
--1-- 

 

 

 

 

 

 



--2-- 

 

BIDGE Publications 

Advances in Electrical, Electronics and Software Engineering: 

Innovations Shaping the Future 

Editor: Dr. Behiye Şahin 

 

ISBN: 978-625-372-578-5  

 

Page Layout: Gözde YÜCEL 

1st Edition:  

Publication Date: 14.12.2024 

BIDGE Publications,  

 

All rights of this work are reserved. It cannot be reproduced in any 

way without the written permission of the publisher and editor, 

except for short excerpts to be made for promotion by citing the 

source. 

 

Certificate No: 71374 

Copyright © BIDGE Publications 

www.bidgeyayinlari.com.tr - bidgeyayinlari@gmail.com 

Krc Bilişim Ticaret ve Organizasyon Ltd. Şti.  

Güzeltepe Mahallesi Abidin Daver Sokak Sefer Apartmanı No: 7/9 Çankaya / 

Ankara 



--3-- 

 

Content 

 

Detection Performance Evaluation and Real-Time Analysis of 

YOLOv8 for Military Vehicle Categorization ................................. 4 

Furkan Yildirim ....................................................................................... 4 

Bora Burak Azer2 .................................................................................... 4 

Fikrican Ciftci3 ........................................................................................ 4 

Investigating the Impact of Lighting Conditions on Crack Detection 

Algorithms in Mechanical Systems ............................................... 25 

Fikrican Ciftci ....................................................................................... 25 

Furkan Yildirim2 ................................................................................... 25 

Bora Burak Azer3 .................................................................................. 25 

Precision and Sustainability in Military Manufacturing through 

Advanced Object Detection ........................................................... 47 

Bora Burak Azer ................................................................................... 47 

Fikrican Ciftci2 ...................................................................................... 47 

Furkan Yildirim3 ................................................................................... 47 

 

 



--4-- 

 

 

 

CHAPTER I 

 

 

Detection Performance Evaluation and Real-Time 

Analysis of YOLOv8 for Military Vehicle 

Categorization 
 

 

Furkan Yildirim1 

Bora Burak Azer2 

Fikrican Ciftci3 

 

1. Introduction 

In recent years, advancements in technology have 

transformed various fields, particularly in how information and 

intelligence are applied in modern practices. This is especially 

evident in the fields of transportation management and military 

operations, where object detection has become a cornerstone of 

operational success. Vehicle detection, particularly through aerial 

photography, plays a dual role in both civilian and military contexts 

(Ammour et al., 2017). In civilian applications, detecting and 

tracking vehicles significantly improve traffic flow, reduce 
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congestion, and decrease accident rates in traffic management 

systems (Nellore & Hancke, 2016). On the military front, airborne 

object detection is a critical component of Battlefield Situational 

Awareness (BSA), which is essential for the success of future 

information warfare. With the increased availability of specialized 

UAVs and advancements in real-time data processing, reliance on 

aerial photography and object detection systems has grown 

exponentially (Bakirci & Bayraktar, 2024). However, challenges 

such as memory overload and processing speed persist. These 

limitations underscore the importance of adopting advanced 

methodologies like Convolutional Neural Networks (CNNs) to 

achieve efficient and accurate object detection in these critical 

applications (Krichen, 2023). Object detection involves identifying 

and locating specific objects within images or video streams, making 

it a fundamental aspect of intelligent systems. In the context of aerial 

photography, detecting vehicles from high altitudes is complex due 

to factors such as varying lighting conditions, occlusions, and the 

diversity of vehicle types (Veeranampalayam Sivakumar et al., 

2020). Nevertheless, advances in deep learning have provided 

powerful tools to address these challenges. Specifically, CNNs have 

emerged as a leading technology for object detection, offering 

automatic and robust feature extraction capabilities. Unlike 

traditional machine learning approaches that require manual feature 

engineering, CNNs can learn hierarchical representations directly 

from raw data, enabling them to identify complex patterns and 

structures. This capability makes CNNs highly effective for airborne 

vehicle detection, where features such as vehicle shape, size, and 

orientation must be distinguished from complex backgrounds 

(Bakirci et al., 2024). The integration of CNNs into object detection 

systems has revolutionized video analysis, making it a foundational 

technology for intelligent transportation systems and military 

targeting. In intelligent transportation systems, the ability to detect 

and track vehicles in real time facilitates dynamic traffic 
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management, reduces bottlenecks, and improves road safety 

(Alsubaei et al., 2022). By utilizing aerial imagery, traffic authorities 

can gain a comprehensive view of road networks, identify 

congestion areas, and allocate resources more effectively. For 

example, CNN-based detectors can classify vehicles and predict 

their trajectories, providing actionable insights for traffic flow 

optimization. These systems also support autonomous vehicle 

navigation by enabling real-time obstacle detection and collision 

prevention. The implementation of CNNs in this context highlights 

their role in enhancing the efficiency and safety of transportation 

infrastructures (Kaya et al., 2023). 

