on the suff൴c൴ent cond൴t൴ons for the 
reverse ൴nclus൴on, (Karakuş & Başar, 2020a).  

Theorem 3.5  Let 𝑋 be a Banach space, 𝑌 be any normed 
space and 𝑇௞ ∈ 𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. 𝑌 ൴s a Banach space ൴f and 
only ൴f the space 𝑀௪௙

ஶ (∑௞ 𝑇௞) ൴s Banach for every 𝑐଴(𝑋)-mult൴pl൴er 

Cauchy ser൴es, (Karakuş & Başar, 2020a).  

Theorem 3.6  Let 𝑋 and 𝑌 be normed spaces, and 𝑇௞ ∈

𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the summ൴ng operator 𝒮 def൴ned by (12) 
൴s cont൴nuous ൴f and only ൴f the ser൴es ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-mult൴pl൴er 
Cauchy, (Karakuş & Başar, 2020a). 

 Proof. Let us suppose that the summ൴ng operator 𝒮 ൴s 
cont൴nuous and cons൴der the set 𝐺 g൴ven by (11). Then, the des൴red 
result follows from the ൴nequal൴ty  

 sup
௡∈ℕ

𝐺 = |𝑤𝑓 − ∑௞ 𝑇௞𝑥௞| ≤∥ 𝒮 ∥, 

s൴nce the ൴nclus൴on 𝜙 ⊂ 𝑆௪௙(∑௞ 𝑇௞) holds. 
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Conversely, ൴f ∑௞ 𝑇௞ ൴s 𝑐଴(𝑋)-mult൴pl൴er Cauchy ser൴es, then 
the set 𝐺 ൴s bounded and so 𝐻 = sup௡∈ℕ𝐺. If 𝑥 = (𝑥௞) ∈

𝑀௪௙
ஶ (∑௞ 𝑇௞), then the proof follows from the ൴nequal൴ty  

 ∥ 𝒮(𝑥) ∥= |𝑓 − ∑௞ 𝑦∗(𝑇௞𝑥௞)| ≤ 𝐻 ∥ 𝑥 ∥ 

for every 𝑦∗ ∈ 𝑌. 

Theorem 3.7  Let 𝑋 be any normed space, 𝑌 be a Banach 
space and 𝑇௞ ∈ 𝐵(𝑋: 𝑌) for all 𝑘 ∈ ℕ. Then, the ser൴es ∑௞ 𝑇௞ ൴s 
ℓஶ(𝑋)-mult൴pl൴er convergent ൴f and only ൴f the summ൴ng operator 𝒮 
def൴ned by (12) ൴s compact (weakly compact), (Karakuş & Başar, 
2020a). 

Remark 3.8 Let 𝜎 and 𝜏 be two l൴near topolog൴es on the 
vector space 𝑋 such that 𝜏 ൴s l൴nked to 𝜎. If a Cauchy sequence 𝑥 =

(𝑥௞) ⊆ 𝑋 ൴s convergent to 𝑥଴ ൴n (𝑋, 𝜎), then ൴t ൴s convergent to 𝑥଴ ൴n 
(𝑋, 𝜏), (Swartz, 2009)  

Propos൴t൴on 3.9  Let 𝑋 and 𝑌 be normed spaces. If ∑௞ 𝑇௞ ൴s 
ℓஶ(𝑋)-mult൴pl൴er Cauchy, then 𝑀௪௙

ஶ (∑௞ 𝑇௞) = 𝑀௙
ஶ(∑௞ 𝑇௞), 

(Karakuş & Başar, 2020a). 

Proof. Let 𝑋 and 𝑌 be normed spaces, and 𝑥 = (𝑥௞) ∈

𝑀௪௙
ஶ (∑௞ 𝑇௞). From hypothes൴s, the part൴al sums of the ser൴es 

∑௞ 𝑇௞𝑥௞ form a Cauchy sequence ൴n 𝑌 wh൴ch ൴s also weakly almost 
convergent to, say 𝑦 ∈ 𝑌. So, ൴t ൴s almost convergent to 𝑦 ∈ 𝑌 w൴th 
the norm topology s൴nce weak topology ൴s l൴nked to norm topology 
from Remark 3.8. Therefore, 𝑥 = (𝑥௞) ∈ 𝑀௙

ஶ(∑௞ 𝑇௞).  
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WITH BICOMPLEX TERMS 
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Abstract 

This study examines the 𝛽-dual spaces of certain 𝑍-spaces 

defined on sequences with bicomplex terms. The notions of 𝑍-spaces 

and duality frameworks developed by E. Malkowsky and E. Savaş 

for scalar sequence spaces are extended to the bicomplex setting. By 

employing functional analytic methods presented in A. Wilansky’s 

Summability through Functional Analysis, the 𝛽-dual structures of 

classical sequence spaces are systematically characterized. 

Furthermore, the structural properties of the 𝛽-dual spaces of 

Cesàro-type sequence spaces are analyzed using techniques 

developed by P. N. Ng and P. Y. Lee. In the bicomplex context, new 

𝛽-dual spaces are introduced through idempotent decomposition and 

the fundamental properties of hyperbolic numbers, and the essential 

characteristics of these spaces are rigorously established. 
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INTRODUCTION  

 Bicomplex numbers were introduced in (Segre, 1892), and 

the spaces generated by these numbers have subsequently been 

studied within the framework of functional analysis. The theoretical 

foundations and fundamental properties of bicomplex spaces were 

presented in detail in (Luna-Elizarraras & et al., 2015). The 𝛽-dual 

structures of classical sequence spaces defined over scalar fields play 

a central role in summability theory and functional analysis. This 

approach has been extended to bicomplex sequence spaces by means 

of idempotent decomposition and the intrinsic properties of 

hyperbolic numbers. Within this context, the bicomplex counterparts 

of classical 𝒵-spaces and the structural properties of their associated 

𝛽𝔻-dual spaces are investigated. In addition, the duality properties of 

sequence spaces defined via paranorms have been examined in 

(Altay & Başar, 2006) and (Maddox, 1968), and the topological 

structures of these spaces, particularly with respect to continuity and 

convergence, have been analyzed in (Altay & Başar, 2007) and 

(Maddox, 1969). For a broader theoretical perspective, the reader is 

referred to (Luna–Elizarraras & et al., 2015) and (Toksoy & Sağır 

2024). 

1.Bicomplex Numbers and Their Properties 

Let ℂ be the set of complex numbers with 𝑖 as the imaginary 

unit, and let 𝑗 be another imaginary unit satisfying the conditions 𝑖 ≠

𝑗, 𝑖𝑗 = 𝑗𝑖 = 𝜉, 𝑖² = 𝑗² = −1. In this case, the set represented by  

𝔹ℂ = {𝑧₁ + 𝑗𝑧₂: 𝑧₁, 𝑧₂ ∈ ℂ} 

is the set of all bicomplex numbers and each element of this set is 

called a bicomplex number. Furthermore, there is the equality 𝜉2 =

(𝑖𝑗)2 = 1. Therefore, bicomplex numbers are "complex numbers 

with complex coefficients," which explains the name "bicomplex". 
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𝔹ℂ is a commutative ring with unity 1𝔹ℂ = 1 + 𝑗 ∙ 0 = 1 (Luna–

Elizarraras & et al., 2015).  

 In addition, when 𝑧₂ = 0 in 𝑧 = 𝑧₁ + 𝑗𝑧₂, that is, 𝑧 = 𝑧₁, the 

set of these numbers is represented by ℂ(𝑖). If the coefficients 𝑧₁ and 

𝑧₂ are real numbers, that is, 𝑧 = 𝓍 + 𝑗𝓎 with 𝓍, 𝓎 ∈ ℝ, then the set 

of these numbers is represented by ℂ(𝑗). The sets ℂ(𝑖) and ℂ(𝑗) are 

isomorphic fields. 

 We take into account the bicomplex numbers 𝑒1 =

(1 + 𝑖𝑗) 2⁄  and 𝑒2 = (1 − 𝑖𝑗) 2⁄ . It can be easily seen that 𝑒1 ⋅ 𝑒2 =

𝑒2 ⋅ 𝑒1 = 0 and there are also equations (𝑒1)𝑛 = 𝑒1 and (𝑒2)𝑛 = 𝑒2 

with 𝑛 ∈ ℕ. For any 𝓊 = 𝓊1 + 𝑗𝓊2 ∈ 𝔹ℂ, we have 

𝓊 = (𝓊1 − 𝑖𝓊2)𝑒1 + (𝓊1 + 𝑖𝓊2)𝑒2 = 𝛿1𝑒1 + 𝛿2𝑒2 

with 𝛿1 = (𝓊1 − 𝑖𝓊2) and 𝛿2 = (𝓊1 + 𝑖𝓊2) in ℂ(𝑖). This is named 

as ℂ(𝑖)-idempotent representation of the bicomplex number 𝑢 (Işık 

& Duyar, 2023). 

The set of hyperbolic numbers is described by 

𝔻 = {𝑔 + 𝜉ℎ: 𝑔, ℎ ∈ ℝ, 𝜉 = 𝑖𝑗}, 

where 𝜉 is a hyperbolic imaginary unit with 𝜉² = 1. The following 

subsets 𝔻⁺ and 𝔻⁺\{0} of 𝔻 are called as  

non-negative and positive hyperbolic numbers, respectively: 

𝔻⁺ = {𝑔 + 𝜉ℎ: 𝑔² − ℎ² ≥ 0, 𝑔 ≥ 0}, 

𝔻+\{0} = {𝑔 + 𝜉ℎ: 𝑔² − ℎ² ≥ 0, 𝑔 > 0}. 

Similarly, non-positive and negative hyperbolic numbers are 

defined as follows: 

𝔻− = {𝑔 + 𝜉ℎ: 𝑔² − ℎ² ≥ 0, 𝑔 ≤ 0} 

and 

 𝔻⁻\{0} = {𝑔 + 𝜉ℎ: 𝑔² − ℎ² ≥ 0, 𝑔 < 0}. 
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Let 𝜋, 𝜌 ∈ 𝔻⁺. If 𝜋 − 𝜌 ∈ 𝔻⁺, then we write 𝜋 ≽ 𝜌 or 𝜌 ≼ 𝜋, 

and say that 𝜋 is 𝔻-greater than 𝜌 or 𝔻-equal to 𝜌, or that 𝜌 is 𝔻-less 

than 𝜋 or 𝔻-equal to 𝜋. If 𝜋 − 𝜌 ∈ 𝔻+\{0}, then we write 𝜋 ≻ 𝜌 or 

𝜌 ≺ 𝜋, and say that 𝜋 is 𝔻-greater than 𝜌, or that 𝜌 is 𝔻-less than 𝜋. 

If 𝜋 = 𝜋₁𝑒₁ +  𝜋₂𝑒₂ and 𝜌 = 𝜌₁𝑒₁ + 𝜌₂𝑒₂ with real numbers 

𝜋₁, 𝜋₂, 𝜌₁ and 𝜌₂, we can write 𝜌 ≼ 𝜋 ⇔ 𝜌₁ ≤ 𝜋₁ and 𝜌₂ ≤

𝜋₂ (or 𝜌 ≺ 𝜋 ⇔ 𝜌₁ < 𝜋₁ and 𝜌₂ < 𝜋₂). If 𝜋 is a (strictly) positive 

hyperbolic number, then it is inversible and its inverse is also 

positive. Additionally, if 𝜋 ≻ θ = 0𝑒1 + 0𝑒2 and 𝜋 ≺ 𝜌, then 𝜌⁻¹ ≻

θ = 0𝑒1 + 0𝑒2 and 𝜌⁻¹ ≺ 𝜋⁻¹ (Luna–Elizarraras & et al., 2015). 

 Similarly, along with the coefficients in ℂ(𝑗), there is also a 

representation of the bicomplex number 𝑢 with respect to 𝑒1 and 𝑒2. 

As a result, any bicomplex number has an idempotent 

representation with its coefficients in ℂ(𝑖) or ℂ(𝑗), that is, 

𝑢 = 𝛿1𝑒1 + 𝛿2𝑒2 = 𝜌1𝑒1 + 𝜌2𝑒2, 

where 𝛿1, 𝛿2 ∈ ℂ(𝑖) and 𝜌1, 𝜌2 ∈ ℂ(𝑗). 

If a function |. |𝜉 from 𝔹ℂ to 𝔻⁺ is defined as |𝓊|𝜉 =

|𝓊₁|𝑒₁ + |𝓊₂|𝑒2 for each 𝓊 = 𝓊₁𝑒₁ + 𝓊₂𝑒₂ ∈ 𝔹ℂ and provides the 

following properties, then it is called as a 𝔻-norm or a hyperbolic-

valued norm: 

a) Since |𝓊₁| ≥ 0 and |𝓊₂| ≥0 for a 𝓊 = (𝓊₁𝑒₁ + 𝓊₂𝑒₂)  ∈

𝔹ℂ, 

|𝓊|𝜉 = |𝓊₁|𝑒₁ + |𝓊₂|𝑒₂ ≽ 0𝑒₁ + 0𝑒₂ = θ. 

b) |𝓊|𝜉 = |𝓊₁|𝑒₁ + |𝓊₂|𝑒₂ = θ = 0𝑒₁ + 0𝑒₂ if and only if 

|𝓊₁| = 0 and |𝓊₂| = 0, and so  

𝓊 = 0𝑒₁ + 0𝑒₂ = θ. 

c) |𝜆𝓊|𝜉 = (|𝜆₁|𝑒₁ + |𝜆₂|𝑒₂)(|𝓊₁|𝑒₁ + |𝓊₂|𝑒₂) = |𝜆|𝜉|𝓊|𝜉 

for 𝜆 ∈ 𝔻. 
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d) |𝓊 + 𝓋|𝜉 ≼ |𝓊|𝜉 + |𝓋|𝜉 for 𝓊 = 𝓊₁𝑒₁ + 𝓊₂𝑒₂, 𝓋 =

𝓋₁𝑒₁ + 𝓋₂𝑒₂ ∈ 𝔹ℂ (Luna–Elizarraras & et al., 2015). 

 If there is a 𝜌 ∈ 𝔻 such that 𝜋 ≼ 𝜌(𝜌 ≼ 𝜋) for all 𝜋 ∈ 𝐺, then 

it is said that a subset 𝐺 ⊂ 𝔻 is a 𝔻-bounded from above(below). 

This number 𝜌 ∈ 𝔻 is called a 𝔻-upper(𝔻-lower) boundary of 𝐺. If 

𝐺 ⊂ 𝔻 is a 𝔻-bounded set from above, then we describe the its 𝔻-

supremum showed by sup𝔻𝐺, the smallest upper bound of 𝐺, and its 

𝔻-infimum showed by inf𝔻𝐺, largest lower bound of 𝐺. Let 𝐺 ⊂ 𝔻 

be a subset, let the sets 𝐺₁ and 𝐺₂ be defined by 

𝐺₁ = {𝜋₁: 𝜋₁𝑒₁ + 𝜋₂𝑒₂ ∈ 𝐺} 

and 

𝐺₂ = {𝜋₂: 𝜋₁𝑒₁ + 𝜋₂𝑒₂ ∈ 𝐺}. 

If 𝐺 is a 𝔻-bounded set from above(below), then the sup𝔻𝐺 

(inf𝔻𝐺) can be computed by the formula 

sup𝔻𝐺 = sup𝐺₁𝑒₁ + sup𝐺₂𝑒₂ (inf𝔻𝐺 = inf𝐺₁𝑒₁ + inf𝐺₂𝑒₂). 

If 𝐺 and 𝐻 are two 𝔻-bounded set from above, then so is 𝐺 +

𝐻 and 

sup𝔻(𝐺 + 𝐻) = sup𝔻𝐺 + sup𝔻𝐻. 

If two subsets 𝐺 ⊂ 𝔻⁺ and 𝐻 ⊂ 𝔻⁺ are 𝔻-bounded from 

above, then so is 𝐺 ∙ 𝐻 and 

sup𝔻(𝐺 ∙ 𝐻) = sup𝔻𝐺 ∙ sup𝔻𝐻. 

For the 𝔻-bounded subsets from below of 𝔻, the last two equations 

are still true when inf𝔻 is written instead of sup𝔻 (Işık & Duyar, 

2023). 

2.Sequence Spaces with Bicomplex Terms 

Definition 2.1. Let 𝒲 be the set of all sequences with the terms in 

ℂ(𝑖). The set defined as  
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𝑤𝔹ℂ = {𝓌 = (𝓌(𝑠))|𝓌₁, 𝓌₂ ∈ 𝒲} 

with 𝓌(𝑠) = 𝓌₁(𝑠)𝑒₁ + 𝓌₂(𝑠)𝑒₂ for all 𝑠 ∈ ℕ is the set of 

sequences with bicomplex terms written according to idempotent 

representation. This set is a commutative group under the 𝔻-addition 

operation with ⊕: 𝑤𝔹ℂ × 𝑤𝔹ℂ → 𝑤𝔹ℂ, 𝓌 ⊕ 𝓍 = (𝓌(𝑠) + 𝓍(𝑠)), 

where 

𝓌(𝑠) + 𝓍(𝑠) = ∑ (𝓌𝑖(𝑠) + 𝓍𝑖(𝑠))𝑒𝑖
2
𝑖=1   

with the unit element θ = 0𝑒1 + 0𝑒2, and the additive inverse  

−𝓌 = (−𝓌(𝑛)) = (−𝓌1(𝑠)𝑒1 − 𝓌2(𝑠)𝑒2) 

of each 𝓌 = (𝓌(𝑠))
𝑠∈ℕ

∈ 𝑤𝔹ℂ. 

Furthermore, let the 𝔻-scalar multiplication ⊙: ℂ(𝑖) × 𝑤𝔹ℂ → 𝑤𝔹ℂ 

with 𝑧 ⊙ 𝓌 = (𝑧𝓌(𝑠)) be defined as  

𝑧 ⊙ 𝓌(𝑠) = ∑ (𝑧 ∙ 𝓌𝑖(𝑠))𝑒𝑖
2
𝑖=1 .    

In this case, 𝑤𝔹ℂ is a linear space over the field ℂ(𝑖). 

 Now, let the 𝔻-vector product 𝑤𝔹ℂ × 𝑤𝔹ℂ → 𝑤𝔹ℂ be defined 

as 𝓌 ⊗ 𝓍 = (𝓌(𝑠) ∙ 𝓍(𝑠)) with  

𝓌(𝑠) ∙ 𝓍(𝑠) = ∑ 𝓌𝑖(𝑠)𝓍𝑖(𝑠)𝑒𝑖
2
𝑖=1 . 

Under this operation, the 𝑤𝔹ℂ becomes a commutative and unitary 

algebra over the field ℂ(𝑖). 

Definition 2.2. Let 𝓌 = (𝓌(𝑠)) with 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 +

𝓌(𝑠)2𝑒2 and let ∞𝔻 = ∞𝑒1 + ∞𝑒2. Then, the set 𝛷𝔹ℂ defined by 

𝛷𝔹ℂ = {𝓌 ∈ 𝑤𝔹ℂ: sup𝔻
𝑠∈ℕ   

|𝓌(𝑠)|𝜉 ≺ ∞𝔻} 

= ∑ {𝓌𝑖 ∈ 𝒲: sup
𝑠∈ℕ

|𝓌𝑖(𝑠)| < ∞} 𝑒𝑖
2
𝑖=1 .        (2.1) 

--24--



is the set of 𝔻-bounded sequences with bicomplex terms and each of 

its elements is called a 𝔻-bounded sequence. 

For all 𝓌, 𝓍 ∈ 𝛷𝔹ℂ and 𝑧 ∈ ℂ(𝑖), since sup𝔻
    

|𝓌 ⊕ 𝓍|𝜉 ≺ ∞𝔻 and 

sup𝔻|𝑧 ⊙ 𝓌|𝜉 ≺ ∞𝔻, we have 𝓌 ⊕ 𝓍 ∈ 𝛷𝔹ℂ and 𝑧 ⊙ 𝓌 ∈ 𝛷𝔹ℂ, 

therefore, the 𝛷𝔹ℂ is a subspace of the set 𝑤𝔹ℂ. Also, according to 

the (2.1), 

𝛷𝔹ℂ = ℓ∞𝑒1 + ℓ∞𝑒2                                 (2.2) 

is written, where ℓ∞ is the space of the well-known bounded 

sequences of scalars. 

Definition 2.3. Let (𝓌(𝑠)) be a bicomplex sequence with 𝓌(𝑠) =

𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2 for every 𝑠 ∈ ℕ. If, given any 𝜀 = 𝜀1𝑒1 +

𝜀2𝑒2 ∈ 𝔻+\{0}, there exists at least one 𝑠0 ∈ ℕ such that 

|𝓌(𝑠) − 𝓌0|𝜉 ≺ 𝜀 for all 𝑠 > 𝑠0, then the sequence (𝓌(𝑠)) is said 

to be 𝔻-convergent to 𝓌0 = 𝓌01𝑒1 + 𝓌02𝑒2 ∈ 𝔹ℂ with respect to 

the hyperbolic-valued norm. 

Again, if, given any 𝜀 ∈ 𝔻+\{0}, there exists at least one 

𝑠0 ∈ ℕ such that |𝓌(𝑠) − 𝓌(𝑡)|𝜉 ≺ 𝜀 for every 𝑠, 𝑡 > 𝑠0,   then the 

sequence (𝓌(𝑠)) is said to be 𝔻-Cauchy with respect to the 

hyperbolic-valued norm (Luna–Elizarraras & et al., 2015). 

 Since |𝓌(𝑠) − 𝓌0|𝜉 ≺ 𝜀 if and only if |𝓌1(𝑠) − 𝓌01| <

𝜀1 ∧ |𝓌2(𝑠) − 𝓌02| < 𝜀2, it is observed that the 𝔻-convergence of 

the sequence (𝓌(𝑠)) depends on the convergence of the sequences 

(𝓌1(𝑠)) and (𝓌2(𝑠)) in ℂ(𝑖). If (𝓌1(𝑠)) or (𝓌2(𝑠)) diverges in 

ℂ(𝑖), then the sequence (𝓌(𝑠)) is also 𝔻-diverges in 𝑤𝔹ℂ. Now, let 

the set 𝐶𝔹ℂ be defined by 

𝐶𝔹ℂ = {𝓌 ∈ 𝑤𝔹ℂ: 𝑙 ∈ 𝔹ℂ, lim
𝑠→∞

𝔻|𝓌(𝑠) − 𝑙|𝜉 = θ}. 
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If 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2 for all 𝑠 ∈ ℕ and 𝑙 = 𝑙1𝑒1 + 𝑙2𝑒2, 

then we can write 

𝐶𝔹ℂ = ∑ {𝓌𝑖 ∈ 𝒲: 𝑙𝑖 ∈ ℂ, lim
𝑠→∞

|𝓌𝑖(𝑠) − 𝑙𝑖| = 0} 𝑒𝑖
2
𝑖=1 .     (2.3) 

Let us take any 𝓌, 𝓍 ∈ 𝐶𝔹ℂ and 𝑧 ∈ ℂ(𝑖). Since 𝓌 ⊕ 𝓍 ∈ 𝐶𝔹ℂ and 

𝑧 ⊙ 𝓌 ∈ 𝐶𝔹ℂ, 𝐶𝔹ℂ is a complex subspace of 𝑤𝔹ℂ. If we use (2.3) 

and the space 𝐶 of convergent sequences with complex terms, then 

we can write 

𝐶𝔹ℂ = 𝐶𝑒1 + 𝐶𝑒2 .                                  (2.4) 

The space 𝐶𝔹ℂ is the space of 𝔻-convergent sequences with 

bicomplex terms. 

Similarly, the set  

𝐶𝔹ℂ
0 = {𝓌 ∈ 𝑤𝔹ℂ: lim

𝑠→∞
𝔻|𝓌(𝑠)|𝜉 = θ} 

is defined. If 𝐶0 represents the set of sequences with complex terms 

that converge to zero, then  

𝐶𝔹ℂ
0 = 𝐶0𝑒1 + 𝐶0𝑒2.                                 (2.5) 

can be written. The space 𝐶𝔹ℂ
0  is the space of bicomplex sequences 

that converge to the zero θ ∈ 𝔹ℂ, say 𝔻-zero. 

Let 1 ≤ 𝓅 < ∞ and let 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2 for 

each 𝑠 ∈ ℕ. Then, the following equality is observed 

ℒ𝔹ℂ
𝓅

= {𝓌 ∈ 𝑤𝔹ℂ :  ∑ (|𝓌(𝑠)|𝜉)
𝓅∞

𝑠=0 ≺ ∞𝔻}  

= ∑ {𝓌𝑖 ∈ 𝒲: ∑ |𝓌𝑖(𝑠)|𝓅∞
𝑠=0 < ∞}𝑒𝑖

2
𝑖=1 . 

Here, if ℓ𝓅 is the set of 𝓅-absolutely summable sequences 

with complex terms, then we can write 

ℒ𝔹ℂ
𝓅

= ℓ𝓅𝑒1 + ℓ𝓅𝑒2                                  (2.6) 
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and ℒ𝔹ℂ
𝓅

 is the set of 𝓅-absolutely 𝔻-summable sequences with 

bicomplex terms. 

For 1 ≤ 𝓅 < ∞, let 𝓌, 𝓍 ∈ ℒ𝔹ℂ
𝓅

 and 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 +

𝓌2(𝑠)𝑒2, 𝓍(𝑠) = 𝓍1(𝑠)𝑒1 + 𝓍2(𝑠)𝑒2 for every s∈ ℕ. Then, we can 

write ∑ (|𝓌(𝑠)|𝜉)∞
𝑠=0

𝓅
≺ ∞𝔻 and ∑ (|𝓍(𝑠)|𝜉)∞

𝑠=0

𝓅
≺ ∞𝔻. This 

implies that ∑ |𝓌𝑖(𝑠)|𝓅 < ∞∞
𝑠=0  and ∑ |𝓍𝑖(𝑠)|𝓅 < ∞∞

𝑠=0  for 𝑖 = 1,2, 

then we have 

∑ (|(𝓌 ⊕ 𝓍)(𝑠)|𝜉)
𝓅∞

𝑠=0 = ∑ (|∑ (𝓌𝑖(𝑠) + 𝓍𝑖(𝑠))𝑒𝑖
2
𝑖=1 |

𝜉
)∞

𝑠=0

𝓅

  

= ∑ (∑ |𝓌𝑖(𝑠) + 𝓍𝑖(𝑠)|𝑒𝑖
2
𝑖=1 )∞

𝑠=0
𝓅

  

= ∑ (∑ |𝓌𝑖(𝑠) + 𝓍𝑖(𝑠)|𝓅𝑒𝑖
2
𝑖=1 )∞

𝑠=0   

= ∑ (∑ |𝓌𝑖(𝑠) + 𝓍𝑖(𝑠)|𝓅∞
𝑠=0 )𝑒𝑖

2
𝑖=1   

≤ ∑ (∑ (|𝓌𝑖(𝑠)| + |𝓍𝑖(𝑠)|)𝓅∞
𝑠=0 )𝑒𝑖

2
𝑖=1   

≤ ∑ (∑ 2𝓅−1(|𝓌𝑖(𝑠)|𝓅 + |𝓍𝑖(𝑠)|𝓅)∞
𝑠=0 )𝑒𝑖

2
𝑖=1   

= 2𝓅−1 ∑ (
(∑ |𝓌𝑖(𝑠)|𝓅∞

𝑠=0 )𝑒𝑖

+(∑ |𝓍𝑖(𝑠)|𝓅∞
𝑠=0 )𝑒𝑖

)2
𝑖=1   

= 2𝓅−1 {
(∑ |𝓌1(𝑠)|𝓅 + ∑ |𝓍1(𝑠)|𝓅∞

𝑠=0
∞
𝑠=0 )𝑒1

+(∑ |𝓌2(𝑠)|𝓅 + ∑ |𝓍2(𝑠)|𝓅∞
𝑠=0

∞
𝑠=0 )𝑒2

} ≺ ∞𝔻. 

Furthermore, for any 𝑧 ∈ ℂ(𝑖), we can write 

∑ (|(𝑧 ⊙ 𝓌)(𝑠)|𝜉)
𝓅∞

𝑠=0 = ∑ (∑ |𝑧||𝓌𝑖(𝑠)|𝑒𝑖
2
𝑖=1 )∞

𝑠=0
𝓅

  

  = |𝑧|𝓅 ∑ (∑ |𝓌𝑖(𝑠)|𝓅𝑒𝑖
2
𝑖=1 )∞

𝑠=0    

= |𝑧|𝓅 ∑ ((∑ |𝓌𝑖(𝑠)|𝓅∞
𝑠=0 )𝑒𝑖)

2
𝑖=1 ≺ ∞𝔻. 

Thus, it is shown that the set ℒ𝔹ℂ
𝓅

 is a subspace of 𝑤𝔹ℂ. 

The space of convergent series with complex terms is 

denoted by 𝒞𝒮. For every 𝑠 ∈ ℕ, let 𝜏(𝑠) = 𝜏1(𝑠)𝑒1 + 𝜏2(𝑠)𝑒2. 

Then 
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 𝒞𝒮𝔹ℂ = {𝜏: (𝜏(𝑘)) = (∑ 𝜏(𝑠)𝑘
𝑠=0 ) ∈ 𝐶𝔹ℂ}      

= {𝜏: (𝜏(𝑘)) = ((∑ 𝜏1(𝑠)𝑘
𝑠=0 )𝑒1 + (∑ 𝜏2(𝑠)𝑘

𝑠=0 )𝑒2) ∈ 𝐶𝔹ℂ}    

= {𝜏1 ∈ 𝒲:  ( 𝜏1(𝑘)) = (∑ 𝜏1(𝑠)𝑘
𝑠=0 ) ∈ 𝐶}𝑒1     

  +{𝜏2 ∈ 𝒲: ( 𝜏2(𝑘)) = (∑ 𝜏2(𝑠)𝑘
𝑠=0 ) ∈ 𝐶}𝑒2  

and in this case, it is written  

  𝒞𝒮𝔹ℂ = 𝒞𝒮𝑒1 + 𝒞𝒮𝑒2.                              (2.7) 

Furthermore, due to its closure under 𝔻-addition and 𝔻-

scalar multiplication, the set 𝒞𝒮𝔹ℂ is a subspace of the space 𝑤𝔹ℂ. 

Thus, 𝒞𝒮𝔹ℂ is the space of the 𝔻-convergent series with bicomplex 

terms. 

The space of bounded series with complex terms is denoted 

by ℬ𝒮. For every 𝑠 ∈ ℕ, let 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2. The 𝔻-

bounded series space of bicomplex terms is defined as 

ℬ𝒮𝔹ℂ = {𝓌 ∈ 𝑤𝔹ℂ:   sup𝔻
𝑘∈ℕ    

|∑ 𝓌(𝑠)𝑘
𝑠=0 |

𝜉
≺ ∞𝔻}. 

If some properties of 𝔹ℂ are used, we have  

ℬ𝒮𝔹ℂ = {𝓌1 ∈ 𝒲:  sup
𝑘∈ℕ 

|∑ 𝓌1(𝑠)𝑘
𝑠=0 | < ∞} 𝑒1     

+ {𝓌2 ∈ 𝒲: sup
𝑘∈ℕ 

|∑ 𝓌2(𝑠)𝑘
𝑠=0 | < ∞} 𝑒2. 

In this case, it is obviously written  

         ℬ𝒮𝔹ℂ = ℬ𝒮𝑒1 + ℬ𝒮𝑒2.               (2.8) 

Now, let 𝓌 = (𝓌(𝑠)) and 𝓍 = (𝓍(𝑠)) with  𝓌(𝑠) =

𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2 and 𝓍(𝑠) = 𝓍1(𝑠)𝑒1 + 𝓍2(𝑠)𝑒2 for all 𝑠 ∈ ℕ 

be two elements of ℬ𝒮𝔹ℂ. Then 

sup𝔻
𝑘∈ℕ    

|∑ 𝓌(𝑠)𝑘
𝑠=0 |

𝜉
≺ ∞𝔻  and  sup𝔻

𝑘∈ℕ   
|∑ 𝓍(𝑠)𝑘

𝑠=0 |
𝜉

≺ ∞𝔻. 
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This implies that  

sup
𝑘∈ℕ 

|∑ 𝓌𝑖(𝑠)𝑘
𝑠=0 | < ∞ ∧ sup

𝑘∈ℕ
|∑ 𝓍𝑖(𝑠)𝑘

𝑠=0 | < ∞     

for 𝑖 = 1,2. Also, we have 

sup𝔻
𝑘∈ℕ    

|∑ 𝓌(𝑠) ⊕ 𝓍(𝑠)𝑘
𝑠=0 |

𝜉
=

                                                      sup𝔻
𝑘∈ℕ    

{
(|∑ 𝓌1(𝑠) + 𝓍1(𝑠)𝑘

𝑠=0 |)𝑒1

+(|∑ 𝓌2(𝑠) + 𝓍2(𝑠)𝑘
𝑠=0 |)𝑒2

}  

≼ sup𝔻
𝑘∈ℕ    

{
(|∑ 𝓌1(𝑠)𝑘

𝑠=0 | + |∑ 𝓍1(𝑠)𝑘
𝑠=0 |)𝑒1

+(|∑ 𝓌2(𝑠)𝑘
𝑠=0 | + |∑ 𝓍2(𝑠)𝑘

𝑠=0 |)𝑒2

}     

  = {sup
𝑘∈ℕ

(|∑ 𝓌1(𝑠)𝑘
𝑠=0 | + |∑ 𝓍1(𝑠)𝑘

𝑠=0 |)} 𝑒1                 

        + {sup
𝑘∈ℕ 

(|∑ 𝓌2(𝑠)𝑘
𝑠=0 | + |∑ 𝓍2(𝑠)𝑘

𝑠=0 |)} 𝑒2,                    

and, for any 𝑧 ∈ ℂ(𝑖), 

    sup𝔻
𝑘∈ℕ    

|∑ (𝑧 ⊙ 𝓌)(𝑠)𝑘
𝑠=0 |

𝜉
= sup𝔻

𝑘∈ℕ
{(|∑ 𝑧𝓌1(𝑠)𝑘

𝑠=0 |)𝑒1 +

                                                                            (|∑ 𝑧𝓌2(𝑠)𝑘
𝑠=0 |)𝑒2}   

= |𝑧| ({sup
𝑘∈ℕ

(|∑ 𝓌1(𝑠)𝑘
𝑠=0 |)} 𝑒1 + {sup

𝑘∈ℕ
(|∑ 𝓌2(𝑠)𝑘

𝑠=0 |)} 𝑒2). 

Thus, it is seen that the set ℬ𝒮𝔹ℂ is closed under 𝔻-addition 

and 𝔻-scalar multiplication, and therefore, it is a subspace of the 

space 𝑤𝔹ℂ.  

The space of sequences of bounded variation with complex 

terms is denoted by ℬ𝒱. Let 𝜏 = (𝜏(𝑠)) with 𝜏(𝑠) = 𝜏1(𝑠)𝑒1 +

𝜏2(𝑠)𝑒2 for every 𝑠 ∈ ℕ. The set called the 𝔻-bounded variation 

series space with bicomplex terms is represented as  

ℬ𝒱𝔹ℂ = {𝜏: ∑ |𝜏(𝑠) − 𝜏(𝑠 − 1)|𝜉
∞
𝑠=1 ≺ ∞𝔻}    

--29--



= {𝜏1 ∈ 𝒲: ∑ |𝜏1(𝑠) − 𝜏1(𝑠 − 1)|∞
𝑠=1 < ∞}𝑒1   

   +{𝜏2 ∈ 𝒲: ∑ |𝜏2(𝑠) − 𝜏2(𝑠 − 1)|∞
𝑠=1 < ∞}𝑒2.   

Therefore, it is clear that 

    ℬ𝒱𝔹ℂ = ℬ𝒱𝑒1 + ℬ𝒱𝑒2                            (2.9) 

can be written. 

For proving that ℬ𝒱𝔹ℂ is a subspace of 𝑤𝔹ℂ, if it is taken two 

arbitrary sequences 𝓌, 𝓍 ∈ ℬ𝒱𝔹ℂ, this explicitly states that their 

membership in ℬ𝒱𝔹ℂ implies for their complex components with 

∑ |𝓌𝑖(𝑠) − 𝓌𝑖(𝑠 − 1)|∞
𝑠=1 < ∞ and ∑ |𝓍𝑖(𝑠) − 𝓍𝑖(𝑠 − 1)|∞

𝑠=1 < ∞ 

for 𝑖 = 1,2. The next steps in a full proof would involve showing 

that the sum of two sequences in ℬ𝒱𝔹ℂ is also in ℬ𝒱𝔹ℂ (closure under 

𝔻-addition) and that a scalar multiple of a sequence in ℬ𝒱𝔹ℂ is also 

in ℬ𝒱𝔹ℂ (closure under 𝔻-scalar multiplication). These proofs would 

follow a similar pattern to the ℒ𝔹ℂ
𝑝

 and ℬ𝒮𝔹ℂ proofs, utilizing the 

component-wise nature of the bicomplex operations and standard 

inequalities from real/complex analysis. 

The fundamental concept is that sequence spaces with 

bicomplex terms can be expressed as sums of idempotent 

representations that take the sequence spaces with complex terms as 

components. This means that whether you are working with 

convergence, boundedness, summability, or bounded variation in the 

bicomplex space, the behavior of these sequences can be 

decomposed into two independent, parallel behaviors of their 

complex components. The idempotent basis (𝑒1, 𝑒2) allows for this 

elegant decomposition. It effectively simplifies the analysis of 

bicomplex sequence spaces by transforming them into a well-

understood framework for complex sequence spaces. 

Lemma 2.1. For every 𝑠 ∈ ℕ, let 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2. 

The sequence (𝓌(𝑠)) is a 𝔻-Cauchy sequence in the space 𝑤𝔹ℂ if 
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and only if the sequences (𝓌1(𝑠)) and (𝓌2(𝑠)) are Cauchy 

sequences in the field ℂ(𝑖) (Işık & Duyar, 2023). 

Definition 2.4. A transformation ‖⋅‖𝔹ℂ from any linear space 𝒳 ⊂

𝑤𝔹ℂ to the set 𝔻+ is called a 𝔻-valued 𝔻-norm (or simply a 𝔻-norm) 

if it satisfies the following properties: 

a) For every 𝓌 ∈ 𝑤𝔹ℂ, ‖𝓌‖𝔹ℂ = θ ⇔ 𝓌 = θ, 

b) For any 𝜆 ∈ 𝔻+ and 𝓌 ∈ 𝑤𝔹ℂ, ‖𝜆 ⊗ 𝓌‖𝔹ℂ = |𝜆|𝜉 ⊗

‖𝓌‖𝔹ℂ, 

c) For all 𝓌, 𝓍 ∈ 𝑤𝔹ℂ, ‖𝓌 ⊕ 𝓍‖𝔹ℂ ≼ ‖𝓌‖𝔹ℂ ⊕ ‖𝓍‖𝔹ℂ(𝔻-

triangle inequality). 

If every 𝔻-Cauchy sequence in 𝒳 is 𝔻-convergent with 

respect to 𝔻-norm, then it is called a 𝔻-Banach space. 

Lemma 2.2. If (𝒳1, ‖⋅‖1) and (𝒳2, ‖⋅‖2) are two normed subspaces 

of 𝒲, then the transformation ‖⋅‖𝔹ℂ defined from the space 𝒳 =

𝒳1𝑒1 + 𝒳2𝑒2 to 𝔻+ with ‖𝓍‖𝔹ℂ = ‖𝓍1‖1𝑒1 + ‖𝓍2‖2𝑒2 for all 𝓍 =

(𝓍(𝑠)) = (𝓍1(𝑠)𝑒1 + 𝓍2(𝑠)𝑒2) ∈ 𝒳 is a 𝔻-norm and consequently, 

(𝒳, ‖⋅‖𝔹ℂ) is a 𝔻-normed space. 

Proof. It's straightforward to show that the 𝔻-norm axioms are 

satisfied by the construction presented in Lemma 1.2. The theorem 

essentially guarantees that this structure always produces a valid 𝔻-

norm. 

Lemma 2.3. Let (𝒳1, ‖⋅‖1), (𝒳2, ‖⋅‖2) and (𝒳, ‖⋅‖𝔹ℂ) be given as 

in Lemma 1.2. The space (𝒳, ‖∙‖𝔹ℂ) is a 𝔻-Banach space if and only 

if the spaces (𝒳1, ‖⋅‖1) and (𝒳2, ‖∙‖2) are Banach spaces. 

Proof. Assume that 𝒳 is a 𝔻-Banach Space, then every 𝔻-Cauchy 

sequence in 𝒳 converges (in the 𝔻-norm) to an element within 𝒳. 

Let (𝑥𝑖(𝑠)) be one each Cauchy sequences in 𝒳𝑖 for 𝑖 = 1,2. Given 
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any 𝜀 > 0, we can write 𝜀 = 𝜀𝑒1 + 𝜀𝑒2 ∈ 𝔻+. According to the 

hypothesis, there exists an 𝑟 ∈ ℕ such that  

‖𝓍(𝑠) − 𝓍(𝑡)‖𝔹ℂ = ∑ ‖𝓍𝑖(𝑠) − 𝓍𝑖(𝑡)‖𝑖𝑒𝑖
2
𝑖=1  ≺ 𝜀  

for 𝑠, 𝑡 > 𝑟. Thus, (𝑥(𝑠)) is a 𝔻-Cauchy sequence in 𝒳 and since 𝒳 

is a 𝔻-Banach space, this sequence (𝓍(𝑠)) must 𝔻-converge to some 

element 𝛼 = 𝛼1𝑒1 + 𝛼2𝑒2 ∈ 𝒳. This means that ‖𝓍 − 𝛼‖𝔹ℂ → θ 

and so  

     ‖𝓍1 − 𝛼1‖1 → 0 ∧ ‖𝓍2 − 𝛼2‖2 → 0.              (2.10) 

This shows that the Cauchy sequences (𝓍1(𝑠)) and (𝓍2(𝑠)) 

converge to 𝛼1 ∈ 𝒳1 and 𝛼2 ∈ 𝒳2 respectively. This proves that 

(𝒳1, ‖⋅‖1) and (𝒳2, ‖∙‖2) are Banach spaces. 

Conversely, assume 𝒳1 and 𝒳2 are Banach Spaces, then 

every Cauchy sequence in 𝒳𝑖 converges in 𝒳𝑖 for 𝑖 = 1,2. Now, let 

(𝓍(𝑠)) be a 𝔻-Cauchy sequence in 𝒳. Then, given any 𝜀 = 𝜀1𝑒1 +

𝜀2𝑒2 ≻ θ, there exists an 𝑟 ∈ ℕ such that ‖𝓍(𝑠) − 𝓍(𝑡)‖𝔹ℂ ≺ 𝜀 for 

all 𝑠, 𝑡 > 𝑟. Thus, we have ‖𝓍1(𝑠) − 𝓍1(𝑡)‖1 < 𝜀1 and ‖𝓍2(𝑠) −

𝓍2(𝑡)‖2 < 𝜀2 for all 𝑠, 𝑡 > 𝑟. Hence (𝓍𝑖(𝑠)) are Cauchy sequences 

in 𝒳𝑖 for 𝑖 = 1,2. Since 𝒳1 and 𝒳2 are one each Banach spaces, these 

Cauchy sequences must converge to some 𝛼1 ∈ 𝒳1 and 𝛼2 ∈ 𝒳2, 

respectively. Let 𝛼 = 𝛼1𝑒1 + 𝛼2𝑒2 ∈ 𝒳. It is easily seen that 

arbitrary 𝔻-Cauchy sequence (𝓍(𝑠)) in 𝒳 converges to 𝛼 ∈ 𝒳. 

Thus, (𝒳, ‖∙‖𝔹ℂ) is a 𝔻-Banach space. 