In military operations, object detection plays a vital role in 

enhancing BSA by providing real-time insights into the battlefield 

environment. Accurate detection and tracking of enemy vehicles, 

personnel, and other assets are crucial for mission planning and 

execution. CNNs have proven effective in this field due to their 

ability to process large amounts of data from various sensor 

modalities, including optical, infrared, and radar imaging (Bakirci & 

Cetin, 2023). By analyzing aerial imagery using CNNs, military 

forces can identify potential threats, assess enemy movements, and 

optimize resource allocation. Furthermore, the end-to-end learning 

capability of CNNs enables the development of automated systems 

that can detect and classify objects with minimal human 

intervention, reducing response times and improving operational 

efficiency. This capability is particularly valuable in high-risk 

scenarios where timely and accurate information is critical for 

decision-making. 

One of the key advantages of using CNNs for object 

detection is their scalability and adaptability. Modern CNN 

architectures, such as Faster R-CNN (Xu et al., 2022), YOLO (You 

Only Look Once) (Zhang et al., 2022; Terven et al., 2023), and SSD 

(Single Shot MultiBox Detector) (Bakirci & Bayraktar, 2024), are 
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designed to balance accuracy and speed to address trade-offs in 

object detection tasks. For instance, YOLO uses a regression-based 

approach to directly predict object bounding boxes and class 

probabilities from feature maps, significantly reducing detection 

time. While this approach sacrifices some accuracy compared to 

region-based methods, it provides a practical solution for 

applications requiring real-time performance. In contrast, 

architectures like Faster R-CNN focus on maximizing detection 

accuracy by generating region proposals and refining them through 

multiple processing stages. This flexibility allows CNN-based 

systems to be adapted to specific application requirements, such as 

prioritizing speed for real-time traffic monitoring or accuracy for 

military surveillance. 

The importance of object detection extends beyond its 

immediate applications, as it serves as a foundation for broader 

advancements in artificial intelligence and autonomous systems. For 

instance, in the development of unmanned aerial vehicles (UAVs), 

object detection is a critical component for navigation, obstacle 

avoidance, and mission execution (Tang et al., 2024). By 

incorporating CNNs, UAVs can autonomously identify and track 

objects of interest, enabling them to perform complex tasks such as 

search and rescue operations, infrastructure inspections, and 

environmental monitoring (Ozturk et al., 2021; Bakirci & Bayraktar, 

2024). In the context of military applications, UAVs equipped with 

CNN-based object detection systems can provide continuous 

surveillance and reconnaissance capabilities, enhancing situational 

awareness and reducing risks for human personnel. The versatility 

of CNNs in processing diverse datasets and adapting to varying 

operational conditions highlights their value in advancing UAV 

technology and expanding potential use cases (Hong et al., 2019). 

Despite their numerous advantages, CNN-based object 

detection systems face several challenges that must be addressed to 



--8-- 

 

fully realize their potential. One such challenge is the computational 

cost associated with training and deploying deep learning models. 

High-resolution aerial imagery requires significant processing 

power and memory, which can strain hardware resources and limit 

the scalability of CNN-based systems (Zhang et al., 2020). To 

mitigate this issue, researchers are exploring techniques such as 

model compression, quantization, and hardware acceleration to 

optimize CNN performance. Another challenge is the need for large, 

annotated datasets to effectively train CNNs (Wang et al., 2024; 

Bakirci & Cetin, 2022). In airborne object detection, obtaining 

labeled data that accurately represents diverse environmental 

conditions and object types can be labor-intensive and time-

consuming. Synthetic data generation and transfer learning have 

emerged as promising solutions to address these limitations, 

enabling CNNs to achieve high performance with limited training 

data. Additionally, ethical considerations and privacy concerns must 

be taken into account when deploying object detection systems, 

particularly in civilian applications. The use of aerial photography 

for traffic monitoring and intelligent transportation systems raises 

questions about data privacy and the potential misuse of surveillance 

technologies. Establishing clear regulatory frameworks and 

implementing robust data protection measures are essential to 

address these concerns. Ensuring transparency and accountability in 

the design and deployment of object detection systems will be 

critical for gaining public trust and societal acceptance (Oh & Kang, 

2017). 

In conclusion, object detection is a fundamental technology 

that is transforming modern applications, particularly in intelligent 

transportation systems and military operations (Bakirci & Demiray, 

2024). By leveraging the power of CNNs, these systems have 
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achieved unprecedented levels of accuracy and efficiency, enabling 

      

Figure 1: Workflow Diagram 

real-time insights and decision-making. From optimizing traffic flow 

to enhancing battlefield situational awareness, the impact of CNN-
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based object detection extends across diverse fields, driving progress 

and innovation. However, addressing challenges related to 

computational cost, data availability, and ethical considerations will 

be essential to fully harness this technology's potential and ensure its 

responsible use in the future. 

2. Method 

This study investigates an application of the YOLOv8 model 

in military vehicle detection. The YOLOv8 model has a backbone 

and neck network for feature extraction and subsequent fusion of the 

extracted features given an input image. It interprets the semantic 

information from the extracted features and gives the location, size 

and class of the detected object in the image. Figure 1 shows the 

workflow diagram of the prepared study. 

2.1. Object Detection Based on the YOLOv8 Model 

YOLOv8 is the latest version of the You Only Look Once 

(YOLO) family and stands out as an advanced model, particularly in 

the field of object detection (Lou et al., 2023; Wang et al., 2023; 

Bakirci & Bayraktar, 2024). The primary goal of the YOLO series is 

to detect and classify objects in images quickly and accurately. 