If Lemma 2.2 and Lemma 2.3 are applied, then the spaces 

𝛷𝔹ℂ, 𝐶𝔹ℂ and 𝐶𝔹ℂ
0  are 𝔻-Banach spaces with respect to the 𝔻-norm 

defined as ‖𝓍‖𝔹ℂ
∞ = sup𝔻

𝑠∈ℕ     
|𝓍(𝑠)|𝜉, the space ℒ𝔹ℂ

𝓅
, 1 ≤ 𝓅 < ∞ is a 𝔻-

Banach space with respect to the 𝔻-norm defined by  

‖𝓍‖𝔹ℂ
𝓅

= (∑ (|𝓍(𝑠)|𝜉)∞
𝑠=0

𝓅
)

1

𝓅, 
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the spaces ℬ𝒮𝔹ℂ and 𝒞𝒮𝔹ℂ are 𝔻-Banach spaces with respect to the 

𝔻-norm defined as  

‖𝓍‖𝔹ℂ
𝑏𝑠 = ‖𝓍‖𝔹ℂ

𝑐𝑠 = sup𝔻
𝑚∈ℕ    

|∑ 𝓍(𝑠)𝑚
𝑠=0 |𝜉, 

 and the space ℬ𝒱𝔹ℂ is a 𝔻-Banach space with respect to the 𝔻-norm 

defined by 

‖𝓍‖𝔹ℂ
𝑏𝑣 = sup𝔻

𝑚∈ℕ   
(∑ |𝓍(𝑠) − 𝓍(𝑠 − 1)|𝜉

𝑚
𝑠=0 ), with 𝓍(−1) = θ 

3.Multiplier and 𝛃-Dual Spaces of Sequence Spaces with 

Bicomplex Terms 

Definition 3.1. Assume that two subspaces 𝒳 = 𝒳1𝑒1 + 𝒳2𝑒2 ⊂

𝑤𝔹ℂ and 𝒴 = 𝒴1𝑒1 + 𝒴2𝑒2 ⊂ 𝑤𝔹ℂ. Let 𝓌 = (𝓌(𝑠)) and 𝓍 =

(𝓍(𝑠)) be two sequences in 𝑤𝔹ℂ with 𝓌(𝑠) = 𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2 

and 𝓍(𝑠) = 𝓍1(𝑠)𝑒1 + 𝓍2(𝑠)𝑒2 for each 𝑠 ∈ ℕ. Then, the set defined 

by 

ℳ𝔹ℂ(𝒳, 𝒴) = {𝓌 ∈ 𝑤𝔹ℂ: ∀𝓍 ∈ 𝒳, 𝓌 ⊗ 𝓍 ∈ 𝒴} 

can be expressed according to the idempotent representation as 

follows 

ℳ𝔹ℂ(𝒳, 𝒴) = {𝓌1: ∀𝓍1 ∈ 𝒳1,  𝓌1𝓍1 ∈ 𝒴1}𝑒1  

+{𝓌2: ∀𝓍2 ∈ 𝒳2, 𝓌2𝓍2 ∈ 𝒴2}𝑒2 

  = ℳ(𝒳1, 𝒴1)𝑒1 + ℳ(𝒳2, 𝒴2)𝑒2.           (3.1) 

This set is called the 𝔻-multiplier space of 𝒳 and 𝒴. If we 

specifically take 𝒴 = 𝒞𝒮𝔹ℂ, then we can write 

ℳ𝔹ℂ(𝒳, 𝒞𝒮𝔹ℂ) = ℳ(𝒳1, 𝒞𝒮)𝑒1 + ℳ(𝒳2, 𝒞𝒮)𝑒2       (3.2) 

This particular set is called the 𝛽𝔻-dual of 𝒳. Furthermore, the 𝛽𝔻-

dual of the space 𝒳 is, by virtue of (3.2), the linear combination of 
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the 𝛽-duals of 𝒳1 ⊂ 𝒲 and 𝒳2 ⊂ 𝒲, with respect to idempotent 

bases. Thus, it is written  

𝒳𝛽𝔻 = ℳ𝔹ℂ(𝒳, 𝒞𝒮𝔹ℂ) = 𝒳1
𝛽

𝑒1 + 𝒳2
𝛽

𝑒2. 

Definition 3.2. For every 𝑠, 𝑡 ∈ ℕ, let 𝒶(𝑠, 𝑡) = 𝒶1(𝑠, 𝑡)𝑒1 +

𝒶2(𝑠, 𝑡)𝑒2 with 𝒶(𝑠, 𝑡) ∈ 𝔹ℂ. In this case, 𝐴𝔹ℂ = (𝒶(𝑠, 𝑡)) is called 

as a infinite matrix (or a double sequence) with bicomplex terms. 

Furthermore, using the infinite matrices 𝐴1 = (𝒶1(𝑠, 𝑡)) and 𝐴2 =

(𝒶2(𝑠, 𝑡)) with complex terms, we can write 

𝐴𝔹ℂ = (𝒶(𝑠, 𝑡)) = (𝒶1(𝑠, 𝑡)𝑒1 + 𝒶2(𝑠, 𝑡)𝑒2) 

= (𝒶1(𝑠, 𝑡))𝑒1 + (𝒶2(𝑠, 𝑡))𝑒2 = 𝐴1𝑒1 + 𝐴2𝑒2 (3.3) 

The product of two infinite matrices 𝐴𝔹ℂ and 𝐵𝔹ℂ with 

bicomplex terms is expressed as 

𝐴𝔹ℂ𝐵𝔹ℂ = (𝐴1𝑒1 + 𝐴2𝑒2)(𝐵1𝑒1 + 𝐵2𝑒2) 

= (𝐴1𝐵1)𝑒1 + (𝐴2𝐵2)𝑒2.                     (3.4) 

This definition essentially states that a matrix with bicomplex 

terms can be decomposed into two matrices with complex terms, 

each multiplied by idempotent units 𝑒1 or 𝑒2, and their multiplication 

is performed component-wise. 

Definition 3.3. Let 𝒳 ⊂ 𝑤𝔹ℂ and 𝒴 ⊂ 𝑤𝔹ℂ. Also, let 𝓍 = (𝓍(𝑠)) ∈

𝒳 = 𝒳1𝑒1 + 𝒳2𝑒2 with 𝓍(𝑠) = 𝓍1(𝑠)𝑒1 + 𝓍2(𝑠)𝑒2 for every 𝑠 ∈

ℕ. If 𝐴𝔹ℂ
𝑘 (𝓍) = ∑ 𝑎(𝑘, 𝑠) ⊗ 𝓍(𝑠)∞

𝑠=0  for every 𝑘 ∈ ℕ and 𝓍 ∈ 𝒳 is 

𝔻-convergent and (𝐴𝔹ℂ
𝑘 (𝓍))

𝑘∈ℕ
∈ 𝒴, then the class of all infinite 

matrices 𝐴𝔹ℂ with bicomplex terms is denoted by (𝒳, 𝒴). Thus, for 

all 𝑘 ∈ ℕ and all 𝓍 ∈ 𝒳, we write 

(𝒳, 𝒴) = {𝐴𝔹ℂ: 𝐴𝔹ℂ
𝑘 ∈ 𝒳𝛽𝔻 ∧ (𝐴𝔹ℂ

𝑘 (𝓍))
𝑘

∈ 𝒴}.         (3.5) 

Definition 3.4. The set defined as  
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𝒳𝐴𝔹ℂ
= {𝓌 ∈ 𝑤𝔹ℂ :  (𝐴𝔹ℂ

𝑘 (𝓌))
𝑘∈ℕ

∈ 𝒳}             (3.6) 

is called the domain of the matrix 𝐴𝔹ℂ over the space 𝒳. 

Definition 3.5. Let 𝜇 = (𝜇(𝑠)) ∈ 𝑤𝔹ℂ with 𝜇(𝑠) = 𝜇1(𝑠)𝑒1 +

𝜇2(𝑠)𝑒2 for every 𝑠 ∈ ℕ. The set defined as 

  𝜇−1 ∗ 𝒳 = {𝓌 ∈ 𝑤𝔹ℂ:  𝜇 ⊗ 𝓌 ∈ 𝒳}                   (3.7) 

is called the 𝔻-reflection of the bicomplex sequence 𝜇 over the space 

𝒳. 

Furthermore, the set of all bicomplex sequences 𝜇 = (𝜇(𝑠)) 

with 𝜇1(𝑠) ≠ 0 and 𝜇2(𝑠) ≠ 0 for every 𝑠 ∈ ℕ is denoted by 𝒰𝔹ℂ. 

The multiplicative inverse of each 𝓊 ∈ 𝒰𝔹ℂ is written as 

          
1

𝓊(𝑠)
=

1

𝓊1(𝑠)
𝑒1 +

1

𝓊2(𝑠)
𝑒2                            (3.8) 

(Işık & Duyar, 2023). 

For any negative index s, we use the rule 𝓌(𝑠) = θ, namely 

𝓌1(𝑠) = 0 and 𝓌2(𝑠) = 0. The symbols Δ𝔹ℂ and Δ𝔹ℂ
+  denote the 

following operators: 

Δ𝔹ℂ𝓌 = (Δ𝔹ℂ𝓌(𝑠)) = (𝓌(𝑠) − 𝓌(𝑠 − 1)) 

= (Δ𝓌1(𝑠)𝑒1 + Δ𝓌2(𝑠)𝑒2) 

= Δ𝓌1𝑒1 + Δ𝓌2𝑒2                                        (3.9) 

and 

Δ𝔹ℂ
+ 𝓌 = (Δ𝔹ℂ

+ 𝓌(𝑠)) = (𝓌(𝑠) − 𝓌(𝑠 + 1)) 

= (Δ+𝓌1(𝑠))𝑒1 + (Δ+𝓌2(𝑠))𝑒2 

 = Δ+𝓌1𝑒1 + Δ+𝓌2𝑒2 .                             (3.10) 

In essence, these definitions introduce backward and forward 

difference operators for bicomplex sequences. They work by taking 
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the difference between consecutive terms of the sequence, and this 

operation is applied independently to each idempotent component 

(𝑒1 and 𝑒2) of the bicomplex numbers in the sequence. 

Definition 3.6. Let 𝑡(𝑘, 𝑠) = 𝑡1(𝑘, 𝑠)𝑒1 + 𝑡2(𝑘, 𝑠)𝑒2 for all 𝑘, 𝑠 ∈ ℕ. 

A infinite matrix 𝒯𝔹ℂ = (𝑡(𝑘, 𝑠))
𝑘,𝑠∈ℕ

 with bicomplex terms is 

called a 𝔻-triangular matrix, if its entries satisfy the following 

conditions: 

• If 𝑠 > 𝑘, then 𝑡(𝑘, 𝑠) = θ (equivalently 𝑡1(𝑘, 𝑠) = 0 and 

𝑡2(𝑘, 𝑠) = 0). 

• If 𝑠 = 𝑘, then 𝑡(𝑘, 𝑠) ≠ θ. 

In simpler terms, a 𝔻-triangular matrix is an infinite matrix 

with bicomplex terms, where all entries above the main diagonal are 

zero and the entries on the main diagonal are non-zero. This is 

analogous to the definition of a lower triangular matrix in standard 

matrix theory, extended to bicomplex numbers and their idempotent 

representation. 

Definition 3.7. For every 𝑘, 𝑠 ∈ ℕ, let 𝒽(𝑘, 𝑠) = 𝒽1(𝑘, 𝑠)𝑒1 +

𝒽2(𝑘, 𝑠)𝑒2 ∈ 𝔹ℂ with 

𝒽𝑖(𝑘, 𝑠) = {
1,    0 ≤ 𝑠 ≤ 𝑘  
0,    otherwise 

 , 𝑖 = 1,2 

and let ℋ𝔹ℂ = (𝒽(𝑘, 𝑠))
𝑘,𝑠∈ℕ

. Given any 𝓊, 𝓋 ∈ 𝒰𝔹ℂ and the subset 

ℛ = ℛ1𝑒1 + ℛ2𝑒2 ⊂ 𝑤𝔹ℂ, the space defined by  

   𝒵𝔹ℂ = 𝒵𝔹ℂ(𝓊, 𝓋; ℛ) = 𝓋−1 ∗ (𝓊−1 ∗ ℛ)ℋ𝔹ℂ
         (3.11) 

is called a bicomplex 𝒵-space.  

The equality (3.11) can be expanded as follows: 

𝒵𝔹ℂ = 𝓋−1 ∗ (𝓊−1 ∗ ℛ)ℋ𝔹ℂ
 

= {𝓌 ∈ 𝑤𝔹ℂ: 𝓋 ⊗ 𝓌 ∈ (𝓊−1 ∗ ℛ)ℋ𝔹ℂ
} 
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     = {𝓌 ∈ 𝑤𝔹ℂ: ℋ𝔹ℂ(𝓋 ⊗ 𝓌) ∈ 𝓊−1 ∗ ℛ}  

= {𝓌 ∈ 𝑤𝔹ℂ: 𝓊 ⊗ ℋ𝔹ℂ(𝓋 ⊗ 𝓌) ∈ ℛ}. 

For every 𝑠 ∈ ℕ, since 

𝓊(𝑠) ⊗ (ℋ𝔹ℂ
𝑠 (𝓋 ⊗ 𝓌)) 

= 𝓊(𝑠) ⊗ (∑ 𝒽(𝑠, 𝑘) ⊗∞
𝑘=0 (𝓋(𝑘) ⊗    𝓌(𝑘)))  

     = 𝓊(𝑠) ⊗ (∑ (𝓋(𝑘) ⊗ 𝓌(𝑘))𝑠
𝑘=0 ) 

   = ∑ (𝓊𝑖(𝑠) ∑ 𝓋𝑖(𝑘)𝓌𝑖(𝑘)𝑠
𝑘=0 )𝑒𝑖

2
𝑖=1 ,              

the 𝒵𝔹ℂ-space can be expressed as 

{𝓌: (∑ (𝓊𝑖(𝑠) ∑ 𝓋𝑖(𝑘)𝓌𝑖(𝑘)𝑠
𝑘=0 )𝑒𝑖

2
𝑖=1 )𝑠=0

∞ ∈ ℛ}  

= {𝓌1 ∈ 𝒲: (𝓊1(𝑠) ∑ 𝓋1(𝑘)𝓌1(𝑘)𝑠
𝑘=0 )𝑠=0

∞ ∈ ℛ1}𝑒1  

+{𝓌2 ∈ 𝒲: (𝓊2(𝑠) ∑ 𝓋2(𝑘)𝓌2(𝑘)𝑠
𝑘=0 )𝑆=0

∞ ∈ ℛ2}𝑒2.  

Consequently, this proves that the 𝒵𝔹ℂ-space with bicomplex 

terms can be written as the linear combination of two complex 𝒵-

spaces as follows:  

𝒵𝔹ℂ(𝓊, 𝓋; ℛ) = 𝒵(𝓊1, 𝓋1; ℛ1)𝑒1 + 𝒵(𝓊2, 𝓋2; ℛ2)𝑒2    (3.12) 

This derivation shows that operations on bicomplex sequence 

spaces often split into independent operations on the corresponding 

idempotent components, which simplifies the analysis considerably. 

Example 3.1. Let 𝒸 = (𝒸(𝑠)) be a sequence with 𝒸(𝑠) = 𝒸1(𝑠)𝑒1 +

𝒸2(𝑠)𝑒2 = 1𝑒1 + 1𝑒2 = 1𝔻 for all 𝑠 ∈ ℕ. If 𝓊 = 𝓋 = 𝒸, then, we 

have 𝒵𝔹ℂ(𝒸, 𝒸; 𝐶𝔹ℂ) = 𝒞𝒮𝔹ℂ and 𝒵𝔹ℂ(𝒸, 𝒸; 𝛷𝔹ℂ) = ℬ𝒮𝔹ℂ. 

Solution. It is a known result that 𝒵(𝑐, 𝑐; 𝐶) = 𝒞𝒮  and 

𝒵(𝑐, 𝑐; ℓ∞) = ℬ𝒮 (Malkowsky & Savaş, 2004). Thus, we have 

𝒵𝔹ℂ(𝒸, 𝒸; 𝐶𝔹ℂ) = 𝒵𝔹ℂ(𝒸, 𝒸; 𝐶𝑒1 + 𝐶𝑒2) 

= 𝒵(𝒸1, 𝒸1; 𝐶)𝑒1 + 𝒵(𝒸2, 𝑐2; 𝐶)𝑒2 
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 = 𝒞𝒮𝑒1 + 𝒞𝒮𝑒2 = 𝒞𝒮𝔹ℂ      

and 

𝒵𝔹ℂ(𝒸, 𝒸; 𝛷𝔹ℂ) = 𝒵𝔹ℂ(𝒸, 𝒸; ℓ∞𝑒1 + ℓ∞𝑒2) 

= 𝒵(𝒸1, 𝒸1; ℓ∞)𝑒1 + 𝒵(𝒸2, 𝒸2; ℓ∞)𝑒2  

 = ℬ𝒮𝑒1 + ℬ𝒮𝑒2 = ℬ𝒮𝔹ℂ. 

For every 𝑠 ∈ ℕ, let 𝑞(𝑠) = 𝑞1(𝑠)𝑒1 + 𝑞2(𝑠)𝑒2 ≻ θ. 

Consider the sequences 𝓋 = 𝑞 = (𝑞(𝑠)), 𝑄1(𝑚) = ∑ 𝑞1(𝑠)𝑚
𝑠=0  and 

𝑄2(𝑚) = ∑ 𝑞2(𝑠)𝑚
𝑠=0 . Let the sequence 𝑄 = (𝑄(𝑚)) with 𝑄(𝑚) =

𝑄1(𝑚)𝑒1 + 𝑄2(𝑚)𝑒2 for every m∈ ℕ and 𝓊 = 1 𝑄⁄  be given. In this 

scenario, if we use equation (3.12), then, for any 𝜏 = 𝜏1𝑒1 + 𝜏2𝑒2 ∈

𝒵𝔹ℂ, we get 

𝜏 ∈ 𝒵(𝓊1, 𝓋1; ℛ1)𝑒1 + 𝒵(𝓊2, 𝓋2; ℛ2)𝑒2 

⇔ 𝜏1 ∈ 𝒵 (
1

𝑄1
, 𝑞1; ℛ1) ∧ 𝜏2 ∈ 𝒵 (

1

𝑄2
, 𝑞2; ℛ2). 

Additionally, the following equalities have been established for 𝑖 =

1,2 (Jarrah & Malkowsky, 1998):  

• 𝒵 (
1

𝑄𝑖
, 𝑞𝑖; 𝐶0) = (𝒩, 𝑞𝑖)0

 

• 𝒵 (
1

𝑄𝑖
, 𝑞𝑖; 𝐶) = (𝒩, 𝑞𝑖) 

• 𝒵 (
1

𝑄𝑖
, 𝑞𝑖; ℓ∞) = (𝒩, 𝑞𝑖)

∞
. 

Using these equalities and (3.12), we can write the bicomplex 𝒵-

spaces as 

𝒵𝔹ℂ (
1

𝑄
, 𝑞; 𝐶𝔹ℂ

0 ) = (𝒩, 𝑞)
𝔹ℂ

0
 

= 𝒵 (
1

𝑄1
, 𝑞1; 𝐶0) 𝑒1 + 𝒵 (

1

𝑄2
, 𝑞2; 𝐶0) 𝑒2  

= (𝒩, 𝑞1)
0

𝑒1 + (𝒩, 𝑞2)
0

𝑒2,                             (3.13) 
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𝒵𝔹ℂ (
1

𝑄
, 𝑞; 𝐶𝔹ℂ) = (𝒩, 𝑞)

𝔹ℂ
    

= 𝒵 (
1

𝑄1
, 𝑞1; 𝐶) 𝑒1 + 𝒵 (

1

𝑄2
, 𝑞2; 𝐶) 𝑒2   

= (𝒩, 𝑞1)𝑒1 + (𝒩, 𝑞2)𝑒2,                               (3.14) 

𝒵𝔹ℂ (
1

𝑄
, 𝑞; 𝛷𝔹ℂ) = (𝒩, 𝑞)

𝔹ℂ

∞
    

= 𝒵 (
1

𝑄1
, 𝑞1; ℓ∞) 𝑒1 + 𝒵 (

1

𝑄2
, 𝑞2; ℓ∞) 𝑒2   

= (𝒩, 𝑞1)
∞

𝑒1 + (𝒩, 𝑞2)
∞

𝑒2.                            (3.15) 

These sets are the sets of 𝔻-null, 𝔻-convergent, and 𝔻-

bounded sequences of 𝔻-weighted means with bicomplex terms, 

respectively. 

Lemma 3.1. Let 𝒳 = 𝒳1𝑒1 + 𝒳2𝑒2 ⊂ 𝑤𝔹ℂ, 𝒳̂ = 𝒳̂1𝑒1 + 𝒳̂2𝑒2 ⊂

𝑤𝔹ℂ, 𝒴 = 𝒴1𝑒1 + 𝒴2𝑒2 ⊂ 𝑤𝔹ℂ and 𝒴̂ = 𝒴̂1𝑒1 + 𝒴̂2𝑒2 ⊂ 𝑤𝔹ℂ, and 

also let 𝓊 ∈ 𝒰𝔹ℂ. The following propositions hold: 

a) If 𝒳̂ ⊂ 𝒳 , then ℳ𝔹ℂ(𝒳, 𝒴) ⊂ ℳ𝔹ℂ(𝒳̂, 𝒴). 

b) If 𝒴 ⊂ 𝒴̂, then ℳ𝔹ℂ(𝒳, 𝒴) ⊂ ℳ𝔹ℂ(𝒳, 𝒴̂). 

c) ℳ𝔹ℂ(𝑢−1 ∗ 𝒳, 𝒴) = (1 𝓊⁄ )−1 ∗ ℳ𝔹ℂ(𝒳, 𝒴). 

Proof. a) Assume 𝒳̂ ⊂ 𝒳. This implies that 𝒳̂1 ⊂ 𝒳1 and 𝒳̂2 ⊂ 𝒳2. 

It is a known result in (Malkowsky & Savaş, 2004) that if 𝒳̂𝑖 ⊂ 𝒳𝑖 

for 𝑖 = 1,2 and 𝒯 ⊂ 𝒲, then ℳ(𝒳𝑖 , 𝒯) ⊂ ℳ(𝒳̃𝑖 , 𝒯). Using (3.1), 

we have  

ℳ𝔹ℂ(𝒳, 𝒴) = ℳ(𝒳1, 𝒴1)𝑒1 + ℳ(𝒳2, 𝒴2)𝑒2 

⊂ ℳ(𝒳̂1, 𝒴1)𝑒1 + ℳ(𝒳̂2, 𝒴2)𝑒2 

= ℳ𝔹ℂ(𝒳̂, 𝒴). 
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b) Assume 𝒴 ⊂ 𝒴̂. This implies that 𝒴1 ⊂ 𝒴̂1 and 𝒴2 ⊂ 𝒴̂2. It is a 

known result in (Malkowsky & Savaş, 2004) that if 𝒴𝑖 ⊂ 𝒴̂𝑖 and 

𝒫 ⊂ 𝒲, (a general complex sequence space), then ℳ(𝒫, 𝒴𝑖) ⊂

ℳ(𝒫, 𝒴̂𝑖). Thus, 

ℳ𝔹ℂ(𝒳, 𝒴) = ℳ(𝒳1, 𝒴1)e1 + ℳ(𝒳2, 𝒴2)e2  

⊂ ℳ(𝒳1, 𝒴̂1)𝑒1 + ℳ(𝒳2, 𝒴̂2)𝑒2 

= ℳ𝔹ℂ(𝒳, 𝒴̂) 

is obtained.  

c) First, let us show the equality 𝓊−1 ∗ 𝒳 = (𝓊1
−1 ∗ 𝒳1)𝑒1 +

(𝓊2
−1 ∗ 𝒳2)𝑒2. Let 𝓋 ∈ 𝑢−1 ∗ 𝒳. By (3.7), we get 

         𝓋 ∈ 𝓊−1 ∗ 𝒳 ⇔ 𝓊 ⊗ 𝓋 ∈ 𝒳 = 𝒳1𝑒1 + 𝒳2𝑒2 

 ⇔ 𝓊1𝓋1𝑒1 + 𝓊2𝓋2𝑒2 ∈ 𝒳1𝑒1 + 𝒳2𝑒2       

                                 ⇔ 𝓊1𝓋1 ∈ 𝒳1 ∧ 𝓊2𝓋2 ∈ 𝒳2 

 ⇔ 𝓋1 ∈ 𝓊1
−1 ∗ 𝒳1 ∧ 𝓋2 ∈ 𝓊2

−1 ∗ 𝒳2 

 ⇔ 𝓋 ∈ (𝓊1
−1 ∗ 𝒳1)𝑒1 + (𝓊2

−1 ∗ 𝒳2)𝑒2. 

Thus, the desired is achieved. Also, using (3.1), we have  

 ℳ𝔹ℂ(𝓊−1 ∗ 𝒳, 𝒴) 

= ℳ(𝓊1
−1 ∗ 𝒳1, 𝒴1)𝑒1 + ℳ(𝓊2

−1 ∗ 𝒳2, 𝒴2)𝑒2. 

It is known that ℳ(𝓊𝑖
−1 ∗ 𝒳𝑖, 𝒴𝑖) = (1 𝓊𝑖⁄ )−1 ∗ ℳ(𝒳𝑖, 𝒴𝑖) for 𝑖 =

1,2, (Malkowsky & Savaş, 2004). Substituting this into the 

bicomplex expression, we have 

ℳ𝔹ℂ(𝓊−1 ∗ 𝒳, 𝒴) = ∑ ((1 𝓊𝑖⁄ )−1 ∗ ℳ(𝒳𝑖, 𝒴𝑖))𝑒𝑖
2
𝑖=1 . 

Let 𝜆 = 𝜆1𝑒1 + 𝜆2𝑒2 ∈ ℳ𝔹ℂ(𝓊−1 ∗ 𝒳, 𝒴)). Then, we get, for 𝑖 =

1,2, 

𝜆𝑖 ∈ (1 𝓊𝑖⁄ )−1 ∗ ℳ(𝒳𝑖 , 𝒴𝑖) ⇔ (1 𝓊𝑖⁄ )𝜆𝑖 ∈ ℳ(𝒳𝑖 , 𝒴𝑖) 
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⇔ (1 𝓊⁄ ) ⊗ 𝜆 ∈ ℳ𝔹ℂ(𝒳, 𝒴) 

⇔ 𝜆 ∈ (1 𝓊⁄ )−1 ∗ ℳ𝔹ℂ(𝒳, 𝒴). 

This completes the proof of part c). 

Lemma 3.2. The following equalities are true: 

(a) ℳ𝔹ℂ(𝐶𝔹ℂ
0 , 𝐶𝔹ℂ

0 ) = 𝛷𝔹ℂ, 

(b) ℳ𝔹ℂ(𝐶𝔹ℂ, 𝐶𝔹ℂ) = 𝐶𝔹ℂ, 

(c) ℳ𝔹ℂ(𝛷𝔹ℂ, 𝐶𝔹ℂ
0 ) = 𝐶𝔹ℂ

0 , 

(d) If 1 ≤ 𝓆 < ∞, ℳ𝔹ℂ(ℒ𝔹ℂ
𝓆

, 𝐶𝔹ℂ
0 ) = 𝛷𝔹ℂ.  

Proof. It is well known that ℳ(𝐶0, 𝐶0) = ℓ∞, ℳ(𝐶, 𝐶) = 𝐶, 

ℳ(ℓ∞, 𝐶0) = 𝐶0 and if 1 ≤ 𝓆 < ∞, then ℳ(ℓ𝓆, 𝐶0) = ℓ∞ 

(Malkowsky & Savaş, 2004). Let us use Lemma 2.1. 

(a)  ℳ𝔹ℂ(𝐶𝔹ℂ
0 , 𝐶𝔹ℂ

0 ) = ℳ𝔹ℂ(𝐶0𝑒1 + 𝐶0𝑒2, 𝐶0𝑒1 + 𝐶0𝑒2) 

= ℳ(𝐶0, 𝐶0)𝑒1 + ℳ(𝐶0, 𝐶0)𝑒2 

                    = ℓ∞𝑒1 + ℓ∞𝑒2 = 𝛷𝔹ℂ, 

(b)  ℳ𝔹ℂ(𝐶𝔹ℂ, 𝐶𝔹ℂ) = ℳ𝔹ℂ(𝐶𝑒1 + 𝐶𝑒2, 𝐶𝑒1 + 𝐶𝑒2)  

= ℳ(𝐶, 𝐶)𝑒1 + ℳ(𝐶, 𝐶)𝑒2  

= 𝐶𝑒1 + 𝐶𝑒2 = 𝐶𝔹ℂ, 

(c)  ℳ𝔹ℂ(𝛷𝔹ℂ, 𝐶𝔹ℂ
0 ) = ℳ𝔹ℂ(ℓ∞𝑒1 + ℓ∞𝑒2, 𝐶0𝑒1 + 𝐶0𝑒2) 

= ℳ(ℓ∞, 𝐶0)𝑒1 + ℳ(ℓ∞, 𝐶0)𝑒2 

                     = 𝐶0𝑒1 + 𝐶0𝑒2 = 𝐶𝔹ℂ
0 , 

(d)  ℳ𝔹ℂ(ℒ𝔹ℂ
𝓆

, 𝐶𝔹ℂ
0 ) = ℳ𝔹ℂ(ℓ𝓆𝑒1 + ℓ𝓆𝑒2, 𝐶0𝑒1 + 𝐶0𝑒2) 

= ℳ(ℓ𝓆, 𝐶0)𝑒1 + ℳ(ℓ𝓆, 𝐶0)𝑒2        

                          = ℓ∞𝑒1 + ℓ∞𝑒2 = 𝛷𝔹ℂ. 
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Lemma 3.3. Let 𝒳 = 𝒳1𝑒1 + 𝒳2𝑒2 ⊂ 𝑤𝔹ℂ and 𝒴 = 𝒳ℋ𝔹ℂ
. Also, let 

𝒦1 = (𝒳𝛽𝔻)
Δ𝔹ℂ

+ , 𝒦2 = ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ) and 𝒦3 = ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ
0 ). 

Then 

                           𝒦1 ∩ 𝒦2 ⊂ 𝒴𝛽𝔻                               (3.16) 

and if  𝒳 is a 𝔻-normal set, then 

                                    𝒴𝛽𝔻 = 𝒦1 ∩ 𝒦3.                              (3.17) 

Moreover, for every 𝒶 = (𝒶(𝑠)) ∈ 𝒴𝛽𝔻 and 𝓎 = (𝓎(𝑠)) ∈ 𝒴,  

          ∑ 𝒶(𝑠) ⊗ 𝓎(𝑠)∞
𝑠=0  = ∑ Δ𝔹ℂ

+ (𝒶(𝑠))∞
𝑠=0 ⊗ ℋ𝔹ℂ

𝑠 (𝓎).     (3.18) 

Proof. Let any 𝓎 = (𝓎(𝑠)) = (𝓎1(𝑠)𝑒1 + 𝓎2(𝑠)𝑒2) ∈ 𝒴 be given. 

Then ℋ𝔹ℂ(𝓎) ∈ 𝒳 and  

ℋ𝔹ℂ
𝑠 (𝓎) = ∑ 𝒽(𝑠, 𝑘) ⊗ 𝓎(𝑘)∞

𝑘=0 = ∑ 𝓎(𝑘)𝑠
𝑘=0 = 𝓌(𝑠), 

𝓌 = (𝓌(𝑠)) ∈ 𝒳.  

Also, for all 𝑠 ∈ ℕ, we have 

𝓌(𝑠) = (∑ 𝓌(𝑘)𝑠
𝑘=0 ) − (∑ 𝓌(𝑘)𝑠−1

𝑘=0 )  

= ∑ (𝓌(𝑘) − 𝓌(𝑘 − 1))𝑠
𝑘=0   

= ∑ Δ𝔹ℂ𝓌(𝑘)𝑠
𝑘=0 = ∑ 𝓎(𝑘)𝑠

𝑘=0 = ℋ𝔹ℂ
𝑠 (𝓎).   

Thus, using 𝒴 = 𝒳ℋ𝔹ℂ
, we can write  

𝓌 ∈ 𝒳 ⇔ 𝓌 = ℋ𝔹ℂ(𝓎) ∈ 𝒳 ⇔ 𝓎 ∈ 𝒳ℋ𝔹ℂ
.          (3.19) 

Additionally, for each 𝒶 = (𝒶(𝑠)) = (𝒶1(𝑠)𝑒1 + 𝒶2(𝑠)𝑒2) ∈ 𝑤𝔹ℂ, 

we get 

∑ 𝒶(𝑘) ⊗ 𝓎(𝑘)𝑠
𝑘=0 = ∑ 𝒶(𝑘) ⊗ Δ𝔹ℂ𝓌(𝑘)𝑠

𝑘=0   

= (∑ 𝒶1(𝑘)(Δ𝓌1(𝑘))𝑠
𝑘=0 )𝑒1 + (∑ 𝒶2(𝑘)(Δ𝓌2(𝑘))𝑠

𝑘=0 )𝑒2.  (3.20) 

Also, using Δ𝓌𝑖(−1) = 0, we have 
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∑ 𝒶𝑖(𝑘)(Δ𝓌𝑖(𝑘))𝑠
𝑘=0 = ∑ 𝒶𝑖(𝑘)(𝓌𝑖(𝑘) − 𝓌𝑖(𝑘 − 1))𝑠

𝑘=0    

 = ∑ 𝒶𝑖(𝑘)𝓌𝑖(𝑘)𝑠
𝑘=0 − ∑ 𝒶𝑖(𝑘)𝓌𝑖(𝑘 − 1)𝑠

𝑘=0   

 = ∑ 𝒶𝑖(𝑘)𝓌𝑖(𝑘)𝑠−1
𝑘=0 + 𝒶𝑖(𝑠)𝓌𝑖(𝑠) − ∑ 𝒶𝑖(𝑘 + 1)𝓌𝑖(𝑘)𝑠−1

𝑘=0  

 = ∑ {𝒶𝑖(𝑘) − 𝒶𝑖(𝑘 + 1)}𝓌𝑖(𝑘)𝑠−1
𝑘=0 + 𝒶𝑖(𝑠)𝓌𝑖(𝑠)   

 = ∑ (Δ+𝒶𝑖(𝑘))𝓌𝑖(𝑘) + 𝒶𝑖(𝑠)𝓌𝑖(𝑠)𝑠−1
𝑘=0 .  

If we substitute this in (3.20) and use (3.10), then we obtain 

           ∑ 𝒶(𝑘) ⊗ 𝓎(𝑘)𝑠
𝑘=0  

= ∑ Δ𝔹ℂ
+ 𝒶(𝑘) ⊗ 𝓌(𝑘)𝑠−1

𝑘=0 ⊕ 𝒶(𝑠) ⊗ 𝓌(𝑠).    (3.21) 

Now, let an arbitrary 𝒶 = (𝒶(𝑠)) ∈ 𝒦1 ∩ 𝒦2 be given. Then, 

since 𝒶 ∈ 𝒦1 = (𝒳𝛽𝔻)
Δ𝔹ℂ

+ , we can write Δ𝔹ℂ
+ 𝒶 ∈ 𝒳𝛽𝔻. Accordingly, 

for every 𝓌 ∈ 𝒳, we have Δ𝔹ℂ
+ (𝒶) ⊗ 𝓌 ∈ 𝒞𝒮𝔹ℂ, and so 

∑ (Δ𝔹ℂ
+ 𝒶(𝑠)) ⊗ 𝓌(𝑠)∞

𝑠=0 ≺ ∞𝔻.                      (3.22) 

Also, we can write 

(Δ𝔹ℂ
+ 𝒶(𝑠) ⊗ 𝓌(𝑠)) = Δ𝔹ℂ

+ (𝒶) ⊗ 𝓌 

= Δ𝔹ℂ
+ (𝒶) ⊗ ℋ𝔹ℂ(𝓎) ∈ 𝒞𝒮𝔹ℂ.     (3.23) 

Furthermore, since 𝒶 ∈ 𝒦2 = ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ), by (3.19), we have 

     𝒶 ⊗ 𝓌 = 𝒶 ⊗ ℋ𝔹ℂ(𝓎) ∈ 𝐶𝔹ℂ                     (3.24) 

for every 𝓌 ∈ 𝒳. If (3.21), (3.22), and (3.24) are used, then we get 

∑ 𝒶(𝑘) ⊗ 𝓎(𝑘)∞
𝑘=0 ≺ ∞𝔻, which means 𝒶 ⊗ 𝓎 ∈ 𝒞𝒮𝔹ℂ for every 

𝑦 ∈ 𝒴. This shows that 𝒶 ∈ 𝒴𝛽𝔻, and (3.16) is proved. 

If 𝐶𝔹ℂ
0 ⊂ 𝐶𝔹ℂ and Lemma 3.1. (b) are used, we find 

                   𝒦3 = ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ
0 ) ⊂ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ) = 𝒦2                       

and thus 

        𝒦1 ∩ 𝒦3 ⊂ 𝒦1 ∩ 𝒦2 ⊂ 𝒴𝛽𝔻                        (3.25) 
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If 𝒳 is a 𝔻-normal set and 𝒶 ∈ 𝒴𝛽𝔻, then 𝒶 ⊗ 𝓎 =

(𝒶(𝑠) ⊗ 𝓎(𝑠)) ∈ 𝒞𝒮𝔹ℂ for every 𝓎 ∈ 𝒴, and thus (𝒶1(𝑠)𝓎1(𝑠)) ∈

𝒞𝒮 and (𝒶2(𝑠)𝓎2(𝑠)) ∈ 𝒞𝒮. From this, we obtain 𝒶1(𝑠)𝓎1(𝑠) → 0 

and 𝒶2(𝑠)𝓎2(𝑠) → 0 as 𝑠 → ∞. Thus, it is observed that 𝒶(𝑠) ⊗

𝓎(𝑠) → θ. In this case, we get 𝒶 ⊗ Δ𝔹ℂ𝓌 ∈ 𝐶𝔹ℂ
0  for every 𝓌 ∈ 𝒳. 

Now, let 𝑥̃ = (𝑥̃(𝑠)) with 𝑥̃(𝑠) = (−1)𝑠|𝓌(𝑠)|𝜉 for all 𝓌 ∈ 𝒳 and 

𝑠 ∈ ℕ. Then, we have  

|(−1)𝑠 ⊙ |𝓌(𝑠)|𝜉|
𝜉

≼ |𝓌(𝑠)|𝜉 

for every 𝑠 ∈ ℕ and using the fact that 𝒳 is a 𝔻-normal set, we 

obtain 𝑥̃ ∈ 𝒳, and so 𝒶 ⊗ Δ𝔹ℂ𝑥̃ ∈ 𝐶𝔹ℂ
0 . Also, since  

𝒶 ⊗ Δ𝔹ℂ((−1)𝑠 ⊙ |𝓌(𝑠)|𝜉)

= 𝒶 ⊗ Δ𝔹ℂ((−1)𝑠|𝓌1(𝑠)|𝑒1 + (−1)𝑠|𝓌2(𝑠)|𝑒2) 

= (−1)s(∑ 𝒶𝑖(s)(|𝓌𝑖(s)| + |𝓌𝑖(𝑠 − 1)|)𝑒𝑖
2
𝑖=1 ), 

we obtain 𝒶1𝓌1 = (𝒶1(𝑠)𝓌1(𝑠)) → 0 and 𝑎2𝓌2 =

(𝒶2(𝑠)𝓌2(𝑠)) →0. Thus, 𝒶 ⊗ 𝓌 → θ for every 𝓌 ∈ 𝒳. This 

shows that 𝒶 ∈ 𝒦3 = ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ
0 ).  

Furthermore, if we take the 𝔻-limit of both sides of 

expression (3.21) and use the fact that 𝒶 ⊗ 𝓌 ∈ 𝐶𝔹ℂ
0  for every 𝓌 ∈

𝒳, then we get 

lim𝔻
𝑠→∞   

∑ 𝒶(𝑘) 𝓎(𝑘)𝑠
𝑘=0   

= lim𝔻
𝑠→∞   

(∑ (Δ𝔹ℂ
+ 𝒶(𝑘)) ⊗ 𝓌(𝑘)𝑠−1

𝑘=0 ⊕ 𝒶(𝑠) ⊗ 𝓌(𝑠)),  

and so 

       ∑ 𝒶(𝑘) ⊗ 𝓎(𝑘)∞
𝑘=0 = ∑ (Δ𝔹ℂ

+ 𝒶(𝑘)) ⊗ 𝓌(𝑘)∞
𝑘=0 .    (3.26) 

On the other hand, since 𝒶 ∈ 𝒴𝛽𝔻 , both sums are finite. Since this 

holds for every 𝓌 ∈ 𝒳, then Δ𝔹ℂ
+ 𝒶 = (Δ𝔹ℂ

+ 𝒶(𝑠)) ∈ 𝒳𝛽𝔻, and 
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therefore 𝒶 ∈ (𝒳𝛽𝔻)
Δ𝔹ℂ

+ = 𝒦1. Thus, we have 𝒶 ∈ 𝒦1 ∩ 𝒦3 for 

every 𝒶 ∈ 𝒴𝛽𝔻  and therefore 

          𝒴𝛽𝔻 ⊂ 𝒦1 ∩ 𝒦3                              (3.27) 

If (3.25) and (3.27) are used, we get 𝒴𝛽𝔻 = 𝒦1 ∩ 𝒦3. 

 Additionally, if the equality 𝓌 = (𝓌(𝑠)) = (ℋ𝔹ℂ
𝑠 (𝓎)) =

ℋ𝔹ℂ(𝓎) is used in expression (3.26), then (3.18) is true.  

Lemma 3.4. For arbitrary sequences 𝓌 = (𝓌(𝑠)) ∈ 𝒳 = 𝒳1𝑒1 +

𝒳2𝑒2 ⊂ 𝑤𝔹ℂ and 𝓊 = (𝓊(𝑠)), 𝓋 = (𝓋(𝑠)) ∈ 𝒰𝔹ℂ with 𝓌(𝑠) =

𝓌1(𝑠)𝑒1 + 𝓌2(𝑠)𝑒2, 𝓊(𝑠) = 𝓊1(𝑠)𝑒1 + 𝓊2(𝑠) 𝑒2 and 𝓋(𝑠) =

𝓋1(𝑠)𝑒1 + 𝓋2(𝑠)𝑒2 for all 𝑠 ∈ ℕ, the following equalities hold: 

a)  𝓌 ⊗
1

𝓊
=

1

𝓊
⊗ 𝓌 =

𝓌

𝓊
,  

b)  𝓌 ⊗
1

𝓊
⊗

1

𝓋
=

𝓌

𝓊⊗𝓋
,  

c)  𝓌 ⊗
𝓊

𝓋
=

𝓌⊗𝓊

𝓋
 . 

Proof. For 𝑏1 ≠ 0 ≠ 𝑏2, the equality holds 

𝑎1𝑒1+𝑎2𝑒2

𝑏1𝑒1+𝑏2𝑒2
=

𝑎1

𝑏1
𝑒1 +

𝑎2

𝑏2
𝑒2  

exists (Luna–Elizarraras & et al., 2015). If this equation and the 

vector multiplication operation defined on 𝑤𝔹ℂ are used, (a), (b) and 

(c) are easily obtained. 

Lemma 3.5. Let 𝒳 = 𝒳1𝑒1 + 𝒳2𝑒2 ⊂ 𝑤𝔹ℂ, 𝓊 = (𝓊(𝑠)) ∈ 𝒰𝔹ℂ 

and 𝓋 = (𝓋(𝑠)) ∈ 𝒰𝔹ℂ. If the set 𝒳 is 𝔻-normal, then the set 𝓊−1 ∗

𝒳 is also 𝔻-normal. Furthermore, the following equality holds: 

ℳ𝔹ℂ(𝓋−1 ∗ (𝓊−1 ∗ 𝒳)ℋ𝔹ℂ
, 𝒞𝒮𝔹ℂ) 

= (1 𝓋⁄ )−1 ∗ ((𝓊−1 ∗ 𝒳)ℋ𝔹ℂ
)

𝛽𝔻
             (3.28) 
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Proof. Let 𝜇 = (𝜇(𝑠)) ∈ 𝓊−1 ∗ 𝒳 with 𝜇(𝑠) = 𝜇1(𝑠)𝑒1 + 𝜇2(𝑠)𝑒2 

for every 𝑠 ∈ ℕ, and |𝛿(𝑠)|𝜉 ≼ |𝜇(𝑠)|𝜉. In this case, 𝓊 ⊗ 𝜇 ∈ 𝒳, 

|𝛿1(𝑠)| ≤ |𝜇1(𝑠)| and |𝛿2(𝑠)| ≤ |𝜇2(𝑠)| are obtained. Then, |(𝓊 ⊗

𝛿)(𝑠)|𝜉 ≼ |(𝓊 ⊗ 𝜇)(𝑠)|𝜉 is written and if is used that the set 𝒳 is 

𝔻-normal, then we obtain 𝓊 ⊗ 𝛿 ∈ 𝒳, hence 

𝛿 = (𝛿(𝑠)) ∈ 𝓊−1 ∗ 𝒳. Thus, it is seen that the set 𝓊−1 ∗ 𝒳 is also 

𝔻-normal. By Lemma 3.1 (c), we get 

ℳ𝔹ℂ(𝓋−1 ∗ (𝓊−1 ∗ 𝒳)ℋ𝔹ℂ
, 𝒞𝒮𝔹ℂ) 

= (1 𝓋⁄ )−1 ∗ ℳ𝔹ℂ((𝓊−1 ∗ 𝒳)ℋ𝔹ℂ
, 𝒞𝒮𝔹ℂ) 

           = (1 𝓋⁄ )−1 ∗ ((𝓊−1 ∗ 𝒳)ℋ𝔹ℂ
)

𝛽𝔻
. 

Theorem 3.1. Let 𝓊 = (𝓊(𝑠)) ∈ 𝒰𝔹ℂ, 𝓋 = (𝓋(𝑠)) ∈ 𝒰𝔹ℂ, 𝒳 =

𝒳1𝑒1 + 𝒳2𝑒2 ⊂ 𝑤𝔹ℂ and 𝒵𝔹ℂ = 𝒵𝔹ℂ(𝓊, 𝓋; 𝒳). Then 

𝒵𝔹ℂ
𝛽𝔻 ⊃ {𝒶:

1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ 𝒳𝛽𝔻 ∧

𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ)}  (3.29) 

and if 𝒳 is a 𝔻-normal set, then 

𝒵𝔹ℂ
𝛽𝔻 = {𝒶:

1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ 𝒳𝛽𝔻 ∧

𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ

0 )}   (3.30) 

holds. Moreover, for 𝒶 = (𝒶(𝑠)) ∈ 𝒵𝔹ℂ
𝛽𝔻 and 𝜏 = (𝜏(𝑠)) ∈ 𝒵𝔹ℂ, we 

obtain 

      ∑ 𝒶(𝑠) ⊗ 𝜏(𝑠)∞
𝑠=0 = ∑ Δ𝔹ℂ

+ (
𝒶(𝑠)

𝓋(𝑠)
)∞

𝑠=0 ⊗ ℋ𝔹ℂ
𝑠 (𝓋 ⊗ 𝜏)  (3.31) 

Proof. Firstly, by (3.28), we can write 𝒵𝔹ℂ
𝛽𝔻 = (1 𝓋⁄ )−1 ∗ 𝒴𝛽𝔻  with 

𝒴 = (𝓊−1 ∗ 𝒳)ℋ𝔹ℂ
. In this case, we write (1 𝓋⁄ ) ⊗ 𝒶 ∈ 𝒴𝛽𝔻 for 

each 𝒶 ∈ 𝒵𝔹ℂ
𝛽𝔻. Hence, there exists a 𝓎 = (𝓎(𝑠)) ∈ 𝒴𝛽𝔻 such that 

𝓎(𝑠) = 𝓎1(𝑠)𝑒1 + 𝓎2(𝑠)𝑒2 

with 
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𝓎1(𝑠) =
𝒶1(𝑠)

𝓋1(𝑠)
, 𝓎2(𝑠) =

𝒶2(𝑠)

𝓋2(𝑠)
 . 

If we take 𝓊−1 ∗ 𝒳 instead of 𝒳 in Lemma 3.3, then 𝒦1, 𝒦2 and 𝒦3 

are written as  

𝒦1 = ((𝓊−1 ∗ 𝒳)𝛽𝔻)
Δ𝔹ℂ

+ = ((1 𝓊⁄ )−1 ∗ 𝒳𝛽𝔻)
Δ𝔹ℂ

+  

 𝒦2 = ℳ𝔹ℂ((𝓊−1 ∗ 𝒳), 𝐶𝔹ℂ) = (1 𝓊⁄ )−1 ∗ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ) 

and 

 𝒦3 = ℳ𝔹ℂ ((𝓊−1 ∗ 𝒳), 𝐶𝔹ℂ
0 ) = (1 𝓊⁄ )−1 ∗ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ

0 ). 

In this case, if (3.16) is used, then 

𝒦1 ∩ 𝒦2 = ((1 𝓊⁄ )−1 ∗ 𝒳𝛽𝔻)
Δ𝔹ℂ

+ ∩ {(1 𝓊⁄ )−1 ∗ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ)} 

⊂ 𝒴𝛽𝔻 = (1 𝓋⁄ ) ⊗ 𝒵𝔹ℂ
𝛽𝔻 

holds. Accordingly,  

{𝓋 ⊗ 𝓌 ∈ 𝑤𝔹ℂ: 𝓌 ∈ ((
1

𝓊
)

−1

∗ 𝒳𝛽𝔻)
Δ𝔹ℂ

+
∧ 𝓌 ∈ {(

1

𝓊
)

−1

∗

ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ)}} ⊂ 𝒵𝔹ℂ
𝛽𝔻. 

If we receive 𝓋 ⊗ 𝓌 = 𝒶 and use Lemma 3.4, then we write 

{𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ 𝒳𝛽𝔻 ∧

𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ)} ⊂ 𝒵𝔹ℂ

𝛽𝔻, 

and thus (3.29) is obtained. 

Now, let 𝒳 be a 𝔻-normal set. If Lemma 3.5 and (3.17) are 

used, we write 

𝒦1 ∩ 𝒦3 = 𝒴𝛽𝔻 = (1 𝓋⁄ ) ⊗ 𝒵𝔹ℂ
𝛽𝔻 

and thus 
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{𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ 𝒳𝛽𝔻 ∧

𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ

0 )} = 𝒵𝔹ℂ
𝛽𝔻. 

This proves (3.30). 

If 𝜏 = (𝜏(𝑘)) ∈ 𝒵𝔹ℂ, then, for 𝑠 ∈ ℕ, as in Definition 3.7, we 

write 

𝓍𝑖(𝑠) = 𝓊𝑖(𝑠) ∑ 𝓋𝑖(𝑘)𝜏𝑖(𝑘)𝑠
𝑘=0 ,  𝑖 = 1,2 

and so 

(𝓍𝑖 𝓊𝑖⁄ )(𝑠) = ∑ 𝓋𝑖(𝑘)𝜏𝑖(𝑘)𝑠
𝑘=0 ,  𝑖 = 1,2  

with 𝓍 = (𝓍(𝑠)) = (𝓍1(𝑠)𝑒1 + 𝓍2(𝑠)𝑒2) ∈ 𝒳. Also, for every 𝑠 ∈

ℕ,  

𝓋𝑖(𝑠)𝜏𝑖(𝑠) = ∑ 𝓋𝑖(𝑘)𝜏𝑖(𝑘)𝑠
𝑘=0 − ∑ 𝓋𝑖(𝑘)𝜏𝑖(𝑘)𝑠−1

𝑘=0    

 = (𝓍𝑖 𝓊𝑖⁄ )(𝑠) − (𝓍𝑖 𝓊𝑖⁄ )(𝑠 − 1) 

 = Δ((𝓍𝑖 𝓊𝑖⁄ )(𝑠)), 𝑖 = 1,2 

and hence  

𝜏𝑖(𝑠) = (1 𝓋𝑖(𝑠)⁄ )Δ((𝓍𝑖 𝓊𝑖⁄ )(𝑠)) 

is written. From this, for every 𝑠 ∈ ℕ, 

𝜏(𝑠) = ∑ 𝜏𝑖(𝑠)𝑒𝑖
2
𝑖=1 = ∑ (1 𝓋𝑖(𝑠)⁄ )Δ((𝓍𝑖 𝓊𝑖⁄ )(𝑠))𝑒𝑖

2
𝑖=1    

 = (∑ (1 𝓋𝑖(𝑠)⁄ )𝑒𝑖
2
𝑖=1 ) ⊗ Δ𝔹ℂ(∑ (𝓍𝑖(𝑠) 𝓊𝑖(𝑠)⁄ )𝑒𝑖

2
𝑖=1 )    

 = ((1 𝓋⁄ ) ⊗ Δ𝔹ℂ(𝓍 𝓊⁄ ))(𝑠). 

is obtained. Now, let 𝑎 ∈ 𝒵𝔹ℂ
𝛽𝔻. If we take 𝜏 ∈ 𝒵𝔹ℂ(𝓊, 𝓋; 𝒳) with 

𝜏 = (1 𝓋⁄ ) ⊗ Δ𝔹ℂ(𝓍 𝓊⁄ ), then we write 

 (∑ 𝒶(𝑘) ⊗ 𝜏(𝑘)𝑠
𝑘=0 )𝑠=0

∞  

= (∑ (𝒶(𝑘) ⊗ (
1

𝓋(𝑘)
) ⊗ Δ𝔹ℂ (

𝓍(𝑘)

𝓊(𝑘)
))𝑠

𝑘=0 )
𝑠=0

∞

∈ 𝐶𝔹ℂ    
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and, by (3.21), we have 

∑ 𝒶(𝑘) ⊗ 𝜏(𝑘)𝑠
𝑘=0      

= ∑ (
1

𝓊(𝑘)
⊗ Δ𝔹ℂ

+ (
𝒶(𝑘)

𝓋(𝑘)
)) ⊗ 𝓍(𝑘)𝑠−1

𝑘=0 ⊕
𝒶(𝑠)

𝓋(𝑠)⊗𝓊(𝑠)
𝓍(𝑠).   (3.32) 

Now, since 𝒶 ∈ 𝒵𝔹ℂ
𝛽𝔻, by (3.30), 

𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝒳, 𝐶𝔹ℂ

0 ), and, by 

(3.32), we have  

          ∑
𝒶(𝑘)

𝓋(𝑘)
⊗ Δ𝔹ℂ (

𝓍(𝑘)

𝓊(𝑘)
)𝑠

𝑘=0 = ∑ Δ𝔹ℂ
+ (

𝒶(𝑘)

𝓋(𝑘)
)𝑠−1

𝑘=0 ⊗
𝓍(𝑘)

𝓊(𝑘)
    (3.33) 

If 𝑥 = 𝓊 ⊗ ℋ𝔹ℂ(𝓋 ⊗ 𝜏) in (3.33) is used, then, for every 𝑘 ∈ ℕ, 
𝓍(𝑘)

𝓊(𝑘)
=  ℋ𝔹ℂ

𝑘 (𝓋 ⊗ 𝜏), thus  

         ∑ 𝒶(𝑘) ⊗ 𝜏(𝑘)∞
𝑘=0 = ∑ Δ𝔹ℂ

+ (
𝒶(𝑘)

𝓋(𝑘)
)∞

𝑘=0 ⊗ ℋ𝔹ℂ
𝑘 (𝓋 ⊗ 𝜏)   

is obtained. 

Lemma 3.6. For 𝛽-dual spaces of some sequences with complex 

terms,    

                 𝐶0
𝛽

= 𝐶𝛽 = ℓ∞
𝛽

= ℓ1,                           (3.34) 

and  

                               ℓ𝓆
𝛽

= ℓ𝓅                                     (3.35) 

with 1 ≤ 𝓆 < ∞ and (1 𝓅⁄ ) + (1 𝓆⁄ ) = 1 (Başar & Çolak, 2011). 

Theorem 3.2. Some spaces of sequences with bicomplex terms 

satisfy the following equalities: 

(𝐶𝔹ℂ
0 )𝛽𝔻 = 𝐶𝔹ℂ

𝛽𝔻 = 𝛷𝔹ℂ
𝛽𝔻 = ℒ𝔹ℂ

1  ,                  (3.36) 

and  

(ℒ𝔹ℂ
𝓆

)
𝛽𝔻

= ℒ𝔹ℂ
𝓅

                             (3.37) 

with 1 < 𝓆 < ∞ and (1 𝓅⁄ ) + (1 𝓆⁄ ) = 1, also  
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(ℒ𝔹ℂ
1 )𝛽𝔻 = ℒ𝔹ℂ

 ∞ = 𝛷𝔹ℂ
𝛽𝔻. 

Proof. If the equalities ℳ𝔹ℂ(𝒳, 𝒞𝒮𝔹ℂ) = ℳ(𝒳1, 𝒞𝒮)𝑒1 +

ℳ(𝒳2, 𝒞𝒮)𝑒2, and (3.34), (3.35) in Lemma 3.6 are used, then 

(𝐶𝔹ℂ
0 )𝛽𝔻 = ℳ𝔹ℂ(𝐶𝔹ℂ

0 , 𝒞𝒮𝔹ℂ) = ℳ𝔹ℂ(𝐶0𝑒1 + 𝐶0𝑒2, 𝒞𝒮𝔹ℂ) 

= ℳ(𝐶0, 𝒞𝒮)𝑒1 + ℳ(𝐶0, 𝒞𝒮)𝑒2 

            = ℓ1𝑒1 + ℓ1𝑒2 = ℒ𝔹ℂ
1 , 

𝐶𝔹ℂ
𝛽𝔻 = ℳ𝔹ℂ(𝐶𝔹ℂ, 𝒞𝒮𝔹ℂ) = ℳ𝔹ℂ(𝐶𝑒1 + 𝐶𝑒2, 𝒞𝒮𝔹ℂ) 

          = ℳ(𝐶, 𝒞𝒮)𝑒1 + ℳ(𝐶, 𝒞𝒮)𝑒2 

          = ℓ1𝑒1 + ℓ1𝑒2 = ℒ𝔹ℂ
1 , 

𝛷𝔹ℂ
𝛽𝔻 = ℳ𝔹ℂ(𝛷𝔹ℂ, 𝒞𝒮𝔹ℂ) = ℳ𝔹ℂ(ℓ∞𝑒1 + ℓ∞𝑒2, 𝒞𝒮𝔹ℂ) 

               = ℳ(ℓ∞, 𝒞𝒮)𝑒1 + ℳ(ℓ∞, 𝒞𝒮)𝑒2 

        = ℓ1𝑒1 + ℓ1𝑒2 = ℒ𝔹ℂ
1  

and so (3.36) holds. 

Now, let 1 ≤ 𝓆 < ∞ and (1 𝓅⁄ ) + (1 𝓆⁄ ) = 1. In this case, 

we get 

(ℒ𝔹ℂ
𝓆

)
𝛽𝔻

= ℳ𝔹ℂ(ℒ𝔹ℂ
𝓆

, 𝒞𝒮𝔹ℂ) = ℳ𝔹ℂ(ℓ𝓆𝑒1 + ℓ𝓆𝑒2, 𝒞𝒮𝔹ℂ) 

                   = ℳ(ℓ𝓆, 𝒞𝒮)𝑒1 + ℳ(ℓ𝓆, 𝒞𝒮)𝑒2 

     = ℓ𝓅𝑒1 + ℓ𝓅𝑒2 = ℒ𝔹ℂ
𝓅

, 

thereby yielding (3.37). Here, if 𝓆 = 1 is taken, then (ℒ𝔹ℂ
1 )𝛽𝔻 =

ℒ𝔹ℂ
 ∞ = 𝛷𝔹ℂ

𝛽𝔻 is written. 

Lemma 3.7. The spaces ℒ𝔹ℂ
𝓆

 with 1 ≤ 𝓆 < ∞ and (1 𝓅⁄ ) +

(1 𝓆⁄ ) = 1, 𝐶𝔹ℂ
0  and 𝛷𝔹ℂ are 𝔻-normal sets. Also, the space 𝐶𝔹ℂ is 

not a 𝔻-normal set. 
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Proof. First, let 𝑐 = (𝑐(𝑠)) ∈ 𝐶𝔹ℂ
0  be given with 𝑐(𝑠) = 𝑐1(𝑠)𝑒1 +

𝑐2(𝑠)𝑒2 and |𝑐̃(𝑠)|𝜉 ≼ |𝑐(𝑠)|𝜉 for every 𝑠 ∈ ℕ. In this case, we write 

𝑐1(𝑠) → 0 and 𝑐2(𝑠) → 0 in ℂ. Furthermore, if the 𝔻-ordering is 

used, then |𝑐̃1(𝑠)| ≤ |𝑐1(𝑠)| and |𝑐̃2(𝑠)| ≤ |𝑐2(𝑠)| hold. Then, 

𝑐̃1(𝑠) → 0, 𝑐̃2(𝑠) → 0 and thus 𝑐̃(𝑠) = 𝑐̃1(𝑠)𝑒1 + 𝑐̃2(𝑠)𝑒2 → θ. 

From this, 𝑐̃ = (𝑐̃(𝑠)) ∈ 𝐶𝔹ℂ
0 , and thus the space 𝐶𝔹ℂ

0  is a 𝔻-normal 

set. 

If 𝑐 = (𝑐(𝑠)) ∈ 𝛷𝔹ℂ is taken, then sup𝔻
𝑠∈ℕ    

|𝑐(𝑠)|𝜉 ≺ ∞𝔻, and 

thus sup
𝑠∈ℕ

|𝑐𝑖(𝑠)| < ∞ for 𝑖 = 1,2. Now, if |𝑐̃(𝑠)|𝜉 ≼ |𝑐(𝑠)|𝜉 for all 

𝑠 ∈ ℕ, then we get 

sup𝔻
𝑠∈ℕ    

|𝑐̃(𝑠)|𝜉 = sup
𝑠∈ℕ

|𝑐̃1(𝑠)|𝑒1 + sup
𝑠∈ℕ

|𝑐̃2(𝑠)|𝑒2  

≼ sup
𝑠∈ℕ

|𝑐1(𝑠)|𝑒1 + sup
𝑠∈ℕ

|𝑐2(𝑠)|𝑒2  

= sup𝔻
𝑠∈ℕ    

|𝑐(𝑠)|𝜉 ≺ ∞𝔻 

and hence 𝛷𝔹ℂ is a 𝔻-normal set. 

Again, let 𝑐 = (𝑐(𝑠)) ∈ ℒ𝔹ℂ
𝓆

 and |𝑐̃(𝑠)|𝜉 ≼ |𝑐(𝑠)|𝜉 for all 

𝑠 ∈ ℕ. In this case, ∑ (|𝑐(𝑠)|𝜉)∞
𝑠=0

𝓆
≺ ∞𝔻, and thus ∑ |𝑐̃𝑖(𝑠)|𝓆∞

𝑠=0 ≤

∑ |𝑐𝑖(𝑠)|𝓆 < ∞∞
𝑠=0  for 𝑖 = 1,2. Then  

∑ (|𝑐̃(𝑠)|𝜉)
𝓆∞

𝑠=0 = ∑ (∑ |𝑐̃𝑖(𝑠)|𝓆∞
𝑠=0 𝑒𝑖)

2
𝑖=1   

≼ ∑ |𝑐1(𝑠)|𝓆∞
𝑠=0 𝑒1 + ∑ |𝑐2(𝑠)|𝓆∞

𝑠=0 𝑒2  

= ∑ (|𝑐(𝑠)|𝜉)
𝓆

≺ ∞𝔻
∞
𝑠=0 . 

This shows that 𝑐̃ = (𝑐̃(𝑠)) ∈ ℒ𝔹ℂ
𝓆

 and therefore ℒ𝔹ℂ
𝓆

 is a 𝔻-normal 

set. 

Now, we show that 𝐶𝔹ℂ is not a 𝔻-normal set. For this 

purpose, let 𝑐 = (𝑐(𝑠)) and 𝑐̃ = (𝑐̃(𝑠)) be sequences with 𝑐(𝑠) =
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(1 +
𝑖

𝑠
) 𝑒1 + (1 +

𝑖

𝑠
) 𝑒2 and 𝑐̃(𝑠) = 𝑖𝑠𝑒1 + 𝑖𝑠𝑒2 for every 𝑠 ∈ ℕ. 

Hence 𝑐(𝑠) → 1𝑒1 + 1𝑒2 = 1 as 𝑠 and |𝑐̃(𝑠)|𝜉 ≼ |𝑐(𝑠)|𝜉 for every 

𝑠 ∈ ℕ. Due to 𝑐 = (𝑐(𝑠)) ∈ 𝐶𝔹ℂ and 𝑐̃ ∉ 𝐶𝔹ℂ, the space 𝐶𝔹ℂ is not a 

𝔻-normal set. 

Corollary 3.1. Let 𝓊, 𝓋 ∈ 𝒰𝔹ℂ, 1 ≤ 𝓆 < ∞ and (1 𝓅⁄ ) + (1 𝓆⁄ ) =

1. Then, the following equalities hold: 

a) (𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ
0 ))

𝛽𝔻

= {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

𝓊⊗𝓋
∈ 𝛷𝔹ℂ}, 

b) (𝒵𝔹ℂ(𝓊, 𝓋; 𝛷𝔹ℂ))
𝛽𝔻

= {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

𝓊⊗𝓋
∈ 𝐶𝔹ℂ

0 }, 

c) (𝒵𝔹ℂ(𝓊, 𝓋; ℒ𝔹ℂ
𝓆

))
𝛽𝔻

= {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

𝑝 ∧
𝒶

𝓊⊗𝓋
∈ 𝛷𝔹ℂ}, 

d) (𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ))
𝛽𝔻

= {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

𝓊⊗𝓋
∈ 𝐶𝔹ℂ}. 

Proof. In Lemma 3.7, it was shown that the spaces 𝐶𝔹ℂ
0 , 𝛷𝔹ℂ and ℒ𝔹ℂ

𝓆
 

are 𝔻-normal sets. If Theorem 3.1, and (3.30), (3.36), (3.37) are 

used, then (a), (b) and (c) are easily obtained. 

For the sake of brevity in our calculations, we denote 

(𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ))
𝛽𝔻

= Ϝ.  

Since 𝐶𝔹ℂ is not a 𝔻-normal set, by (3.29) and Lemma 3.2, 

we get 

Ϝ ⊃ {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ 𝐶𝔹ℂ

𝛽𝔻 ∧
𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝐶𝔹ℂ, 𝐶𝔹ℂ)}  

, and so  

Ϝ = {𝑎 ∈ 𝑤𝔹ℂ:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

𝓊⊗𝓋
∈ 𝐶𝔹ℂ}.     (3.38) 

Also, 𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ
0 ) ⊂ 𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ) and by Lemma 3.1 (a), we 

have 

ℳ𝔹ℂ(𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ), 𝒞𝒮𝔹ℂ) ⊂ ℳ𝔹ℂ(𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ
0 ), 𝒞𝒮𝔹ℂ), 
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and so 

Ϝ ⊂ (𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ
0 ))

𝛽𝔻

. 

Hence, we write 

     Ϝ ⊂ {𝒶 ∈ 𝑤𝔹ℂ:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 }.               (3.39) 

If (3.36) is used, then 

Ϝ ⊂ {𝒶: 𝑥 ∈ 𝐶𝔹ℂ, ∑ (
1

𝑢(𝑘)
⊗ Δ𝔹ℂ

+ (
𝑎(𝑘)

𝑣(𝑘)
)) ⊗ 𝑥(𝑘)∞

𝑘=0 ≺ ∞𝔻}   

holds. Now, let 𝒶 ∈ Ϝ. Then, given any 𝜏 ∈ 𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ) with 𝜏 =

(1 𝓋⁄ ) ⊗ Δ𝔹ℂ(𝓍 𝓊⁄ ), if (3.32) is used, then 

∑ 𝒶(𝑘) ⊗ 𝜏(𝑘)𝑠
𝑘=0   

= (∑ (
1

𝓊(𝑘)
⊗ Δ𝔹ℂ

+ 𝒶(𝑘)

𝓋(𝑘)
) ⊗ 𝓍(𝑘)𝑠−1

𝑘=0 ) ⊕
𝒶(𝑠)

𝓋(𝑠)⊗𝓊(𝑠)
⊗ 𝓍(𝑠).   (3.40) 

Here, if  

𝐺𝑠 = ∑ 𝒶(𝑘) ⊗ 𝜏(𝑘)𝑠
𝑘=0 ,  𝐼𝑠 = ∑

1

𝓊(𝑘)
⊗ Δ𝔹ℂ

+ 𝒶(𝑘)

𝓋(𝑘)
⊗ 𝓍(𝑘)𝑠−1

𝑘=0  

are taken and (3.39) is used, we write 

    
𝒶(𝑠)

𝓋(𝑠)⊗𝓊(𝑠)
⊗ 𝓍(𝑠)  = 𝐺𝑠 − 𝐼𝑠       

thus, for every 𝓍 ∈ 𝐶𝔹ℂ, 

  
𝒶

𝓊⊗𝓋
⊗ 𝓍 = (

𝒶(𝑠)

𝓋(𝑠)⊗𝓊(𝑠)
⊗ 𝓍(𝑠)) = (𝐺𝑠 − 𝐼𝑠) ∈ 𝐶𝔹ℂ       

and hence 

  
𝒶

𝓊⊗𝓋
∈ ℳ𝔹ℂ(𝐶𝔹ℂ, 𝐶𝔹ℂ) = 𝐶𝔹ℂ                       (3.41) 

is obtained. Thus, if (3.39) and (3.40) are used 

  Ϝ ⊂ {𝒶 ∈ 𝑤𝔹ℂ:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

𝓊⊗𝓋
∈ 𝐶𝔹ℂ}      (3.42) 
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is written. Now, if the inclusions (3.38) and (3.42) are considered 

jointly: 

Ϝ = {𝒶 ∈ 𝑤𝔹ℂ:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

𝓊⊗𝓋
∈ 𝐶𝔹ℂ}.  

Lemma 3.8. Let 𝒞𝒮 be the space of convergent series and ℬ𝒮 be the 

space of bounded series with complex terms. Then 𝒞𝒮𝛽 = ℬ𝒱 and 

ℬ𝒮𝛽 = ℬ𝒱0 = ℬ𝒱 ∩ 𝐶0 hold (Malkowsky & Savaş, 2004). 

Theorem 3.3. The equalities 𝒞𝒮𝔹ℂ
𝛽𝔻 = ℬ𝒱𝔹ℂ and ℬ𝒮𝔹ℂ

𝛽𝔻 = ℬ𝒱𝔹ℂ
0 =

ℬ𝒱𝔹ℂ ∩ 𝐶𝔹ℂ
0  hold. 

Proof. If Lemma 3.8 are used, then we have 

𝒞𝒮𝔹ℂ
𝛽𝔻 = ℳ𝔹ℂ(𝒞𝒮𝔹ℂ, 𝒞𝒮𝔹ℂ) = ℳ𝔹ℂ(𝒞𝒮𝑒1 + 𝒞𝒮𝑒2, 𝒞𝒮𝑒1 + 𝒞𝒮𝑒2)   

 = ℳ(𝒞𝒮, 𝒞𝒮)𝑒1 + ℳ(𝒞𝒮, 𝒞𝒮)𝑒2 

= ℬ𝒱𝑒1 + ℬ𝒱𝑒2 = ℬ𝒱𝔹ℂ, 

ℬ𝒮𝔹ℂ
𝛽𝔻 = ℳ𝔹ℂ(ℬ𝒮𝔹ℂ, 𝒞𝒮𝔹ℂ) = ℳ𝔹ℂ(ℬ𝒮𝑒1 + ℬ𝒮𝑒2, 𝒞𝒮𝑒1 + 𝒞𝒮𝑒2) 

= ℳ(ℬ𝒮, 𝒞𝒮)𝑒1 + ℳ(ℬ𝒮, 𝒞𝒮)𝑒2 

= ℬ𝒱0𝑒1 + ℬ𝒱0𝑒2 = ℬ𝒱𝔹ℂ ∩ 𝐶𝔹ℂ
0  

is obtained. 

Example 3.2. For any 𝒶 = (𝒶(𝑠)) ∈ 𝑤𝔹ℂ, let 𝜑𝑖(𝑠) =

𝑄𝑖(𝑠) |
𝒶𝑖(𝑠)

𝑞𝑖(𝑠)
−

𝒶𝑖(𝑠+1)

𝑞𝑖(𝑠+1)
| 𝑒𝑖, 𝑖 = 1,2. Then the following equalities hold: 

a) ((𝒩, 𝑞)
𝔹ℂ

0
)

𝛽𝔻

= {𝒶: ∑ (∑ 𝜑𝑖(𝑠)2
𝑖=1 ) ≺ ∞𝔻

∞
𝑠=0 ∧

𝑄⊗𝒶

𝑞
∈ 𝛷𝔹ℂ},   

b) (𝒩, 𝑞)
𝔹ℂ

𝛽𝔻
= {𝒶: ∑ (∑ 𝜑𝑖(𝑠)2

𝑖=1 ) ≺ ∞𝔻
∞
𝑠=0 ∧  

𝑄⊗𝒶

𝑞
∈ 𝐶𝔹ℂ},     

c) ((𝒩, 𝑞)
𝔹ℂ

∞
)

𝛽𝔻

= {𝒶: ∑ (∑ 𝜑𝑖(𝑠)2
𝑖=1 ) ≺ ∞𝔻

∞
𝑠=0 ∧

𝑄⊗𝒶

𝑞
∈ 𝐶𝔹ℂ

0 }. 
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Solution. First, let us recall the sequences 𝓋 = 𝑞 = (𝑞(𝑠)) such that 

𝑞(𝑠) = 𝑞1(𝑠)𝑒1 + 𝑞2(𝑠)𝑒2 ≻ θ and 𝑄 = (𝑄(𝑠)) = (𝑄1(𝑠)𝑒1 +

𝑄2(𝑠)𝑒2 ) with 𝑄1(𝑠) = ∑ 𝑞1(𝑘)𝑠
𝑘=0  and 𝑄2(𝑠) = ∑ 𝑞2(𝑘)𝑠

𝑘=0  for 

every 𝑠 ∈ ℕ. Also, let 𝓊 = (𝓊(𝑠)) be a sequence with 𝓊(𝑠) =

1 𝑄(𝑠)⁄ , i.e., 𝓊(𝑠) = 1 𝑄⁄ = 1 𝑄1(𝑠)⁄ 𝑒1 + 1 𝑄2(𝑠)⁄ 𝑒2. Using the 

equation (a) in Corollary 3.1, we have 

(𝒵𝔹ℂ(𝓊, 𝓋; 𝐶𝔹ℂ
0 ))

𝛽𝔻

= {𝒶:
1

(1 𝑄⁄ )
⊗ Δ𝔹ℂ

+ (
𝒶

𝑞
) ∈ ℒ𝔹ℂ

1 ∧
𝒶

1

𝑄
⊗𝑞

∈ 𝛷𝔹ℂ}. 

Now, according to the properties of bicomplex numbers written in 

idempotent representation, since 

1
1

𝑄(𝑠)

=
1𝑒1+1𝑒2

(
1𝑒1+1𝑒2

𝑄1(𝑠)𝑒1+𝑄2(𝑠)𝑒2
)

=
1𝑒1+1𝑒2

1

𝑄1(𝑠)
𝑒1+

1

𝑄2(𝑠)
𝑒2

  

= 𝑄1(𝑠)𝑒1 + 𝑄2(𝑠)𝑒2 = 𝑄(𝑠), 

we have 

𝒶(𝑠)
𝓋(𝑠)

𝑄(𝑠)

=
𝒶1(𝑠)𝑒1+𝒶2(𝑠)𝑒2

(
𝓋1(𝑠)𝑒1+𝓋2(𝑠)𝑒2
𝑄1(𝑠)𝑒1+𝑄2(𝑠)𝑒2

)
=

𝒶1(𝑠)𝑄1(𝑠)

𝓋1(𝑠)
𝑒1 +

𝒶2(𝑠)𝑄2(𝑠)

𝓋2(𝑠)
𝑒2    

=
𝒶1(𝑠)𝑄1(𝑠)𝑒1+𝒶2(𝑠)𝑄2(𝑠)𝑒2

𝓋1(𝑠)𝑒1+𝓋2(𝑠)𝑒2
=

𝒶(𝑠)⊗𝑄(𝑠)

𝓋(𝑠)
   

for every 𝑠 ∈ ℕ and thus 

        ((𝒩, 𝑞)
𝔹ℂ

0
)

𝛽𝔻

= {𝒶: 𝑄 ⊗ Δ𝔹ℂ
+ (

𝒶

𝑞
) ∈ ℒ𝔹ℂ

1 ∧
𝒶⊗𝑄

𝑞
∈ 𝛷𝔹ℂ}  

= {𝒶: ∑ |𝑄(𝑠) ⊗ Δ𝔹ℂ
+ (

𝒶(𝑠)

𝑞(𝑠)
)|

𝜉

∞
𝑠=0 ≺ ∞𝔻 ∧

𝒶⊗𝑄

𝑞
∈ 𝛷𝔹ℂ}     

= {𝒶: ∑ (∑ 𝑄𝑖(𝑠) |(
𝒶𝑖(𝑠)

𝑞𝑖(𝑠)
−

𝒶𝑖(𝑠+1)

𝑞𝑖(𝑠+1)
)| 𝑒𝑖

2
𝑖=1 ) ≺ ∞𝔻

∞
𝑠=0 ∧

𝒶⊗𝑄

𝑞
∈ 𝛷𝔹ℂ}     

= {𝒶: ∑ (∑ 𝜑𝑖(𝑠)2
𝑖=1 ) ≺ ∞𝔻

∞
𝑠=0 ∧

𝒶⊗𝑄

𝑞
∈ 𝛷𝔹ℂ}.  
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Again, if the equality ℳ𝔹ℂ(𝐶𝔹ℂ, 𝐶𝔹ℂ) = 𝐶𝔹ℂ is used for the set 

(𝒩, 𝑞)
𝔹ℂ

𝛽𝔻
 and the equality ℳ𝔹ℂ(𝛷𝔹ℂ, 𝐶𝔹ℂ

0 ) = 𝐶𝔹ℂ
0  is used for the set 

((𝒩, 𝑞)
𝔹ℂ

∞
)

𝛽𝔻

, then (c) and (b) are easily seen. 

Example 3.3. Let 𝜛 = (𝜛(𝑠)) be given with 𝜛(𝑠) = 𝜛1(𝑠)𝑒1 +

𝜛2(𝑠)𝑒2 = 1𝑒1 + 1𝑒2 for every 𝑠 ∈ ℕ. If the sequences 𝓋 = 𝜛 and 

𝓊 = (𝓊(𝑠)) = (𝓊1(𝑠)𝑒1 + 𝓊2(𝑠)𝑒2) = (
1

𝑠+1
𝑒1 +

1

𝑠+1
𝑒2) are 

taken. Then for any 𝒶 = (𝒶(𝑠)) ∈ 𝑤𝔹ℂ the following equalities 

hold: 

a) (𝒵𝔹ℂ(𝓊, 𝓋; ℒ𝔹ℂ
1 ))

𝛽𝔻

= {𝒶 ∶ sup𝔻
𝑠∈ℕ   

𝜋(𝑠) ≺ ∞𝔻 ∧ (𝜇(𝑠)) ∈ 𝛷𝔹ℂ}, 

b) For 1 < 𝓆 < ∞ and (𝓆 − 1)(𝓅 − 1) = 1, 

(𝒵𝔹ℂ(𝓊, 𝓋; ℒ𝔹ℂ
𝓆

))
𝛽𝔻

 

= {𝒶 ∶  ∑ (𝜋(𝑠))
𝓅

≺ ∞𝔻
∞
𝑠=0 ∧ (𝜇(𝑠)) ∈ 𝛷𝔹ℂ}, 

c) (𝒵𝔹ℂ(𝓊, 𝓋; 𝛷𝔹ℂ))
𝛽𝔻

= {𝒶 ∶  ∑ 𝜋(𝑠) ≺ ∞𝔻
∞
𝑠=0 ∧ (𝜇(𝑠)) ∈ 𝐶𝔹ℂ

0 }, 

where 𝜋(𝑠) = (𝑠 + 1) ⊙ |Δ𝔹ℂ
+ (𝒶(𝑠))|

𝜉
, 𝜇(𝑠) = (𝑠 + 1) ⊙ 𝒶(𝑠). 

Solution. If Corollary 3.1 and Theorem 3.2 are used: 

(𝒵𝔹ℂ(𝓊, 𝓋; ℒ𝔹ℂ
1 ))

𝛽𝔻

  

 = {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈  (ℒ𝔹ℂ

1 )𝛽𝔻 ∧
𝒶

𝓊⊗𝓋
∈ 𝛷𝔹ℂ}      

= {𝒶: (
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶1(𝑠)𝑒1+𝒶2(𝑠)𝑒

𝜛1(𝑠)𝑒1+𝜛2(𝑠)𝑒2
)) ∈  𝛷𝔹ℂ ∧

𝒶

𝓊⊗𝜛
∈ 𝛷𝔹ℂ}. 

= {𝒶: (
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶1(𝑠)

1
𝑒1 +

𝒶2(𝑠)

1
𝑒2)) ∈ 𝛷𝔹ℂ ∧

𝒶

𝓊
∈ 𝛷𝔹ℂ}. 
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 = {𝒶 ∶ sup𝔻
𝑠∈ℕ   

𝜋(𝑠) ≺ ∞𝔻 ∧ (𝜇(𝑠)) ∈ 𝛷𝔹ℂ}, 

(𝒵𝔹ℂ(𝓊, 𝓋; ℒ𝔹ℂ
𝓆

))
𝛽𝔻

 

  = {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ (ℒ𝔹ℂ

𝓆
)

𝛽𝔻
∧

𝒶

𝓊⊗𝓋
∈ 𝛷𝔹ℂ}  

  = {𝒶: (𝜋(𝑠)) ∈ ℒ𝔹ℂ
𝓅

∧ (𝜇(𝑠)) ∈ 𝛷𝔹ℂ}   

= {𝒶: ∑ (𝜋(𝑠))
𝓅

≺ ∞𝔻
∞
𝑠=0 ∧ (𝜇(𝑠)) ∈ 𝛷𝔹ℂ},   

(𝒵𝔹ℂ(𝓊, 𝓋; 𝛷𝔹ℂ))
𝛽𝔻

= {𝒶:
1

𝓊
⊗ Δ𝔹ℂ

+ (
𝒶

𝓋
) ∈ 𝛷𝔹ℂ

𝛽𝔻 ∧
𝒶

𝓊⊗𝓋
∈ 𝐶𝔹ℂ

0 }  

= {𝒶: (𝜋(𝑠)) ∈ ℒ𝔹ℂ
1 ∧ (𝜇(𝑠)) ∈ 𝐶𝔹ℂ

0 } 

= {𝒶: ∑ 𝜋(𝑠) ≺ ∞𝔻
∞
𝑠=0 ∧ (𝜇(𝑠)) ∈ 𝐶𝔹ℂ

0 }  

are obtained. 

4. Results and Discussion 

In this study, bicomplex 𝒵𝔹ℂ-spaces, which constitute 

bicomplex generalizations of the classical 𝒵 spaces, have been 

introduced and systematically investigated. In this framework, the 

spaces 𝛷𝔹ℂ, 𝐶𝔹ℂ, 𝐶𝔹ℂ
0 , ℒ𝔹ℂ

𝓅
 (1 ≤ 𝓅 < ∞), 𝒞𝒮𝔹ℂ, ℬ𝒮𝔹ℂ and ℬ𝒱𝔹ℂ 

were defined and analyzed. These constructions extend the 

topological structure of sequence spaces from the complex setting to 

the bicomplex number framework, thereby enriching the theory of 

sequence spaces with additional algebraic and topological features 

arising from bicomplex analysis. 

Subsequently, the 𝛽𝔻-duals of the newly defined bicomplex 

𝒵𝔹ℂ-spaces were determined. In particular, it was shown that the 𝛽𝔻-

duals of 𝐶𝔹ℂ
0 , 𝐶𝔹ℂ, and 𝛷𝔹ℂ all coincide with the space ℒ𝔹ℂ

1 . This 

result provides a precise characterization of bicomplex sequences 

that generate convergent series when multiplied by elements of these 

𝒵𝔹ℂ-spaces. From a functional-analytic perspective, this 
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characterization plays a role analogous to that of classical duality 

results in complex sequence space theory, while also reflecting the 

intrinsic structure induced by the presence of zero divisors in the 

bicomplex setting. 

The findings of this work contribute to the development of 

functional analysis over bicomplex numbers by supplying new 

examples of bicomplex sequence spaces and by clarifying their dual 

relationships. These results offer useful tools and insights for 

researchers working on sequence spaces, duality theory, and related 

aspects of bicomplex functional analysis. Moreover, the techniques 

employed here may be adapted to the study of other classes of 

bicomplex sequence spaces. 

 Future research directions include the investigation of 

weighted bicomplex sequence spaces and the analysis of their duals 

and matrix transformations. In addition, exploring potential 

applications of bicomplex sequence spaces in areas where bicomplex 

numbers naturally arise-such as signal processing, quantum 

mechanics, and electromagnetism-appears to be a promising avenue 

for further study. 

Overall, this study establishes a foundational framework for 

the analysis of 𝒵𝔹ℂ-spaces in the bicomplex setting and opens new 

perspectives for both theoretical advancements and applied research 

in bicomplex functional analysis. 
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ON THE CONTINUITY OF THE WIGNER-VILLE 
DISTRIBUTION IN 𝑯𝟏 AND 𝑩𝑴𝑶 SPACES 

AYŞE SANDIKÇI1 

Introduct൴on 

As a member of the Cohen class, the Wigner-Ville 
distribution is a quadratic time-frequency representation used to 
extract key signal characteristics, including marginal properties, 
mean instantaneous frequency, and group delay. Unlike Short-Time 
Fourier Transform -based spectrograms, Wigner-Ville distribution 
does not require any windowing function, this eliminates biases 
arising from window type selection in the analysis. Thanks to its 
time and frequency shift invariance property, signal components 
shifted on the time axis retain their morphological integrity in the 
time-frequency plane. Wigner-Ville distribution offers superior 
performance, particularly in situations requiring high time-
frequency resolution, where components are far apart, or where 
feature extraction is required from single-component signals. 

This study investigates the mapping properties of the 
Wigner-Ville distribution, a fundamental tool in time-frequency 

                                                 
1 Doç.Dr., Ondokuz Mayıs Un൴vers൴ty, Faculty of Sc൴ence, Department of 
Mathemat൴cs, Samsun, Türk൴ye Orc൴d: 0000-0001-5800-5558  

CHAPTER 3
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analysis, within the context of Hardy and BMO spaces, which are 
standard frameworks for harmonic analysis. 

For the purpose of conceptual clarity, the key terms are 
defined below. 

Let ℎ denote a funct൴on on ℝ. The modulat൴on operator of ℎ 

൴s spec൴f൴ed as 𝑀ఓℎ(𝑦) = ℎ(𝑦)𝑒ଶగ௜ఓ௬ for 𝜇, 𝑦 ∈ ℝ, wh൴le the 

translat൴on operator ൴s on 𝑇௨ℎ(𝑦) = ℎ(𝑦 − 𝑢) for 𝑦 ∈ ℝ. 𝑇 and 𝑀 
are somet൴mes known as the t൴me and frequency sh൴ft operators, 
respect൴vely. Operators 𝑇௨𝑀ఓ or 𝑀ఓ𝑇௨ are known as t൴me frequency 

sh൴fts. 𝑇 and 𝑀 do not commute. However, we observe ൴nstantly the 
canon൴cal commutat൴on relat൴ons 

𝑀ఓ𝑇௨ = 𝑒ଶగ௜௨ఓ𝑇௨𝑀ఓ. 

It ൴s ev൴dent that 𝐿 and 𝑀 commute ൴ff 𝑢𝜇 ∈ ℤ. 
 The dilation operator, denoted by 𝐷ఒ, is defined as 

𝐷ఒℎ(𝑦) =
ଵ

ఒ
ℎ ቀ

௬

ఒ
ቁ, where 𝜆 > 0. 

 
If 𝑝 ∈ [1, ∞[, the Lebesgue spaces wh൴ch ൴s denoted by 

𝐿௣(ℝ), ൴s def൴ned as the set of complex-valued measurable 
funct൴ons on ℝ that sat൴sfy 

න |ℎ(𝑦)|௣𝑑𝑦 < ∞.
ℝ

 

If ℎ ∈ 𝐿௣(ℝ), the 𝐿௣ norm of ℎ ൴s def൴ned by 

‖ℎ‖௅೛ = ‖ℎ‖௣ = ቆන |ℎ(𝑦)|௣𝑑𝑦
ℝ

ቇ

ଵ ௣  ⁄

< ∞. 

Under the norm ‖∙‖௣, the set of functions 𝐿௣(ℝ) forms a complete 
normed vector space. 
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 We define a complex-valued funct൴on ℎ on ℝ as locally 
൴ntegrable prov൴ded that the cond൴t൴on ∫ |ℎ(𝑥)|𝑑𝑥 < ∞

௄
 holds for 

all compact 𝐾 ⊂ ℝ. 𝐿௟௢௖
ଵ (ℝ)  denotes the spaces of locally 

൴ntegrable funct൴ons. 

Let ℎ ∈ 𝐿ଵ(ℝ), let us define ĥ  (or h ) by 

ℱℎ(𝑧) = ℎ෠(𝑧) = න ℎ(𝑥)𝑒ିଶగ௜௫௭𝑑𝑥
ℝ

,     𝑧 ∈ ℝ. 

The expression ℎ෠ denotes the Fourier transform of ℎ, (Gröchenig, 
2001), (Debnath & Shah, 2015). 