YOLOv8 incorporates a series of innovations and improvements 

compared to previous versions to achieve this goal with higher 

accuracy, speed, and efficiency. The model typically uses deep 

learning techniques to classify objects in an image while 

simultaneously detecting their locations. 

YOLOv8 is fundamentally based on a Convolutional Neural 

Network (CNN) architecture. In the first stage, the network uses a 

series of convolutional layers that divide the input image into smaller 

parts. These layers are designed to extract low-level features (such 

as edges and corners). This process enables the extraction of higher-

level features in deeper layers. One of the key innovations of 

YOLOv8 lies in the optimizations designed to make this network 
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more efficient. For example, the sparse convolution techniques used 

in the model reduce computational costs while increasing accuracy. 

In YOLOv8, the network architecture is structured with 

"backbone" and "neck" sections. The backbone is the part 

responsible for extracting essential features from the image and is 

often supported by robust structures such as ResNet or EfficientNet 

(Bakirci & Bayraktar, 2024). The neck section, on the other hand, 

transforms these extracted features into higher-level abstractions, 

producing the outputs necessary for final detection. This stage 

utilizes structures like Feature Pyramid Networks (FPN) (Li et al., 

2023), which help to more effectively detect objects of various sizes. 

Thanks to this feature, YOLOv8 can successfully detect both small 

and large objects. The model's output includes the class, confidence 

scores, and location information for each detected object. 

YOLOv8 also adopts an "anchor-free" approach (Niu et al., 

2024), offering a more flexible and precise method for object 

detection. This allows object boundaries to be determined more 

accurately, enabling the model to operate with fewer errors 

compared to previous YOLO versions. Additionally, YOLOv8 

improves its overall accuracy through data augmentation techniques 

and regularization methods used during training. Techniques such as 

"mixup" allow the model to generalize better. 

In terms of speed, YOLOv8 is highly suitable for real-time 

applications due to its optimized network structure. As a result, 

YOLOv8 offers significant improvements in object detection tasks, 

enabling faster and more accurate results (Bakirci & Bayraktar, 

2024). By leveraging modern deep learning approaches and network 

architecture optimizations, YOLOv8 has secured an important 

position in the field of visual perception. 
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2.2. Advantages of Using the YOLOv8 Model 

The YOLOv8 model (Dewi et al., 2024) holds significant 

importance in military vehicle detection tasks due to its ability to 

provide fast and accurate object detection, which plays a critical role, 

especially in real-time applications. Since military operations often 

involve time-sensitive and high-precision situations, accurately 

detecting military vehicles from images is vital for the success of 

operations. YOLOv8, with its fast processing capability, can 

instantly detect objects even in large-scale images, thereby 

accelerating decision-making processes. Moreover, the model's 

robust network structure and optimization techniques ensure 

accurate detection of military vehicles even under varying weather 

conditions and environmental challenges. YOLOv8's enhanced 

architecture offers the ability to detect both small and large objects 

simultaneously. This feature accounts for the different sizes of 

military vehicles and various detection challenges. The model's 

anchor-free structure allows for more precise boundary 

determination of objects and accurately detects military vehicles that 

overlap with complex terrains or natural obstacles. In addition, 

YOLOv8's low computational cost and high efficiency provide the 

capability to process data at high speeds in field applications, thereby 

increasing the effectiveness of critical tasks such as military vehicle 

detection. These features make YOLOv8 an indispensable tool for 

military vehicle detection (Bakirci & Bayraktar, 2024). 

2.3. Dataset Creation 

Due to the confidentiality of military studies, the dataset used 

in this study could not be homemade. Instead, publicly available and 

comprehensive datasets such as COCO and KITTI were utilized, 

which provide satisfactory results for the common vehicle target 

detection task. In previous research on military object detection, due 

to the lack of sufficient military datasets, scientists often had to 

create their own datasets. However, these custom datasets typically 
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include a wide variety of military symbols and may not be entirely 

suitable for the military vehicle detection task focused on in this 

study. Therefore, to support this study, a new Special Military 

Vehicle Dataset (SMVD) has been created. 

The SMVD developed in this study covers four common 

types of military vehicles: tanks, military trucks, infantry fighting 

vehicles, and command vehicles. These vehicles were obtained from 

various combat conditions such as desert, grassland, snow, and urban 

environments. The SMVD consists of 4,575 images of military 

vehicles in PNG format, with a resolution of 640×640 pixels. All 

images have been systematically numbered. Subsequently, using the 

LabelImg software, military vehicles in these images were 

annotated, resulting in a total of 8,586 accurate labels. To train and 

test detection models, 58% of the images were randomly selected for 

the training set, 19% for validation, and the remaining 23% were 

designated as the test set. 