The follow൴ng def൴n൴t൴on const൴tutes the cross-W൴gner V൴lle 
d൴str൴but൴on of funct൴onals ℎ and g, wh൴ch are elements of the 
𝐿ଶ(ℝ) space: 

𝑊(ℎ, 𝑔)(𝑢, 𝜇) = න 𝑒ିଶగ௜ఓ௧ℎ(𝑢 + 𝑡 2⁄ )𝑔(𝑢 − 𝑡 2⁄ )തതതതതതതതതതതതതതത𝑑𝑡.
ℝ

 

If we wr൴te ℎ ൴nstead of 𝑔, then 𝑊(ℎ, ℎ) = 𝑊ℎ ൴s known as the 
W൴gner d൴str൴but൴on of ℎ. In the context of analys൴ng non-stat൴onary 
s൴gnals, ൴t ൴s ൴mperat൴ve to employ both t൴me and frequency 
representat൴ons, as the Four൴er analys൴s, a valuable ൴nstrument for 
the study of stat൴onary s൴gnals, ൴s ൴nadequate for the comprehens൴ve 
analys൴s of non-stat൴onary s൴gnals. The W൴gner d൴str൴but൴on ൴s the 
most often used t൴me-frequency representat൴on because ൴t offers a 
h൴gh-resolut൴on representat൴on ൴n both t൴me and frequency for non-
stat൴onary s൴gnals, (W൴ener, 1932), (Gröchen൴g, 2001), (Debnath & 
Shah, 2015). 

There are s൴gn൴f൴cant connect൴ons between the theory of 
Hardy Spaces and many areas of mathemat൴cal study, such as 
Four൴er analys൴s, harmon൴c analys൴s, operator theory and s൴ngular 
൴ntegrals, s൴gnal and ൴mage process൴ng, and control theory. 
Research shows that for spec൴f൴c problems ൴n harmon൴c analys൴s, 
Hardy spaces offer a more su൴table framework than Lebesgue 
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spaces. The max൴mal funct൴ons can be def൴ned as follows, and th൴s 
w൴ll allow us to g൴ve an equ൴valent def൴n൴t൴on of 𝐻ଵ(ℝ): We are 
go൴ng to take a funct൴on that ൴s both ൴ntegrable and smooth. Th൴s 
funct൴on w൴ll be denoted by ' 𝜑 ' and ൴ts doma൴n w൴ll be the Eucl൴d 
space, w൴th ൴ts support ly൴ng ൴n the un൴t ball. In add൴t൴on, ൴t should 
be ∫ 𝜑

ℝ
= 1. Let us set 𝜑௧(𝑦) = 1 𝑡⁄ 𝜑(𝑦 𝑡⁄ ), 𝑡 > 0. For an 

൴ntegrable funct൴on ℎ, the max൴mal operator, represented by the 
symbol ఝ, ൴s def൴ned as follows: 

ఝℎ(𝑦) = sup௧வ଴|ℎ ∗ 𝜑௧(𝑦)|. 

The 𝐻ଵ(ℝ)  represents the linear space of all ℎ ∈ 𝐿ଵ(ℝ) if, for 

some 𝜑 ∈  (ℝ) with ∫ 𝜑
ℝ

= 1, ఝℎ is in 𝐿ଵ(ℝ), where  (ℝ) is 

the Schwartz space. If ℎ belongs to Hardy Space, then both the 
dilation operator 𝐷ఒℎ and the translation operator 𝑇௨ℎ are in Hardy 
Space and fulfill 

‖𝐷ఒℎ ‖ுభ = ‖ℎ‖ுభ     and      ‖𝑇௨ℎ‖ுభ = ‖ℎ‖ுభ . 

 The space of Bounded Mean Oscillation, or 𝐵𝑀𝑂, consists 
of functions whose average deviation from their mean over cubes 
remains bounded, (also called the John-Nirenberg space). In (John 
& Nirenberg, 1961), John and Nirenberg developed the space 
𝐵𝑀𝑂(ℝ) of functions with bounded mean oscillation. 𝐵𝑀𝑂(ℝ) 

represents the space of all functions ℎ ∈ 𝐿𝑙𝑜𝑐
1

(ℝ) such that 

‖ℎ‖஻ெை = supொ⊂ℝ|𝑄|ିଵ ∫ |ℎ(𝑥) − 𝑄(ℎ)|𝑑𝑥
ொ

 < ∞, 

where the integral is over 𝑄 and the supremum is taken over the 
balls 𝑄 in ℝ of measure |𝑄|, and 𝑄(ℎ) stands for the mean of ℎ on 
𝑄, namely, 

𝑄(ℎ) = |𝑄|ିଵ න ℎ(𝑥) 𝑑𝑥
ொ

≤ |𝑄|ିଵ න |ℎ(𝑥)| 𝑑𝑥
ொ

≤ 𝑀 < ∞. 
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One of the most s൴gn൴f൴cant results ൴n harmon൴c analys൴s ൴s that the 
dual of the Hardy space ൴s prec൴sely the space 𝐵𝑀𝑂(ℝ). These 
spaces are thoroughly explored ൴n the l൴terature, part൴cularly ൴n 
(John & N൴renberg, 1961), (Bennet & Sharpley, 1979), (Stein & 
Murphy, 1993), (Edmunds & Evans, 2004), (Chuong & Duong, 
2013), (Verma & Gupta, 2021). 

Cont൴nu൴ty of W൴gner W൴lle D൴str൴but൴on on Hardy Space 

We now examine the continuity of the Wigner-Ville 
distribution on Hardy space. 

Lemma 1.1. If ℎ ∈ 𝐿ଵ(ℝ), 𝑔 ∈ 𝐿ଵ(ℝ) ∩ 𝐿ଶ(ℝ),  then 
𝑊(ℎ, 𝑔)(∙, 𝜇) ∈ 𝐿ଵ(ℝ). 

Proof. For a fixed 𝜇 in ℝ, the function 𝑊(ℎ, 𝑔)(𝑢, 𝜇) 
depends on 𝑢. By changing variable 𝑢 − 𝑡 2⁄ = 𝑧 and applying the 
Fubini’s Theorem, we have 

‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖ଵ = න |𝑊(ℎ, 𝑔)(𝑢, 𝜇)|
ℝ

 𝑑𝑢            

= න ቤන 𝑒ିଶగ௜ఓ

ℝ

ℎ ൬𝑢 +
𝑡

2
൰ 𝑔 ൬𝑢 −

𝑡

2
൰

തതതതതതതതതതതതത
 𝑑𝑡 ቤ

ℝ

 𝑑𝑢

= 2 න ቤන 𝑒ିସగ௜ఓ

ℝ

ℎ(2𝑢 − 𝑧)𝑔(𝑧) തതതതതതത 𝑒ସగ௜ఓ௭𝑑𝑧 ቤ
ℝ

 𝑑𝑢

≤ 2 න ห𝑔(𝑧) തതതതതതത ห
ℝ

 ቆන |ℎ(2𝑢 − 𝑧)|
ℝ

𝑑𝑢ቇ 𝑑𝑧

= න ห𝑔(𝑧) തതതതതതത ห
ℝ

 ቆන ห𝐷ଵ ଶ⁄ 𝑇௭ℎ(𝑢)ห
ℝ

𝑑𝑢ቇ 𝑑𝑧

= න ห𝑔(𝑧) തതതതതതത ห
ℝ

 ฮ𝐷ଵ ଶ⁄ 𝑇௭ℎฮ
ଵ

𝑑𝑧 

Again, using the dilation invariant and translation invariant 
properties of Lebesgue space, we obtain 
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‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖ଵ = ‖ℎ‖ଵ න ห𝑔(𝑧)തതതതതത ห
ℝ

 𝑑𝑧 = ‖ℎ‖ଵ‖𝑔‖ଵ. 

Hence, 𝑊(ℎ, 𝑔)(∙, 𝜇) ∈ 𝐿ଵ(ℝ). 

Theorem 1.2. Let 𝑔 be in 𝐿ଵ(ℝ) ∩ 𝐿ଶ(ℝ). The function 
ℎ → 𝑊(ℎ, 𝑔)(∙, 𝜇) defines a continuous operator from 𝐻ଵ(ℝ) to 
itself. Moreover, 

‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖ுభ ≤ ‖ℎ‖ுభ  ‖𝑔‖ଵ. 

 Proof. Every function ℎ in the Hardy space 𝐻ଵ(ℝ) is also 
an element of 𝐿ଵ(ℝ). Then By Lemma 1.1, we obtain 𝑊(ℎ, 𝑔) ∈

𝐿ଵ(ℝ). If Wigner Ville distribution rewrite in the following form 

𝑊(ℎ, 𝑔)(𝑢, 𝜇) = 2𝑒ସగ௜௨ න 𝑒ିସగ௜௔ఓ

ℝ

ℎ(𝑎)𝑔(𝑎 − 2𝑢) തതതതതതതതതതതതതത 𝑑𝑎

= 2𝑒ସగ௜௨ఓ න 𝑒ିସగ௜(௭ାଶ௨)ఓ

ℝ

ℎ(𝑧 + 2𝑢)𝑔෤(𝑧) തതതതതതത 𝑑𝑧

= 2𝑒ସగ௜௨ఓ න 𝑀ିଶఓ
ℝ

ℎ(𝑧 + 2𝑢)𝑔෤(𝑧) തതതതതതത 𝑑𝑧, 

where 𝑔෤(𝑧) is defined as 𝑔(−𝑧), we have 

(𝑊(ℎ, 𝑔)(∙, 𝜇) ∗ 𝜑௧)(𝑥) 

= න 𝑊(ℎ, 𝑔)(𝑥 − 𝑦, 𝜇) 𝜑௧(𝑦) 𝑑𝑦
ℝ

 

= න ቆ2𝑒ସగ௜(௫ି௬)ఓ න 𝑀ିଶఓ
ℝ

ℎ൫𝑧 + 2(𝑥 − 𝑦)൯𝑔෤(𝑧) തതതതതതത 𝑑𝑧ቇ 𝜑௧(𝑦) 𝑑𝑦
ℝ

 

= 2 න 𝑒ସగ௜(௫ି௬)ఓ𝑔෤(𝑧) തതതതതതത ቆන
1

2
𝐷ଵ

ଶ
𝑇 ௭𝑀ିଶఓℎ(𝑥 − 𝑦)𝜑௧(𝑦) 𝑑𝑦

ℝ

 ቇ 𝑑𝑧
ℝ

 

= න 𝑒ସగ௜(௫ି௬)ఓ𝑔෤(𝑧) തതതതതതത ቆ൬𝐷ଵ
ଶ

𝑇 ௭𝑀ିଶఓℎ൰ ∗ 𝜑௧ ቇ (𝑥)𝑑𝑧.
ℝ
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Leveraging the translation and dilation invariance of Hardy space, 
we obtain 

‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖ுభ = න sup
௧வ଴

 |(𝑊(ℎ, 𝑔)(∙, 𝜇) ∗ 𝜑௧)(𝑥)| 𝑑𝑥
ℝ

 

≤ න ห𝑔෤(𝑧) തതതതതതതห ቆන sup
௧வ଴

 ቤቆ൬𝐷ଵ
ଶ

𝑇 ௭𝑀ିଶఓℎ൰ ∗ 𝜑௧ቇ (𝑥)ቤ  𝑑𝑥
ℝ

ቇ 𝑑𝑧
ℝ

 

= න ห𝑔෤(𝑧) തതതതതതതห ฯ𝐷ଵ
ଶ

𝑇 ௭𝑀ିଶఓℎฯ
ுభ

𝑑𝑧
ℝ

 

= ‖ℎ‖ுభ න |𝑔෤(𝑧)|𝑑𝑧
ℝ

= ‖ℎ‖ுభ  ‖𝑔‖ଵ. 

Thus, the assertion is proved. 

 Theorem 1.3. Let f and y belong to 𝐿ଵ(ℝ) ∩ 𝐿ଶ(ℝ).  If 

ℎଵ, ℎଶ ∈ 𝐻ଵ(ℝ), then 

‖𝑊(ℎଵ,f)(∙, 𝜇) − 𝑊(ℎଶ,y)(∙, 𝜇)‖ுభ

≤  ‖f − y‖ଵ‖ℎଵ‖ுభ +  ‖y‖ଵ‖ℎଵ − ℎଶ‖ுభ . 

 Proof. Since 𝑊(ℎଵ,y)(𝑢, 𝜇) − 𝑊(ℎଶ,y)(𝑢, 𝜇) =

𝑊(ℎଵ − ℎଶ,y)(𝑢, 𝜇), we obtain 

ቀ൫𝑊(ℎଵ,y)(𝑢, 𝜇) − 𝑊(ℎଶ,y)(𝑢, 𝜇)൯ ∗ 𝜑௧(∙)ቁ (𝑥) 

= න 𝑒ସగ௜(௫ି௬)ఓ𝑔෤(𝑧) തതതതതതത ൭ቆ𝐷ଵ
ଶ

𝑇 ௭𝑀ିଶఓ(ℎଵ − ℎଶ)ቇ ∗ 𝜑௧ ൱ (𝑥)𝑑𝑧.
ℝ

 

Then by Theorem 1.2, we get 

‖𝑊(ℎଵ,y)(∙, 𝑤) − 𝑊(ℎଶ,y)(∙, 𝑤)‖ுభ ≤  ‖y‖ଵ‖ℎଵ − ℎଶ‖ுభ .       (1) 

Moreover, it is evident that 

𝑊(ℎଵ,f)(𝑢, 𝜇) − 𝑊(ℎଵ,y)(𝑢, 𝜇) = 𝑊(ℎଵ,f − y)(𝑢, 𝜇) 

and 

--68--



ቀ൫𝑊(ℎଵ,f) − 𝑊(ℎଵ,y)൯(∙, 𝜇) ∗ 𝜑௧(∙)ቁ (𝑥) 

= න 𝑒ସగ (௫ି௬)ఓ (𝑔ଵ − 𝑔ଶ)෫ (𝑧) തതതതതതതതതതതതതതതതതത ቆ൬𝐷ଵ
ଶ

𝑇 ௭𝑀ିଶఓℎଵ൰ ∗ 𝜑௧ ቇ (𝑥)𝑑𝑧.
ℝ

 

Again by Theorem 1.2, we write 

‖𝑊(ℎଵ,f)(∙, 𝜇) − 𝑊(ℎଵ,y)(∙, 𝜇)(∙, 𝑤)‖ுభ ≤  ‖f − y‖ଵ‖ℎଵ‖ுభ .  (2) 

Then from the equations (1) and (2), we obtain 

‖𝑊(ℎଵ,f)(∙, 𝜇) − 𝑊(ℎଶ,y)(∙, 𝜇)‖ுభ 

≤ ‖𝑊(ℎଵ,f)(∙, 𝜇) − 𝑊(ℎଵ,y)(∙, 𝜇)‖ுభ

+ ‖𝑊(ℎଵ,y)(∙, 𝜇) − 𝑊(ℎଶ,y)(∙, 𝜇)‖ுభ 

≤  ‖f − y‖ଵ‖ℎଵ‖ுభ +  ‖y‖ଵ‖ℎଵ − ℎଶ‖ுభ . 

Cont൴nu൴ty of W൴gner W൴lle D൴str൴but൴on on 𝑩𝑴𝑶 Space 

 Now, we will investigate the 𝐵𝑀𝑂- countinuity of Wigner 
Ville distribution. In order to proceed, the following lemma must 
be established. 

 Lemma 1.4. Let us assume that 𝑔 is a function belonging to 

the 𝐿ଵ(ℝ) and is compactly supported (cs). If ℎ ∈ 𝐿௟௢௖
ଵ (ℝ), then 

𝑊(ℎ,𝑔)(∙, 𝜇) ∈ 𝐿௟௢௖
ଵ (ℝ). 

 Proof. Since 𝑊(ℎ, 𝑔)(𝑢, 𝜇) is a function of the first variable 
and 

|𝑊(ℎ, 𝑔)(𝑢, 𝜇)| = ቤ2𝑒ସగ௜௨ఓ න 𝑒ିସగ௜(௔ାଶ௨)ఓ

ℝ

ℎ(𝑎 + 2𝑢)𝑔෤(𝑎) തതതതതതത 𝑑𝑎ቤ 

≤ 2 න |ℎ(𝑎 + 2𝑢)|ห𝑔෤(𝑎)തതതതതതห𝑑𝑎
ℝ

, 

we can get for any compact ball 𝐵 ⊂ ℝ 
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න |𝑊(ℎ, 𝑔)(𝑢, 𝜇)|
.

஻

𝑑𝑢 ≤ න |𝑔෤(𝑎)| ቆන |ℎ(𝑎 + 2𝑢)|𝑑𝑢
.

஻

ቇ 𝑑𝑎
.

ℝ

. 

Let 𝐾 ⊂ 𝑎 + 𝐵. As 𝐾 ⊂ 𝑠𝑢𝑝𝑝𝑔 + 𝐵, where 𝑠𝑢𝑝𝑝𝑔 is the closure of 

the set {𝑥 ∈ ℝௗ|𝑔(𝑥) ≠ 0}, is a closed and bounded set in ℝ and 

ℎ ∈ 𝐿௟௢௖
ଵ (ℝ), hence we get 

න |𝑊(ℎ, 𝑔)(𝑢, 𝜇)|
.

஻

𝑑𝑢 ≤ න |𝑔෤(𝑎)| ቆන |ℎ(𝑏)|𝑑𝑏
.

௄

ቇ 𝑑𝑎
.

ℝ

= 𝑁 ‖𝑔‖ଵ. 

So, 𝑊(ℎ,𝑔)(∙, 𝜇) is a locally integrable function. 

Theorem 1.5. Assume that 𝑔 ∈ 𝐿ଵ(ℝ) is a function whose 
closed support is a compact set. The function ℎ → 𝑊(ℎ, 𝑔)(∙, 𝜇) 
defines a continuous operatör from 𝐵𝑀𝑂(ℝ) to itself. Moreover, 

‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖஻ெை ≤ (‖ℎ‖஻ெை + 2𝑀) ‖𝑔‖ଵ. 

Proof. Let 𝑄 ⊂ ℝ be an arbitrary ball and ℎ ∈ 𝐵𝑀𝑂(ℝ). 

Then ℎ ∈ 𝐿௟௢௖
ଵ (ℝ) and so 𝑊(ℎ, 𝑔) ∈ 𝐿௟௢௖

ଵ (ℝ)  by Lemma 1.4. From 
Fubini’s Theorem, it follows that: 

𝑄൫𝑊(ℎ, 𝑔)൯ = |𝑄|ିଵ න 𝑊(ℎ, 𝑔)(𝑧, 𝜇)
.

ொ

𝑑𝑧 

= |𝑄|ିଵ න ቆ2 න ℎ(𝑎 + 2𝑧)𝑔෤(𝑎)𝑒ିସగ௜ఓ(௔ାଶ௭)𝑒ସగ௜ఓ௭𝑑𝑎
ℝ

ቇ
.

ொ

𝑑𝑧 

= 2 න 𝑔෤(𝑎) ቆ |𝑄|ିଵ න 𝑀ିଶఓℎ(𝑎 + 2𝑧)𝑒ସగ௜ఓ௭𝑑𝑧
ொ

ቇ
.

ℝ

𝑑𝑎 

= 2 න 𝑔෤(𝑎) ቆ |𝑄|ିଵ න
1

2
𝐷ଵ ଶ⁄ 𝑇 ௔𝑀ିଶఓℎ(𝑧)𝑒ସగ௜ఓ௭𝑑𝑧

ொ

ቇ
.

ℝ

𝑑𝑎 

= න 𝑔෤(𝑎) ቆ |𝑄|ିଵ න 𝑀ଶఓ𝐷ଵ ଶ⁄ 𝑇 ௔𝑀ିଶఓℎ(𝑧)𝑑𝑧
ொ

ቇ
.

ℝ

𝑑𝑎, 

and from here, we write 
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‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖஻ெை 

= sup
ொ⊂ℝ

|𝑄|ିଵ න ห𝑊(ℎ, 𝑔)(𝑢, 𝜇) − 𝑄൫𝑊(ℎ, 𝑔)൯ห
.

ொ

𝑑𝑢 

≤ න |𝑔෤(𝑎)| ቆsup
ொ⊂ℝ

|𝑄|ିଵ න ห൫𝑀ଶఓ𝐷ଵ ଶ⁄ 𝑇 ௔𝑀ିଶఓℎ൯(𝑢)
.

ொ

.

ℝ

− 𝑄൫𝑀ଶఓ𝐷ଵ ଶ⁄ 𝑇 ௔𝑀ିଶఓℎ൯ห 𝑑𝑢ቇ 𝑑𝑎 

= න |𝑔෤(𝑎)|ฮ𝑀ଶఓ𝐷ଵ ଶ⁄ 𝑇 ௔𝑀ିଶఓℎฮ
஻ெை

𝑑𝑎,
.

ℝ

 

also by using Lemma 2.2 in (Sandıkçı, 2023) and the dilation 
invariance of 𝐵𝑀𝑂, we obtain 

‖𝑊(ℎ, 𝑔)(∙, 𝜇)‖஻ெை ≤ න |𝑔෤(𝑎)|(‖ℎ‖஻ெை + 4𝑀)𝑑𝑎
.

ℝ

 

= (‖ℎ‖஻ெை + 2𝑀) න |𝑔෤(𝑎)|𝑑𝑎
.

ℝ

 

                            = (‖ℎ‖஻ெை + 2𝑀) ‖𝑔‖ଵ. 

Therefore, the premise has been established. 

 Theorem 1.6. Let f, y ∈ 𝐿ଵ(ℝ)  be two compactly 
supported functions. If ℎଵ, ℎଶ ∈ 𝐵𝑀𝑂(ℝ), then we have 

‖𝑊(ℎଵ,y)(∙, 𝜇) − 𝑊(ℎଶ,f)(∙, 𝜇)‖஻ெை 

≤  ‖y − f‖ଵ(‖ℎଵ‖஻ெை + 4𝑀) +  ‖f‖ଵ(‖ℎଵ − ℎଶ‖஻ெை + 4𝑀). 

Proof. Let f, y ∈ 𝐿ଵ(ℝ) be two cs functions and ℎଵ, ℎଶ ∈

𝐵𝑀𝑂(ℝ). So, ℎଵ, ℎଶ ∈ 𝐿௟௢௖
ଵ (ℝ) and so 𝑊(ℎଵ,y)(∙, 𝜇),

𝑊(ℎଶ,f)(∙, 𝜇) ∈ 𝐿௟௢௖
ଵ (ℝ) by Lemma 1.4. Morever, since 

𝑊(ℎଵ,y)(𝑢, 𝜇) − 𝑊(ℎଵ,f)(𝑢, 𝜇) = 𝑊(ℎଵ,y− f)(𝑢, 𝜇) and 
𝑊(ℎଵ,f)(𝑢, 𝜇) − 𝑊(ℎଶ,f)(𝑢, 𝜇) = 𝑊(ℎଵ − ℎଶ,f)(𝑢, 𝜇), we 
obtain by Theorem 1.5, 
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‖𝑊(ℎଵ,y)(∙, 𝜇) − 𝑊(ℎଶ,f)(∙, 𝜇)‖஻ெை 

≤ ‖𝑊(ℎଵ,y)(∙, 𝜇) − 𝑊(ℎଵ,f)(∙, 𝜇)‖஻ெை

+ ‖𝑊(ℎଵ,f)(∙, 𝜇) − 𝑊(ℎଶ,f)(∙, 𝜇)‖஻ெை 

= ‖𝑊(ℎଵ,y − f)(∙, 𝜇)‖஻ெை + ‖𝑊(ℎଵ − ℎଶ,f)(∙, 𝜇)‖஻ெை 

≤  ‖y − f‖ଵ(‖ℎଵ‖஻ெை + 4𝑀) +  ‖f‖ଵ(‖ℎଵ − ℎଶ‖஻ெை + 4𝑀). 

Consequently, the hypothesis is validated. 

Results and Discussion 

In the present work, we exam൴ned how the W൴gner V൴lle 
d൴str൴but൴on, a cornerstone of t൴me-frequency analys൴s, maps onto 
Hardy and BMO spaces. These spaces serve as the class൴cal 
env൴ronments for conduct൴ng harmon൴c analys൴s. Th൴s theoret൴cal 
foundat൴on prov൴des a framework for translat൴ng abstract concepts 
൴nto pract൴cal eng൴neer൴ng solut൴ons. 
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Introduction 

Non-Newtonian calculus was first introduced by Michael 

Grossman and Robert Katz between 1967 and 1970 as an alternative 

framework to classical calculus. The researchers initially described 

an infinite family of calculi consisting of classical, geometric, 

harmonic, and quadratic analysis, and later expanded this family by 

defining the bigeometric, biharmonic, and biquadratic calculi. More 

recently, this family has been further enriched by logarithmic–

geometric approaches such as anageometric calculus, a system in 
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which variations in function values are still evaluated through linear 

differences, while changes in the independent variable are 

interpreted through ratios rather than increments, providing a 

multiplicative perspective not captured by classical methods. The 

structure of anageometric calculus also resonates with the broader 

efforts to unify discrete and continuous frameworks, such as Hilger’s 

time scales theory introduced in 1988, which similarly reformulates 

analytical concepts by altering the underlying measurement of 

change. Since all these systems deviate fundamentally from classical 

calculus, Grossman and Katz referred to them collectively as “non-

Newtonian calculi” (Grossman & Katz, 1972; Grossman, 1979, 

1983). 

Non-Newtonian calculi offer tools that are often more 

suitable than classical calculus for capturing proportional change, 

multiplicative growth, and scale-dependent behavior in 

mathematical models. For this reason, they have found wide 

application in differential equations, functional analysis, numerical 

methods, biology, economics, image processing, artificial 

intelligence, blood viscosity modeling, elasticity theory, and many 

other fields (Bashirov et al., 2008, 2011; Çakmak & Başar, 2012; 

Boruah & Hazarika, 2018).  

Within this broad family, anageometric calculus has emerged 

as another important member based on a geometric perspective of 

variation. Anageometric calculus measures change not by additive 

differences but by logarithmic differences, i.e., 

ln(𝑏) − ln(𝑎), 

which represent multiplicative (geometric) change on the positive 

real axis. This replaces the classical notion of distance with a 

geometric distance, allowing the behavior of functions to be studied 

in terms of proportional variation. In this framework, the 

anageometric derivative quantifies the response of a function to 

--75--



infinitesimal multiplicative perturbations of its argument, whereas 

the anageometric integral is formulated as a Stieltjes integral 

weighted along the logarithmic axis. 

Anageometric calculus provides a natural analytical setting 

for problems involving the Weber–Fechner Law, stellar magnitude, 

scale invariance in the argument, growth induced by proportional 

variation in the argument, linearity in the logarithm of the argument, 

and processes defined on the positive real axis. Because of these 

properties, anageometric analysis offers a more suitable 

mathematical model in many contexts where classical or geometric 

calculus is insufficient. 

In summary, anageometric calculus occupies a distinctive 

position within the family of non-Newtonian calculi. It brings 

together 

• the multiplicative structure of geometric calculus, 

• the limit, derivative, and integral concepts of classical 

calculus, 

to form a logarithmically grounded differential and integral 

framework. 

The Weber–Fechner law constitutes a foundational principle 

of psychophysics by formalizing the relationship between the 

physical intensity of a stimulus and its subjective perceptual 

magnitude. Early experimental work by Ernst Heinrich Weber 

demonstrated that the just-noticeable difference (JND) between two 

stimuli is proportional to the baseline stimulus intensity rather than 

being an absolute quantity, a relationship now known as Weber’s 

law (Weber, 1834). Building on this empirical insight, Gustav 

Theodor Fechner proposed a logarithmic formulation linking 

physical stimulus intensity 𝐼 to subjective sensation 𝑆, expressed as 

𝑆 = 𝑘log⁡ 𝐼 + 𝐶, thereby establishing the Weber–Fechner law 

(Fechner, 1860). This logarithmic scaling implies that sensation 
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grows arithmetically as stimulus intensity increases geometrically, a 

mechanism often interpreted as an efficient sensory coding strategy 

that compresses a wide dynamic range of environmental inputs into 

a manageable internal representation (Portugal & Svaiter, 2011). 

Although later empirical research, most notably Stevens’ power law, 

has shown that a power function may better capture perception in 

certain sensory modalities, the Weber–Fechner framework remains 

a central theoretical model in perceptual psychology and cognitive 

neuroscience, with influential applications in areas such as 

numerical cognition and the logarithmic mental number line 

described by Stanislas Dehaene (Dehaene, 2003).  

In the following sections, we introduce the fundamental 

concepts of anageometric analysis, including the anageometric 

derivative, anageometric mean, and anageometric integral, and 

discuss their relationship to classical calculus as well as their 

potential applications. Finally we give the Weber-Fechner law as an 

anageometric model.  

1. Basic Concepts of Non-Newtonian Analysis 

In this section, some fundamental definitions and concepts 

used in anageometric analysis, which is one of the non-Newtonian 

analytical approaches, will be introduced. These concepts have been 

discussed in various studies in the literature and form the theoretical 

foundation of alternative analytical systems based on multiplicative 

changes in functions (Türkmen & Başar, 2012; Çakmak & Başar, 

2012). 

Definition 1: A function 𝛼:ℝexp → ℝ which is bijective (one-to-one 

and onto) and continuous is called a generator function. 

Definition 2 : The non-Newtonian (N.N.) number sets are defined 

as follows: 
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 N.N Number Sets  Exponential  
Number Sets  

N.N real numbers ℝα = {𝛼(𝑡)|⁡𝑡 ∈ ℝ}  ℝexp = (0,∞),  

N.N positive  

real numbers 

ℝα
+ = {𝛼(𝑡)|⁡𝑡 > 0}  ℝexp

+ = (1,∞), 

N.N negative  

real numbers  

ℝα
− = {𝛼(𝑡)|⁡𝑡 < 0}  ℝexp

− = (0,1),  

N.N non-negative  

real numbers: 

ℝα
+,0 = {𝛼(𝑡)|⁡𝑡 ≥ 0}  ℝexp

+,0 = [1,∞),  

 

N.N non-positive 

real numbers 

ℝα
−,0 = {𝛼(𝑡)|⁡𝑡 ≥ 0}  ℝexp

−,0 = (0,1]  

 

Definition 3: The following operations define the 𝛼-arithmetic in 

non-Newtonian analysis: 

 

• 𝛼-addition: 𝑥+̇𝑦 = 𝛼(𝛼−1(𝑥) + 𝛼−1(𝑦)) 

• 𝛼-subtraction: 𝑥−̇𝑦 = 𝛼(𝛼−1(𝑥) − 𝛼−1(𝑦)) 

• 𝛼-multiplication: 𝑥 ×̇ 𝑦 = 𝛼(𝛼−1(𝑥) × 𝛼−1(𝑦)) 

• 𝛼-division: 𝑥/̇𝑦 = 𝛼(𝛼−1(𝑥) ÷ 𝛼−1(𝑦)), 

for⁡𝑦 ≠ 𝛼(𝑦)  

• 𝛼-ordering: 𝑥 <̇ 𝑦 ⇔ 𝛼−1(𝑥) < 𝛼−1(𝑦) 

 

Definition 4: If the generator function is chosen as 𝛼 = exp then the 

geometric arithmetic operations in non-Newtonian analysis for 

all⁡𝑎, 𝑏 ∈ ℝexp are given as follows (Grossman & Katz, 1972; 

Grossman, 1979, 1983; Boruah & Hazarika, 2018a,b):  
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• Geometric addition:  

𝑎 ⊕ 𝑏 = exp{ln(𝑎) + ln(𝑏)} = 𝑒ln(𝑎)+ln(𝑏) = 𝑎 ⋅ 𝑏 

• Geometric subtraction:  

𝑎 ⊖ 𝑏 = exp{ln(𝑎) − ln(𝑏)} = 𝑒ln(𝑎)−ln(𝑏) =
𝑎

𝑏
 

• Geometric multiplication:  

𝑎 ⊙ 𝑏 = exp{ln(𝑎) ⋅ ln(𝑏)} = 𝑒ln(𝑎)⋅ln(𝑏) = 𝑎ln(𝑏) 

• Geometric division:  

𝑎 ⊘ 𝑏⁡ = exp {
ln(𝑎)

ln(𝑏)
} = 𝑒

ln(𝑎)
ln(𝑏) = 𝑎

1
ln(𝑏), (𝑏 ≠ 1) 

Additional properties of geometric (multiplicative) exponentiation, 

roots, inverse elements, and absolute value are as follows 

(For⁡all⁡𝑎, 𝑏 ∈ ℝexp, 𝑟 ∈ ℝ) 

• 𝑎2⊙ = 𝑎 ⊙ 𝑎 = 𝑎ln 𝑎, 
• |𝑎 ⊕ 𝑏|∗ ≤∗ |𝑎|∗ ⊕ |𝑏|∗ 

• 𝑎𝑏⊙ = exp{(ln 𝑎)𝑏}, • |𝑎 ⊘ 𝑏|∗ = |𝑎|∗ ⊘ |𝑏|∗ 

• √𝑎∗ = 𝑒(ln𝑎)
1
2 , 

• |𝑎 ⊖ 𝑏|∗ ≥∗ |𝑎|∗ ⊖ |𝑏|∗ 

• √𝑎2⊙∗ = |𝑎|∗ = 𝑒|ln(𝑎)| 
• |𝑎 ⊙ 𝑏|∗ = |𝑎|∗ ⊙ |𝑏|∗ 

• 𝑎⊖1 ⁡= ⁡ 𝑒
1

ln𝑎, (𝑎 ≠ 1) 
• ⊖𝑒⊙ (𝑎 ⊖ 𝑏) = 𝑏 ⊖ 𝑎, 

• 𝑎 ⊙ 𝑒 = 𝑎 ⊕ 1 = 𝑎, • |𝑒𝑟|∗ = 𝑒|𝑟|, 

• 𝑒𝑟 ⊙𝑎 = 𝑎𝑟 , 
• |𝑎|∗ = {

𝑎,⁡⁡⁡⁡⁡𝑎 > 1
1,⁡⁡⁡⁡⁡𝑎 = 1⁡⁡
1

𝑎
,⁡⁡⁡⁡⁡𝑎 < 1.
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2. Fundamental Concepts and Theorems of 

Anageometric Analysis  

Classical calculus investigates change through linear 

differences and limiting processes. In contrast, anageometric 

analysis characterizes variation not by additive increments but by 

geometric (multiplicative) changes in the argument. That is, a 

change in the argument of a function is not understood as 

𝑥 ↦ 𝑥 + 𝛥𝑥, 

but rather as a proportional transformation of the form 

𝑥 ↦ 𝑥 ⋅ Δ𝐺𝑥⁡⁡ 

Consequently, a change in the argument of a function is 

quantified not by the classical difference 𝑥⁡ − ⁡𝑎, but by ln(𝑥) −

ln(𝑎), which is sensitive to multiplicative increments. This leads to 

a derivative and integral structure adapted to multiplicative 

variation. 

Functions on the Positive Real Axis and Geometric Intervals 

Anageometric analysis is developed exclusively on the 

domain of positive real arguments, that is on the set ℝ+ = (0,∞). 

This restriction is not merely technical; it emerges naturally from the 

fact that anageometric change is measured through logarithmic 

differences, which are only well defined for positive inputs. 

Consequently, the fundamental objects replacing classical linear 

intervals are geometric intervals. 

For two points 𝑎 < 𝑏 in ℝ+, the interval [𝑎, 𝑏] is assigned a 

geometric extent defined by 𝐺(𝑎, 𝑏) =
𝑏

𝑎
. Unlike the classical notion 

of interval length 𝑏 − 𝑎, the geometric extent captures the geometric 

displacement between the endpoints. Hence, the “size’’ of an 

interval is measured not by linear separation but by the ratio of its 

endpoints. This shift from additive to multiplicative structure is 
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central to the conceptual framework of anageometric calculus: 

changes in arguments are evaluated through the induced logarithmic 

variation 

ln(𝑏) − ln(𝑎) = ln (
𝑏

𝑎
), 

which encodes the same multiplicative information. 

Anageometrically Uniform Functions 

A function 𝑓: (0,∞) → ℝ is said to be anageometrically 

uniform if its classical increment is determined solely by the 

geometric extent of the interval on which it is evaluated. Formally, 

the function satisfies 

𝑏

𝑎
=

𝑑

𝑐
⟹ 𝑓(𝑏) − 𝑓(𝑎) = 𝑓(𝑑) − 𝑓(𝑐), 

for all positive quadruples 𝑎 < 𝑏 and 𝑐 < 𝑑. In other words, equal 

multiplicative changes in the argument yield equal additive changes 

in the value of the function. 

An equivalent and structurally illuminating characterization shows 

that every anageometrically uniform function necessarily has the 

form 

𝑓(𝑥) = ln(𝐶𝑥𝑚) = ln 𝐶 + 𝑚 ⋅ ln 𝑥, 

where 𝐶 > 0 and 𝑚 ∈ ℝ are constants. Thus, anageometrically 

uniform functions are precisely those that appear as affine functions 

on the logarithmic scale; when plotted on a semi-logarithmic axis 

(logarithmic in 𝑥, linear in 𝑓(𝑥)), such functions trace a straight line. 

Their anageometric slope is exactly the parameter 𝑚. 

A further consequence of this structure is that if the argument 

values form a geometric progression, then the corresponding 

function values form an arithmetic progression. This multiplicative-

to-additive correspondence is a defining hallmark of anageometric 
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uniformity and explains why such functions serve as the “local linear 

models’’ in anageometric calculus the analogue of linear (affine) 

functions in classical differential calculus. 

Stellar Magnitude as  an Anageometric Model 

The stellar (apparent) magnitude scale used to quantify stellar 

brightness originates from the ancient classification traditionally 

attributed to Hipparchus (ca. 130 BCE), in which brighter stars were 

assigned smaller numerical values, a convention that persists in 

modern astronomy through a logarithmic formulation (Hearnshaw, 

1996). In contemporary terms, the apparent magnitude 𝑚 of a star is 

defined in terms of the measured light flux 𝐹 relative to a reference 

(zero-point) flux 𝐹0 by 

𝑚 = −2.5log⁡10 (
𝐹

𝐹0
). 

The negative sign preserves the historical convention that 

brighter objects correspond to smaller (and possibly negative) 

magnitude values, while the coefficient 2.5 encodes the Pogson 

relation, according to which a difference of five magnitudes 

corresponds to a factor of exactly 100 in flux (Norman Pogson, 1856; 

Carroll & Ostlie, 2017). The reference flux 𝐹0 is not universal but 

depends on the adopted photometric system: in Vega-based systems, 

it is calibrated so that the star Vega has approximately zero 

magnitude in a given band (Johnson & Morgan, 1953), whereas in 

modern systems such as the AB magnitude system, the zero point is 

defined by a constant spectral flux density rather than by a specific 

star (Oke & Gunn, 1983). This logarithmic formulation and its 

physical interpretation constitute a foundational framework for 

stellar photometry and are central to modern astrophysics and 

observational cosmology (Ryden & Peterson, 2010). 

The Anageometric Gradient on [𝒂, 𝒃] 
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Given a function 𝑓: (0,∞) → ℝ and two positive real 

numbers 𝑎 < 𝑏, the anageometric gradient of 𝑓 over the geometric 

interval [𝑎, 𝑏] is defined as the slope of the unique anageometrically 

uniform function that interpolates the points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)). 

Since anageometrically uniform functions are precisely those 

of the form 

𝑓(𝑥) = ln(𝐶𝑥𝑚) = ln 𝐶 + 𝑚 ⋅ ln 𝑥, 

their classical slope on a logarithmic 𝑥-axis is the constant parameter 

𝑚. The anageometric gradient of 𝑓 over [𝑎, 𝑏] is therefore 

determined by selecting the value of 𝑚 that makes 𝑓 pass through 

the two prescribed points. Solving 

𝑓(𝑏) − 𝑓(𝑎) = 𝑚(ln(𝑏) − ln(𝑎)) 

yields the explicit formula:   

𝐺
~
𝑎
𝑏𝑓 =  

𝑓(𝑏) − 𝑓(𝑎)

ln(𝑏) − ln(𝑎) ⁡
 

This expression generalizes the classical secant slope, but replaces 

the linear increment 𝑏 − 𝑎 with the logarithmic increment ln(𝑏) −

ln(𝑎), reflecting the multiplicative geometry of the underlying 

domain. 

The definition exhibits two notable structural properties: 

 Invariance under unit transformations 

Because it depends only on differences of logarithms, the 

anageometric gradient is insensitive to rescalings of the input space.  

A uniform scaling by a factor 𝑘 leaves the logarithmic difference 

invariant, since  

ln⁡(𝑘𝑏) − ln⁡(𝑘𝑎) = ln⁡(𝑏) − ln⁡(𝑎) 

by cancellation of the additive ln 𝑘⁡terms. So, the anageometric 

gradient is unchanged. 
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This invariance is one rationale for adopting logarithmic 

measures of change in anageometric calculus. 

Limiting behavior and the emergence of the anageometric 

derivative 

When 𝑏 → 𝑎, the expression 

𝑓(𝑏) − 𝑓(𝑎)

ln(𝑏) − ln(𝑎) ⁡
 

develops the indeterminate form 0/0. The limit, when it exists, is 

precisely the anageometric derivative of 𝑓 at 𝑎, which will be 

developed in detail in the next section. Thus the gradient serves as 

the natural finite-interval analogue of the differential notion. 

Interpretation on semi-logarithmic coordinates 

If one plots 𝑓 on a semi-logarithmic graph linear scale in the 

vertical direction, logarithmic scale in the horizontal direction then 

• the points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) appear at horizontal 

positions ln(𝑎) and ln(𝑏), 

• and the anageometric gradient 𝐺𝑎
𝑏𝑓 is exactly the classical 

slope of the straight line joining these transformed points. 

This graphical representation mirrors the role of secant lines 

in classical calculus, and further highlights why logarithmic 

differences play the role of “geometric increments’’ in the 

anageometric framework. 

We can give the correspondence between anageometric 

gradient and gradient in the classical sense as follows: 

Let 𝑎 < 𝑏, and set 

𝛼 = ln(𝑎) ,⁡⁡⁡𝛽 = ln(𝑏) 

Then the anageometric gradient 
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𝐺
~
𝑎
𝑏𝑓 =

𝑓(𝑏) − 𝑓(𝑎)

ln(𝑏) − ln(𝑎)
 

corresponds directly to the classical gradient of the transformed 

function 𝐹(𝑢) = 𝑓(𝑒𝑢) over the interval [𝛼, 𝛽]: 

𝐺𝛼
𝛽
𝐹 =

𝐹(𝛽) − 𝐹(𝛼)

𝛽 − 𝛼
. 

Thus: 

𝐺
~
𝑎
𝑏𝑓 = 𝐺𝛼

𝛽
𝐹 

This identity highlights that anageometric gradients are 

nothing more than classical gradients evaluated after mapping the 

domain through the logarithmic transformation. 

Logarithmic Foundations of Anageometric Differentiation 

Classical differentiation measures infinitesimal change 

relative to additive perturbations of the argument, that is, variations 

of the form 𝑥 ↦ 𝑥 + Δ𝑥. In contrast, anageometric analysis is built 

upon the principle that meaningful change in the argument should be 

assessed multiplicatively. Thus, the fundamental perturbation is 

𝑥 ↦  𝑥 ⋅ Δ𝐺𝑥,           Δ𝐺𝑥 ∈ ℝexp, 

and the appropriate quantitative measure of this perturbation is the 

induced logarithmic increment 

ln(𝑥) − ln(𝑎) = ln (
𝑥

𝑎
) 

This multiplicative viewpoint leads naturally to a differential 

operator that behaves as the classical derivative with respect to the 

logarithmic coordinate ln(𝑥). In this sense, the anageometric 

derivative captures the rate of change of a function under geometric 

(i.e., scale-based) displacements of its input. 

Definition of the Anageometric Derivative 
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Let 𝑓: (0,∞) → ℝ be defined on a positive interval 

containing the point 𝑎 > 0. The anageometric derivative of 𝑓 at 𝑎 is 

defined by the limit 

𝐷
~
𝑓(𝑎) = lim

𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

ln(𝑥) − ln(𝑎)
⁡ 

provided the limit exists. 

This definition mirrors the classical secant ratio  

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

but replaces the additive increment with its logarithmic counterpart. 

When the above limit exists, we say that 𝑓 is anageometrically 

differentiable at 𝑎. 

Geometric Increment and the Anageometric Derivative 

Let a very small geometric increment of 𝑥 be denoted by 

Δ𝐺𝑥 ∈ ℝexp and Δ𝐺𝑥 → 1. In this case, 𝑥 ⋅ Δ𝐺𝑥 → 𝑥, and the 

anageometric derivative of a function 𝑓: (0,∞) → ℝ at the point 𝑥 

can be written as 

𝐷
~
𝑓(𝑥) = lim⁡

Δ𝐺𝑥→1

𝑓(𝑥 ⋅ Δ𝐺𝑥) − 𝑓(𝑥)

ln⁡(𝑥 ⋅ Δ𝐺𝑥) − ln⁡(𝑥)
. 

Using the logarithmic identity ln⁡(𝑥 ⋅ Δ𝐺𝑥) − ln⁡(𝑥) = ln⁡(Δ𝐺𝑥), 

this expression reduces to 

𝐷
~
𝑓(𝑥) = lim⁡

Δ𝐺𝑥→1

𝑓(𝑥 ⋅ Δ𝐺𝑥) − 𝑓(𝑥)

ln⁡(Δ𝐺𝑥)
. 

If the geometric increment at 𝑥 is denoted by 𝐾:= Δ𝐺𝑥, then the 

anageometric derivative takes the equivalent form 

𝐷
~
𝑓(𝑥) = lim

𝐾→1

𝑓(𝐾𝑥) − 𝑓(𝑥)

ln(𝐾)
⁡ 
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which measures the rate of change under geometric (scale-based) 

displacements. 

The relation between geometric increment Δ𝐺 and additive 

increment Δ is as follows 

Δ𝐺𝑥 = 𝑒Δ(ln𝑥) 

Definition 5: The geometric differential is defined as follows  

𝑑𝐺𝑥 = 𝑒𝑑(ln𝑥) = 𝑒𝑑𝑥 𝑥⁄ . 

By the definition of the geometric differential we have 

ln(𝑑𝐺𝑥) = 𝑑(ln 𝑥). 

Relation to the Classical Derivative 

Using the definition of 𝐷
~
𝑓(𝑥), one obtains the fundamental 

relation between classical and anageometric integral as 

𝐷
~
𝑓(𝑥) =

𝑑𝑓

𝑑(ln 𝑥)
= 𝑥𝑓′(𝑥) 

or  

𝐷
~
𝑓(𝑥) = 𝑥𝐷𝑓(𝑥) 

since 
𝑑

𝑑(ln 𝑥)
= 𝑥

𝑑

𝑑𝑥
. This shows that the anageometric derivative is 

equivalent to the classical derivative scaled by the argument. 

Moreover we have  

𝐷
~
𝑓(𝑥) =

𝑑𝑓

ln(𝑑𝐺𝑥)
 

since  ln(𝑑𝐺𝑥) = 𝑑(ln 𝑥). 

Linearity Properties of the Operator 𝑫
~

 

The anageometric derivative operator satisfies the two 

foundational linearity properties: 
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1. Additivity:  

𝐷
~
(𝑓 + 𝑔) = 𝐷

~
𝑓 + 𝐷

~
𝑔. 

2. Homogeneity: 

𝐷
~
(𝑐 ⋅ 𝑓) = 𝑐 ⋅ 𝐷

~
𝑓,⁡⁡⁡⁡𝑐 ∈ ℝ. 

These properties mirror those of the classical derivative and ensure 

that the anageometric differential calculus forms a consistent linear 

theory. 

Constantness of the Derivative and Uniformity 

In direct analogy with classical calculus, the source 

establishes that: 

• If 𝑓 is anageometrically uniform, then 𝐷
~
𝑓 is constant. 

• Conversely, if 𝐷
~
𝑓 is constant throughout ℝexp, then 𝑓 must 

be anageometrically uniform. 

Given the explicit form 𝑓(𝑥) = ln(𝐶𝑥𝑚), we find 

𝐷
~
𝑓(𝑥) = 𝑚 for all 𝑥 > 0. 

This result reinforces the classification of log affine functions as the 

“linear objects’’ in the anageometric setting. 

Example: The Function ℎ(𝑥) = 𝑚𝑥 

Let ℎ(𝑥) = 𝑚𝑥,⁡⁡⁡𝑥 > 0. Its anageometric derivative satisfies the 

identity 

𝐷
~
ℎ = ℎ. 

Indeed, 

𝐷
~
ℎ(𝑎) = 𝑎 ℎ′(𝑎) = 𝑎 ⋅ 𝑚 = 𝑚𝑎 = ℎ(𝑎). 
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This equality highlights the fundamentally different behavior of the 

anageometric derivative compared to the classical one: The 

multiplicative structure of the domain ensures that linear functions 

preserve their form under anageometric differentiation; this behavior 

is analogous to that of exponential functions in classical calculus. 

Transition to Anageometric Integration 

The anageometric derivative serves as the infinitesimal 

counterpart to the anageometric gradient introduced earlier. As the 

geometric increment ln(𝑏) − ln(𝑎)⁡shrinks to zero, the finite 

gradient converges to 𝐷
~
𝑓(𝑎). This convergence sets the stage for a 

parallel development of integration, where averaging over geometric 

partitions gives rise to the anageometric integral. 

The next section will formalize this connection by introducing the 

anageometric average and establishing the structural foundations for 

the anageometric integral. 

The Anageometric Average 

Since anageometric calculus evaluates changes in arguments 

through ratios rather than additive differences, the natural 

discretization of an interval [𝑎, 𝑏] ⊂ (0,∞) must respect this 

multiplicative structure. For this reason, the appropriate analogue of 

a classical partition is a geometric partition. 

Definition 6 (Geometric partition): 

A geometric partition of [𝑎, 𝑏] is any finite sequence 

𝑎 = 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 = 𝑏 

such that the ratio 

𝑎𝑘+1
𝑎𝑘
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is constant for all 𝑘 = 1,⋯ , 𝑛 − 1.  

Equivalently, the points form a geometric progression. If the 

sequence contains 𝑛 points, it is called an 𝑛-fold geometric partition. 

This structure is mandated by the multiplicative nature of 

anageometric change: equal “steps’’ in a geometric partition 

correspond to equal increments of ln(𝑥). Thus geometric partitions 

are precisely those partitions that become uniform in classical sense 

when transferred to the logarithmic axis. 

Definition of the Anageometric Average 

Let 𝑓: [𝑎, 𝑏] → ℝ be a continuous function. For a geometric partition 

𝑎1, 𝑎2, … , 𝑎𝑛, 

consider the corresponding arithmetic mean of sampled values: 

𝐴𝑛(𝑓) =
1

𝑛
(𝑓(𝑎1) + 𝑓(𝑎2) + ⋯+ 𝑓(𝑎𝑛)). 

Because the partition points form a geometric progression, these 

sample points reflect equal spacing in logarithmic coordinates, 

making 𝐴𝑛(𝑓) the natural analogue of Riemann sums in classical 

calculus. 

Definition 7 (Anageometric average): 

The anageometric average of 𝑓 over [𝑎, 𝑏] is defined by 

𝑀
~
𝑎
𝑏𝑓 = lim

𝑛→∞
𝐴𝑛(𝑓), 

provided the limit exists (which it does for all continuous 𝑓). Thus, 

𝑀
~
𝑎
𝑏𝑓 represents the limiting mean value of 𝑓 sampled along 

increasingly refined geometric partitions of [𝑎, 𝑏]. 

Comparison with the Classical Arithmetic Average 

It is important to emphasize that the anageometric average is 

not identical to the classical arithmetic average over an interval. The 

difference arises from the fact that geometric partitions weight the 
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domain multiplicatively, introducing a distortion relative to the 

uniform linear discretization used in standard calculus. 

Below is an example that illustrates this distinction: 

Let 𝑓(𝑥) = 𝑥. Then 

𝑀
~
𝑎
𝑏𝑓 =

𝑏 − 𝑎

ln(𝑏) − ln(𝑎)
 

whereas the classical arithmetic mean over [𝑎, 𝑏] is 

𝑀𝑎
𝑏𝑓 =

𝑎 + 𝑏

2
 

The anageometric average privileges the behavior of 𝑓 under 

geometric scaling, not under translation. 

For a continuous function 𝑓, the anageometric average over [𝑎, 𝑏] 

satisfies: 

𝑀
~
𝑎
𝑏𝑓 = 𝑀𝛼

𝛽
𝐹 

where 𝐹(𝑢) = 𝑓(𝑒𝑢), and the right-hand side is the classical average 

of 𝐹 over [𝛼 = ln(𝑎) , 𝛽 = ln(𝑏)]. 

That is: 

𝑀𝛼
𝛽
𝐹 =

1

𝛽 − 𝛼
∫ 𝐹(𝑢) 𝑑𝑢

𝛽

𝛼

 

This identity reveals that anageometric averaging corresponds 

precisely to classical averaging under the logarithmic 

reparameterization. 

It also reflects the fact that geometric partitions in [𝑎, 𝑏] correspond 

to uniform partitions in the logarithmic interval [𝛼, 𝛽]. 

Linearity Properties of the Anageometric Average 

--91--



The operator 𝑀
~
𝑎
𝑏 satisfies two essential structural properties 

analogous to those in classical analysis: 

1. Additivity: 

𝑀
~
𝑎
𝑏(𝑓 + 𝑔) = 𝑀

~
𝑎
𝑏𝑓 +𝑀

~
𝑎
𝑏𝑔. 

2. Homogeneity: 

𝑀
~
𝑎
𝑏(𝑐 ⋅ 𝑓) = 𝑐 ⋅ 𝑀

~
𝑎
𝑏𝑓⁡⁡⁡⁡⁡⁡⁡⁡(𝑐 ∈ 𝑅). 

These properties follow directly from the additivity and 

homogeneity of arithmetic means at each partition level. 

Anageometrically Uniform Functions and Their Averages 

For an anageometrically uniform function 

ℎ(𝑥) = ln(𝐶𝑥𝑚) = ln𝐶 + 𝑚 ⋅ ln 𝑥 

the anageometric average admits a remarkable simplification: 

• It equals the arithmetic mean of the endpoint values: 

𝑀
~
𝑎
𝑏ℎ =

ℎ(𝑎) + ℎ(𝑏)

2
 

• It also equals the value of ℎ evaluated at the geometric mean 

of the endpoints: 

𝑀
~
𝑎
𝑏ℎ = ℎ(√𝑎𝑏) 

This property reflects the log-affine structure of uniform functions, 

which behave linearly on the logarithmic scale. Thus, the 

anageometric average generalizes the midpoint rule of classical 

calculus, but in a multiplicative rather than additive framework. 

Characterization Theorem for the Anageometric Average 

The anageometric average is the unique operator that satisfies 

three fundamental properties: 
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1. Normalization on constants:  

For every constant 𝑓(𝑥) = ⁡𝑐 ∈ ℝ, 

𝑀
~
𝑎
𝑏𝑓 = 𝑐. 

2. Monotonicity: 

If 𝑓(𝑥) < 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏], then 

𝑀
~
𝑎
𝑏𝑓 < 𝑀

~
𝑎
𝑏𝑔. 

3. Logarithmic additivity across subintervals:  

For any 𝑎 < 𝑠 < 𝑏, 

[ln(𝑠) − ln(𝑎)] 𝑀
~
𝑎
𝑠𝑓 + [ln(𝑏) − ln(𝑠)] 𝑀

~
𝑠
𝑏𝑓

= [ln(𝑏) − ln(𝑎)] 𝑀
~
𝑎
𝑏𝑓 

This final property mirrors the mean-value structure of classical 

integrals, but with logarithmic weights replacing linear lengths. It 

also foreshadows the construction of the anageometric integral, 

which appears naturally from this characterization. 

Role of the Anageometric Average in the Calculus Framework 

The anageometric average fits naturally into the structure of 

anageometric calculus because: 

• It reflects the multiplicative geometry of the domain. 

• It provides the correct limiting behavior needed for 

anageometric integration. 

• It preserves the essential properties expected of a mean 

operator in a geometrically structured space. 

In particular, the basic theorem of anageometric calculus (developed 

in the next section) hinges directly on the interplay between the 

anageometric average and the anageometric derivative. 

The Basic Theorem of Anageometric Calculus 

--93--



The anageometric average introduced in the previous section 

acquires its full significance through its relationship with the 

anageometric derivative. This relationship, parallels the classical 

connection between averages of derivatives and secant slopes. 

Let ℎ: [𝑎, 𝑏] → ℝ be a function whose anageometric derivative 𝐷
~
ℎ 

exists and is continuous on [𝑎, 𝑏]. Then the theorem states: 

𝑀
~
𝑎
𝑏(𝐷

~
ℎ) =

ℎ(𝑏) − ℎ(𝑎)

ln(𝑏) − ln(𝑎)
 

That is the anageometric average of the anageometric derivative over 

[𝑎, 𝑏] equals the anageometric gradient of ℎ over the same interval. 

This result provides a multiplicative analogue of the classical fact 

that the average of ℎ′ over [𝑎, 𝑏] equals the slope of the secant line 

between (𝑎, ℎ(𝑎)) and (𝑏, ℎ(𝑏)). 

Here, however, the denominator is the logarithmic increment 

ln(𝑏) − ln(𝑎), which encodes geometric displacement rather than 

additive separation. 

The theorem reveals several deep structural features: 

(1) Consistency of the anageometric framework: It confirms that the 

integral-like quantity 

[ln(𝑏) − ln(𝑎)] 𝑀
~
𝑎
𝑏(𝐷

~
ℎ) 

recovers the finite change ℎ(𝑏) − ℎ(𝑎), which means that the 

anageometric derivative and average are perfectly compatible dual 

notions. 

(2) Preparation for the Fundamental Theorems: This identity 

functions as a precursor to the fundamental theorems of 

anageometric calculus, just as the classical mean value relationships 

support the development of standard integral calculus. 
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(3) Justification for the integral definition: Most importantly, it 

motivates the definition of the anageometric integral, since one 

wishes for an operator that inverts differentiation in the sense 

captured by this theorem. 

Thus, the basic theorem stands as the central conceptual bridge 

between differentiation and integration in the multiplicative regime. 

The Anageometric Integral 

Definition 8 (Anageometric Integral): 

Let 𝑓: [𝑎, 𝑏] → ℝ be continuous. The anageometric integral 

of 𝑓 over [𝑎, 𝑏] is defined by: 

∫𝑓

𝑏

𝑎
~

= 𝑀
~
𝑎
𝑏{[ln(𝑏) − ln(𝑎)] ⋅ 𝑓} 

The anageometric integral from 𝑎 to 𝑎⁡ is set to be 0:  

∫𝑓

𝑎

𝑎
~

= 0. 

Thus, the anageometric integral is a logarithmically weighted 

anageometric average. This matches the structure derived from the 

basic theorem and ensures that integrating a derivative reproduces 

the correct secant change of the original function. 

Interpretation via Geometric Riemann Sums 

The anageometric integral can be equivalently formulated as 

the limit of a sequence of geometric Riemann sums. 

Consider an 𝑛-fold geometric partition of [𝑎, 𝑏], 

𝑎1 = 𝑎, 𝑎2, … , 𝑎𝑛 = 𝑏 

with common ratio 
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𝑘𝑛 =
𝑎𝑗+1

𝑎𝑗
⁡⁡⁡⁡(independent of 𝑗) 

Then the corresponding sum is: 

𝑆𝑛(𝑓) = (ln 𝑘𝑛)𝑓(𝑎1) + (ln 𝑘𝑛)𝑓(𝑎2) + ⋯+ (ln 𝑘𝑛) 𝑓(𝑎𝑛−1). 

The anageometric integral is 

∫𝑓

𝑏

𝑎
~

= lim
𝑛→∞

𝑆𝑛(𝑓) 

This formulation parallels the classical Riemann sum construction, 

except that: 

• the increments are logarithmic (ln 𝑘𝑛), 

• the partition is geometric, 

• and the integral sums over multiplicative displacements. 

Such a structure naturally expresses integration with respect to 

ln(𝑥), which is the Stieltjes measure underlying the anageometric 

theory. 

Relationship to Stieltjes Integration 

∫ 𝑓
𝑏

𝑎
~

 is the Stieltjes integral of 𝑓 with respect to ln(𝑥):  

∫𝑓

𝑏

𝑎
~

= ∫𝑓(𝑥)𝑑(ln 𝑥)

𝑏

𝑎

 

This clarifies that the underlying measure is 

𝑑(ln 𝑥) =
1

𝑥
 𝑑𝑥 
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and hence the anageometric integral is essentially a weighted 

classical integral, but one whose weighting precisely encodes 

multiplicative scaling. 

Using change of variables (𝑢 = ln 𝑥), the relation between 

anageometric and classical integral  can be written as  

∫𝑓

𝑏

𝑎
~

= ∫ 𝑓(𝑒𝑢)𝑑𝑢

ln(𝑏)

ln(𝑎)

. 

If we define 𝐹(𝑢) = 𝑓(𝑒𝑢) and 𝛼 = ln(𝑎) , 𝛽 = ln(𝑏)⁡then we get 

∫𝑓

𝑏

𝑎
~

= ∫ 𝐹(𝑢)𝑑𝑢

𝛽

𝛼

 

Linearity and Additivity Properties 

The anageometric integral satisfies the same algebraic laws 

as classical integration: 

1. Linearity: 

∫(𝑐 ⋅ 𝑓)

𝑏

𝑎
~

= 𝑐 ⋅ ∫𝑓

𝑏

𝑎
~

, 𝑐 ∈ ℝ 

2. Monotonicity: 

If 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏], then 

∫𝑓

𝑏

𝑎
~

≤ ∫𝑔

𝑏

𝑎
~

 

3. Additivity over subintervals:  

For any 𝑎 < 𝑠 < 𝑏, 
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∫𝑓

𝑏

𝑎
~

= ∫𝑓

𝑠

𝑎
~

+∫𝑓

𝑏

𝑠
~

 

These properties are identical to those in the classical theory but are 

derived from the geometric nature of the underlying partitions and 

the logarithmic weighting. 

The Fundamental Theorems of Anageometric Calculus 

The anageometric derivative and the anageometric integral, 

each developed as multiplicative analogues of their classical 

counterparts, are connected through two foundational results that 

mirror the fundamental theorems of classical calculus. The key 

difference is that these results operate on the logarithmic geometry 

of the positive real line. 

The First Fundamental Theorem of Anageometric Calculus 

Let 𝑓: [𝑎, 𝑏] → ℝ be continuous, and define a function 𝑔 on 

[𝑎, 𝑏] by 

𝑔(𝑥) = ∫𝑓

𝑥

𝑎
~

 

Then: 

𝐷
~
𝑔(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. 

This result asserts that anageometric integration is the inverse 

operation of anageometric differentiation. 

This theorem closely parallels the classical statement that 

𝐷
~
(∫𝑓(𝑡)𝑑𝑡

𝑥

𝑎
~

) = 𝑓(𝑥), 
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but with integration and differentiation performed with respect to the 

geometric measure 𝑑(ln 𝑥). 

The Second Fundamental Theorem of Anageometric Calculus 

Let ℎ: [𝑎, 𝑏] → ℝ be such that its anageometric derivative 𝐷
~
ℎ 

exists and is continuous. Then: 

∫𝐷
~
ℎ

𝑏

𝑎
~

= ℎ(𝑏) − ℎ(𝑎). 

This identity is the multiplicative analogue of the classical 

fundamental theorem: 

∫ℎ′(𝑥) 𝑑𝑥

𝑏

𝑎

= ℎ(𝑏) − ℎ(𝑎). 

Here the integral is taken with respect to 𝑑(ln 𝑥), and the identity 

follows directly from the basic theorem of anageometric calculus: 

𝑀
~
𝑎
𝑏(𝐷

~
ℎ) =

ℎ(𝑏) − ℎ(𝑎)

ln(𝑏) − ln(𝑎)
. 

Multiplying both sides by ln(𝑏) − ln(𝑎) yields exactly the desired 

expression. 

3. An Anageometric Model 

In this section, firstly we give Weber-Fechner law in classical 

analysis. Then we will present the  Weber-Fechner law in 

anageometric analysis.  

Weber–Fechner Law in Classical Analysis 

Definition 9 (Physical stimulus intensity): A physical stimulus 

perceived by a sensory system is modeled as a positive intensity 

variable 
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𝐼 > 0. 

Definition 10 (Just-Noticeable Difference – JND):  The 

just-noticeable difference (JND) is defined as the smallest increment 

in stimulus intensity that an observer can reliably discriminate 

between two stimuli. The JND is an experimentally measured, 

discrete quantity (Ernst Heinrich Weber, 1834). 

Definition 11 (Sensation magnitude): The sensation magnitude is 

defined as an abstract measurement variable depending on the 

physical stimulus intensity, 

𝑆 = 𝑆(𝐼). 

This variable is not directly measurable; it is defined only through 

discrimination thresholds (Gustav Theodor Fechner, 1860). 

Axiom 1 (Weber’s Law- Empirical Axiom): For a given sensory 

modality, the ratio of the smallest discriminable stimulus increment 

to the stimulus intensity is constant: 

Δ𝐼

𝐼
= 𝑘𝑊, 

where 𝑘𝑊 > 0 is the Weber fraction, an experimentally determined, 

modality-specific constant (Weber, 1834; John C. Baird & Eiichi 

Noma, 1978).   

This law pertains solely to the physical stimulus space; the sensation 

variable 𝑆 has not yet been introduced. 

Axiom 2 below is about Fechner’s Assumption (Measurement 

Axiom). 

Axiom 2 (Equal JND = Equal Sensation Increment): Each JND 

corresponds to an equal increment on the sensation scale: 

Δ𝑆 = 𝑘𝑆, 
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where 𝑘𝑆 > 0 is a scale constant depending on the chosen unit of 

sensation (Fechner, 1860). 

By an appropriate choice of units, one may set 𝑘𝑆 = 1; this is a 

normalization convention. 

Assuming that JNDs are sufficiently small, the discrete structure is 

idealized as continuous: 

Δ𝐼 → 𝑑𝐼, Δ𝑆 → 𝑑𝑆. 

This transition is a standard idealization in continuous 

psychophysical modeling (Stanley Smith Stevens, 1957). 

Theorem 1 (Weber–Fechner Differential Law): Under Axiom 1 

and Axiom 2, the following differential relationship holds between 

sensation increment and stimulus increment: 

𝑑𝑆 = 𝑘𝐹
𝑑𝐼

𝐼
, 

where 

𝑘𝐹: =
𝑘𝑆
𝑘𝑊

. 

Proof. 

By Weber’s law, we have  

Δ𝐼 = 𝑘𝑊𝐼. 

for one JND. And By Fechner’s assumption, for the same JND, we 

have 

Δ𝑆 = 𝑘𝑆. 

For sufficiently small JND, they can be related as 

𝑑𝑆

𝑘𝑆
=
𝑑𝐼/𝐼

𝑘𝑊
. 

Hence, 
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𝑑𝑆 =
𝑘𝑆
𝑘𝑊

𝑑𝐼

𝐼
= 𝑘𝐹

𝑑𝐼

𝐼
. 

The proof is complete. □ 

Integrating the equation in Weber–Fechner differential law 

we get Fechner’s formula. 

Theorem 2 (Fechner’s Law): The following relationship holds 

between sensation and stimulus: 

𝑆(𝐼) = 𝑘𝐹ln⁡ 𝐼 + 𝐶. 

Proof. Integrating the relation in Theorem 1 yields the relation in 

Theorem 2. 

This result shows that sensation depends logarithmically on physical 

stimulus intensity and represents the classical form of the Weber–

Fechner law (Fechner, 1860). 

Weber-Fechner Law in Anageometric Analysis 

Definition 12 (Geometric Change of Stimulus Intensity): 

Let 𝐼 > 0 denote a physical stimulus intensity. A geometric (scale-

based) change of 𝐼 is defined by Δ𝐺𝐼 such as 

𝐼 ⟼ 𝐼 ⋅ (Δ𝐺𝐼), Δ𝐺𝐼 > 0, Δ𝐺𝐼 → 1 

where Δ𝐺𝐼 is a dimensionless scaling factor. As the limit  Δ𝐺𝐼 → 1 

we get an infinitesimal geometric (multiplicative) increment which 

is denoted by 𝑑𝐺𝐼. 

For a geometric increment 𝐼 ↦ 𝐼 ⋅ Δ𝐺𝐼, the natural step length is 

ln(Δ𝐺𝐼).  

Axiom 3 (Anageometric Weber’s Law): For a given sensory 

modality, the smallest discriminable geometric increment of 

stimulus is an exponential positive constant: 

Δ𝐺𝐼 = 𝑘𝑊
(𝐺)
, 𝑘𝑊

(𝐺)
> 1⁡is⁡constant. 
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And 𝑘𝑊
(𝐺)

 is called geometric Weber constant. 

As Δ𝐺𝐼 → 1 the discrete structure is idealized as continuous: 

Δ𝐺𝐼 → 𝑑𝐺𝐼, Δ𝑆 → 𝑑𝑆. 

Theorem 3 (Anageometric Weber–Fechner Differential Law): 

Under Axiom 3 and Axiom 2, the anagaeometric derivative of 

sensation is a constant: 

𝐷
~
𝑆(𝐼) = 𝑘𝐹 

where 

𝑘𝐹: =
𝑘𝑆

ln(𝑘𝑊
(𝐺))

 

Proof. 

By Fechner’s assumption, we have 

Δ𝑆 = 𝑘𝑆. 

And By Weber’s law, we have  

ln(Δ𝐺𝐼) = ln(𝑘𝑊
(𝐺)). 

For Δ𝐺𝐼 → 1, they can be related as 

𝑑𝑆

ln(𝑑𝐺𝐼)
=

𝑘𝑆

ln(𝑘𝑊
(𝐺))

. 

Hence, 

𝐷
~
𝑆(𝐼) = 𝑘𝐹 . 

The proof is complete. □ 

Theorem 4 (Fechner’s Law in Anageometric Analysis): The 

following relationships hold for sensation and stimulus: 
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𝑆(𝐼) = ∫𝑘𝐹
~

 

𝑆(𝐼) = 𝑘𝐹 ln(𝐼) + 𝐶. 

Proof.  Taking the anageometric integral of both sides of the 

equation in anageometric Weber–Fechner differential law we write 

∫𝐷
~
𝑆(𝐼)

~

= ∫𝑘𝐹
~

 

which yields 

𝑆(𝐼) = ∫𝑘𝐹
~

 

𝑆(𝐼) = 𝑘𝐹 ln(𝐼) + 𝐶. 

Conclusion 

In this study, the fundamental structure of anageometric 

calculus is given. This structure forms a framework in which 

variation on the positive real axis is measured not through linear 

increments but through multiplicative (geometric) changes encoded 

by logarithmic differences. The essential idea behind anageometric 

analysis is that meaningful change on (0,∞) is naturally expressed 

through the quantity ln(𝑏) − ln(𝑎) which replaces the classical 

linear displacement 𝑏 − 𝑎. This shift establishes a calculus grounded 

in the geometry of the logarithmic axis. 

We first formalized the notion of positive intervals and their 

geometric extent, defined by the ratio 𝑏/𝑎 whose logarithm provides 

the measure of distance in anageometric calculus. This 

reinterpretation shows that anageometric calculus is effectively 

classical calculus re-expressed under the transformation 𝑥 → ln(𝑥), 

yet retaining a distinct geometric interpretation based on 

proportional change. 

--104--



The anageometric derivative was then introduced as the limit 

𝐷
~
𝑓(𝑎) = lim

𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

ln 𝑥 − ln 𝑎
 

which coincides with the classical derivative of 𝑓 with 

respect to ln 𝑥. Thus, the derivative captures the sensitivity of a 

function to infinitesimal multiplicative perturbations of its argument. 

This formulation also reveals that functions with constant 

anageometric derivatives are precisely the logarithmic affine 

functions, reinforcing their role as the “linear models’’ of the 

multiplicative framework. 

The development continued with the anageometric average, 

defined via geometric partitions of an interval. Unlike classical 

arithmetic means, this average samples the function with uniform 

spacing in the logarithmic coordinate. As a consequence, the 

anageometric integral 

∫𝑓

𝑏

𝑎
~

= [ln(𝑏) − ln(𝑎)] 𝑀
~
𝑎
𝑏𝑓⁡ 

emerges as a logarithmically weighted mean and is exactly the 

Stieltjes integral with respect to ln 𝑥. This establishes a rigorous 

connection between geometric scaling and integration. 

Anageometric calculus is isomorphic to classical calculus 

under the logarithmic change of variables: 

• Every theorem of classical calculus yields a corresponding 

theorem in the anageometric context via the substitution 𝑥 =

𝑒𝑢. 

• Conversely, every statement in anageometric calculus can be 

translated into the classical setting by expressing the function 

in logarithmic coordinates. 
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The fundamental theorems of anageometric calculus 

establish that differentiation and integration are mutually inverse 

operations within a multiplicative geometric setting, operating 

entirely through logarithmic increments. 

The last part of the chapter is devoted to an application of 

anageometric analysis which is Weber-Fechner law in anageometric 

analysis. It is seen that Weber-Fechner differential law can be 

formulated simply such that the anageometric derivative of sensation 

is a constant in anageometric analysis. And Fechner law can be 

stated as the sensation is equal to anageometric integral of some 

constant.   
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CANAL SURFACES IN ANTI-DE SITTER 4-SPACE: 

A DIFFERENTIAL GEOMETRIC APPROACH 

1. FATMA ALMAZ1 

1. Introduction 

The Anti-de Sitter (AdS) space, which holds a significant 

place in differential geometry and theoretical physics, is defined as 

a Lorentzian manifold with a constant negative Riemannian 

curvature. This distinguishes it from the positive-curvature de Sitter 

space and the zero-curvature Minkowski space. In the context of 

general relativity, it represents vacuum solutions to Einstein’s 

equations with a negative cosmological constant. 

The importance of the AdS space stems particularly from its 

deep connections in theoretical physics. One of its best-known 

applications is the groundbreaking AdS/CFT (Anti-de 

Sitter/Conformal Field Theory) equivalence principle in string 

theory and quantum gravity. This equivalence establishes a strong 

link between a theory of gravity defined in an AdS space and a 

conformal field theory defined on one of its boundaries, allowing for 

the investigation of challenging quantum gravity problems through 

more understandable boundary theories. It is also used as a 
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fundamental model space in fields such as supersymmetric field 

theories, black hole thermodynamics, and cosmology. 

In particular, the 4-dimensional Anti-de Sitter space (AdS3) 

can be directly related to certain models of physical spacetime. This 

means that many models in theoretical physics, especially a 4-

dimensional conformal field theory, can be formulated as a theory of 

gravity in the 4-dimensional 𝐴𝑑𝑆3 space. In this context, the 

geometric and topological properties of 𝐴𝑑𝑆3 play a critical role in 

better understanding quantum gravity models and spacetime itself. 

Given the 𝐴𝑑𝑆/𝐶𝐹𝑇 equivalence principle, the properties of 

submanifolds (including canal surfaces) in the 𝐴𝑑𝑆 space can be 

vital for understanding the corresponding structures in limit theory. 

For example, these surfaces can be interpreted as ’branes’ in the 𝐴𝑑𝑆 

space and play a significant role in string theory or cosmological 

models. Geodesics or minimal surface properties of channel surfaces 

can be used to model specific physical processes within gravity 

theory. Generalizing canal surfaces to 𝐴𝑑𝑆3 expands the scope of 

current canal surface theory. This opens up new research on how 

canal surfaces can be classified for different centroids (time-like, 

space-like, null) and radius functions. 

In [1, 2, 3], tube surfaces, another form of channel surface in 

different spatial forms, have been considered. In [4], the authors 

investigates pseudo-Riemannian manifolds that share a common 

family of geodesics and give some characterizations of the geometric 

properties and structures of such manifolds, exploring the conditions 

under which two or more distinct pseudo-Riemannian metrics can 

induce the same set of unparameterized geodesics. In [6, 7], These 

references focuses on the analysis of geodesics on various surfaces 

embedded in Minkowski 3-space, a fundamental setting in 

differential geometry with applications in relativistic physics. 

Specifically, one line of inquiry investigates surfaces that share 

common geodesics, aiming to characterize the geometric conditions 

and properties under which distinct surfaces can possess the same 

geodesic paths. Concurrently, the studies also delve into the 

geodesics of tubular surfaces within this Minkowski geometry, 

exploring how the unique structure of these surfaces influences their 

geodesic behavior. By employing techniques from differential 
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geometry, these research efforts contribute to a deeper understanding 

of surface theory in pseudo-Euclidean spaces, offering new insights 

into the classification, characterization, and kinematic properties of 

surfaces based on their geodesic structures in Minkowski 3-space. 

2. Preliminaries 

4 −dimensional pseudo-Euclidean space with signature 

(2,4) provided with an indefinite flat metric given by 

 

⟨, ⟩ = −(𝑑𝜆1)2 − (𝑑𝜆2)2 + (𝑑𝜆3)2(𝑑𝜆4)2, 
 

where (𝜆1, 𝜆2, 𝜆3, 𝜆4) is a standart rectangular coordinate system in 

pseudo-Euclidean 4-space. 

Recall that an arbitrary vector 𝑣 ∈ 𝐸2
4\{0} can have one of 

three characters: it can be spacelike if 𝑔(𝑣, 𝑣) > 0 or 𝑣 = 0, timelike 

if 𝑔(𝑣, 𝑣) < 0 and null if 𝑔(𝑣, 𝑣) = 0 and 𝑣 ≠ 0. 

The norm of a vector 𝑣 is given by ∥ 𝑣 ∥= √𝑔(𝑣, 𝑣) and two 

vectors 𝑣 and 𝑤 are said to be ortogonal if 𝑔(𝑣, 𝑤) = 0 . 

The pseudo-hyperbolic space 𝐻1
3(𝑥0, 𝑟) centered at 𝑥0 ∈ 𝐸2

4, 

with radius 𝑟 > 0 of 𝐸2
4 is defined by 

 

𝐻1
3(𝑥0, 𝑟) = {𝑥 ∈ 𝐸2

4: ⟨𝑥 − 𝑥0, 𝑥 − 𝑥0⟩ = −𝑟2}. 
 

The pseudo-hyperbolic space 𝐻1
3(𝑥0, 𝑟) is diffeomorfic to 

𝑆1 × ℝ2. The hyperbolic space 𝐻3(𝑥0, 𝑟) is defined by 

 

𝐻3(𝑥0, 𝑟) = {𝑥 ∈ 𝐸2
4: ⟨𝑥 − 𝑥0, 𝑥 − 𝑥0⟩ = −𝑟2, 𝑥1 > 0}, 

[5, 8, 9, 10, 11]. 

The 3-dimensional Anti-de Sitter space is a Lorentz manifold 

with constant negative sectional curvature. It is often described as a 

hypersurface in a 4-dimensional Minkowski space (𝐸2
4 or 𝐸1

3). 

A one-parameter anti-de Sitter space is given by the 

following equation 

 

𝐻1
3(−sinh2𝜃) = {𝑥 ∈ 𝐸2

4: 𝑔(𝑥, 𝑥) = −sinh2𝜃. 
 

Furthermore, let 𝛼: 𝐼 → 𝐻1
3 be a spacelike curve such that 
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⟨𝛼′(𝑡), 𝛼′(𝑡)⟩ > 0 holds. Therefore, since the curve is spacelike, it 

can be parameterized at unit speed. 

Furthermore, with ⟨𝑡′(𝑠), 𝑡′(𝑠)⟩ ≠ −1, the unit vector 

𝑛(𝑠) =
𝑡′(𝑠)−𝛼(𝑠)

‖𝑡′(𝑠)−𝛼(𝑠)‖
 and the vector 𝑒(𝑠) = 𝛼(𝑠) ∧ 𝑡(𝑠) ∧ 𝑛(𝑠) are 

defined. Then, where 𝑘𝑔(𝑠) = ‖𝑡′(𝑠) − 𝛼(𝑠)‖ is the geodesic 

curvature, 𝜏𝑔(𝑠) = −𝑘𝑔(𝑠)−2det(𝛼(𝑠), 𝛼(𝑠)′, 𝛼(𝑠)′′, 𝛼(𝑠)′′′), and 

𝛿 = 𝑠𝑖𝑔𝑛(𝑛(𝑠)). Let {𝛼(𝑠), 𝑡(𝑠), 𝑛(𝑠), 𝑒(𝑠)} be the non-null 

moving Frenet frame along a unit speed non-null curve 𝛼 in 𝐴𝐷𝑆3, 

consisting of the tangent, principal normal, first binormal and second 

binormal vector field, respectively. If 𝛼 is  a non-null curve with non-

null vector fields, then {𝛼(𝑠), 𝑡(𝑠), 𝑛(𝑠), 𝑒(𝑠)} is a pseudo-

orthonormal frame and the Frenet equations gives   

 

𝛼′(𝑠) = 𝑡(𝑠) 

𝑡′(𝑠) = 𝛼(𝑠) + 𝑘𝑔(𝑠)𝑛(𝑠) 

𝑛′(𝑠) = −𝛿𝑘𝑔(𝑠)𝑡(𝑠) + 𝛿𝜏𝑔(𝑠)𝑒(𝑠)                 (2.1) 

𝑒′(𝑠) = 𝛿𝜏𝑔(𝑠)𝑛(𝑠), 
 

[5, 8, 9, 10, 11]. If ⟨𝑡′(𝑠), 𝑡′(𝑠)⟩ = −1, then 𝑘𝑔(𝑠) = 0 can be found. 

In this case, it can be said that the curve 𝛼(𝑠) given in 𝐻1
3 is a 

geodesic curve. 

3. Characterization of canal surfaces created according to the 

geodesic frame in the anti-de Sitter 4-space 

In this section, the canal surfaces generated by arbitrary 

curve are investigated according to mathematical approach. A canal 

surface is expressed as the envelope of a setting out sphere with 

exchanging radius, which is described by the orbit 𝛼(𝑤(𝑠)) (spine 

curve) with its center and a radius function 𝜌 in addition to its 

parametrized through Frenet frame of the spine curve 𝛼(𝑤(𝑠)). If 

the radius function 𝜌 is a constant, then the canal surface is called as 

a tube or tubular surface. 

Let Υ be a canal surface in 𝐻1
3. The curvature of the curve 𝛼 

is non-zero, and using the frame {𝛼(𝑠), 𝑡(𝑠), 𝑛(𝑠), 𝑒(𝑠)} where 

Ω1, Ω2, Ω3, Ω4 ∈ 𝐶∞ are defined in the interval where the curve 𝛼 is 
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defined, the following equation can be written as 

 

Υ(𝑠, 𝜉) − 𝛼(𝑠) = Ω1(𝑠, 𝜉)𝛼⃖ + Ω2(𝑠, 𝜉)𝑡 

                                       +Ω3(𝑠, 𝜉)𝑛⃖ + Ω4(𝑠, 𝜉)𝑒⃖.    (3.1) 

 

Furthermore, for the vector 𝑥(𝑠) =

(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠), 𝑥4(𝑠)) where 𝑥𝑖 ∈ 𝐶∞, 𝑖 ∈ {1,2,3,4}, the 

following equation is written  

 

⟨𝑥(𝑠), 𝑥(𝑠)⟩𝐻1
3 = 𝑥1

2(𝑠) + 𝑥2
2(𝑠) − 𝑥3

2(𝑠) − 𝑥4
2(𝑠). (3.2) 

 

Thus, the vector Υ(𝑠, 𝜉) − 𝛼(𝑠) =
(Ω1(𝑠, 𝜉), Ω2(𝑠, 𝜉), Ω3(𝑠, 𝜉), Ω4(𝑠, 𝜉)) given in (3.1) is also 

considered in (3.2)  

 

Υ(𝑠, 𝜉) − 𝛼(𝑠) = (Ω1(𝑠, 𝜉))
2

+ (Ω2(𝑠, 𝜉))
2

−  (Ω3(𝑠, 𝜉))2 −

                        (Ω4(𝑠, 𝜉))2               (3.3) 

 

Furthermore, from expression (3.3), we can say that the 

surface Υ(𝑠, 𝜉) lies on the sphere with center 𝛼(𝑠) and radius 𝑑(𝑠). 

Thus, the mathematical equations between the vector Υ(𝑠, 𝜉) −
𝛼(𝑠), which is normal to the canal surface in 𝐴𝐷𝑆3, and the vectors 

Υ𝑠 and Υ𝜉, which are tangent to the sphere on which the surface lies, 

are given as  

 

⟨Υ(𝑠, 𝜉) − 𝛼(𝑠), Υ𝑠⟩ = 0; ⟨Υ(𝑠, 𝜉) − 𝛼(𝑠), Υ𝜉⟩ = 0. 

 

In this case, let’s examine the situations expressed by (3.3). 

First, using the metric given in expression (3.3), we get 

 

(Ω1)2 + (Ω2)2 − (Ω3)2 − (Ω4)2 = 𝑑2. 
 

If this last expression is also derived with respect to the 

parameter 𝑠, we have 

 

Ω𝑠
1Ω1 + Ω𝑠

2Ω2 − Ω𝑠
3Ω2 − Ω𝑠

4Ω4 = 𝑑𝑑𝑠.                  (3.4) 
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In this case, if the Frenet framework is used by taking the 

differential with respect to 𝜉 in equation (3.1), we get 

 

       Υ𝜉 = Ω𝜉
1(𝑠, 𝜉)𝑇⃖ + Ω𝜉

2(𝑠, 𝜉)𝑁⃖  + Ω𝜉
3(𝑠, 𝜉)𝐵1

 ⃖   + Ω𝜉
4(𝑠, 𝜉)𝐵2

 ⃖   . (3.5) 

 

If this last equality and (3.1) is used in the equality 

⟨Υ(𝑠, 𝜉) − 𝛼(𝑠), Υ𝜉⟩ = 0, we have  

 

Ω1Ω𝜉
1 + Ω2Ω𝜉

2 − Ω3Ω𝜉
3 − Ω4Ω𝜉

4 = 0. (3.6) 

 

Furthermore, let’s try to express the channel surface given in 

𝐴𝐷𝑆3 in a different way by finding the values of Ω2, Ω3 from 

equation (3.1). Thus, by finding the value of Υ𝑠 and using the frame 
{𝛼(𝑠), 𝑡(𝑠), 𝑛(𝑠), 𝑒(𝑠)},we have    

 

Υ(𝑠, 𝜉) − 𝛼(𝑠) = Ω1(𝑠, 𝜉)𝛼⃖ + Ω2(𝑠, 𝜉)𝑡 + Ω3(𝑠, 𝜉)𝑛⃖ + Ω4(𝑠, 𝜉)𝑒⃖ 

Υ𝑠(𝑠, 𝜉) − 𝛼′(𝑠) = Ω𝑠
1𝛼⃖ + Ω1𝛼′ ⃖  + Ω𝑠

2𝑡 + Ω2𝑡′ ⃖ + Ω𝑠
3𝑛⃖ + Ω3𝑛′ ⃖   

+Ω𝑠
4𝑒⃖ + Ω4𝑒′ ⃖   

 

= Ω𝑠
1𝛼⃖ + Ω1𝑡 + Ω𝑠

2𝑡 + Ω2(𝛼⃖ + 𝑘𝑔𝑛⃖ ) + Ω𝑠
3𝑛⃖  

+Ω3(−𝛿𝑘𝑔𝑡 + 𝛿𝜏𝑔𝑒⃖) + Ω𝑠
4𝑒⃖ + Ω4(𝛿𝜏𝑔𝑛⃖ ) 

  

Υ𝑠(𝑠, 𝜉) = 𝛼⃖(Ω𝑠
1 + Ω2) + 𝑡(Ω1 + Ω𝑠

2 − 𝛿𝑘𝑔Ω3 + 1) 

 

+𝑛⃖ (𝑘𝑔Ω2 + Ω𝑠
3 + 𝛿𝜏𝑔Ω4) + 𝑒⃖(𝛿𝜏𝑔Ω3 + Ω𝑠

4). (3.7) 

 

Thus, using the equality ⟨Υ(𝑠, 𝜉) − 𝛼(𝑠), Υ𝑠⟩ = 0, we have 

 

0 = Ω1(Ω𝑠
1 + Ω2) + Ω2(Ω1 + Ω𝑠

2 − 𝛿𝑘𝑔 + 1) 

 

      −Ω3(𝑘𝑔Ω2 + Ω𝑠
3 + 𝛿𝜏𝑔Ω4) − Ω4(𝛿𝜏𝑔Ω3 + Ω𝑠

4). (3.8) 

 

This can be written algebraically as follows 
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Ω𝑠
1 + Ω2 = 0 

Ω1 + Ω𝑠
2 − 𝛿𝑘𝑔Ω3 + 1 = 0 

𝑘𝑔Ω2 + Ω𝑠
3 + 𝛿𝜏𝑔Ω4 = 0 

𝛿𝜏𝑔Ω3 + Ω𝑠
4 = 0. 