3. Results 

Figure 2 presents selected visual examples of the detection 

results. The YOLOv8 model demonstrated strong performance in 

detecting tanks, with a precision score of 0.877, indicating its high 

ability to correctly identify tank instances without mislabeling other 

objects as tanks. The recall score of 0.819 signifies that the model 

successfully detected 81.9% of the actual tanks present in the test 

dataset, showcasing its effective sensitivity. The mean Average 

Precision (mAP) score of 0.854 further confirms that the model 

maintains high detection accuracy across varying confidence 

thresholds. The F1 score of 0.847, a harmonic mean of precision and 

recall, reflects the model's balanced capability in minimizing false 

positives and false negatives. Lastly, the detection time of 49 ms per 

frame underscores the model’s potential for near real-time tank 

detection, making it suitable for applications requiring quick 

response times, such as battlefield surveillance and reconnaissance 
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missions. For military trucks, the model exhibited a precision of 

0.822, slightly lower than that for tanks, suggesting a marginally 

increased likelihood of false positives. However, the recall score of 

0.845 highlights the model’s strong ability to identify most military 

trucks present in the dataset. The mAP score of 0.830 indicates 

consistent detection performance across varying thresholds, while 

the F1 score of 0.833 confirms a balanced trade-off between 

precision and recall. The detection time for military trucks was 

recorded at 59 ms per frame, slightly higher than for tanks, likely 

reflecting the increased complexity or diversity in the appearance of 

military trucks. Despite this, the model’s performance remains 

highly efficient for real-time military truck detection scenarios. 

Detection results for infantry fighting vehicles (IFVs) were 

comparatively weaker than for other vehicle types. A precision score 

of 0.779 points to a moderate likelihood of misclassifying other 

objects as IFVs. The recall score of 0.708 suggests that the model 

detected approximately 70.8% of the IFVs present in the dataset, 

indicating room for improvement in sensitivity. The mAP score of 

0.713 confirms the model’s relatively lower accuracy across 

confidence thresholds for this vehicle type. Despite these limitations, 

the F1 score of 0.742 shows a reasonable balance between precision 

and recall. The detection time of 67 ms, while higher than for tanks 

and trucks, remains within an acceptable range for many practical 

applications. The challenges in detecting IFVs could be attributed to 

their varied shapes, sizes, or camouflage patterns, highlighting the 

need for additional training data or algorithm optimization. The 

YOLOv8 model achieved robust results for military command 

vehicles, with a precision score of 0.861, indicating a low rate of 

false positives. The recall score of 0.874 further demonstrates the 

model’s exceptional ability to identify nearly all military command 

vehicles in the dataset. The mAP score of 0.855 aligns closely with 

these findings, signifying consistent detection performance across 

thresholds. The F1 score of 0.867 emphasizes the model’s 
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effectiveness in maintaining both high precision and recall for this 

vehicle category. Additionally, the detection time of 51 ms per frame 

showcases the model’s efficiency, making it well-suited for 

applications that require prompt identification of command vehicles, 

such as operational planning and real-time tactical analysis. 

Figure 2: Detection results with YOLOv8 

3.1. Performance Comparison 

The detection performance of YOLOv8 varies noticeably 

across the four military vehicle categories: tanks, military trucks, 

IFVs, and military command vehicles. These variations can be 
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attributed to differences in vehicle characteristics, dataset quality, 

and the inherent challenges of detecting certain features. Tanks 

exhibited the highest precision (0.877), reflecting the model’s ability 

to accurately differentiate tanks from other objects. This superior 

performance may be due to the distinct structural features of tanks, 

such as their turret and caterpillar tracks, which make them visually 

unique. In contrast, IFVs had the lowest precision (0.779), likely 

because their designs are more varied and less distinct, leading to a 

higher probability of false positives. Military trucks (0.822) and 

command vehicles (0.861) fall between these extremes, suggesting 

moderate distinctiveness in their visual characteristics. Military 

command vehicles achieved the highest recall (0.874), indicating the 

model’s ability to detect a large proportion of true instances. This 

may be due to the dataset containing sufficient examples of 

command vehicles with consistent visual patterns, such as antennas 

or specific body shapes, making them easier for the model to 

recognize. Conversely, IFVs scored the lowest recall (0.708), 

suggesting that the model struggled to detect many of the IFVs 

present in the dataset. The variability in IFV design, including 

differences in size and camouflage, might have contributed to this 

reduced sensitivity. Tanks (0.819) and military trucks (0.845) 

showed comparable recall scores, reflecting a balance between 

dataset representation and visual features. The mAP scores followed 

a similar trend, with tanks (0.854) and command vehicles (0.855) 

achieving the highest values, indicating consistent detection 

accuracy across confidence thresholds. Military trucks (0.830) 

showed slightly lower mAP, while IFVs (0.713) lagged 

significantly. The lower mAP for IFVs suggests that the model 

struggled to consistently detect this category across a range of 

scenarios and confidence levels, reinforcing the hypothesis of higher 

visual variability and less distinct features. The F1 score provides a 

balanced view of precision and recall. Military command vehicles 

(0.867) and tanks (0.847) achieved the highest F1 scores, 
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underscoring the model’s well-rounded performance for these 

categories. Military trucks (0.833) demonstrated slightly lower F1 

scores due to reduced precision, while IFVs (0.742) had the lowest 

F1 score, reflecting significant challenges in both false positive and 

false negative rates. Detection times were fastest for tanks (49 ms) 

and command vehicles (51 ms), suggesting that these categories may 

have simpler or more distinctive features that the model processes 

efficiently. Military trucks (59 ms) and IFVs (67 ms) required longer 

detection times, likely due to increased visual complexity or intra-

class variability. The higher detection time for IFVs in particular 

could indicate that the model is expending more computational effort 

to differentiate these vehicles from background objects or other 

categories. 

The distinct structural features of tanks and command 

vehicles likely contributed to their higher precision, recall, and F1 

scores. Features like the turret and tracks in tanks or antennas on 

command vehicles allow the model to identify these categories with 

minimal confusion. Conversely, IFVs’ less distinct and more 

variable designs reduce the model’s ability to differentiate them 

from other objects, negatively impacting precision and recall. The 

higher performance for command vehicles and tanks may also reflect 

better representation of these categories in the training dataset. Well-

annotated, diverse, and adequately sized datasets can significantly 

enhance model learning and generalization. The lower performance 

for IFVs suggests potential gaps in the dataset, such as insufficient 

examples of IFVs or examples that fail to capture their diversity 

adequately. The lower detection performance for IFVs may also be 

attributed to the visual complexity and use of camouflage patterns, 

which make them harder to distinguish from backgrounds. Military 

trucks, while not as challenging as IFVs, still displayed slightly 

reduced precision and mAP due to their variable shapes and sizes. 

The differences in detection time suggest that the model requires 

varying levels of computational effort to process different vehicle 
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categories. The higher detection time for IFVs may indicate that the 

model is performing additional calculations to resolve ambiguities 

caused by visual complexity. 

4. Conclusion 

This study evaluated the performance of the YOLOv8 object 

detection algorithm for identifying four distinct categories of 

military vehicles: tanks, military trucks, infantry fighting vehicles 

(IFVs), and military command vehicles. The results demonstrate that 

YOLOv8 achieves high detection accuracy for vehicle types with 

distinctive and consistent visual features, such as tanks and military 

command vehicles, as evidenced by their high precision, recall, and 

F1 scores. However, the model’s performance declines for 

categories like IFVs, which exhibit greater visual variability and 

complexity, underscoring the challenges posed by less distinctive 

features and camouflage patterns. The findings also reveal 

differences in detection times across categories, with tanks and 

command vehicles benefiting from faster inference times compared 

to IFVs and military trucks. These variations suggest that the 

computational effort required for detection is influenced by the 

visual complexity and intra-class variability of the objects being 

detected. Overall, this study highlights YOLOv8’s capability as a 

reliable tool for military vehicle detection, particularly in 

applications requiring real-time performance, such as battlefield 

reconnaissance and surveillance. However, it also underscores the 

need for further optimization, particularly for detecting visually 

complex or poorly represented vehicle categories. Future work could 

focus on augmenting training datasets with diverse examples, 

applying domain-specific transfer learning techniques, and fine-

tuning the algorithm to enhance detection performance for 

challenging object categories. These insights contribute to advancing 

the application of deep learning-based object detection in military 
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operations, paving the way for more robust and efficient surveillance 

systems. 
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1. Introduction 

The reliability of mechanical components used in factories 

producing military vehicles is critically important for the 

performance and operational safety of these vehicles. In military 

applications, the structural integrity of these components is an 

indispensable requirement to withstand the harsh conditions 

encountered in the field (Yuan et al., 2019). However, microcracks 

or other structural defects that may develop over time in mechanical 

parts can lead to performance degradation in the short term and 

catastrophic failures in the long term (Wang et al., 2020). Therefore, 
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developing fast, precise, and reliable methods for detecting cracks in 

mechanical components during production and maintenance 

processes is of great importance. In this context, artificial 

intelligence-based approaches, such as object detection algorithms, 

offer a more effective and efficient solution compared to traditional 

methods (Lou et al., 2024). 

Traditional crack detection methods often rely on techniques 

such as ultrasonic testing, magnetic particle inspection, or visual 

inspection. While these methods can be effective, they typically 

require intensive human labor, and the error rate increases due to 

human factors. In visual inspection methods, factors such as the 

attention level, experience, and fatigue of operators tasked with 

detecting cracks directly influence the accuracy of the detection 

process (Rajesh et al., 2024). For instance, a small crack overlooked 

by an operator may grow over time, leading to irreversible damage. 

Furthermore, the high number of parts on the production line and the 

time constraints of the inspection process increase the likelihood of 

errors made by operators. These limitations associated with human 

factors clearly highlight the need for automated and intelligent 

systems, such as object detection algorithms (Bakirci et al., 2024). 

Object detection algorithms can detect cracks on the surface 

of mechanical components with high accuracy using image 

processing and deep learning techniques (Ma et al., 2018). These 

algorithms analyze surface images of parts to quickly identify the 

size, shape, and location of cracks. Particularly, deep learning 

models like convolutional neural networks (CNN) (Bakirci & 

Bayraktar, 2024) are highly successful in distinguishing the complex 

and low-contrast visual features of cracks. By leveraging high-

resolution images and annotations as training data, the sensitivity of 

these algorithms to crack detection can be continuously improved. 

Moreover, the ability of these systems to operate automatically 
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minimizes human intervention, reduces error rates, and ensures more 

consistent processes (Fan et al., 2020). 