 

Also, using equations (3.8) and (3.4), we write  

 

0 = Ω1Ω𝑠
1 + Ω1Ω2 + Ω2Ω1 + Ω2Ω𝑠

2 − Ω2𝛿𝑘𝑔 + Ω2 

        −Ω3𝑘𝑔Ω2 − Ω3Ω𝑠
3 − 𝛿𝜏𝑔Ω4Ω3 − Ω4𝛿𝜏𝑔Ω3 − Ω4Ω𝑠

4 

 

 0 = Ω1Ω𝑠
1 + Ω2Ω𝑠

2 − Ω3Ω𝑠
3 − Ω4Ω𝑠

4 + 2Ω1Ω2 − Ω2𝛿𝑘𝑔 

+Ω2 − Ω3𝑘𝑔Ω2 − 𝛿𝜏𝑔Ω4Ω3 − Ω4𝛿𝜏𝑔Ω3 

 

0 = 𝑑𝑑𝑠 + Ω2(2Ω1 − 𝛿𝑘𝑔 + 1 − Ω3𝑘𝑔) − 𝛿𝜏𝑔Ω4Ω3 

 

𝑑𝑑𝑠 = 𝛿𝜏𝑔Ω4Ω3 − Ω2(2Ω1 − 𝛿𝑘𝑔 + 1 − Ω3𝑘𝑔). 

 

Furthermore, if 𝑑 =constant, then 𝑘𝑔(𝑠) = ‖𝑡′(𝑠) − 𝛼(𝑠)‖ 

is the geodesic curvature and 𝜏𝑔 =

−𝑘𝑔
−2det(𝛼(𝑠), 𝛼(𝑠)′, 𝛼(𝑠)′′, 𝛼(𝑠)′′′) is the geodesic torsion, we 

can write 

 

𝛿𝜏𝑔Ω4Ω3 = Ω2(2Ω1 − 𝑘𝑔(𝛿 + Ω3) + 1);  𝛿 = sign(𝑛(𝑠)) 

 

𝑘𝑔 =
Ω2(2Ω1 + 1) − 𝛿𝜏𝑔Ω4Ω3

Ω2(𝛿 + Ω3)
, 

 

𝑘𝑔 =
cosh𝜉(2𝑑cosh𝜉cos𝑏 + 1) − 𝛿𝜏𝑔𝑑sinh2𝜉cos𝑏

cosh𝜉(𝛿 + 𝑑sinh𝜉cos𝑏)
, 

 

𝜏𝑔 =
Ω2(2Ω1 − 𝑘𝑔(𝛿 + Ω3) + 1)

𝛿Ω4Ω3
, 

 

--116--



𝜏𝑔 =
cosh𝜉(2𝑑cosh𝜉cos𝑏 − 𝑘𝑔(𝛿 + 𝑑sinh𝜉cos𝑏) + 1)

𝛿𝑑sinh2𝜉cos𝑏
, 

 

det(𝛼(𝑠), 𝛼(𝑠)′, 𝛼(𝑠)′′, 𝛼(𝑠)′′′)

= −
Ω2𝑘𝑔

2 (2Ω1 + 1 − 𝑘𝑔(𝛿 + Ω3))

𝛿Ω4Ω3
 

 

Also,  

𝑑2 = (Ω1)2 + (Ω2)2 − (Ω3)2 − (Ω4)2 

𝑑2 = (𝑑cosh𝜉cos𝑏)2 + (𝑑cosh𝜉sin𝑏)2 − (𝑑sinh𝜉cos𝑏)2

− (𝑑sinh𝜉sin𝑏)2. 
 

This last statement can be written in the form of the following 

equation  

Ω2 = 𝑑cosh𝜉sin𝑏; Ω3 = 𝑑sinh𝜉cos𝑏; Ω4 = 𝑑sinh𝜉sin𝑏 

Ω1 = 𝑑cosh𝜉cos𝑏. 
 

When we substitute the last given values (3.1), we create the 

surface as follows  

 

Υ(𝑠, 𝜉) − 𝛼(𝑠) = Ω1(𝑠, 𝜉)𝛼⃖ + Ω2(𝑠, 𝜉)𝑡 + Ω3(𝑠, 𝜉)𝑛⃖ + Ω4(𝑠, 𝜉)𝑒⃖ 

Υ(𝑠, 𝜉) = 𝛼(𝑠) + 𝑑 (
cosh𝜉cos𝑏𝛼⃖ + cosh𝜉sin𝑏𝑡

+sinh𝜉cos𝑏𝑛⃖ + sinh𝜉sin𝑏𝑒⃖
) ; 𝑑, 𝑏 ∈ ℝ. 

 

Based on the information we have presented above, we can 

write the following theorem. 

 

Theorem Let the center curve of the canal surface in H1
3 be a unit 

speed curve α: I → H1
3 with the geodesic curvature kg(s) and 

geodesic torsional curvature τg(s) in a one-parameter anti-de Sitter 

space. Then, the canal surface  can be parametrized  as follows  

 

Υ(𝑠, 𝜉) = 𝛼(𝑠) + 𝑑 (
cosh𝜉cos𝑏𝛼⃖ + cosh𝜉sin𝑏𝑡

+sinh𝜉cos𝑏𝑛⃖ + sinh𝜉sin𝑏𝑒⃖
) ; 𝑑, 𝑏 ∈ ℝ (3.9) 
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and the curvatures of the canal surface are given 

 

       𝑘𝑔 =
cosh𝜉(2𝑑cosh𝜉cos𝑏+1)−𝛿𝜏𝑔𝑑sinh2𝜉cos𝑏

cosh𝜉(𝛿+𝑑sinh𝜉cos𝑏)
,    (3.10) 

 

         𝜏𝑔 =
cosh𝜉(2𝑑cosh𝜉cos𝑏−𝑘𝑔(𝛿+𝑑sinh𝜉cos𝑏)+1)

𝛿𝑑sinh2𝜉cos𝑏
.       (3.11) 

  
Example Let the center curve of the canal surface in 𝐻1

3 be a unit 
speed curve 𝛼(𝑠) = (3𝑐𝑜𝑠𝑠, 3𝑠𝑖𝑛𝑠, 5𝑠, 0) with the geodesic 
curvature 𝑘𝑔 and geodesic torsional curvature 𝜏𝑔 in a one-

parameter anti-de Sitter space. Then, the canal surface  can be 
parametrized  as follows 

Υ(𝑠, 𝜉) = (

3cos𝑠 + 𝑑cosh𝜉cos𝑏,
3sin𝑠 + 𝑑cosh𝜉sin𝑏,
5𝑠 + 𝑑sinh𝜉cos𝑏,
𝑑sinh𝜉sin𝑏

) ; 𝑑, 𝑏 ∈ ℝ 

 

Figure  1: Component graphs of the canal surface.  
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Figure 2: 3D projection graph of the canal surface over any three                     

                components 

 

 

Figure 3: Canal surface in Antide sitter space generated by helix curve 𝛼. 
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Figure 4: Rotational canal surface in Antide sitter space generated by  

                 the arbitrary curve 𝛼. 

 

4. Conclusion 

This study presents a detailed investigation of canal surfaces 

within the unique geometric structure of the 4-dimensional Anti-de 

Sitter 4-space. The findings reveal the definitions, parameterizations, 

and differential geometric properties of these surfaces. It has been 

shown that the constant negative curvature and Lorentzian 

characteristic of 𝐴𝑑𝑆3 lead to canal surfaces exhibiting different 

behaviours than their counterparts in classical Euclidean space. 

These analyses have enabled new classifications of canal surfaces 

and will make significant contributions to the field of pseudo-

Riemannian geometry, particularly to the development of 
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submanifold theory in spaces with high-dimensional and special 

geometries. Furthermore, it is thought that this will provide a 

foundation for potential applications of such surfaces in theoretical 

physics, especially in the context of string theory and the 𝐴𝑑𝑆3 

equivalence principle. In our future studies, we will attempt to 

express some physical concepts using this surface form. 
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Quasi Hemi Slant Submanifolds of Generalized 

Kenmotsu Manifold 

RAMAZAN SARI1 

SÜLEYMAN DİRİK2 

1. Introduction 

Globally framed metric f-manifolds, which are a generalization of 

almost contact manifolds, were first introduced by H. Nakagawa 

(Nakagawa, 1966) and developed by S. I. Goldberg and K. Yano in 

1971 (Goldberg and Yano, 1971). In 1972 Vanzura (Vanzura, 1972) 

defined almost s-contact structures on f-manifolds. Vanlı and Sarı 

generalized Kenmotsu manifolds to almost s-contact structures and 

defined generalized Kenmotsu manifolds (Turgut Vanlı and Sarı, 

2017). Vanlı and Sarı also showed that the generalized Kenmotsu 

manifold can be written as a warped product of the Kaehler manifold 

with ℝ𝑠. Moreover They studied invariant submanifolds of this 

manifold (Turgut Vanlı and Sarı, 2023). 

                                                 
1 Assoc. Prof. Dr., Amasya University, Department of Mathematics, Orcid: 0000-

0002-4618-8243 
2 Prof. Dr., Amasya University, Department of Mathematics, Orcid: 0000-0001-

9093-1607 
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The geometry of slant submanifolds, a generalisation of invariant 

and anti-invariant submanifolds, has been studied since 1990 and 

continues to be studied. The subject of slant submanifolds of 

Hermitian manifolds was introduced by B. Y. Chen (Chen, 1990). 

Firstly, Lotta defined slant submanifolds of almost contact manifold 

(Lotta, 196). After, Cabrerizo et all. studied slant submanifolds of 

Sasakian manifold (Cabrerizzo, 2000). Atçeken and Dirik studied 

pseudo slant submanifolds of Kenmotsu manifold. Many authors 

investigation on submanifolds (Atçeken and Dirik, 2014). Sarı et all. 

Investigated skew semi-invariant submanifolds of Kenmotsu 

manifold (Sarı,Ünal and Aksoy Sarı, 2018). 

Quasi hemi slant submanifolds were studied by Prasad in 2020 as a 

generalisation semi-invariant submanifolds, semi-slant 

submanifolds and pseudo-slant submanifolds (Prasad, 2020). In this 

book chapter, we study quasi hemi slant submanifolds of generalized 

Kenmotsu manifold. 

2. Generalized Kenmotsu Manifolds 

Let 𝐵̅ be (2n+s)-dimensional differentiable manifold, 𝜑 is tensor 

field, {𝜉1, … , 𝜉𝑠} are vector fields and {𝜂1, … , 𝜂𝑠} are 1-forms. Then 

𝐵̅ is said to be almost s-contact metric manifold by  

                          𝜑2 = −𝐼 + ∑ 𝜂𝑖⨂𝜉𝑖
𝑠
𝑖=1 , 𝜂𝑖(𝜉𝑗) = 𝛿𝑖𝑗                  (1) 

                  𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) − ∑ 𝜂𝑖(𝑋)𝜂𝑖(𝑌)𝑠
𝑖=1 .                  (2) 

 

Therefore, Φ is said to be the fundamental 2 -form, Φ(𝑋, 𝑌) =

𝑔(𝑋, 𝜑𝑌), for any 𝑋, 𝑌 ∈ Γ(𝑇𝐵̅). Moreover, an almost contact metric 

manifold is normal if  

 

[𝜑, 𝜑] + 2 ∑ 𝑑𝜂𝑖⨂𝜉𝑖
𝑠
𝑖=1 = 0. 
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Theorem 1. Let (𝐵̅, 𝜑, 𝜉𝑖 , 𝜂𝑖, 𝑔) be a normal almost s-contact metric 

manifold. Then 𝐵̅ is generalized Kenmotsu manifold if and only if          

                        (∇̅𝑋𝜑)𝑌 = ∑ {𝑔(𝜑𝑋, 𝑌)𝜉𝑖 + 𝜂𝑖(𝑌)𝜑𝑋}𝑠
𝑖=1 .            (3) 

 

Corollary 1. Let (𝐵̅, 𝜑, 𝜉𝑖, 𝜂𝑖 , 𝑔) be a generalized Kenmotsu 

manifold. Then we have  

                                                   ∇̅𝑋𝜉𝑖 = −𝜑2𝑋.                              (4) 

3. Quasi Hemi Slant Submanifolds of Generalized 

Kenmotsu Manifolds 

In this section, we define and study quasi hemi slant submanifolds 

of generalized Kenmotsu manifold. We investigate geometric 

properties of distributions. 

Definition 1. Let 𝐵 be submanifold of generalized Kenmotsu 

manifold 𝐵̅. 𝐵 is said to be quasi hemi-slant submanifold if  

 𝑇𝐵 = 𝐷⨁𝐷⊥⨁𝐷𝜃⨁𝑆𝑝{𝜉1, … , 𝜉𝑠}, 

 𝜑𝐷 = 𝐷, 

 𝜑𝐷⊥ ⊂ 𝑇𝐵⊥ 

 The angle 𝜃 betwen 𝜑𝑋 and the space 𝐷𝜃 is constant 

for 𝑋 ∈ Γ(𝐷𝜃), where {𝐷, 𝐷⊥, 𝐷𝜃} is orthogonal 

distribution and 𝜉𝑖 are tangent to 𝐵̅. 

Example 1.   (ℝ2𝑛+𝑠, 𝜑, 𝜂𝑖, 𝜉𝑖, 𝑔) will denote the manifold ℝ2𝑛+𝑠 

with its usual  generalized Kenmotsu structure given by 

𝜂𝑖 =
1

2
(𝑑𝑧𝑖 − ∑ 𝑦𝑖𝑑𝑥𝑖

𝑛

𝑖=1

) , 𝜉𝑖 = 2
𝜕

𝜕𝑧𝑖
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 𝜑 (∑ (𝑋𝑖
𝜕

𝜕𝑥𝑖

𝑛
𝑖=1 + 𝑌𝑖

𝜕

𝜕𝑦𝑖
) + ∑ 𝑍𝑗

𝜕

𝜕𝑍𝑗

𝑠
𝑗=1 ) = ∑ (𝑌𝑖

𝜕

𝜕𝑥𝑖

𝑛
𝑖=1 −

𝑋𝑖
𝜕

𝜕𝑦𝑖
) + ∑ ∑ 𝑌𝑖𝑦𝑖

𝜕

𝜕𝑍𝑗

𝑛
𝑖=1

𝑠
𝑗=1  

 

𝑔 = 𝑒2 ∑ 𝑧𝑗
𝑠
𝑗=1 (∑ (𝑑𝑥𝑖

𝑛
𝑖=1 ⨂𝑑𝑥𝑖 + 𝑑𝑦𝑖⨂𝑑𝑦𝑖) + ∑ 𝜂𝑗𝑠

𝑗=1 ⨂𝜂𝑗, 

where (𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑛, 𝑧1, … , 𝑧𝑠) denoting the Cartesian 

coordinates on 𝑅2𝑛+𝑠.  Let 𝑁 be submanifold of ℝ10 defined by 

𝑁 = 𝑋(𝑠, 𝑡, 𝑢, 𝑣, 𝑘, 𝑤, 𝑧1, 𝑧2)

= 𝑒−2 ∑ 𝑧𝑗
2
𝑗=1 (𝑠, 0, 𝑢, 𝑡, 𝑣, 𝑘, 𝑐𝑜𝑠 𝑤, 𝑠𝑖𝑛 𝑤, 𝑧1, 𝑧2) 

Then local frame of 𝑇𝑁 

𝐸1 = 𝑒−2 ∑ 𝑧𝑗
2
𝑗=1

𝜕

𝜕𝑥1
,   𝐸2 = 𝑒−2 ∑ 𝑧𝑗

2
𝑗=1

𝜕

𝜕𝑦1
, 

𝐸3 = 𝑒−2 ∑ 𝑧𝑗
2
𝑗=1

𝜕

𝜕𝑥3
,   𝐸4 = 𝑒−2 ∑ 𝑧𝑗

2
𝑗=1

𝜕

𝜕𝑦2
, 

𝐸5 = 𝑒−2 ∑ 𝑧𝑗
2
𝑗=1

𝜕

𝜕𝑥4
,   𝐸6 = 𝑒−2 ∑ 𝑧𝑗

2
𝑗=1 (𝑠𝑖𝑛 𝑤

𝜕

𝜕𝑦3
+ 𝑐𝑜𝑠 𝑤

𝜕

𝜕𝑦4
), 

𝐸7 = 𝑒−2 ∑ 𝑧𝑗
2
𝑗=1

𝜕

𝜕𝑧1
,   𝐸8 = 𝑒−2 ∑ 𝑧𝑗

2
𝑗=1

𝜕

𝜕𝑧2
 

and  

𝐸1
∗ = 𝑒−2 ∑ 𝑧𝑗

2
𝑗=1

𝜕

𝜕𝑥2
,   𝐸2

∗ = 𝑒−2 ∑ 𝑧𝑗
2
𝑗=1

𝜕

𝜕𝑦3
 

from a basis of 𝑇𝑁⊥. We determine 𝐷1 = 𝑠𝑝{𝐸1, 𝐸2}, 𝐷2 =

𝑠𝑝{𝐸3, 𝐸4} and 𝐷3 = 𝑠𝑝{𝐸5, 𝐸6}, then 𝐷1, 𝐷2 and 𝐷3 are invariant, 

anti-invariant and slant distribution, respectively. Therefore 𝑇𝑁 =

𝐷1⨁𝐷2⨁𝐷3⨁𝑆𝑝{𝜉1, 𝜉2}   is a quasi hemi-slant submanifold of ℝ10.  

Now we define Gauss and Weingarten formulas for submanifolds.  
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Let ∇̅ be the Levi-Civita connection of 𝐵̅. Therefore Gauss and 

Weingarten equations are given by 

                                  ∇̅𝑋𝑌 = ∇∗
XY − σ(X, Y)                                  (5) 

                                  ∇̅𝑋𝑉 = −AVX + ∇∗
X
⊥Y                                     (6) 

where, 𝑋, 𝑌 ∈ Γ(𝑇𝐵), 𝑉 ∈ Γ(𝑇𝐵⊥), σ is the second fundamental 

from, ∇∗⊥
 is the connection in the normal bundle and AV is the 

Weingarten endomorphism. Therefore we have  

                              𝑔(σ(𝑋, 𝑌), 𝑉) = 𝑔(AV𝑋, 𝑌).                             (7) 

For every tangent vector field 𝑋 on 𝐵 we can write 

                                       𝜑𝑋 = 𝑇𝑋 + 𝑁𝑋                                        (8) 

where 𝑇𝑋 and 𝑁𝑋 denote the tangent and normal components of 𝜑𝑋, 

respectively. For every normal vector field 𝑉, we can state   

                                     𝜑𝑉 = 𝑡𝑉 + 𝑛𝑉                                          (9) 

where 𝑡𝑉 is the tangent component of  𝜑𝑉  and 𝑛𝑉 is the normala 

one. 

On the other hand , let 𝐵 be a quasi hemi-slant submanifold of 

generalized Kenmotsu manifold 𝐵̅. The projection morphisms of 𝑇𝐵 

to the distributions 𝐷, 𝐷⊥ and 𝐷𝜃 are denoted respectively by 𝑃, 𝑄  

and 𝑅. Then for each  𝑊 ∈ Γ(𝑇𝑀) we have 

                                   𝑋 = 𝑃𝑋 + 𝑄𝑋 + 𝑅𝑋 + 𝜂(𝑋)𝜉.                   (10) 

Thus  from (8) we get  𝑇𝑋 = 𝑇𝑃𝑋 + 𝑇𝑅𝑋 and  𝑁𝑋 = 𝑁𝑃𝑋 + 𝑁𝑄𝑋.  

By using (5), (6) and (10) and several computations we obtaion 

following propositions. 

Proposition 1. For all 𝑌 ∈ 𝛤(𝑇𝐵) we have 

                   𝑔(𝑃𝑋, 𝑌) = 𝑔(𝑋, 𝑃𝑌), 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋, 𝑌 ∈ 𝛤(𝐷)           (11)    
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                    𝑔(𝑄𝑋, 𝑌) = 𝑔(𝑋, 𝑄𝑌),    𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋, 𝑌 ∈ 𝛤(𝐷⊥ )     (12) 

 

                 𝑔(𝑅𝑋, 𝑌) = 𝑔(𝑋, 𝑅𝑌),   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑊, 𝑌 ∈ 𝛤(𝐷𝜃 )       (13)  

 

                     𝛻𝑋𝜉 = 𝑃𝑋, ℎ(𝑋, 𝜉) = 0  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑊 ∈ 𝛤(𝐷 )       (14) 

 

                     𝛻𝑋𝜉 = 0, ℎ(𝑋, 𝜉) = 𝑄𝑋  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋 ∈ 𝛤( 𝐷⊥ )     (15) 

 

           𝛻𝑋𝜉 = 𝜑𝑇𝑅𝑋, ℎ(𝑋, 𝜉) = 𝜑𝑁𝑅𝑋  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑋 ∈ 𝛤(𝐷𝜃).  (16) 

 

Theorem 2.  Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅ . The distrbution 𝐷 is not integrable. 

Proof  For all 𝑋, 𝑌 ∈ Γ(𝐷) we get  

𝑔([𝑋, 𝑌], 𝜉) = 𝑔(∇𝑋𝑌, 𝜉) − 𝑔(∇𝑌𝑋, 𝜉) 

                                =−𝑔(𝑌, ∇𝑋𝜉) + 𝑔(𝑋, ∇𝑌𝜉). 

From equation (14), we have 

𝑔([𝑋, 𝑌], 𝜉) = 𝑔(𝑌, 𝑃𝑋) − 𝑔(𝑋, 𝑃𝑌) 

                                             = 2𝑔(𝑋, 𝑃𝑌). 

Thus 𝐷 is integrable if and only if 𝑔(𝑋, 𝑃𝑌) = 0. From (11) the proof 

is completed.  

Theorem 3. Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅. The distribution 𝐷⊥ is always integrable.  

Proof  For all 𝑋, 𝑌 ∈ Γ(𝐷), we have 

                                  𝑔(∇𝑌𝑋, 𝜉) = −𝑔(𝑋, ∇𝑌𝜉). 
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On the other hand, for all 𝑋, 𝑌 ∈ Γ(𝐷), we have 

𝑔([𝑌, 𝑋], 𝜉) = 𝑔(∇𝑌𝑋, 𝜉) − 𝑔(∇𝑋𝑌, 𝜉) 

or 

𝑔([𝑌, 𝑋], 𝜉) = −𝑔(𝑋, ∇𝑌𝜉) + 𝑔(𝑌, ∇𝑋𝜉). 

There proof follows from (15). 

Theorem 4. Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅. The distribution 𝐷𝜃  is always integrable.  

Proof  For all 𝑋, 𝑌 ∈ Γ(𝐷𝜃 ), we have 

                                      𝑔(∇𝑌𝑋, 𝜉) = −𝑔(𝑋, ∇𝑌𝜉). 

From equation (16), we get 

𝑔([𝑋, 𝑌], 𝜉) = −𝑔(𝑌, 𝜑𝑇𝑄𝑊) + 𝑔(𝑋, 𝜑𝑇𝑄𝑌). 

Then we get following equation by (2) 

𝑔([𝑋, 𝑌], 𝜉) = 𝑔(𝜑𝑄𝑌, 𝑇𝑄𝑊) − 𝑔(𝜑𝑄𝑊, 𝑇𝑄𝑌). 

After some calculations, we have 

               𝑔([𝑋, 𝑌], 𝜉) = 𝑔(𝑇𝑄𝑌, 𝑇𝑄𝑊) − 𝑔(𝑇𝑄𝑊, 𝑇𝑄𝑌). 

This completes the proof. 

Theorem 5. Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅. The distrbution 𝐷 ⊕ {𝜉} is always 

integrablex if and only if ℎ(𝑋, 𝜑𝑌) = ℎ(𝑌, 𝜑𝑋).  

Proof  For all 𝑋, 𝑌 ∈ Γ(𝐷 ⊕ {𝜉} ) we have 

               𝜑([𝑋, 𝑌]) = 𝜑∇̅𝑋𝑌 − 𝜑∇̅𝑌𝑋 

                                = ∇̅𝑋𝜑𝑌 − (∇̅𝑋𝜑)𝑌 − ∇̅𝑌𝜑𝑋 − (∇̅𝑌𝜑)𝑋. 

Then we obtain following equation by (5) and (6) 
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     𝜑([𝑋, 𝑌]) = ∇𝑋𝜑𝑌 − ℎ(𝑋, 𝜑𝑌) − 𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋 

                           +∇𝑌𝜑𝑋 − ℎ(𝑌, 𝜑𝑋) − 𝑔(𝜑𝑌, 𝑋)𝜉 − 𝜂(𝑋)𝜑𝑌. 

Then we give [𝑋, 𝑌] ∈ Γ(𝐷 ⊕ {𝜉} ) if and only if ℎ(𝑋, 𝜑𝑌) =

ℎ(𝑌, 𝜑𝑋), where 𝜑([𝑋, 𝑌]) shows the component of ∇𝑋𝑌 from 

ortogonal complementary distribution of 𝐷 ⊕ {𝜉} in 𝐵. 

Corollary 2. Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅. The distribution 𝐷⊥ ⊕ {𝜉} is always 

integrable if and only if 𝐴𝜑𝑌𝑋 = 𝐴𝜑𝑋𝑌. 

Theorem 6. Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅. The distribution 𝐷 ⊕ 𝐷⊥ is not integrable. 

Proof  For all 𝑋, 𝑌 ∈ Γ(𝐷 ⊕ 𝐷⊥ ) we get 

                   𝑔([𝑋, 𝑌], 𝜉) = −𝑔(𝑌, ∇𝑋𝜉) + 𝑔(𝑋, ∇𝑌𝜉). 

From equation (11), we have 

𝑔([𝑋, 𝑌], 𝜉) = 𝑔(𝑌, 𝑃𝑋 + 𝑄𝑋) − 𝑔(𝑋, 𝑃𝑌 + 𝑄𝑌) 

                                 = 2𝑔(𝑌, 𝑃𝑋) − 2𝑔(𝑋, 𝑄𝑌). 

Thus 𝐷 ⊕ 𝐷⊥ is integrable if and only if 𝑔(𝑌, 𝑃𝑋) = 𝑔(𝑋, 𝑄𝑌).  

This completes the proof. 

Corollary 3. Let 𝐵 be quasi hemi-slant submanifold of generalized 

Kenmotsu manifold 𝐵̅. The distribution 𝐷 ⊕ 𝐷𝜃 and 𝐷⊥ ⊕ 𝐷𝜃 is 

not integrable. 

4. Conclusion 

Generalized Kenmotsu manifolds have potential for applications in 

many fields of mathematics and physics. Researchers have increased 

studies on this field from different areas in recent years. In this study, 

the geometric properties of distributions arising from the definition 

of quasi hemi slant submanifolds of generalized Kenmotsu manifold 

are examined. The works on this subject will be useful tools for the 
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applications of quasi hemi slant submanifold with different 

manifolds. 
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A NOTE ON FIBRATION OF CROSSED SQUARES 

OVER PAIRS OF CROSSED MODULES OVER LIE 

ALGEBRAS 

1. KORAY YILMAZ1 

2. HATİCE TAŞBOZAN2 

1.Introduction 

Crossed modules have long been used as models for low-

dimensional homotopy types and have origins in the algebraic study 

of homotopy theory. The definition of a crossed module (Whitehead, 

1949) initially given by Whitehead and offers an algebraic 

representation of homotopy 2-types. Its adaption to Lie algebras, 

which was initially proposed by Gerstenhaber (Gerstenhaber, 1964) 
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and later developed by Ellis and Loday (Ellis, 1988, Ellis, 1993b), 

(Loday, 1982) offers an optimal setting for studying low-

dimensional homotopical situations using Lie theoretic methods. 

The categorical aspects like limit, fibration, pullback on Lie algebras 

were studied in (Yılmaz et al., 2021, Taşbozan et al., 2022, Ulualan, 

2007). Extensions to higher dimensions, including quadratic 

modules, crossed squares and 2-crossed modules serve as the 

algebraic model on homotopy 3-types and are known categorical 

equivalent under appropriate functors. Some related studies on 

commutative algebras could be seen in (Porter, 1987, Yılmaz et al., 

2020). 

Grothendieck's notion of a fibred category has proven helpful for the 

categorical analysis of algebraic structures defined over a fixed base.  

In particular, fibration applications in a category allow one to control 

how objects vary with respect to morphisms in an underlying 

category by means of pullbacks as cartesian morphisms. This 

viewpoint has already been successfully used to quadratic modules 

and crossed squares in several algebraic settings where fibration 

structures are given by forgetful functors to lower-dimensional 

structures. 

The main purpouse of this work is to give a practical method to 

construct crossed squares over Lie algebras from appropriate pairs 

of crossed modules and to accurately prove that the resulting 

structures satisfy all axioms necessary for a crossed square over Lie 

algebras. After recalling the classical definitions and results due to 

Ellis we then introduce the categorical setting of pairs of crossed 

modules over Lie algebras, which serves as natural base of our 

construction.  In this manner we define the associated crossed square 

and obtain a verification of its conditions. 
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2.Preliminaries 

We will retain the definition of crossed modules over Lie algebra 

from (Ellis, 1993a). 

Definition 2.1 Let 𝐶 and 𝑅 be two Lie k-algebras and 𝑅 acts on 𝐶. 

The morphism 

∂: C → R 

of Lie k-algebra is called pre-crossed module over Lie algebra if 

     ∂(r∆x) = [r, ∂(x)] 

for  𝑥 in 𝐶 and 𝑟 in 𝑅 where ∆: R × C →

C is the Lie action of R on C. In addition if ∂ : C → R satisfy 

∂(𝑥′)∆𝑥 = [𝑥, 𝑥′] 

∂: C → R is called  crossed module of Lie algebras and denoted with 

(𝐶, 𝑅, 𝜕). 

Definition 2.2 Suppose we are given Lie algebras together with 

structure maps arranged so that the resulting diagram is   

 

commutative and assume that 𝑅 acts on the Lie algebras 𝐸, 𝐷, and 𝐶.   

Let   

ℎ ∶  𝐶 ×  𝐸 →  𝐷 
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be a bilinear map. 

This data is crossed square over Lie algebras if the following 

conditions hold: 

1. ⱷ,ⴄ, µ,ⴌ, and µⱷ =  ⴌⴄ are crossed modules over Lie algebras. 

2. ⱷ and ⴄ preserves the action of R. 

3. h is k-bilinear: 

                          ℎ(𝑘𝑥, 𝑒)  =  ℎ(𝑥, 𝑘𝑒)  =  𝑘 ℎ(𝑥, 𝑒) 

4. h is linear in the first variable: 

 ℎ([𝑥, 𝑥′], 𝑒)  =  ℎ(𝑥, 𝑒)  −  ℎ(𝑥′, 𝑒) 

5. h is linear in the second variable: 

  ℎ(𝑥, [𝑒 , 𝑒′])  =  ℎ(𝑥, 𝑒)  −  ℎ(𝑥, 𝑒′) 

6. h is compatible with the action of 𝑅: 

       𝑟 ▶ ℎ(𝑥, 𝑒)  =  ℎ(𝑟 ∆𝑥, 𝑒)  =  ℎ(𝑥, 𝑟 □ 𝑒) 

7. ⱷ (h(x, e)) = x · e.  

8. ⴄ (h(x, e)) = e · x. 

9. ℎ(𝑥, ⴄ (𝑑))  =  𝑥 ·  𝑑. 

10. ℎ(ⱷ (𝑑), 𝑒)  =  𝑒 ·  𝑑. 

where ∆: R × C → C, ▶ : R × D → D, □ ∶ R × E → E are the actions. 

Such a structure form crossed square category over Lie algebras. We 

will show such a crossed square with   

D C 

E R 

 Let 
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be a morphism of crossed squares over Lie algebras. The morphisms 

 

are crossed modules over Lie algebra making the diagram 

 

commutative and the homomorphisms 𝜀𝐷, 𝜀𝐶 , 𝜀𝐸  are 𝜀𝑅-equivariant. 

We will denote this category by Crs2. 

3. Crossed Squares over Lie Algebras from Pairs of Crossed 

Modules over Lie Algebras 

In (Brown& Sivera, 2009) Brown and Sivera mentioned bifibration 

of crossed squares over  pairs of crossed modules. In this section, we 

will give the notion of the category: pairs of crossed modules for Lie 

algebras. 

 

Definition 3.1 Let 𝜏 ∶  𝐶 →  𝑃 and 𝜔 ∶  𝐸 →  𝑃 be crossed module 

over Lie algebra. The category, pairs of crossed modules over Lie 

algebra, 𝑋𝑀𝑜𝑑2 consists of objects 
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and with the morphisms preserving the action of 𝑃 on 𝐸 and 𝐶. 

Shortly we will write (𝐶, 𝐸, 𝑃, 𝜏, 𝜔) for a pair of crossed modules. 

Let  

 

D S 

E P 

be a crossed square and the morphism 

𝛼 = (𝛼1, 𝛼2, 𝛼3): (𝑃′, 𝐸′, 𝑆′, 𝜏′, 𝜔′) → (𝑃, 𝐸, 𝑆, 𝜏 , 𝜔 ) 

in 𝑋𝑀𝑜𝑑2 as given by 

 

We define 
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𝛼∗ = {(𝑥′, 𝑟′, 𝑠′) ∈  𝐸′ ×  𝑃′ ×  𝑆′ ∶  𝜔′(𝑥′)  =   𝜏′(𝑠′), 𝛼2(𝑥′)  

=  ⴄ(𝑑), 𝛼3(𝑠′)  =  ⱷ(𝑑)} 

and ⱷ1(𝑥′, 𝑠′, 𝑑′) = 𝑐′, ⱷ2(𝑥′, 𝑠′, 𝑑′) = 𝑥′ to give the next 

proposition where  µ: D → S, ⴌ: D → E. 

Theorem 3.1 The diagram 

 

is an object in 𝐶𝑟𝑠2. 

Proof:  

1. From the definition 𝜏 ′ and 𝜔 ′ are crossed module over Lie 

algebras. First, let us obtain that ⱷ1 is a crossed module of 

Lie algebras. 

          ⱷ1(𝑥′′ ∆ (𝑒′, 𝑥′, 𝑑))   =   (ⱷ1𝜏′(𝑥′′)  ·  𝑒′, 𝑥′′𝑥′, 𝛼3(𝑥′′) ·  𝑑) 

=   [𝑥′′, 𝑥′] 

                  =   [𝑥′′, ⱷ1(𝑒′, 𝑥′, 𝑑)] 

for 𝑥′′ ∈  𝐶′, (𝑒′, 𝑥′, 𝑑)  ∈  𝛼∗ and 
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 for (𝑒′, 𝑥′, 𝑑), (𝑒′′, 𝑥′′, 𝑑′)  ∈  𝛼∗. Similar way ⱷ2  becomes a 

crossed moduleover Lie algebras. Since composition of two 

crossed modules 𝜏′ⱷ1, 𝜔′ⱷ2 are crossed modules and from the 

definition of 𝛼∗ it is clear that 𝜏′ⱷ1  =   𝜔′ⱷ2.  

2. ⱷ1 and ⱷ2 preserves the action for 𝑟′ ∈  𝑅 and 
(𝑒′, 𝑥′, 𝑑)  ∈  𝛼∗ 

 

3. Define  

ℎ′ ∶  𝐸′ ×  𝐶′ →  𝐸′ ×  𝐶′ ×  𝐷 

(𝑒′, 𝑥′)′ →   (𝜏′(𝑥′) □ 𝑒′, 𝜔′(𝑒′) ∆ 𝑥′′, ℎ(𝛼2(𝑒′), 𝛼 ′ (𝑥′′))) 

where ℎ ∶  𝐸 ×  𝐶 →  𝐷 is the h-map of  

D C 

E R 

For 𝑥′ ∈  𝐶′, 𝑒′ ∈  𝐸′ and 𝑘 ∈  𝑘 we have 

𝑘. ℎ′(𝑒′, 𝑥′)   
=   𝑘. ( 𝜏 ′(𝑥′) □ 𝑒′, 𝜔 ′(𝑒′) ∆ 𝑥′′, ℎ(𝛼2(𝑒′), 𝛼3 ′(𝑥′′))) 

  =  (𝑘. 𝜏 ′(𝑥′) □ 𝑒′, 𝑘. 𝜔 ′(𝑒′) ∆ 𝑥′′, 𝑘. ℎ(𝛼2(𝑒′), 𝛼3 ′(𝑥′′))) 
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=   (𝜏 ′(𝑥′) □ 𝑘𝑒′, 𝜔 ′(𝑘𝑒′) ∆ 𝑥′′, ℎ(𝑘𝛼2(𝑒′), 𝛼3 ′(𝑥′′))) 

=   (𝜏 ′(𝑥′) □ 𝑘𝑒′, (𝑘𝑒′)𝑥′′, ℎ((𝑘𝑒′), 𝛼3 ′(𝑥′′))) 

=   ℎ′(𝑘𝑒′, 𝑥′) 

𝑘. ℎ′(𝑒′, 𝑥′)   =   𝑘. ( 𝜏′(𝑥′) □ 𝑒′, 𝜔 ′(𝑒′) ∆ 𝑥′′, ℎ(𝛼2(𝑒′), 𝛼3 ′ (𝑥′′))) 

=   (𝑘. 𝜏′(𝑥′) □ 𝑒′, 𝑘. 𝜔 ′(𝑒′) ∆ 𝑥′′, 𝑘. ℎ(𝛼2(𝑒′), 𝛼3 ′(𝑥′′))) 

=   (µ′(𝑘𝑥′) □ 𝑒′, 𝜔 ′(𝑘𝑒′) ∆ 𝑘𝑥′′, ℎ(𝛼2(𝑒′), 𝑘𝛼3 ′(𝑥′′))) 

=   (µ′(𝑘𝑥′) □ 𝑒′, 𝜔 ′(𝑒′) ∆ 𝑘𝑥′′, ℎ(𝛼2(𝑒′), 𝛼3 ′(𝑘𝑥′′))) 

=   ℎ′(𝑒′, 𝑘𝑥′) 

4. For 𝑥′, 𝑥′′ ∈  𝐶′ and 𝑒′ ∈  𝐸′ 

 

5. For 𝑥′ ∈  𝐶′ and 𝑒′, 𝑒′′ ∈  𝐸′, it can be seen similarly. 

6. For 𝑥′ ∈  𝐶′, 𝑒′ ∈  𝐸′ and 𝑟′ ∈  𝑅, 

𝑟′ ·  ℎ′(𝑒′, 𝑥′) =   𝑟′ ·  (𝜏′(𝑥′) □ 𝑒′, 𝜔′(𝑒′) ∆ 𝑥′′, ℎ(𝛼2(𝑒′), 𝛼3′ (𝑥′))) 

= ( 𝑟′ ·  (𝜏′(𝑥′)□𝑒′), 𝑟′ ·  (𝜔′(𝑒′)∆𝑥′′), 𝑟′ ·  ℎ(𝛼2(𝑒′), 𝛼3
′ (𝑥′))) 
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7. For 𝑥′ ∈  𝐶′, 𝑒′ ∈  𝐸′ and 𝑟′ ∈  𝑅 
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=   (𝜏′(𝑟′𝑥′) ·  𝑒′, (𝜔′(𝑒′)  ·  𝑟′) ∆ 𝑥′, ℎ(𝛼2(𝑒′), 𝛼3′ (𝑟′𝑥′))) 

        =   (𝜏′(𝑟′ ∆ 𝑥′) ·  𝑒′, 𝜔′(𝑒′)  ·  (𝑟′ ∆𝑥′), ℎ(𝛼2(𝑒′), 𝛼3′ (𝑟′ ∆𝑥′))) 

=   ℎ′(𝑒′, 𝑟′ ∆ 𝑥′) 

8. For 𝑥′ ∈  𝐶′, 𝑒′ ∈  𝐸′ and 𝑟′ ∈  𝑅; 

 

 

9. For (𝑒′, 𝑥′, 𝑑)  ∈  𝛼 ∗  and 𝑒′′ ∈  𝐸′ ; 
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10. For (𝑒′, 𝑥′, 𝑑)  ∈  𝛼∗ and 𝑥′′ ∈  𝐶′; 

4. Conclusion 

In this work, we examined how crossed squares of Lie algebras can 

be obtained from pairs of crossed modules by using the structural 

relations that link their actions and homomorphisms. Beginning with 

the classical definitions of crossed modules and the basic properties 

recalled in the preliminary section, we developed the categorical 

approach in which pairs of crossed module over Lie algebra are 

given. Within this manner, we give the construction and showed that 

it naturally yields a crossed square when the required conditions are 

hold. 

The main result demonstrates that the data arising from a morphism 

in pairs of crossed modules maps to an object in Crs2. Each of the 

axioms defining a crossed square  from the pairs of crossed module 

conditions verified explicitly. Also some equivalent structures with 

crossed squares were worked in (Yılmaz, 2022, Soylu Yılmaz et al., 

2022, Yılmaz et al., 2019). 

The method presented here for producing crossed squares from pairs 

of crossed modules over Lie algebras. Such constructions 

strengthens the connections between crossed module notion and 

higher Lie-algebraic structures. These results may serve as a starting 

point for further results involving Lie 3-algebras, higher 
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homotopical structures, and non-abelian cohomology, providing a 

way for future work in the non-abelian algebra of Lie algebras. 
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A PERSPECTIVE ON ISOMORPHISM PROBLEMS 

THROUGH G-SET MODULES 

MEHMET UC1 

Introduction 

Group rings have played a fundamental role in both the 

analysis of algebraic structures and the development of 

representation theory since the mid-20th century. The group ring RG, 

defined for a ring R and a group G, is a powerful tool for translating 

the structure of G to the algebraic plane. In particular, studies of 

integral group rings ℤG have revealed profound problems 

concerning the extent to which a finite group can be determined 

solely from ring-level information.  

Isomorphism problem in group rings is summarized in the 

literature by the following question: Does the isomorphism RG ≅

 RH always yield G ≅  H? This question has been answered in the 

affirmative in some important cases. Perlis and Walker (1950) 

showed that finite Abelian groups are determined by group rings 

over the rational numbers. Deskins (1956) obtained a similar 

determinability result for finite Abelian p-groups over fields with 
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characteristic p. Higman (1940) gave important positive results for 

integral group rings in the context of abelian groups and Hamiltonian 

2-groups. Results by researchers such as Sandling (1974, 1985), 

Whitcomb (1968), and Weiss (1991) showed that the result ℤG ≅

 ℤH ⇒  G ≅  H is valid for metabelian, nilpotent, and certain linear 

groups.  

On the other hand, the examples given by Dade (1971) 

showed that the isomorphism problem can be answered negatively 

for all fields, so the strongest version, the complete group ring 

conjecture, came to the fore: ℤG ≅  ℤH ⇒  G ≅  H. This conjecture 

is not completely solved today, but it has been verified for a wide 

class of groups such as abelian, metabelian, nilpotent, Hamiltonian 

2-groups, and simple groups (Sehgal and Milies, 2002). 

Zassenhaus’ conjectures (Sehgal, 1996) concerning the 

normalized unit group of ℤG, rational conjugacy of torsion units, 

behavior of finite subgroups, and structural constraints on 

automorphisms, generated a vast body of research. Significant 

progress has been made by Hughes–Pearson (1972), Milies (1973), 

Luthar and Passi (1989), Luthar and Trama (2007), Dokuchaev–

Juriaans (1996), and many others.  

The normalizing conjecture began with Coleman (1964) and 

was later expanded by Li, Parmenter and Sehgal (1999). The 

problem of the existence of free subgroups was studied by 

researchers such as Hartley and Pickel (1980), Gonçalves (1984), 

and Passman (1996) and revealed the complexity of unit groups of 

integral group rings.  

The concept of a group ring has extensive generalizations, 

such as skew group rings, cross products, semigroup rings, loop 

rings, and partial group algebras. In particular, Goodaire and Milies 

(1988, 1989, 1996) obtained extensive results on isomorphism 
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problems on alternating loop rings and on the validity of Zassenhaus 

conjectures.  

The concept of a group module was first introduced by Koşan 

et al. (2014) and was subsequently developed and generalized in later 

studies Kosan (2020), Uc and Alkan (2017). Isomorphism problems 

arising in the context of group modules are a natural generalization 

of the classical group ring isomorphism problem. Given a ring R and 

an R-module M, the fundamental question is whether modules MG 

and MH are isomorphic, and whether this isomorphism yields G ≅

 H. It is known that, in general, G ≅  H ⇒  MG ≅  MH always 

holds, while the converse is not true; that is, G ≄  H can exist even 

though MG ≅  MH. Therefore, determining all groups H such that 

MG ≅  MH for a given M is crucial for understanding the extent to 

which module-theoretic methods determine group structure. Uc and 

Mercan (2025) provided a fundamental starting point in this area by 

showing that MH ≅  MG for isomorphic groups H and G. Moreover, 

the question of whether two non-isomorphic groups can form 

isomorphic group modules under the same module M lies at the heart 

of isomorphism problems in group modules and reveals the deep 

relations between group theory and module theory.  

The concept of a G-set module was first introduced in a 

systematic framework by Uc and Alkan (2023) and is considered a 

natural generalization of the classical group module approach. This 

structure allows us to examine the MS module, which results from 

the interaction of a group G on a G-set S combined with an R-module 

M. This allows for a richer analysis of the interaction between group 

influence and module structure. This chapter addresses isomorphism 

problems in G-set modules, specifically exploring how G-set 

isomorphisms are reflected in module isomorphisms, the conditions 

under which isomorphic modules necessitate G-set isomorphism, 

and the extent to which module-theoretic structures determine group 
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influence. The main results of this chapter include the proof that a G-

set isomorphism induces an RG-module isomorphism of the form 

MS →  MT, the converse results obtained through characterization 

of modules, the application of character theory and the Maschke 

decomposition to G-set modules, and the proof of fundamental 

theorems concerning whether non-isomorphic groups can generate 

the same G-set module. These results provide a holistic approach to 

isomorphism problems in G-set modules by revealing both the 

structural properties of G-set modules and how group influence is 

encoded at the module level. 

Preliminaries 

In this section, we present a restructured formulation of the 

concept of a G-set module, inspired by earlier work, most notably 

Koşan et al. (2014), but rewritten to provide a broader, clearer, and 

more general framework suitable for this book chapter. Throughout, 

G denotes a finite group with identity element e, R is a commutative 

ring with unity 1, M is a left R-module, and RG is the corresponding 

group ring. The notation H ≤  G indicates that H is a subgroup of G, 

while S represents a G-set equipped with an action of G on S. 

Whenever N is an R-submodule of M, the notation NR ≤ MR will be 

used. Given a G-set S, the G-set module MS is defined as the 

collection of all formal finite sums of the form ∑ msss∈S , where each 

coefficient ms belongs to M and only finitely many coefficients are 

nonzero. Equality of two such expressions 𝜇 =  𝜂 is interpreted as 

coefficientwise equality, meaning ms = ns for all 𝑠 ∈  𝑆. The 

addition in MS is defined componentwise that is 𝜇 + 𝜂 =

∑ msss∈S + ∑ nsss∈S = ∑ (ms + ns)ss∈S . The scalar multiplication 

by 𝑟 ∈  𝑅 is given by 𝑟𝜇 = 𝑟(∑ msss∈S ) = ∑ (𝑟ms)ss∈S . Under this 

operation, MS becomes an R-module. If 𝜌 = ∑ rggg∈G  is an element 

of the group ring 𝑅𝐺, then its action on MS is defined by  
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 𝜌𝜇 = (∑ rgg)(∑ mss
s∈S

)
g∈G

= ∑ (rms)(gs)
s∈S

 

which makes MS a left 𝑅𝐺-module.  

This module will be denoted (MS)RG, and in its purely R-

linear form by (MS)R. The structure (MS)RG is called the G-set 

module of S by M over RG. Since the action of G on S naturally 

extends to MS, the structure of a G-set is also inherited by MS. If S is 

an H-set for a subgroup H ≤  G, then MS becomes an RH-module. 

Furthermore, if S is both a G-set and a group, and if M =  R, then RS 

coincides with the classical group algebra. Likewise, when a group 

acts on itself by multiplication, we obtain (MS)RG = (MG)RG, 

showing that MG is the basic example of a G-set module.  

Since the actions of G on a set S correspond bijectively to 

homomorphisms G →  ΣS (where ΣS denotes the full permutation 

group on S), G-set modules form a wide and rich class of RG-

modules. In this sense, MG, introduced in Kosan et al. (2014) in the 

case where G acts on itself, may be viewed as the earliest instance of 

a G-set module. Consequently, the structure MS provides a natural 

generalization of several classical constructions: group rings and 

group modules. The theory of G-set modules thus unifies these 

frameworks and extends the range of module-theoretic questions one 

can ask regarding RG-modules. This generalized perspective offers a 

broader and more flexible approach for studying the structural 

behavior of group 

Main Results 

Theorem 1. Let G be a group, R a ring, and M an R -module. 

Let S and T be G-sets which are isomorphic via a G-set isomorphism 

α ∶  S →  T. Then the associated G-set modules are isomorphic as R-

modules equipped with a compatible G-action that is  MS ≅  MT.  
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Proof. α ∶  S →  T is a G-set isomorphism; that is α is 

bijective, and α(g · s)  =  g · α(s) for all g ∈  G and s ∈  S. Our aim 

is to construct an isomorphism such that α∗ ∶  MS →  MT between 

the associated G-set modules. An element x ∈  MS is a finite formal 

sum of the form x =  ∑ msss∈S , where each ms ∈  M  and only 

finitely many coefficients ms are nonzero. Similarly, an element y ∈ 

MT may be written uniquely as y =  ∑ nttt∈T , with nt ∈ M.  

Define the map α∗ ∶  MS →  M, α∗(∑ msss∈S )  =

 ∑ mss∈S α(s). To prove α∗  is well defined, we must show that if 

∑ ms · ss∈S = ∑ ms
′ ss∈S  as elements of MS, then α∗sends these two 

expressions to the same element of MT. Applying α∗ we obtain 

α∗(∑ msss∈S )  =  ∑ mss∈S α(s) and α∗(∑ ms
′ ss∈S )  =  ∑ ms

′
s∈S α(s). 

Since ms = ms
′ for all s, these two sums are equal in MT. Hence, α∗ 

is well-defined.  

Let x=∑ msss∈S  and y = ∑ nsss∈S  in MS. Then,  

α∗(x + y) = α∗ (∑ mss
s∈S

+ ∑ nss
s∈S

) = α∗(∑(ms + ns)s

s∈S

= ∑(ms + ns)α(s)

s∈S

= ∑ msα(s) + ∑ nsα(s)

s∈Ss∈S

= α∗(x) + α∗(y). 

Thus, α∗ is additive.  

Let r ∈ R, then α∗(r. x) = α∗(r. ∑ mss∈S s) =

α∗(∑ (rms)s∈S s) = r ∑ msαs∈S (s) = rα∗(x). So, α∗ is an R-module 

homomorphism.  

The G-action on MS is defined by g · (ms) = m(gs), 

extended linearly. Since α is a G-set isomorphism, 

α∗(gx) = α∗ (g (∑ ms
s∈S

s)) = ∑ msα(g
s∈S

s) 
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= ∑ msgα(
s∈S

s) = g(∑ msα(
s∈S

s)) = gα∗(x). 

Hence α∗ commutes with the G-action.  

Suppose α∗(x) = α∗(∑ msss∈S ) = ∑ msα(ss∈S )  = 0. In the 

formal sum structure of MT, distinct basis labels α(s) impose that all 

coefficients must vanish. Thus ms = 0 for every s ∈ S, which 

implies x = 0. Therefore α∗ is injective.  

Let y =  ∑ nttt∈T ∈ MT. Because α is bijective, for every t ∈

T there exists a unique s ∈  S such that t =  α(s). Write y =

 ∑ nα(s)α(s)s∈S and define ∑ nα(s)ss∈S ∈ MS. Then α∗(x) =

α∗(∑ nα(s)ss∈S ) =  ∑ nα(s)α(s) = ys∈S .Thus, α∗ is surjective. Since 

the map α∗ is well-defined, an RG-module homomorphism, injective 

and surjective, α∗ is an RG-module isomorphism of G-set modules. 

Hence MS ≅ MT. 

Example 1. Let G = S3, the symmetric group on three 

elements. We construct two G-sets S and T, each of which contains 

one nontrivial transitive orbit and two trivial orbits. Define S = V ∪

W = {v1, v2, v3} ∪ {w1, w2} and T = A ∪  B = {a1, a2, a3} ∪

{b1, b2}. The action of S3 on V is the standard permutation action that 

is σ · vi = vσ(i) for σ ∈ S3 and i = 1,2,3. The action of S3 on W is 

trivial that is σ · wj = wj for σ ∈ S3 and j = 1,2. Similarly, σ · ai =

aσ(i) and σ · bj = bj. Thus, each G-set contains one transitive orbit 

(size 3), and two trivial orbits (each size 1).  

Define α by α(v1) = a1, α(v2) = a2, α(v3) = a3, α(w1) =

b1, α(w2) = b2. This map is bijective, orbit-preserving (transitive 

orbit maps to transitive, trivial to trivial) and G-equivariant. The 

following verifies the equivariance for V and for W, respectively.   

α(σ · vi) = α(vσ(i)) = aσ(i) = σ · ai = σ · α(vi). 
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α(σ · wj) = α(wj) = bj = σ · bj = σ · α(wj). 

Hence, α(g · s) = g · α(s) for all g ∈ S3 and s ∈ S, proving α is a G-

set isomorphism.  

Let R =  ℤ and M =  ℤ as an ℤ-module. Define MS = ℤS =

{∑ mss: ms ∈ ℤs∈S }, and MT = ℤT = {∑ ntt: nt ∈ ℤt∈T }. For 

example, u = 4v1 − v3 + 2w1 − 5w2 ∈ ℤS,  and v = 4a1 − a3 +

2b1 − 5b2 ∈ ℤT. By Theorem 1, the induced map α∗ is defined by 

α∗(∑ msss∈S )  =  ∑ mss∈S α(s). Explicitly, α∗(vi) = ai, α∗(wj) =

bj. For example, α∗(4v1 − v3 + 2w1 − 5w2) = 4a1 − a3 + 2b1 −

5b2. We now verify each algebraic property in detail.   

If ∑ msss∈S = ∑ ms
′ ss∈S , then, since {v1, v2, v3, w1, w2} form 

a formal basis, we have ms = ms
′  for all s ∈ S. Applying α∗, we get 

∑ mss∈S α(s) = ∑ ms
′

s∈S α(s). So, α∗ is well-defined. 

Let x = ∑ msss∈S , y = ∑ nsss∈S . Then, α∗(x + y) =

α∗(∑ msss∈S + ∑ nsss∈S )  = α∗(∑ (ms + ns)ss∈S = ∑ (ms +s∈S

ns)α(s) = ∑ msα(s) + ∑ nsα(s)s∈Ss∈S = α∗(x) + α∗(y). Hence, α∗ 

preserves addition. 

α∗ is ℤ-linear, because for any integer k ∈ ℤ, α∗(kx) =

α∗(k ∑ msss∈S ) = ∑ (kms)α(s) = k ∑ msα(s)s∈S = kα∗(x).s∈S   

Let σ ∈ S3 and x = ∑ msss∈S . Then, σ · x = ∑ ms(σ · s)s∈S . 

Hence, α∗(σ · x) = α∗(∑ ms(σ · s)s∈S ) = ∑ msα(σ · s)s∈S =

∑ ms(σ · α(s)) = σ · ∑ msα(s) = σ · α∗(x)s∈Ss∈S . Thus, α∗ 

commutes with the G-action that is α∗(σ · x) =  σ · α∗(x). 

Assume α∗(x) = 0. Write x = m1v1 + m2v2 + m3v3 +

n1w1 + n2w2. Then, α∗(x) = m1a1 + m2a2 + m3a3 + n1b1 +

n2b2 = 0. Since the elements a1, a2, a3, b1, b2 are formally 

independent, their coefficients must all vanish that is m1 = m2 =

m3 = 0; n1 = n2 = 0. Thus, x = 0, proving α∗ is injective. 
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Let y = r1a1 + r2a2 + r3a3 + s1b1 + s2b2 ∈ ℤT. Define 

x = r1v1 + r2v2 + r3v3 + s1w1 + s2w2 ∈ ℤS. Then, α∗(x) =

α∗(r1v1 + r2v2 + r3v3 + s1w1 + s2w2) = r1α(v1) + r2α(v2) +

r3α(v3) + s1α(w1) + s2α(w2)=r1a1 + r2a2 + r3a3 + s1b1 +

s2b2 = y. Hence, α∗ is surjective.  

We have verified that α∗ is well-defined, additive, ℤ-linear, 

G-equivariant, injective and surjective. Therefore, α∗ is an 

isomorphism of G-set modules, and MS ≅ MT.  

Theorem 2. Let R be a field, let G be a finite group, and let S 

and T be finite G-sets. Let M be a nonzero left R-module on which G 

acts trivially. Consider the corresponding G-set modules MS: =

⊕s∈S M · s, MT: =⊕t∈T M · t where the G-action is given by g ·

(m s)  =  m · (g · s) for all m ∈ M, s ∈ S, g ∈ G. If MS and MT are 

isomorphic as RG-modules, then S and T are isomorphic G-sets.  

 Thus, for any nonzero M with trivial G-action, the 

construction S ↦ MS is faithful on isomorphism classes of finite G-

sets. 

Proof. Since M is nonzero finite dimensional R-vector space 

on which G acts trivially, the RG-action on MS and MT arises solely 

from the permutation actions of G on S and T. This allows canonical 

identifications M⨂RR(S) and M⨂RR[T], where R(S) and R(T) 

denote the premutation modules with bases indexed by S and T.  

 If dim(M) = d > 0, thenM ≅ Rd, and consequently MS ≅

(R(S))d and MT ≅ (R(T))d as RG-modules. Thus, MS ≅ MT 

implies (R(S))d ≅ (R(T))d.  

Since R has characteristic zero and G is finite, Maschke’s 

theorem ensures that the group algebra RG is semisimple. Therefore, 

every finite-dimensional RG-module decomposes uniquely (up to 

ordering) as a direct sum of simple modules.  
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Write the simple decomposition of R(S) as R(S) =

V1
a1⨁V2

a2⨁. . . ⨁Vk
ak, where Vi are non-isomorphic simple RG-

modules and each ai ≥ 0. Similarly, write R(T) =

V1
b1⨁V2

b2⨁. . . ⨁Vk
bk. Taking d copies, we obtain (R(S))d ≅

V1
d.a1⨁V2

d.a2⨁. . . ⨁Vk
d.ak and (R(T))d ≅ V1

d.b1⨁V2
d.b2⨁. . . ⨁Vk

d.bk. 

The isomorphism (R(S))d ≅ (R(T))d forces d. ai =  d. bi for each i. 

Since d > 0, this yields ai = bi, and hence R(S) ≅ R(T) as RG-

modules.  

Over a characteristic-zero field, permutation modules are 

determined by their characters. The character χS of R(S) is given by 

χS(g) = |FixS(g)|, the number of elements of S fixed by g ∈ G. 

Similarly, χT(g) = |FixT(g)|.  

Since R(S) ≅ R(T), their characters coincide such that 

χS(g) = χT(g) for all g ∈ G. Therefore, each element of G fixes the 

same number of points in S and in T. The fixed-point data for all g ∈

 G determines the orbit decomposition of a finite G-set. Each 

transitive G-set is of the form G/H for some subgroup H ≤  G, and 

two such sets G/H and G/K have identical permutation characters if 

and only if H and K are conjugate subgroups. Thus, S and T must 

consist of the same multiset of orbit types G/H, with identical 

multiplicities. Constructing a G-equivariant bijection orbit by orbit 

produces an explicit G-set isomorphism S ≅ T. 

Example 2. Let R =  ℂ, the field of complex numbers. Let 

G =  S3, the symmetric group on three letters, which has six 

elements. Let M = ℂ considered as a 1-dimensional ℂ-vector space 

with trivial G-action. We construct two G-sets S and T, show that they 

are isomorphic as G-sets, and then build the permutation RG-modules 

ℂS and ℂT. Finally, we construct an explicit ℂG-module 
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isomorphism and explain why Theorem 1 guarantees that such an 

isomorphism force S ≅ T as G-sets.  

Define T =  {1, 2, 3}, equipped with the natural action of S3. 

For any permutation σ ∈  S3 and any element i ∈  T, the action is 

defined by σ ⋅  i =  σ(i). This makes T a transitive G-set of size 

three. Next, construct another G-set S as the left coset space G/H, 

where H =  {id, (12)} is the subgroup of S3 of order two. The left 

cosets of H in G are  H1 = H, H2 = (13)H,  H13 = (23). Thus S =

 {H1, H2, H3} and the action of G on S is by left multiplication: σ ⋅

 (gH)  =  (σg)H. This produces another transitive G-set of size three.  

Define a bijection α ∶  S →  T by setting α(H1) =

1, α(H2) = 2, α(H3) = 3. To verify that α is a G-set isomorphism, 

we must show that it is G-equivariant that is α(σ ⋅  x)  =  σ ⋅  α(x) 

for all σ ∈  S3 and all x ∈  S. Since both S and T are transitive G-

sets of size three, the verification may be done using generators of 

S3. For example, consider σ =  (123). Then, (123)  ⋅  H1  =

 (123)H =  H2, so α((123)  ⋅  H1)  =  α(H2)  =  2. On the other 

hand, α(H₁)  =  1 and (123)  ⋅  1 =  2. Thus, the equivariance 

condition holds. A similar verification applies for σ =  (12), and 

since these elements generate S3, α is fully G-equivariant. Therefore, 

α is a G-set isomorphism S ≅  T.  

The permutation module ℂS is the ℂ-vector space with basis 

{H1, H2, H3}, with G acting by linear extension of its action on S. That 

is, for σ ∈  S3 and basis element x ∈  S, we have σ ⋅  x = the 

unique coset in S obtained by left multiplying x by σ. Similarly, ℂT 

is the ℂ-vector space with basis {1, 2, 3}, with G acting by 

permutation of the basis elements σ ⋅  i =  σ(i). Both ℂS and ℂT are 

ℂG-modules of dimension three.  

Define α ∗∶  ℂS →  ℂT by linear extension of α. Explicitly, 

for any vector v = ∑ axxx∈S ∈  ℂS, set α∗(v) = ∑ axα(x)x∈S . On 
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basis elements, this means that α∗(H1) = 1, α∗(H2) = 2, α∗(H3) =

3. We now verify the properties that make α∗ an isomorphism of ℂG-

modules. 

Every element of ℂS has a unique expression as a finite linear 

combination of the basis elements H1, H2, H3. Defining α∗ on the 

basis elements and extending linearly ensures the map is well-

defined. Its ℂ-linearity follows immediately from the linear 

extension.  

To show α∗ is a ℂG-module homomorphism, we must verify 

that α∗ (σ ⋅  v)  =  σ ⋅  α∗ (v) for all σ ∈  G and all v ∈  ℂS. It 

suffices to check this on basis elements. For any x ∈  S, we get 

α∗(σ ⋅  x)  =  α(σ ⋅  x)  =  σ ⋅  α(x)  =  σ ⋅  α∗(x). By linearity, 

this identity holds for all vectors. Thus α∗ is G-equivariant and hence 

a ℂG-module homomorphism. Since α is a bijection of finite sets, its 

linear extension α∗ is a bijection between finite-dimensional ℂ-

vector spaces of the same dimension. The inverse is the linear 

extension of α−1. Thus α∗ is a ℂG-module isomorphism.  

In this example, S and T are isomorphic as G-sets, and the G-

set isomorphism α gives rise to a ℂG-module isomorphism α∗: ℂS →

 ℂT. The theorem discussed in the accompanying text states the 

converse under appropriate hypotheses, namely, that if ℂS and ℂT 

are isomorphic as ℂG-modules, then S and T must be isomorphic as 

G-sets, provided R has characteristic zero and M is a nonzero finite-

dimensional R-module with trivial G-action. Thus, the present 

example demonstrates both directions: a G-set isomorphism induces 

a module isomorphism, and, by the theorem, any module 

isomorphism of this form forces the underlying G-sets to be 

isomorphic.  

Conclusion  

--159--



This chapter systematically addresses isomorphism problems 

for G-set modules defined on G-sets. The paper first clarifies the 

fundamental structure of the G-set module concept with a 

preliminary section reorganized from previous literature (especially 

Uc and Alkan, 2023). It is shown that G-set modules generalize the 

concepts of group ring and group module, thus unifying both the 

group action on the set and the module structure.  

The main contributions of the chapter are the detailed proof 

of two fundamental isomorphism results. First, it is proven that a G-

set isomorphism between a G-set S and T translates into an RG-

module isomorphism between the corresponding G-set modules. 

This result demonstrates that the G-set structure is fully reproducible 

at the module level.  

Second, it has been shown that modules are also inversely 

deterministic under certain conditions: in particular, for a non-zero 

module M with trivial G-action defined on a characteristic zero field, 

the isomorphism MS ≅  MT necessitates a G-set isomorphism S ≅

 T. This result obtained using Maschke's theorem, character theory, 

and permutation module decompositions, clearly demonstrates the 

power of G-set modules to distinguish isomorphism classes.  

The chapter also included illustrative examples that clarify 

how G-set isomorphisms correspond to module isomorphisms, 

thereby complementing the theoretical results with explicit 

computations and constructions.  

In conclusion, this work presents both advanced theoretical 

methods and structural characterizations for isomorphism problems 

on G-set modules, and it appears that this new class of modules 

makes important contributions to the relations between group theory, 

representation theory, and module theory. 
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A MULTIDISCIPLINARY SURVEY OF LINEAR 

WEINGARTEN SURFACES  

FERAY BAYAR1 

Introduction 

The classification of surfaces in three-dimensional space 

constitutes one of the most enduring challenges in differential 

geometry. From the foundational work of Euler and Monge to the 

modern era of discrete differential geometry, mathematicians have 

sought to characterize shapes not merely by their visual appearance, 

but by the intrinsic and extrinsic properties of their curvature. 

Among the myriad classes of surfaces defined over the last two 

centuries, Weingarten surfaces occupy a distinguished position 

(López, 2008). 

Defined initially by Julius Weingarten in 1861, these surfaces 

are characterized by a functional relationship between their principal 

curvatures, 𝜅1 and 𝜅2 (Weingarten, 1861). This implies that the 

Jacobian of the curvature map vanishes everywhere, or equivalently, 
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that the lines of curvature on such surfaces are intimately tied to the 

variation of the surface normal (Hopf, 1951). 

While the general Weingarten condition 𝑊(𝜅1, 𝜅2) = 0 

allows for arbitrary complexity, a specific subset known as Linear 

Weingarten (LW) surfaces has emerged as the focal point of 

contemporary research. These are defined by a linear relation 

between the Mean curvature (𝐻) and Gaussian curvature (𝐾) : 

2𝑎𝐻 + 𝑏𝐾 = 𝑐 (1) 

Despite the simplicity of this linear constraint, the resulting shapes 

are geometrically rich. They generalize the classical theories of 

minimal surfaces ( 𝐻 = 0 ), Constant Mean Curvature (CMC) 

surfaces ( 𝐻 = 𝑐 ), and developable surfaces ( 𝐾 = 0 ). 

In recent decades, the study of LW surfaces has transcended 

theoretical mathematics. In architectural geometry, they act as a 

"Holy Grail" for rationalization, enabling the fabrication of complex 

double-curved skins using standardized panels (Pellis et al., 2021). 

Simultaneously, in biophysics, the Helfrich spontaneous-curvature 

model, which governs the shape of lipid bilayers and vesicles, 

reduces to linear Weingarten conditions under specific symmetry 

constraints (Helfrich, 1973). 

Mathematical Foundations and Classification Results 

The mathematical study of Linear Weingarten (LW) surfaces 

is rooted in the differential geometry of principal curvatures. Let 𝑆 

be a smooth, oriented surface in Euclidean space ℝ3, and let 𝜅1, 𝜅2 

denote its principal curvatures. A surface is termed a Weingarten 

surface if there exists a smooth, non-trivial function 𝑊 such that 

𝑊(𝜅1, 𝜅2) = 0. 
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The specific class of Linear Weingarten surfaces arises when 

this functional dependence is linear with respect to the mean 

curvature 𝐻 =
1

2
(𝜅1 + 𝜅2) and the Gaussian curvature 𝐾 = 𝜅1𝜅2. 

The general defining equation is: 

2𝑎𝐻 + 𝑏𝐾 = 𝑐 (2) 

where 𝑎, 𝑏, 𝑐 ∈ ℝ are constant not all zero. 

The geometric behavior of LW surfaces is governed by the 

algebraic structure of Equation (2). By substituting the definitions of 

𝐻 and 𝐾, the relation describes a quadratic curve in the ( 𝜅1, 𝜅2 ) 

phase plane: 

𝑏𝜅1𝜅2 + 𝑎(𝜅1 + 𝜅2) − 𝑐 = 0 (3) 

Following López (2008), the classification depends on the 

discriminant Δ = 𝑎2 + 𝑏𝑐 : 

• Elliptic Type ( Δ > 0 ): The principal curvatures lie on a 

hyperbola in the phase plane. This class includes surfaces of 

constant mean curvature ( 𝑏 = 0 ) and surfaces of constant 

positive Gaussian curvature ( 𝑎 = 0, 𝑐/𝑏 > 0 ). Compact, 

strictly convex LW surfaces in this regime are necessarily 

spheres (Hopf, 1951). 

• Hyperbolic Type ( Δ < 0 ): This regime allows for surfaces 

with negative Gaussian curvature. López (2009) 

demonstrated that complete surfaces of this type in 

hyperbolic space ℍ3 exhibit complex branch behaviors, 

distinct from the classical Euclidean pseudosphere. 

• Parabolic Type (Δ = 0) : This often corresponds to 

degenerating cases or surfaces where one principal curvature 

is linearly related to the other, leading to developable 

surfaces or specific channel surfaces. 
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 Rotational Linear Weingarten Surfaces 

Rotational symmetry simplifies the partial differential 

equation (PDE) of the LW condition into a solvable ordinary 

differential equation (ODE). Consider a surface of revolution 

parametrized by: 

𝐱(𝑢, 𝑣) = (𝑓(𝑢)cos⁡ 𝑣, 𝑓(𝑢)sin⁡ 𝑣, 𝑔(𝑢)) (4) 

where 𝑢 is the arc length of the profile curve 𝛾(𝑢) = (𝑓(𝑢),0, 𝑔(𝑢)). 

The principal curvatures are given by the meridional curvature 𝜅1 =

𝑓′𝑔′′ − 𝑓′′𝑔′ and the parallel curvature 𝜅2 = 𝑔′/𝑓. Substituting 

these into Equation (2) yields a second-order non-linear ODE. Aydin 

(2022) utilized the variational characterization of these profiles to 

show that they correspond to the extremals of curvature-dependent 

energy functionals. Specifically, when 𝑏 ≠ 0, the profile curves can 

be expressed in terms of elliptic integrals, generalizing the classical 

Delaunay unduloids and nodoids found in CMC theory. 

Ruled Weingarten Surfaces 

A ruled surface is generated by a line moving along a curve, 

parametrized as 𝐱(𝑢, 𝑣) = 𝛼(𝑢) + 𝑣𝛽(𝑢). The classical theorem of 

Beltrami implies that the only ruled Weingarten surfaces are 

developable surfaces (where 𝐾 = 0 ) and ruled helicoids. 

In the context of the linear relation, Öztürk et al. (2013) 

provided a definitive classification in Euclidean 3-space. They 

proved that a non-developable ruled surface satisfying 

2𝑎𝐻 + 𝑏𝐾 = 𝑐 must be a helicoid. If 𝑏 ≠ 0, the relationship forces 

the helicoid to be part of a restricted family where the pitch relates 

to the coefficients 𝑎 and 𝑐. In Minkowski 3-space, Dillen and Kühnel 
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(1999) extended this to show that ruled LW surfaces can also include 

specific Lorentzian cylinders and cones. 

Tubular Surfaces and Spacelike Tubes 

Tubular surfaces (or canal surfaces with constant radius) 

provide a rigid geometric setting. Geometrically, a tube of radius 𝑟 

around a spine curve 𝛾 has one constant principal curvature, say 

𝜅1 = −1/𝑟. Substituting 𝜅1 = const into the linear relation 2𝑎𝐻 +

𝑏𝐾 = 𝑐 immediately constrains 𝜅2 to be constant as well. Since 𝜅2 

for a tube depends on the curvature of the spine 𝛾, this implies the 

spine itself must have constant curvature. 

Thus, as shown by Pulov et al. (2018), LW tubular surfaces are 

restricted to: 

• Tubes over straight lines (cylinders), 

• Tubes over circles (tori), 

• Tubes over helices. 

Non-Euclidean Geometries and Singularities 

Modern research extends LW theory to Riemannian space 

forms (Hyperbolic space ℍ3 ) and Lorentzian space forms (de Sitter 

space 𝕊1
2 ). 

Hyperbolic Space and Bryant Surfaces 

In Hyperbolic 3 -space ℍ3(−1), the LW condition is often 

adapted to the background geometry, typically formulated as 𝛼(𝐾 −

1) + 2𝛽(𝐻 − 1) + 𝛾 = 0. 

A celebrated class of surfaces in ℍ3 are those with constant 

mean curvature 𝐻 = 1, known as Bryant surfaces. These surfaces 

are the hyperbolic cousins of Euclidean minimal surfaces. Bryant 
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(1987) established a Weierstrass-type representation for these 

surfaces. Just as Euclidean minimal surfaces are generated by 

holomorphic data (𝑔, 𝜔), a Bryant surface 𝑓: Σ → ℍ3 can be 

constructed from a holomorphic null immersion 𝐹: Σ → 𝑆𝐿(2, ℂ). 

Theorem (Lawson Correspondence). There exists an 

isometric correspondence between CMC surfaces in different space 

forms. Locally, a Bryant surface in ℍ3 corresponds to a minimal 

surface in ℝ3. 

This correspondence allows for the construction of "cousins" 

of classical minimal surfaces (like the Enneper surface or Catenoid) 

in the hyperbolic setting. Hauswirth et al. (2002) utilized this to solve 

the asymptotic plateau problem, proving the existence of complete 

Bryant surfaces bounding specific curves at infinity. 

Lorentzian Geometry and Singularities 

In Lorentzian space forms, such as de Sitter space 𝕊1
2, the 

metric is indefinite (+,+,−). This fundamentally alters the surface 

theory, as surfaces can be spacelike, timelike, or lightlike. 

A crucial distinction in this setting is the generic presence of 

singularities. In Riemannian geometry, singularities are often 

defects. In Lorentzian geometry, they are intrinsic features known as 

wave fronts. Yasumoto and Rossman (2020) studied "Bianchi-type" 

LW surfaces in de Sitter space and classified their singularities: 

• Cuspidal Edges: A singularity where the surface folds back, 

equivalent to the caustic of a light front. 

• Swallowtails: A generic higher-order singularity appearing 

in the evolution of wave fronts. 

The study of these singularities links LW theory to singularity 

theory and the topology of caustics (Saji et al., 2009). 
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Discrete Differential Geometry and Computation 

Translating LW theory into algorithms for architecture and 

engineering requires Discrete Differential Geometry (DDG). 

Discrete Curvature and Nets 

On a discrete mesh 𝑀 = (𝑉, 𝐸, 𝐹), classical definitions of 

curvature involving derivatives are unavailable. DDG defines 

curvature via integrated quantities: 

• Discrete Gaussian Curvature (𝐾𝑣) : Defined by the angle 

defect at a vertex 𝑣 : 

𝐾𝑣 = 2𝜋 −∑  

𝑓∋𝑣

 𝜃𝑓 (5) 

• Discrete Mean Curvature (𝐻𝑣) : Defined via the Steiner 

formula or the variation of surface area. For a mesh edge 

𝑒𝑖𝑗, it is often related to the edge dihedral angle. 

Discrete LW surfaces are characterized as special parallel nets. A 

key property utilized in computation is that for any Weingarten 

surface, the gradients ∇𝐾 and ∇𝐻 are parallel. In the discrete setting, 

this implies a specific relationship between the offset meshes. Pellis 

et al. (2021) formulated discrete LW surfaces using the framework 

of isotropic geometry, where the condition linearizes effectively. 

The Guided Projection Algorithm 

The state-of-the-art method for rationalizing a freeform 

design into an LW surface is the Guided Projection Algorithm (Tang 

et al., 2014). This is an iterative optimization method. 
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Given a target surface 𝒮target , the algorithm seeks a mesh ℳ that 

minimizes the distance to 𝒮target  while satisfying the LW constraint. 

• Constraint Formulation: Direct enforcement of 𝑎𝐾 + 𝑏𝐻 +
𝑐 = 0 is numerically unstable due to the rational nature of 

curvature formulas. 

• Implicit Constraint: The algorithm instead enforces the 

collinearity of curvature gradients: 

det(∇𝐾, ∇𝐻) = 0 (6) 

• Fairness: High-degree B-splines are often fitted to the 

resulting mesh to ensure "Class A" surface quality, 

characterized by the smooth flow of reflection lines (Pellis 

et al., 2020). 

Applications in Architecture and Physics 

Architectural Geometry: The Economics of Mold Re-use 

Modern architecture favors freeform skins, but the cost of 

unique molds is prohibitive. LW surfaces provide a rigorous 

geometric solution to this economic problem. 

On a general freeform surface, the curvature at any point is a 

pair (𝜅1, 𝜅2). The image of the surface in the 𝜅1 − 𝜅2 plane is a 2D 

region. This means every panel has a unique intrinsic shape. 

However, for a Weingarten surface, the relation 𝑊(𝜅1, 𝜅2) = 0 

implies that the curvature image collapses to a 1D curve. 

Theorem (Mold Re-use Principle): If a surface satisfies the 

Linear Weingarten condition, its local patches fall into a one-

parameter family of isometries. Consequently, a facade of 𝑁 panels 

can be manufactured using approximately 𝑂(√𝑁) molds, rather than 

𝑂(𝑁) (Pellis et al., 2020). 
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Specifically, Gavriil et al. (2020) demonstrated that for cold-

bent glass, aligning panel strips with the asymptotic lines of a 

hyperbolic LW surface minimizes the stress forming, allowing for 

safe fabrication of complex double-curved facades. 

Grid shells and Structural Mechanics 

Grid shells are lightweight lattice structures that resist loads 

through membrane action. Tellier et al. (2019) identified Isotropic 

Linear Weingarten (iLW) surfaces as a structural optimum. 

• Funicularity: A surface is funicular for a vertical load if the 

stress state is purely axial (compression/tension) with no 

bending. Tellier proved that iLW surfaces are the only 

surfaces that are funicular for a uniform projected vertical 

load while admitting a conjugate net discretization (Tellier, 

2020). 

• Chadstone Shopping Centre: The roof of this structure in 

Melbourne was designed using dynamic relaxation. The 

resulting equilibrium shape is a discrete approximation of 

an iLW surface, balancing structural efficiency with the 

planarity of the glazing panels (Chadwick et al., 2017). 

Soft Matter Physics: Helfrich Energy 

In biophysics, the shape of lipid bilayers is determined by the 

Helfrich curvature energy (Helfrich, 1973): 

𝐸 = ∫ 
𝑆

  [
1

2
𝑘𝑐(2𝐻 − 𝑐0)

2 + 𝑘‾𝐾] 𝑑𝐴 (7) 

where 𝑐0 is the spontaneous curvature induced by lipid asymmetry 

or proteins. The Euler-Lagrange equation for this energy is a 

complex fourth-order PDE. However, for specific geometries crucial 

to cellular function, such as membrane tethers and tubules, the 

geometry simplifies. Pulov et al. (2018) showed that for axially 
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symmetric membranes, the shape equation reduces to a first-order 

integral that is equivalent to the Linear Weingarten condition. Here, 

the "linearity" constants 𝑎, 𝑏, 𝑐 are determined by the membrane's 

physical moduli (𝑘𝑐, 𝑘‾) and the internal pressure difference. This 

reduction allows physicists to analytically predict the radius and 

stability of membrane tubes pulled from cells. 
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ALPHA-COSYMPLECTIC PSEUDO-METRIC 

MANIFOLDS ADMITTING RICCI SOLITONS  

 

Hakan ÖZTÜRK1 

Introduction 

A systematic study of contact structures satisfying an associated 

pseudo-Riemann metric was introduced by Calvaruso and Perrone 

(Calvaruso & Perrone, 2010). This structure was first undertaken 

by Takahashi in Sasakian structures (Takashi, 1969). Contact 

pseudo metric structures (𝜂, 𝑔) where 𝜂 is a contact 1-form, and 𝑔 

is a pseudo Riemann metric associated with it. These structures are 

inherently generalizations of contact metric structures. 

The class of almost contact metric manifolds, known as Kenmotsu 

manifolds, was first introduced by Kenmotsu (Kenmotsu, 1972). It 

is well known that Kenmotsu manifolds can be characterized 

through their Levi-Civita connection. Kenmotsu defined a structure 

closely related to the warped product, which was characterized by 

tensor equations. 

A comprehensive investigation of almost Kenmotsu pseudo-metric 

manifolds remains outstanding in contemporary literature. Wang 

and Liu initiated the study of the geometry of almost Kenmotsu 

pseudo-metric manifolds (Wang & Liu, 2016). Their work 

highlights the analogies and distinctions with respect to the 
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Riemannian metric tensor and they investigate classification 

results concerning local symmetry and nullity conditions. 

Local symmetry is a substantial restriction for Kenmotsu 

manifolds. Furthermore, if Kenmotsu's structure satisfies Nomizu's 

condition (Nomizu, 1968), i.e., 𝑅 ∙ 𝑅 = 0 then it has negative 

constant curvature. If the Kenmotsu manifold is conformally flat, 

then the manifold is a space of constant negative curvature -1 for 

dimensions greater than 3. The tensor product 𝑅 ∙ 𝑅 = 0 defines the 

notion of a semi-symmetric manifold. For all vector fields on, 

where acts as a derivation on (Nomizu, 1968). Such a space is 

called a "semi-symmetric space" since the curvature tensor at a 

point is the same as the curvature tensor of a symmetric space 

(which can change with the point 𝑝). Thus, locally symmetric 

spaces are obviously semi-symmetric, but the converse is not true 

(Calvaruso & Perrone, 2002).  Ogawa obtained that if a compact 

Kaehler manifold is semi-symmetric, then it is locally symmetric 

(Ogawa, 1977). These spaces were studied in the sense of a 

complete intrinsic classification by Szabó (Szabó, 1982). 

We have a contact metric manifold (𝑀, 𝜂, 𝜉, 𝑔) with the contact 

distribution 

                            𝐷 = 𝑘𝑒𝑟𝜂 ⊂ 𝑇𝑀, 𝑑𝑖𝑚𝐷 = 2𝑛                           (1) 

Then we give the 𝐷-conformal curvature tensor 𝐵 defined as 

follows: 

Definition 1. Let (𝑀, 𝑔) be a (2𝑛 + 1)-dimensional Riemannian 

manifold (𝑛 ≥ 2). Then the 𝐷-conformal curvature tensor field on 

𝑀 defined as follows: 

                                    𝐵(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍                                (2) 

       +
1

2𝑛−2
[𝑆(𝑋, 𝑍)𝑌 − 𝑆(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑄𝑌 − 𝑔(𝑌, 𝑍)𝑄𝑋  

−𝑆(𝑋, 𝑍)𝜂(𝑌)𝜉 + 𝑆(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝜂(𝑋)𝜂(𝑍)𝑄𝑌 + 𝜂(𝑌)𝜂(𝑍)𝑄𝑋] 
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                          −
𝑘−2

2𝑛−2
[𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋] 

+ 
𝑘

2𝑛−2
[𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝜂(𝑋)𝜂(𝑍)𝑌𝜂(𝑌)𝜂(𝑍)𝑋]  

which is designed to measure conformal curvature only along 𝐷, 

essentially ignoring the Reeb direction 𝜉 in a conformally invariant 

way. Here, 𝑘 =
𝑟+4𝑛

2𝑛−1
 and 𝑟 is a scalar curvature of 𝑀 (Chuman, 

1983).  

 

Instead of asking whether the whole manifold is conformally flat, 

we ask: Is the induced conformal structure on 𝐷  flat? B is 

the contact metric adaptation of the usual Weyl tensor for this 

restricted question. 𝑘 adjusts the coefficients so 

that B becomes conformally invariant with respect to 

contact-metric conformal transformations (those preserving the 

contact structure up to a conformal factor). 𝐷-conformally flat 

means the contact distribution D carries an induced conformal 

structure. That conformal structure is flat (locally conformally 

equivalent to 𝐼𝑅2𝑛 with the standard conformal structure). No 

condition is imposed on the reeb direction. Then the manifold may 

still have curvature in the vertical direction. 

 

In differential geometry, evolution equations that deform 

Riemannian metrics according to their curvature often reveal deep 

insights into the structure and classification of manifolds. The best 

known instance is Hamilton's Ricci flow, which was introduced in 

1982. This flow evaluates the Riemannian metric 𝑔(𝑡) on the 

manifold 𝑀 by the partial differential equation 

                        
𝜕

 𝜕𝑡
(𝑔(𝑡)) + 2𝑆(𝑔(𝑡)) = 0, 𝑔(0) = 𝑔₀                    (3) 

where  𝑔(𝑡) is a one-parameter family of Riemannian metrics on a 

smooth manifold 𝑀, and 𝑆 denotes the Ricci curvature tensor of the 

metric 𝑔(𝑡). The Ricci flow deforms an initial metric 𝑔₀ in the 
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direction of its Ricci curvature, analogous to heat 

diffusion smoothing irregularities in temperature distributions. This 

curvature-driven flow tends to drive the metric toward a more 

uniform, canonical geometry, thereby serving as a potent 

instrument for probing the topological and geometric structure of 

manifolds. Its most renowned application lies in Grigori 

Perelman's proof of the Poincaré Conjecture, wherein the flow is 

employed as a dynamical system to examine three-dimensional 

manifolds. The Ricci flow functions as a natural geometric partial 

differential equation, whose evolution encodes 

profound information about the underlying manifold, with 

singularities developing at locations of concentrated curvature that 

subsequently reflect topological characteristics. Ricci solitons are a 

key concept within the investigation of the Ricci flow. They 

correspond to natural solutions whose structure is not affected by 

anything other than the diffeomorphism and scaling, suggesting 

that it is the fundamental geometric content of these solutions. 

Ricci solitons are important for a number of reasons. As indicated 

by Hamilton and stated in the precise form by Perelman, high-

curvature regions of a Ricci flow with singularities, when rescaled 

uniformly (parabolic scaling) so as to "blow up" these regions, 

converge to Ricci solitons. In order to understand singularity 

formation and thus the subsequent surgery procedure in geometric 

analysis, having good understanding of classification of solitons 

(especially shrinking solitons) is tantamount. 

In this context, the study of Ricci solitons including their existence, 

classification, uniqueness, rigidity, and stability constitutes a 

fundamental and dynamic area of research in contemporary 

geometry. Exploring their properties or investigating their 

topological consequences under different curvature conditions 

(conformal flat, Weyl conformal tensor, 𝐷-conformal flat, or within 

specific manifold classes) provides a deep insight into the 
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relationship between curvature, topology, and geometric evolution 

equations. 

The study is organized as follows: In introduction section, we shall 

give the short literature information of the study title. In 

preliminaries section, we shall present the concepts of the manifold 

theory and the next section is devoted to describe the basic 

formulas and some propositions of alpha-cosymplectic pseudo-

metric manifolds. The last section contains the main results of the 

study. We shall give some results of alpha-cosymplectic pseudo-

metric manifolds satisfying certain curvature tensor conditions. In 

particular, 𝐷-conformal semi-symmetric, Ricci 𝐷-conformal semi-

symmetric, and 𝐷-conformal flat cases are considered on alpha-

cosymplectic pseudo-metric manifolds admitting Ricci solitons. 

 

Preliminaries  

Let 𝑀 be a (2𝑛 + 1)-dimensional smooth manifold endowed with 

a triple (𝜑, 𝜉, 𝜂), where 𝜑 is a type of (1,1) tensor field, 𝜉 is a 

vector field, 𝜂 is a 1-form on 𝑀 such that 

                 𝜂(𝜉) = 1, 𝜑2 = −𝐼 + 𝜂 ⊗ 𝜉, 𝜑(𝜉) = 0 

                                      𝜂 ∘ 𝜙 = 0, 𝑟𝑎𝑛𝑘(𝜑) = 2𝑛                       (4) 

If 𝑀 admits a Riemannian metric 𝑔, defined by 

𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌) 

                                      𝜂(𝑋) = 𝑔(𝑋, 𝜉)                                        (5) 

then 𝑀 is called almost contact structure (𝜑, 𝜉, 𝜂, 𝑔). Also, the 

fundamental 2-form 𝛷 of 𝑀 is defined by  

                                     𝛷(𝑋, 𝑌) = 𝑔(𝑋, 𝜑𝑌)                                 (6) 

(Yano & Kon, 1984). If the Nijenhuis tensor vanishes, defined by 

                          𝑁𝜑(𝑋, 𝑌) = [𝜑𝑋, 𝜑𝑌] − 𝜑[𝜑𝑋, 𝑌] 
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                           −𝜑[𝑋, 𝜑𝑌] + 𝜑2[𝑋, 𝑌] + 2𝑑𝜂(𝑋, 𝑌)𝜉                (7)                                              

then (𝑀, 𝜑, 𝜉, 𝜂) is said to be normal (Blair, 1976). It is obvious 

that a normal almost Kenmotsu manifold is said to be Kenmotsu 

manifold. Let (𝑀, 𝑔) be an 𝑛-dimensional Riemannian manifold. 