In addition to reducing error rates, the integration of object 

detection algorithms also saves time and costs in production 

processes. For example, while manual inspection of each mechanical 

component on a production line can take hours, automated systems 

can complete this task in seconds (Munawar et al., 2021). 

Furthermore, the ability to generate numerical reports on detected 

defects makes quality control processes more objective and 

standardized. This allows for regular monitoring of crack size and 

growth trends, enabling more effective planning of preventive 

maintenance strategies. 

In conclusion, the detection of cracks in mechanical 

components using object detection algorithms in factories producing 

military vehicles enhances reliability and efficiency by mitigating 

human error risks (Maslan & Cicmanec, 2023). These methods, 

which overcome the limitations of human observation, play a crucial 

role not only in defect detection but also in the overall optimization 

of production and maintenance processes. Such artificial 

intelligence-based solutions have the potential to enhance the field 

performance of military vehicles while minimizing production costs 

and time loss. Therefore, the broader adoption of object detection 

algorithms in crack detection has become a strategic necessity for 

the modern defense industry. 

Deep learning-based object detection algorithms, particularly 

models like Convolutional Neural Networks (CNN) and the R-CNN 

family, have revolutionized image analysis and object detection 

(Bakirci & Bayraktar, 2024). Two-stage object detection detectors 

offer significant advantages, especially in applications requiring 

high accuracy. These detectors primarily identify potential object 

regions (region proposals) in the first stage and perform a more 
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detailed analysis in the second stage to classify and localize the 

objects. Models like R-CNN (Region-based CNN), Fast R-CNN, 

Faster R-CNN, and Mask R-CNN are leading examples of this 

approach (Lee & Park, 2022; Afzaal et al., 2021). The R-CNN family 

introduces innovative approaches to improve detection accuracy. 

Initially, R-CNN extracts features from the selected regions using 

CNNs and classifies these regions. While this method provides high 

accuracy, it has a longer processing time due to running separate 

CNNs for each region. Fast R-CNN accelerates this process by 

extracting a feature map from the entire image using a single CNN 

and analyzing region proposals on this map. This reduces 

computational cost and increases the model’s accuracy (Ren et al., 

2018). Taking it further, Faster R-CNN introduces Region Proposal 

Networks (RPN), making the process of identifying potential object 

regions entirely learnable. This innovation makes two-stage 

detectors more suitable for real-time applications. 

The greatest advantage of two-stage detectors is their ability 

to detect small, complex, and overlapping objects with high 

accuracy. The focus on potential object regions in the first stage 

prevents unnecessary processing of irrelevant areas, allowing more 

resources to be allocated for analysis. These models excel in 

scenarios requiring high accuracy, such as defense, medical, and 

industrial automation. Additionally, models like Mask R-CNN 

provide object segmentation capabilities, enabling pixel-level 

differentiation of objects, expanding the scope of two-stage detectors 

to applications requiring detailed analysis. Consequently, two-stage 

object detection detectors based on CNN and the R-CNN family are 

powerful tools in object detection due to their high accuracy, 

flexibility, and detailed analysis capabilities (Bakirci & Bayraktar, 

2024). In complex scenes, these models’ precision offers 

performance that surpasses traditional methods.  
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2. Methodology 

With the increasing interest in deep learning, significant 

developments and advancements have been achieved in the field of 

object detection. Among these advancements, Faster R-CNN, a 

member of the widely popular R-CNN family, stands out as a 

convolutional neural network (CNN)-based object detection 

algorithm. Faster R-CNN distinguishes itself from previous-

generation algorithms by producing faster and more accurate results, 

bringing it to the forefront (Avola et al., 2021). It is particularly 

preferred for its ability to combine object detection and classification 

functions, achieving both high accuracy and fast operation. The 

primary goal of the Faster R-CNN algorithm is not only to detect 

objects and details in image data but also to develop an integrated 

network architecture that accurately localizes these objects and 

details (Zhang et al., 2019). 

Faster R-CNN significantly improves its speed and accuracy 

and reduces overall system complexity with the introduction of the 

Region Proposal Network (RPN), a key innovation absent in 

previous CNN architectures and the Fast R-CNN algorithm. This 

enhancement makes it superior to other algorithms within the R-

CNN family. Faster R-CNN, which addresses and improves upon the 

shortcomings of its predecessors, R-CNN and Fast R-CNN, consists 

of several core components and convolutional layers. These 

components and layers include Feature Extraction (Backbone 

Network), Region Proposal Network (RPN), ROI Pooling Layer, 

Classification, and Localization Phases (Bakirci & Bayraktar, 2024). 

The integration of these interrelated components and convolutional 

layers enables Faster R-CNN to provide rapid and accurate object 

detection capabilities. Among these, the Region Proposal Network 

and the Fast R-CNN detector stand out as the primary components. 
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As shown in Figure 1, the input image passes through various 

layers of Faster R-CNN, and the desired object in the image is 

detected. The working principle of Faster R-CNN can be examined 

under four main headings: 

1. Feature Extraction (Backbone Network): Faster R-CNN 

utilizes the CNN architecture for feature extraction. The primary 

purpose of feature extraction is to identify and transform the 

significant and meaningful features of an image, enabling the model 

to better recognize and distinguish objects. The backbone network 

processes the low-level pixel data of an image step by step, 

transforming it into higher-level representations that are more 

meaningful for object recognition. After the input image is processed 

by the CNN architecture, a feature map is generated. 