We denote by ∇ the covariant differentiation with respect to the 

Riemann metric 𝑔. Then we have 

                         𝑅(𝑋, 𝑌)𝑍 = ∇𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑋𝑍 − 𝛻[𝑋,𝑌]𝑍                (8) 

The Ricci tensor of 𝑀 is defined a 

                           𝑆(𝑋, 𝑌)  = ∑ 𝑅(𝑋, 𝑒𝑖, 𝑌, 𝑒𝑖)
𝑛
𝑖=1                             (9) 

where {𝑒₁, 𝑒₂, . . . , 𝑒𝑛} is a local orthonormal basis. Also, the Ricci 

operator 𝑄 is a tensor field of type (1,1) on 𝑀 defined by 

                                   𝑔(𝑄𝑋, 𝑌) = 𝑆(𝑋, 𝑌)                                  (10) 

for any vector fields (Blair, 1976). Almost contact metric manifolds 

such that 𝜂 and 𝛷 are closed called almost cosymplectic manifolds. 

Also, an almost contact metric manifold such that 𝑑𝜂 = 0 and 

𝑑𝛷 = 2𝜂 ∧ 𝛷 is said to be an almost Kenmotsu manifold 

(Kenmotsu, 1972). An almost contact metric manifold is said to be 

an almost alpha-cosymplectic manifold if 

                                   𝑑𝜂 = 0, 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)                         (11) 

Here, 𝛼 is a real constant (Kim & Pak, 2005). It is obvious that a 

normal almost alpha-cosymplectic manifold is said to be an alpha-

cosymplectic manifold. 

Alpha-Cosymplectic Pseudo-Metric Manifolds 

This section is devoted to give fundamental concepts of alpha-

cosymplectic pseudo-metric manifolds. In particular, basic 

curvature properties of alpha-cosymplectic pseudo-metric 

manifolds are presented. Here, 𝛼 is given by a smooth function on 

𝑀 such that 𝑑𝛼 ∧ 𝜂 = 0.  
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A pseudo Riemannian metric 𝑔 on 𝑀 is said to be compatible with 

the almost contact structure (𝜑, 𝜉, 𝜂) if 𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) −

𝜀𝜂(𝑋)𝜂(𝑌) where 𝜀 = ±1. A smooth manifold 𝑀 furnished with an 

almost contact structure (𝜑, 𝜉, 𝜂) and a compatible pseudo 

Riemannian metric 𝑔 is called an almost contact pseudo metric 

manifold which is denoted by (𝑀, 𝜑, 𝜉, 𝜂, 𝑔). It is obvious that 

𝑔(𝜑𝑋, 𝑌) = −𝑔(𝑋, 𝜑𝑌), 𝜂(𝑋) = 𝜀𝑔(𝑋, 𝜉),  𝑔(𝜉, 𝜉) = 𝜀. An almost 

contact pseudo metric manifold satisfying Eq. (11) is said to be an 

almost alpha-cosymplectic pseudo-metric manifold for 𝛼 ∈ 𝐼𝑅. 

When an almost alpha-cosymplectic pseudo-metric manifold 𝑀 has 

a normal almost contact structure, we can say that it is an alpha-

cosymplectic pseudo-metric manifold. 

Proposition 1. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional 

almost contact metric manifold. If 𝑀 is an alpha-cosymplectic 

pseudo-metric manifold, then we have  

                               𝛻𝑋𝜉 = −𝛼𝜑²𝑋 = 𝛼[𝑋 − 𝜂(𝑋)𝜉]                  (12) 

                              (𝛻𝑋𝜑)𝑌 = 𝛼[𝜀𝑔(𝜑𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜑𝑋]           (13) 

for 𝑋, 𝑌 ∈ 𝜒(𝑀) (Öztürk, 2020).   

Proposition 2. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be an alpha-cosymplectic 

pseudo-metric manifold. Then we have 

                      𝑅(𝑋, 𝑌)𝜉 = [𝛼² + 𝜉(𝛼)][𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]           (14) 

                𝑅(𝑋, 𝜉)𝑌 = −[𝛼2 + 𝜉(𝛼)][−𝜀𝑔(𝑌, 𝑋)𝜉 + 𝜂(𝑌)𝑋]     (15)  

          𝑅(𝑋, 𝜉)𝜉 − 𝜑𝑅(𝜑𝑋, 𝜉)𝜉 = 2[𝛼2 + 𝜉(𝛼)][−𝑋 + 𝜂(𝑋)𝜉]  (16)      

            𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝜀[𝛼2 + 𝜉(𝛼)] 

                                    [−𝜂(𝑋)𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝑋, 𝑍)]              (17)        

                                𝑆(𝑋, 𝜉) = −2𝑛[𝛼² + 𝜉(𝛼)]𝜂(𝑋)                 (18)  

                                         𝑄𝜉 = −2𝑛𝜀 [𝛼² + 𝜉(𝛼)]                     (19)                          

                            (𝛻𝑋𝜂)𝑌 = 𝛼[𝜀𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)]                   (20)        
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              𝑆(𝜑𝑋, 𝜑𝑌) = [𝛼2 + 𝜉(𝛼)] 

                         (𝜀𝑆(𝑋, 𝑌) − 2𝑛[𝑔(𝑋, 𝑌) − 𝜀𝜂(𝑋)𝜂(𝑌)]).           (21) 

Here, 𝛼 is defined by a smooth function such that 𝑑𝛼 ∧ 𝜂 = 0 and 

𝜀 = 𝑔(𝜉, 𝜉), (Öztürk, 2021). 

Definition 2. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be an alpha-cosymplectic pseudo-

metric manifold. If the following condition holds 

                           𝑆(𝑋, 𝑌) = 𝜆𝑔(𝑋, 𝑌) + 𝜀𝜇𝜂(𝑋)𝜂(𝑌)                 (22) 

for any  𝑋, 𝑌 ∈ 𝜒(𝑀), then 𝑀 is said to be an 𝜂-Einstein alpha-

cosymlectic pseudo-metric manifold. Here, 𝜆 and 𝜇 are the 

arbitrary functions on 𝑀. In particular, 𝑀 becomes an Einstein 

manifold when 𝜇 = 0 (Blair, 1976). 

Ricci Solitons  

This section contains the fundamental concepts and basic curvature 

properties that will be used in the main results section. 

Definition 3. Let (𝑀, 𝑔₀) be a 𝑛-dimensional Riemannian 

manifold. Then, the Ricci flow that evolves the metric tensor 𝑔 in 

the partial differential equation given by Eq. (3) is called the Ricci 

flow (Hamilton, 1982). Here, 𝑡 is the time parameter. 

The Ricci flow is an extraordinary technique that entered the 

history of mathematics due to Grigori Perelman's critical role in 

solving the Poincaré Conjecture in 2002. At its origin, it can be 

viewed as a partial differential equation governing the evolution of 

a manifold's metric structure over time. In other words, this flow 

reshapes the geometry of space according to Ricci curvature, much 

like a sculptor shaping marble. This equation governs the time-

dependent change of the 𝑔 metric tensor in accordance with the 

curvature properties of the manifold. The fundamental philosophy 

of the process is to smooth out the uneven curvature distribution of 

space, much like an iron. Interestingly, this smoothing process 
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behaves differently depending on the sign of the curvature. Regions 

with positive curvature (spherical structures) shrink over time, 

much like a balloon shrinks when exposed to hot air. On the other 

hand, regions with negative curvature (hyperbolic structures) 

expand over time, much like the wrinkles in a piece of paper 

unfolding. 

Definition 4. Let (𝑀, 𝑔) be a complete Riemannian manifold. The 

metric 𝑔 is called a Ricci soliton if there exists a smooth vector 

field 𝑋 on 𝑀 and a real constant 𝜆 such that the following equation 

holds 

                 (𝐿𝑉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0.               (23) 

Here, the vector field 𝑉 is the potential vector field of the Ricci 

soliton, and 𝐿𝑉𝑔 is the Lie derivative of the metric 𝑔 in the 

direction of 𝑉. In this case, the Ricci soliton is denoted by 

(𝑀, 𝑔, 𝑉, 𝜆). For the Ricci soliton (𝑀, 𝑔, 𝑉, 𝜆), the cases where 𝜆 <

 0, 𝜆 =  0, and 𝜆 >  0 are called, respectively, the shrinking, 

steady, and expanding Ricci solitons (Hamilton, 1988). 

Ricci solitons, which hold a special role in Ricci flow theory, are 

the rigid form solutions of this dynamic process. For example, like 

a wave that travels through the ocean while maintaining its shape, 

Ricci solitons also preserve their fundamental geometric character 

throughout the flow. That is, they either remain completely 

unchanged or undergo only a change of scale. These structures play 

a key role in analyzing the long-term behavior of Ricci flow. The 

term "soliton" was first used in wave mechanics to describe self-

preserving, localized solutions. Geometrically, a Ricci soliton 

reflects the self-similarity property of the metric tensor under the 

Ricci flow. 

--184--



Definition 5. Let (𝑀, 𝑔) be a 𝑛-dimensional Riemannian manifold. 

The Lie derivative associated with the metric 𝑔 in the 𝑉 direction is 

defined by 

                     (𝐿𝑉𝑔)(𝑋, 𝑌) = 𝑔(∇𝑋𝑉, 𝑌) + 𝑔(𝑋, 𝛻𝑌𝑉)                 (24) 

 (Yano & Kon, 1984). 

Definition 6. Let (𝑀, 𝑔, 𝑉, 𝜆) be a Ricci soliton. If the potential 

vector field 𝑉 is a Killing vector field (𝐿𝑉𝑔 = 0), then (𝑀, 𝑔, 𝑉, 𝜆) 

is said to be a trivial Ricci soliton (Chen 2015). 

Definition 7. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be an alpha-cosymplectic pseudo-

metric manifold. If there exists a Ricci soliton (𝑔, 𝑉, 𝜆) on 𝑀, then 

(𝑀, 𝑔, 𝑉, 𝜆) is called an alpha-cosimplectic pseudo-metric manifold 

admitting a Ricci soliton (Hamilton, 1988), (Kenmotsu, 1972). 

Proposition 3. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional 

alpha-cosymplectic pseudo-metric manifold. Then the Ricci 

curvature tensor field holds  

                   𝑆(𝑋, 𝑌) = −(𝜆 + 𝛼)𝑔(𝑋, 𝑌) + ε𝛼𝜂(𝑋)𝜂(𝑌)            (25) 

on (𝑀, 𝑔, 𝜉, 𝜆) Ricci soliton, where 𝛼 is assumed to be parallel 

along the characteristic vector field 𝜉. 

Proof. In view of Proposition 2, Eq. (23) and Eq. (24), the proof is 

obvious.  

Proposition 4. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional 

alpha-cosymplectic pseudo-metric manifold. Then the following 

curvature properties of (𝑀, 𝑔, 𝜉, 𝜆) Ricci soliton are held 

                              𝑆(𝑋, 𝜉) = −[𝜀(𝜆 + 𝛼) − 𝛼]𝜂(𝑋)                   (26) 

                                𝑄𝑋 = −(𝛼 + 𝜆)𝑋 + 𝛼𝜂(𝑋)𝜉                       (27) 

                                 𝑄𝜉 = −𝜆𝜉 − 𝛼(1 − 𝜀)𝜉                              (28) 

                                        𝑆(𝜉, 𝜉) = −𝜀𝜆                                      (29) 
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                              𝑟 = 𝜀𝛼 − (2𝑛 + 𝜀)(𝛼 + 𝜆).                           (30)  

Here, 𝛼 is assumed to be parallel along the characteristic vector 

field 𝜉. 

Proof. As a result of Proposition 3, the proofs can be obtained by 

simple calculations. These are left entirely to the readers. 

Main Results 

In this section, some curvature tensor fields are studied on alpha-

cosymplectic pseudo-metric manifolds admitting Ricci solitons. In 

particular, several results are obtained using the 𝐷-conformal 

curvature tensor field. Thus we state the following results: 

Theorem 1. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional alpha-

cosymplectic pseudo-metric manifold (𝑛 ≥ 2). If the 𝐷-

conformally semi-symmetric tensor product holds on (𝑀, 𝑔, 𝜉, 𝜆) 

Ricci soliton and 𝛼 is parallel along the characteristic vector field 𝜉 

then the following statements satisfy:  

(a) If 𝜉 is space-like, then no Ricci soliton exists on 𝑀, 

(b) If 𝛼 = 0 and 𝜉 is time-like, the Ricci soliton behaves on 𝑀 as 

follows:  

 (𝒃𝟏)   𝑟 = 0 ⇒ (𝑔, 𝜉, 𝜆) is expanding, 

 (𝒃𝟐)  𝑟 > 0 ⇒ (𝑔, 𝜉, 𝜆)  is expanding if 0 < 𝑟 ≤
4𝑛2+14𝑛−6

4𝑛2−6𝑛+1
, 

 (𝒃𝟑)  𝑟 > 0 ⇒ (𝑔, 𝜉, 𝜆)  is shrinking if 𝑟 >
4𝑛2+14𝑛−6

4𝑛2−6𝑛+1
, 

 (𝒃𝟒)   𝑟 < 0 ⇒ (𝑔, 𝜉, 𝜆) is expanding. 

(c) If 𝛼 ≠ 0 and 𝜉 is time-like, the Ricci soliton behaves on 𝑀 as 

follows:  

 (𝒄𝟏) 𝑟 = 0 ⇒ (𝑔, 𝜉, 𝜆) is expanding, 

 (𝒄𝟐) 𝑟 > 0 and 𝛼 > 0 ⇒ (𝑔, 𝜉, 𝜆) is expanding, shrinking or 

steady, 
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 (𝒄𝟑) 𝑟 > 0 and 𝛼 < 0 ⇒ (𝑔, 𝜉, 𝜆) is expanding, shrinking or 

steady, 

 (𝒄𝟒) 𝑟 < 0 ⇒ (𝑔, 𝜉, 𝜆)  is expanding. 

Proof. According to the hypothesis, we suppose that 𝑀 is an alpha-

cosymplectic 𝐷-conformally semi-symmetric pseudo-metric 

manifold. Now, let us introduce the 𝐷-conformal curvature tensor 

field 𝐵. If the 𝐷-conformal curvature tensor field 𝐵 holds 

                                       𝑅(𝑋, 𝑌) ⋅ 𝐵 = 0                                     (31) 

then 𝑀 is said to be a 𝐷-conformal semi-symmetric manifold (𝑛 ≥

2) (Taleshian et al., 2011). In other words, we have 

                                (𝑅(𝑋, 𝑌) ⋅ 𝐵)(𝑍, 𝑈)𝑉 = 0.                           (32) 

Then making use of Eqs. (31) and (32) we get 

𝑅(𝑋, 𝑌)𝐵(𝑍, 𝑈)𝑉 − 𝐵(𝑅(𝑋, 𝑌)𝑍, 𝑈)𝑉 

                         −𝐵(𝑍, 𝑅(𝑋, 𝑌)𝑈)𝑉 − 𝐵(𝑍, 𝑈)𝑅(𝑋, 𝑌)𝑉 = 0.    (33) 

With the help of Eqs. (14) and (25) by 𝑋 = 𝜉, we deduce 

[𝛼2 + 𝜉(𝛼)][𝜂(𝐵(𝑍, 𝑈)𝑉)𝑌 − 𝜀𝑔(𝐵(𝑍, 𝑈)𝑉, 𝑌)𝜉 − 𝜂(𝑍)𝐵(𝑌, 𝑈)𝑉] 

+[𝛼2 + 𝜉(𝛼)][𝜀𝑔(𝑌, 𝑍)𝐵(𝜉, 𝑈)𝑉 − 𝜂(𝑈)𝐵(𝑍, 𝑌)𝑉

+ 𝜀𝑔(𝑌, 𝑈)𝐵(𝑍, 𝜉)𝑉] 

   +[𝛼2 + 𝜉(𝛼)][−𝜂(𝑉)𝐵(𝑍, 𝑈)𝑌 + 𝜀𝑔(𝑉, 𝑌)𝐵(𝑍, 𝑈)𝜉] = 0.    (34) 

Then putting the inner product of both sides of Eq. (34) with 

respect to 𝜉, we have 

              [𝛼2 + 𝜉(𝛼)][𝜀𝜂(𝐵(𝑊, 𝑉)𝑈)𝜂(𝑍) − 𝑔(𝐵(𝑊, 𝑉)𝑈, 𝑍) −

                                                                𝜀𝜂(𝑊)𝜂(𝐵(𝑍, 𝑉)𝑈)]           (35) 

+[𝛼2 + 𝜉(𝛼)][𝑔(𝑍, 𝑊)𝜂(𝐵(𝜉, 𝑉)𝑈) − 𝜀𝜂(𝑉)𝜂(𝐵(𝑊, 𝑍)𝑈)

+ 𝑔(𝑍, 𝑉)𝜂(𝐵(𝑊, 𝜉)𝑈)] 

+[𝛼2 + 𝜉(𝛼)][−𝜀𝜂(𝑈)𝜂(𝐵(𝑊, 𝑉)𝑍) + 𝑔(𝑈, 𝑍)𝜂(𝐵(𝑊, 𝑉)𝜉)] = 0.                            
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Taking 𝑌 = 𝑍 and 𝜉(𝛼) = 0 in Eq. (35), it yields 

𝜀𝜂(𝐵(𝑍, 𝑈)𝑉)𝜂(𝑍) − 𝑔(𝐵(𝑍, 𝑈)𝑉, 𝑍) − 𝜀𝜂(𝑍)𝜂(𝐵(𝑍, 𝑈)𝑉) 

+𝑔(𝑍, 𝑍)𝜂(𝐵(𝜉, 𝑈)𝑉) − 𝜀𝜂(𝑈)𝜂(𝐵(𝑍, 𝑍)𝑉)

+ 𝑔(𝑍, 𝑈)𝜂(𝐵(𝑍, 𝜉)𝑉) 

           −𝜀𝜂(𝑉)𝜂(𝐵(𝑍, 𝑈)𝑍) + 𝑔(𝑉, 𝑍)𝜂(𝐵(𝑍, 𝑈)𝜉) = 0.           (36) 

Furthermore, using Eq. (2) it follows that 

                  𝜂(𝐵(𝑍, 𝑈)𝑉 = 𝐿[𝑔(𝑍, 𝑉)𝜂(𝑈) − 𝑔(𝑈, 𝑉)𝜂(𝑍)]        (37) 

where 𝐿 is defined by 

                                     𝐿 =
1+𝜀𝛼²(𝑛−2)

2(𝑛−1)
.                                        (38) 

Taking into account of Eqs. (36) and (37), we find 

𝑔(𝐵(𝑍, 𝑈)𝑉, 𝑍)
= 𝜀𝑔(𝑍, 𝑍)[𝐿𝜂(𝑈)𝜂(𝑉) − 𝐿𝑔(𝑈, 𝑉)]
+ 𝜀𝑔(𝑍, 𝑈)[𝐿𝑔(𝑍, 𝑉) − 𝐿𝜂(𝑍)𝜂(𝑉)] 

                                 −𝜀𝜂(𝑉)[𝐿𝜂(𝑈)𝑔(𝑍, 𝑍) − 𝐿𝜂(𝑍)𝑔(𝑍, 𝑉)]. (39) 

In view of Eq. (39) we deduce 

    𝑔(𝐵(𝑍, 𝑈)𝑉, 𝑍) = 𝜀𝐿[𝑔(𝑍, 𝑈)𝑔(𝑍, 𝑉) − 𝑔(𝑍, 𝑍)𝑔(𝑈, 𝑉)].    (40) 

Let 𝐸𝑗 = {𝑒1, ⋯ , 𝑒𝑛, 𝜑𝑒1, ⋯ , 𝜑𝑒𝑛, 𝜉}, 𝑗 = 1, ⋯ , 𝑛 be a local 

orthonormal 𝜑-basis. Then taking contraction in Eq. (40) with 

respect to 𝑍 = 𝐸𝑗 , we get 

          ∑ 𝑔(𝐵(𝐸𝑗 , 𝑈)𝑉, 𝐸𝑗) = 𝜀𝐹(1 − 𝜀(2𝑛 + 1))𝑔(𝑈, 𝑉)2𝑛+1
𝑗=1 .   (41) 

Also, using Eq. (2), it follows that 

                           ∑ 𝑔(𝐵(𝐸𝑗 , 𝑈)𝑉, 𝐸𝑗) = 𝑆(𝑈, 𝑉)2𝑛+1
𝑗=1                   (42) 

+
1

2𝑛−2
[2𝑆(𝑈, 𝑉) − 𝜀(2𝑛 + 1)𝑆(𝑈, 𝑉) − 𝑟𝑔(𝑉, 𝑈) + 𝜀𝑆(𝑈, 𝑉) +

𝑟𝜂(𝑉)𝜂(𝑈) + 2𝑛𝛼2𝜂(𝑉)𝜂(𝑈)[𝜀 + 1]] −
𝑘−2

2𝑛−2
[𝑔(𝑉, 𝑈) −

𝜀(2𝑛 + 1)𝑔(𝑉, 𝑈)] +
𝑘

2𝑛−2
[−𝜀𝑔(𝑉, 𝑈) + (1 − 2𝑛𝜀)𝜂(𝑉)𝜂(𝑈)].                                            
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By the help of Eqs. (41) and (42), we have 

                       𝑆(𝑈, 𝑉) = 𝐹𝑔(𝑈, 𝑉) + 𝐺𝜂(𝑈)𝜂(𝑉)                   (43) 

where 𝐹 and 𝐺 are defined as 

𝐹 =
−2𝑟(𝑛−1)+2(1−𝜀)+4𝑛𝜀(𝑘−1)−𝑘(1+2𝜀)

2𝑛(𝜀−1)
  

                               +
(𝜀−1)(𝑛𝛼²−2𝛼²−1)+2𝑛(1−𝑛𝛼²𝜀)

2𝑛(𝜀−1)
                        (44) 

and 

                               𝐺 =
𝑟+2𝑛𝛼²(𝜀+1)+𝑘(1−2𝑛𝜀) 

2𝑛(𝜀−1)
,                            (45) 

respectively.  

Additionally, from Eq. (43) with 𝑉 = 𝜉, we get 

                                  𝑆(𝑈, 𝜉) = 𝐹𝜀𝜂(𝑈) + 𝐺𝜀𝜂(𝑈)                    (46) 

and Eq. (26) can be written as 

                          𝑆(𝑈, 𝜉) = −[𝜀(𝜆 + 𝛼) − 𝛼]𝜂(𝑈).                     (47) 

So if we consider Eqs. (46) and (47) together, we have  

                                   𝜆 = −𝜀(1 − 𝛼) − (𝐹 + 𝐺).                      (48) 

We note that 𝑘 =
𝑟+4𝑛

2𝑛−1
 ,  𝑛 ≥ 2 , 𝛼, 𝜆 ∈ 𝐼𝑅 . Taking account of Eqs. 

(44), (45) and (48), we obtain 

          𝜆 = 1 − 𝛼 −
1

2𝑛(𝜀−1)
[𝑟(−2𝑛 + 3) + 2𝑛 + 3 + (𝑛 + 2)𝛼2]  

                    −
𝜀[−3−4𝑛+

2(𝑛−1)(𝑟+4𝑛)

2𝑛−1
+(−2𝑛2+3𝑛−2)𝛼2]

2𝑛(𝜀−1)
.                      (49) 

From Eq. (49), we can be easily seen that when 𝜀 = 1 (𝜉 is space-

like) the real solution for 𝜆 can not be calculated. Therefore, the 

first part of the theorem is proved. Now, let us consider Eq. (49) for 
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𝛼 = 0. The solutions of Eq. (49) depending on the sign of 𝑟. So, 

there are three cases. If we choose 𝜉 to be time-like we have 

                                     𝜆 = 1 +
1

4𝑛
[

4𝑛2+14𝑛−6

2𝑛−1
]                           (50) 

for 𝑟 = 0. This means that 𝜆 > 0. Also, if 𝑟 > 0, using Eq. (49) 

becomes 

                          𝜆 = 1 +
1

4𝑛
[

(−4𝑛2+6𝑛−1)𝑟+(4𝑛2+14𝑛−6)

2𝑛−1
].            (51) 

Then the solutions of  𝜆 are as follows: 

                                        𝜆 > 0 𝑖𝑓 0 < 𝑟 <
4𝑛2+14𝑛−6

4𝑛2−6𝑛+1

                                       𝜆 = 1 𝑖𝑓 𝑟 =
4𝑛2+14𝑛−6

4𝑛2−6𝑛+1

                                        𝜆 < 0 𝑖𝑓 𝑟 >
4𝑛2+14𝑛−6

4𝑛2−6𝑛+1

               (52) 

Under the condition of 𝑟 < 0, with the help of Eq. (49) it follows 

that 𝜆 > 0. Thus, it completes the second part of the proof, as 

shown in Eqs. (50) and (52). Finally, we investigate the case of   

𝛼 ≠ 0 and 𝜉 is time-like depending on 𝑟. If 𝑟 = 0, then 𝜆 > 0. In a 

similar way, when 𝛼 > 0 (or 𝛼 < 0) and 𝑟 < 0, the 𝜆 values are 

still positive. However, when 𝑟 >  0, the case becomes more 

complicated. For example, if 𝛼 < 0 and 𝑟 >  0, we have the 

following cases. If 𝑟 ≤ 𝑟1 ⇒ 𝜆 > 0, ∀𝛼 < 0. Also, if 𝑟 > 𝑟1, then 

the sign of 𝜆 depends on 𝛼 as follows: 

                                   

𝛼 < 𝛼1 ⇒ 𝜆 > 0
𝛼 = 𝛼1 ⇒ 𝜆 = 0

𝛼1 < 𝛼 < 0 ⇒ 𝜆 < 0.
                              (53)       

Here, 𝑟1 =
4𝑛2+14𝑛−6

4𝑛2−6𝑛+1
 and 𝛼1 is the negative root of 𝜆(𝛼) = 0. The 

analogy holds for the case where 𝛼 > 0. Thus, the proof ends. 

Theorem 2. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional alpha-

cosymplectic pseudo-metric manifold (𝑛 ≥ 2)  and ∇𝜉𝛼 = 0. If the 
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Ricci 𝐷-conformal semi-symmetric tensor product holds on 

(𝑀, 𝑔, 𝜉, 𝜆) Ricci soliton, then the following statements satisfy:  

(a) If 𝛼 = 0 and 𝜉 is space-like, (𝑔, 𝜉, 𝜆) is shrinking, 

(b) If 𝛼 = 0 and 𝜉 is time-like, (𝑔, 𝜉, 𝜆) is expanding, 

(c) If 𝛼 ≠ 0 and 𝜉 is space-like (or time-like), (𝑔, 𝜉, 𝜆) is 

expanding, shrinking or steady depending on 𝛼. 

Proof. Assume that  𝑀 is a Ricci 𝐷-conformal semi-symmetric 

pseudo-metric manifold which means 

                                  𝐵(𝑋, 𝑌) ⋅ 𝑆(𝑍, 𝑈) = 0                                (54) 

for 𝑛 ≥ 2. Thus Eq. (54) becomes 

                      𝑆(𝐵(𝑋, 𝑌)𝑍, 𝑈) + 𝑆(𝑍, 𝐵(𝑋, 𝑌)𝑈) = 0.                 (55) 

Then taking 𝑋 = 𝑈 = 𝜉 in Eq. (55) we have 

                           𝑆(𝐵(𝜉, 𝑌)𝑍, 𝜉) + 𝑆(𝑍, 𝐵(𝜉, 𝑌)𝜉) = 0.              (56) 

where 𝜉(𝛼) = 0. Furthermore, from Eq. (37) we deduce 

                          𝐵(𝜉, 𝑍)𝑈 = 𝐿[𝜀𝜂(𝑈)𝑍 − 𝜉𝑔(𝑍, 𝑈)]                  (57) 

and 

                                𝐵(𝜉, 𝑍)𝜉 = 𝐿[𝑍 − 𝜀𝜂(𝑍)𝜉].                         (58) 

Taking into account of Eqs. (57) and (58) in Eq. (56) we get 

                                    𝑆(𝑌, 𝑍) = −2𝑛𝛼2𝜀𝑔(𝑌, 𝑍).                     (59) 

On the other hand, using Eq. (59) with 𝑍 = 𝜉, we have 

                                  𝑆(𝑌, 𝜉) = −2𝑛𝛼2𝜂(𝑌)                               (60) 

and Eq. (26) can be written as 

                          𝑆(𝑌, 𝜉) = −[𝜀(𝜆 + 𝛼) − 𝛼]𝜂(𝑌).                      (61) 

So from Eqs. (60) and (61), we obtain  

                                  𝜆 = 𝜀[−1 + 𝛼(1 + 2𝑛𝛼)].                         (62) 
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Then if 𝛼 = 0 and 𝜉 is space-like in Eq. (62), we get  

𝜆 < 0, 𝜆 = −1, 

and if 𝛼 = 0 and 𝜉 is time-like in Eq. (62) we have 

𝜆 > 0, 𝜆 = 1, 

where 𝜆 is defined by 

                                      𝜆 = −2𝑛𝛼2 − 𝛼 + 1. 

Thus, the proof of the first two cases are obvious. When 𝛼 ≠ 0 and 

𝜉 are space-like (or time-like), the last case depends on 𝛼. If we 

apply the same methodology as in the last case of Theorem 1, we 

obtain 𝜆 > 0 or  𝜆 < 0. It completes the proof. 

Theorem 3. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional 𝐷-

conformally flat alpha-cosymplectic pseudo-metric manifold (𝑛 ≥

2). If 𝛼 is parallel along the characteristic vector field 𝜉 then the 

following statements satisfy on (𝑀, 𝑔, 𝜉, 𝜆) Ricci soliton: 

(a) If 𝜉 is space-like, then no Ricci soliton exists on 𝑀, 

(b) If 𝜉 is time-like, the Ricci soliton behaves on 𝑀 as follows:  

(𝒃𝟏) 𝛼 < 1 ⇒ (𝑔, 𝜉, 𝜆) is expanding,  

 (𝒃𝟐) 𝛼 = 0 ⇒ (𝑔, 𝜉, 𝜆) is expanding, 

 (𝒃𝟑) 𝛼 = 1 ⇒ (𝑔, 𝜉, 𝜆) is steady, 

 (𝒃𝟒) α > 1 ⇒ (𝑔, 𝜉, 𝜆) is shrinking. 

Proof. According to the hypothesis, let us assume that 𝑀 is a 𝐷-

conformally flat alpha-cosymplectic pseudo-metric manifold. 

Namely, we have    

                                             𝐵(𝑋, 𝑌)𝑍 = 0.                                 (63) 

By the help of Eqs. (2) and (63), it yields 
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𝑅(𝑋, 𝑌)𝑍 = −
1

2𝑛−2
[𝑆(𝑋, 𝑍)𝑌 − 𝑆(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑄𝑌 −

𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑆(𝑋, 𝑍)𝜂(𝑌)𝜉 + 𝑆(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝜂(𝑋)𝜂(𝑍)𝑄𝑌 +

𝜂(𝑌)𝜂(𝑍)𝑄𝑋] +
𝑘−2

2𝑛−2
[𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋] 

                      −
𝑘

2𝑛−2
[𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 +

                                   𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋].                          (64) 

Then taking the inner product on both sides of  Eq.(64) with respect 

to 𝑈, we get 

𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑈) = −
1

2𝑛−2
[𝑆(𝑋, 𝑍)𝑔(𝑌, 𝑈) − 𝑆(𝑌, 𝑍)𝑔(𝑋, 𝑈) +

                                     𝑔(𝑋, 𝑍)𝑔(𝑄𝑌, 𝑈)                                         (65) 

−𝑔(𝑌, 𝑍)𝑔(𝑄𝑋, 𝑈) − 𝜀𝑆(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑈) + 𝜀𝑆(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑈) −
𝜂(𝑋)𝜂(𝑍)𝑔(𝑄𝑌, 𝑈) + 𝜂(𝑌)𝜂(𝑍)𝑔(𝑄𝑋, 𝑈)] 

+
𝑘−2

2𝑛−2
[𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑈) − 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑈)] 

−
𝑘

2𝑛−2
[𝜀𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑈) − 𝜀𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑈)  +

𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑈) − 𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑈)]  

where 𝑅(𝑋, 𝑌, 𝑍, 𝑈) = 𝑔(𝑅(𝑋, 𝑌)𝑍, 𝑈). Taking into account of 

Eqs.(17) and (18), Eq. (46) provides 

      𝜂(𝑅(𝑋, 𝑌)𝑍) = −𝜀[𝛼2 + 𝜉(𝛼)][𝜂(𝑋)𝑔(𝑌, 𝑍) + 𝜂(𝑌)𝑔(𝑋, 𝑍)]             

=−
𝜀

2𝑛−2
{[(𝜀 − 1)𝜂(𝑌)𝑆(𝑋, 𝑍) + (1 − 𝜀)𝜂(𝑋)𝑆(𝑌, 𝑍)  

−2𝑛[𝛼2 + 𝜉(𝛼)][𝜂(𝑌)𝑆(𝑋, 𝑍) − 𝜂(𝑋)𝑆(𝑌, 𝑍)]} 

+
𝑘−2

2𝑛−2
[𝜂(𝑌)𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝑔(𝑌, 𝑍)]  

                           −
𝜀𝑘

2𝑛−2
[𝜂(𝑌)𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝑔(𝑌, 𝑍)]              (66) 

for 𝑈 = 𝜉. Putting 𝑌 = 𝜉 in Eq. (66) we have 

                        −
𝜀

2𝑛−2
[(𝜀 − 1)𝜀𝑆(𝑋, 𝑍) 

                −2𝑛[𝛼2 + 𝜉(𝛼)](𝜂(𝑋)𝜂(𝑍) +  𝜀𝑔(𝑋, 𝑍))]                 (67)      

+
(𝑘−2)

2𝑛−2
𝜀[𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝜂(𝑍)] −

𝑘

2𝑛−2
[𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝜂(𝑍)] 
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= [𝛼2 + 𝜉(𝛼)][𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝜂(𝑍)]. 

Next, simplifying Eq. (48) for  𝜉(𝛼) = 0, we obtain 

         

                     𝑆(𝑋, 𝑍) =  (
2𝑛−2

𝜀−1
) [

𝜀(𝑘−2)−𝑘+2𝑛𝛼²

2𝑛−2
− 𝛼²] 𝑔(𝑋, 𝑍)                                     

                  + (
2𝑛−2

𝜀−1
) [

−𝜀(𝑘−2)+𝑘+2𝑛𝜀𝛼2

2𝑛−2
+ 𝛼2] 𝜂(𝑋)𝜂(𝑍).            (68) 

So Eq. (68) turns into 

                          𝑆(𝑋, 𝑍) =  [
2(𝛼2−𝜀)

𝜀−1
+ 𝑘] 𝑔(𝑋, 𝑍)                                                   

                       + [
2(𝜀−𝛼2+𝑛𝛼2(𝜀+1))

𝜀−1
− 𝑘] 𝜂(𝑋)𝜂(𝑍).                   (69) 

Here, we defined by 𝐴 and 𝐵  

                     𝐴 =
2(𝛼2−𝜀)

𝜀−1
+ 𝑘 , 𝐵 =

2(𝜀−𝛼2+𝑛𝛼2(𝜀+1))

𝜀−1
− 𝑘 

respectively. On the other hand, using Eq. (69) with 𝑍 = 𝜉, we 

have 

                                   𝑆(𝑋, 𝜉) = 𝜀[𝐴 + 𝐵]𝜂(𝑋)                           (70) 

and Eq. (26) holds 

                          𝑆(𝑋, 𝜉) = −[𝜀(𝜆 + 𝛼) − 𝛼]𝜂(𝑋).                      (71) 

In view of Eqs. (70) and (71), we obtain  

                               𝜆 = −𝜀(1 − 𝛼) −
2𝑛𝛼2(𝜀+1)

𝜀−1
.                         (72) 

Then from Eq. (72), when 𝜀 = 1, there is no Ricci soliton on 𝑀. If 

we choose 𝜉 to be time-like, we obtain 

                                      𝜆 = 1 − 𝛼                                               (73) 

Thus the proof is clear using Eq. (73) as follows: 
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                                   𝜆 > 0 ⇔ 𝛼 < 1
                                   𝜆 = 0 ⇔ 𝛼 = 1
                                    𝜆 < 0 ⇔ 𝛼 > 1.

                                     (74) 

Theorem 4. Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional 𝜑-𝐷-

conformally flat alpha-cosymplectic pseudo-metric manifold (𝑛 ≥

2). If 𝛼 is parallel along the characteristic vector field 𝜉 then the 

following statements satisfy on (𝑀, 𝑔, 𝜉, 𝜆) Ricci soliton: 

(a) If 𝛼 = 0 and 𝜉 is space-like, (𝑔, 𝜉, 𝜆) is shrinking, 

(b) If 𝛼 = 0 and 𝜉 is time-like, no Ricci soliton exists on 𝑀, 

(c) If 𝛼 ≠ 0 and 𝜉 is space-like (or time-like), (𝑔, 𝜉, 𝜆) is expanding 

or shrinking depending on 𝛼.  

Proof. Let us suppose that 𝑀 is an alpha-cosymplectic pseudo- 

metric manifold satisfying the 𝜑-𝐷-conformally flat condition. 

Then 𝑀 holds  

                                 𝑔(𝐵(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑉) = 0.                        (75) 

Making use of Eqs.(2) and (75), we get 

𝑔(𝑅(𝜑𝑋, 𝜑𝑌)𝜑𝑍, 𝜑𝑉) +  
1

2𝑛−2
[𝑆(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑉) −

                                        𝑆(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑉)                               (76) 

+𝑆(𝜑𝑌, 𝜑𝑉)𝑔(𝜑𝑋, 𝜑𝑍) − 𝑆(𝜑𝑋, 𝜑𝑉)𝑔(𝜑𝑌, 𝜑𝜙𝑍)]                       

−
𝑘−2

2𝑛−2
[𝑔(𝜑𝑋, 𝜑𝑍)𝑔(𝜑𝑌, 𝜑𝑉) − 𝑔(𝜑𝑌, 𝜑𝑍)𝑔(𝜑𝑋, 𝜑𝑉)] = 0.                         

Taking into account of Eqs.(17) and (21), Eq. (76) takes the form 

𝜀[𝛼2 + 𝜉(𝛼)][𝑔(𝜑𝑋, 𝜑𝑊)𝑔(𝜑𝑌, 𝜑𝜙𝑈) − 𝑔(𝜑𝑌, 𝜑𝑊)𝑔(𝜑𝑋, 𝜑𝑈)] 

+ 
[𝛼2+𝜉(𝛼)]

2𝑛−2
[𝜀𝑆(𝑋, 𝑍)𝑔(𝑌, 𝑉) − 2𝑛𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑉) +

2𝑛𝜀𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑉)  

−𝑆(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑉) + 2𝑛𝜀𝜂(𝑌)𝜂(𝑉)𝑔(𝑋, 𝑍) − 𝑆(𝑌, 𝑍)𝑔(𝑋, 𝑉) 

+2𝑛𝑔(𝑋, 𝑉)𝑔(𝑌, 𝑍) − 2𝑛𝜀𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑉) + 𝑆(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑉) 

−2𝑛𝜀𝜂(𝑋)𝜂(𝑉)𝑔(𝑌, 𝑍) + 𝜀𝑆(𝑌, 𝑉)𝑔(𝑋, 𝑍) − 2𝑛𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑉) 
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+2𝑛𝜀𝜂(𝑌)𝜂(𝑉)𝑔(𝑋, 𝑍) − 𝑆(𝑌, 𝑉)𝜂(𝑋)𝜂(𝑍)
+ 2𝑛𝜀𝜂(𝑋)𝜂(𝑍)𝑔(𝑌, 𝑉) 

−𝜀𝑆(𝑋, 𝑉)𝑔(𝑌, 𝑍) + 2𝑛𝑔(𝑋, 𝑉)𝑔(𝑌, 𝑍) − 2𝑛𝜀𝜂(𝑋)𝜂(𝑉)𝑔(𝑌, 𝑍) 

                                 +𝑆(𝑋, 𝑉)𝜂(𝑌)𝜂(𝑍) + 2𝑛𝜀𝜂(𝑌)𝜂(𝑍)𝑔(𝑋, 𝑉)]                                          

                        −
𝜀(𝑘−2)

2𝑛−2
[𝜀𝑔(𝑋, 𝑍)𝑔(𝑌, 𝑉) − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜂(𝑉) −

                                 𝑔(𝑌, 𝑉)𝜂(𝑋)𝜂(𝑍)  

                           −𝜀𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑉) + 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜂(𝑉) +
                               𝑔(𝑋, 𝑉)𝜂(𝑌)𝜂(𝑍)] = 0.                                    (77) 

Let 𝐸𝑗 = {𝑒1, ⋯ , 𝑒𝑛, 𝜑𝑒1, ⋯ , 𝜑𝑒𝑛, 𝜉},   𝑗 = 1, ⋯ , 𝑛 be a local 

orthonormal 𝜑-basis on 𝑀. Then taking contraction in Eq. (77) 

with respect to 𝑋 = 𝑉 = 𝐸𝑗 and  𝜉(𝛼) = 0 , we obtain 

                         𝑆(𝑌, 𝑍) = −
𝐸1

𝐸3
𝑔(𝑌, 𝑍) −

𝐸₂

𝐸3
𝜂(𝑌)𝜂(𝑍)               (78) 

Here, the functions as shown in Eq. (78) are as follows: 

𝐸₁ = 𝛼²[𝜀 + 2(𝑛 + 1)] + 𝑏(2𝑛𝜀 − 1)  − 𝑎𝛼²(6𝑛 + 𝜀𝑟)
+ 2𝑛𝑎𝛼²𝜀(4𝑛 + 1) 

𝐸2 = 𝛼2(2𝑛𝜀 − 1) − 𝑏(2𝑛 − 1) + 𝑎[𝛼2𝑟 − 4𝑛𝛼4(2𝑛 − 1)
+ 2𝑛𝛼²(𝜀 + 1)] 

𝐸3 = [
𝛼²(𝜀−𝑛)

𝑛−1
], 𝑎 =

1

2𝑛−2
, 𝑏 =

𝑘−2

2𝑛−2
, 𝑘 =

𝑟+4𝑛

2𝑛−1
.  

On the other hand, make use of Eq. (78) with 𝑍 = 𝜉, we find 

                               𝑆(𝑌, 𝜉) = −
𝜀

𝐸3
[𝐸₁ + 𝐸2]𝜂(𝑌)                      (79) 

and Eq. (26) satisfies 

                          𝑆(𝑌, 𝜉) = −[𝜀(𝜆 + 𝛼) − 𝛼]𝜂(𝑌).                      (80) 

In view of Eqs. (79) and (80), we have  

                     𝜆 =
𝑛−1

𝜀−𝑛
[(2𝑛 + 1)(𝜀 + 1) +

−4𝑛+𝑟+𝜀(8𝑛2+4𝑛−𝑟)

2(𝑛−1)
]   

                    +
𝑛−1

𝜀−𝑛
[

𝑛(𝑟+2)(𝜀−1)

(𝑛−1)(2𝑛−1)𝛼2
−

2𝑛(2𝑛−1)

𝑛−1
𝛼2] − 𝜀 +

𝛼

𝜀
 .         (81)                  

--196--



Then from Eq. (81), if 𝜀 = 1 and 𝛼 = 0, we obtain 𝜆 < 0. Also, 

when 𝜀 = −1 and 𝛼 = 0, there are no Ricci solitons because 𝜆 is 

undefined. If 𝜀 = 1 and 𝛼 ≠ 0, then we can write 

                  𝜆 = −4𝑛 − 3 + 𝛼 +
−4𝑛2+(4𝑛2−2𝑛)𝛼2

𝑛−1
                        (82) 

The solutions of Eq. (82) depends on the value of 𝛼. In this case, 

the following relations are held: 

𝛼 < 𝛼1 𝑜𝑟 𝛼 > 𝛼2 ⇒ 𝜆 > 0
𝛼1 < 𝛼 < 𝛼2           ⇒ 𝜆 < 0

 

where  𝛼1 < 0 < 𝛼2 are roots of  

2𝑛(2𝑛 − 1)𝛼2 + (𝑛 − 1)𝛼 + (−8𝑛2 + 𝑛 + 3) = 0. 

Thus completes the proof. 
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