2. Region Proposal Network (RPN): The RPN is a 

component that makes strong predictions about where objects might 

be located within an image. The primary task of the RPN is to 

generate thousands of region proposals that potentially contain 

objects within an image. These proposals are represented by 

bounding rectangular frames of varying sizes and aspect ratios. 

Subsequently, the RPN predicts the likelihood of each frame 

containing an object and estimates how well it matches the actual 

object. 

3. ROI Pooling Layer:  The ROI pooling layer plays a critical 

role in classifying the regions proposed by the RPN during the object 

detection process. It reduces region proposals of varying sizes to a 

fixed-size matrix, standardizing each region proposal. The main 

advantage of the ROI pooling layer is its ability to simplify the 

network's complexity, making the classification process faster and 

more efficient. 

4. Classification Phase: Each region proposal generated by 

the RPN is classified into its respective object class. The goal of this 
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step is to ensure that the identified objects are accurately categorized, 

making the process faster and more efficient. At the end of the 

classification phase, probability values are calculated for each 

proposed region, and confidence scores are generated for their 

respective object classes. 

5. Localization Phase: The localization phase refines the 

bounding boxes determined by the RPN to improve their accuracy. 

This involves adjusting the center points, widths, and heights of the 

bounding boxes to ensure a more precise fit around the objects. As a 

result, more accurately framed bounding boxes are produced during 

the object detection process. 
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Figure 1: Faster R-CNN detection process. 
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3. Dataset 

 

Graph 1: Weighted distributions of the dataset for training, 

validation, and testing phases. A total of 59% of the dataset is 

allocated for training, 18% for validation, and 23% for testing. 

In this study on crack detection in mechanical components, a 

meticulous approach was adopted to establish a reliable and 

comprehensive dataset. Initially, the experimental data collection 

process involved the use of mechanical components both with and 

without cracks. These components were subjected to various loading 

conditions, and the resulting cracks were detected using imaging 

techniques, particularly high-resolution cameras and thermal 

imaging systems. Images were captured from different angles and 

under varying lighting conditions to enhance diversity. 

The raw data obtained were processed to improve the 

accuracy and diversity of the dataset. However, since only a limited 

amount of data could be collected under laboratory conditions, data 

augmentation techniques were employed to increase the size and 



 

--34-- 

 

variety of the dataset. During the data augmentation process, the 

original images were subjected to transformations such as rotation, 

cropping, brightness and contrast adjustments, blurring, and noise 

addition. Additionally, for symmetrical components, reflection and 

scaling methods were applied to ensure spatial diversity in the 

images. This approach enabled the model to effectively learn under 

different conditions and crack locations. 

As a result, the constructed dataset provided a robust 

foundation for training a deep learning model focused on crack 

detection in mechanical components. The dataset aimed to better 

reflect real-world scenarios and enhance the model's generalization 

capacity. The final dataset consists of a total of 1,875 images. The 

weight distribution for the training, validation, and testing phases of 

the dataset is presented in Graph 1. 

4. Data Augmentation 

Image processing techniques play a critical role in materials 

engineering, quality control, damage detection, and various research 

fields. In this study, different image processing techniques were 

applied to an original image of a material surface and analyzed in 

detail. Examining visual data in depth is crucial for detecting cracks 

and structural defects on surfaces. The original image, labeled as 

Image 1, was analyzed first, followed by adjustments such as 

brightness, contrast, sharpness, and color transformations. The 

effects of these operations are thoroughly examined below. 

The original image, represented as Image 1, shows a material 

surface with a visible crack. This image serves as the reference point 

for analysis, as no processing has been applied, and it has been 

evaluated in its raw form. While the surface texture and crack 

regions are perceivable to the naked eye in the original image, further 

image processing techniques were applied to make these details 

clearer and more prominent. In Image 2, the brightness was 



 

--35-- 

 

increased by 50%. This operation enhanced the visibility of darker 

areas in the image but resulted in some loss of detail. Excessive 

brightness can cause information loss, especially in lighter parts of 

the surface. In Image 3, the brightness was reduced by 50%, 

darkening the image. While this enhanced details in the darker 

regions of the surface, it reduced overall visibility. In this case, the 

crack regions became more pronounced, but understanding the 

overall surface structure became more challenging. 

In Image 4, the sharpness was increased by 100%. This 

operation highlighted fine details on the surface, especially the crack 

edges, making them more distinct. Increasing sharpness improved 

the analyzability of the image and made the surface texture details 

more visible. However, excessive sharpness can sometimes 

introduce artifacts or artificial errors into the image. When sharpness 

was reduced by 100%, as seen in Image 7, blurring occurred. In this 

case, surface details and crack visibility decreased significantly. 

Reduced sharpness can make analysis difficult, particularly for low-

resolution images. 

In Image 5, contrast was increased by 50%. Enhancing the 

contrast emphasized the difference between light and dark areas on 

the surface, making the cracks more visible. The tonal difference 

around the crack became sharper with this process. Conversely, 

when contrast was reduced by 50%, as shown in Image 6, the 

difference between light and dark areas diminished, reducing the 

visibility of cracks on the surface. The image became more 

homogeneous, but detail loss occurred. 

In Image 8, a grayscale filter was applied, removing color 

information and converting the image into grayscale. Grayscale 

conversion is particularly useful for analyses where color 

information is not important. This operation allows for a better 

understanding of the surface’s intensity distribution. Grayscale 
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conversion provides significant advantages in analyzing cracks and 

surface texture based on tonal differences. 

 

Figure 2: Images of data augmentation using various methods. 

Image 9 was created using a combination of thresholding and 

edge detection techniques. Thresholding classifies pixels as either 

black or white based on a specific intensity value. This process 

separates cracks and cut regions from the background. Edge 
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detection, on the other hand, analyzes changes in intensity to define 

object boundaries. As a result, the edges of the crack region were 

clearly highlighted, making it easier to analyze structural defects on 

the surface. 

This study examined the effects of different image processing 

techniques on an image of a material surface. Adjustments such as 

brightness, contrast, sharpness, and grayscale transformations 

highlighted surface details or simplified the image for analysis. 

Finally, thresholding and edge detection techniques provided the 

most beneficial outcome by defining the precise boundaries of the 

crack regions. Such image processing methods play a critical role in 

materials engineering, damage analysis, and quality control 

applications. 

5. Result 

Table 1: Comparison of the Faster R-CNN algorithm with SSD and 

YOLOv5 in terms of performance metrics. 

Table 1 presents the performance metrics of three different 

deep learning algorithms (Faster R-CNN, SSD, YOLOv5) used for 

crack detection in mechanical parts. Table 1 includes the accuracy, 

recall, mean average accuracy (mAP), F1 score, and inference times 

of these algorithms (Bakirci & Bayraktar, 2024). Precision indicates 

how many cracks a model detects correctly. In other words, it is the 

ratio of correctly detected positives (true positives) to the total 

positive detections (true positives + false positives). A high precision 

   Metric   

Model Precision Recall mAP F1 

Score 

Inference 

Time 

Faster R-

CNN 

0.879 0.817 0.803 0.846 53.4 ms 

SSD 0.780 0.721 0.737 0.749 24.4 ms 

YOLOv5 0.803 0.755 0.776 0.778 21.6 ms 
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indicates that the model has a low tendency to produce false 

positives. Recall indicates how many total true cracks the model can 

detect. In other words, it is the ratio of correctly detected positives 

(true positives) to the total true positives (true positives + false 

negatives). A high recall indicates that the model has a low 

probability of missing positive examples. mAP (Mean Average 

Precision) measures the average accuracy performance of the model 

at different threshold values. It is used to understand the impact of 

the balance between precision and recall values on the overall 

performance. mAP is a standard often used to compare the 

performance of object detection models. F1 Score is a balance metric 

between precision and recall. It expresses the harmonic mean of 

precision and recall values and focuses on reducing both false 

positives and false negatives. F1 score provides a more 

comprehensive evaluation in imbalanced datasets or in cases where 

precision and recall values differ. Inference Time refers to the time 

it takes for the model to perform its prediction on an image. Inference 

time is critical for the usability of the model in real-time applications. 

When we first evaluate the performance of the algorithms in 

terms of precision; Faster R-CNN (0.879) has the highest precision 

value. This shows that the majority of the cracks it detects are 

correct. YOLOv5 (0.803) is lower than Faster R-CNN but higher 

than SSD (0.780). YOLOv5 is better than SSD in limiting false 

positives. SSD has the lowest precision value compared to the other 

two algorithms, which means it produces more false positives. Faster 

R-CNN (0.817) provided the highest recall value by detecting a large 

portion of the real cracks. YOLOv5 (0.755) is lower than Faster R-

CNN but higher than SSD (0.721). This means that YOLOv5 missed 

fewer cracks. SSD exhibited the lowest performance in terms of 

recall, missing some of the positive examples. Faster R-CNN (0.803) 

achieved the highest mAP value and showed the most accurate 

detection performance overall. YOLOv5 (0.776) outperformed SSD 
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(0.737) in mAP value and showed a balanced performance. SSD is 

behind the other two algorithms in mAP, indicating less overall 

accuracy. Faster R-CNN (0.846) achieved the best balance between 

precision and recall and achieved the highest F1 score. YOLOv5 

(0.778) again showed a more balanced performance with a better F1 

score than SSD (0.749). SSD was behind the other two algorithms in 

F1 score, showing a weaker balance between accuracy and recall. 

YOLOv5 (21.6 ms) has the fastest inference time and is quite 

suitable for real-time applications. SSD (24.4 ms) is a bit slower than 

YOLOv5, although it performs similarly to YOLOv5 in terms of 

speed. Faster R-CNN (53.4 ms) was considerably slower in 

inference time compared to the other two algorithms and is limited 

for real-time applications. 

Faster R-CNN achieved the highest values in precision, 

recall, mAP and F1 scores, and showed superior performance in 

terms of crack detection accuracy. However, it is the algorithm with 

the longest inference time (53.4 ms) and its usability in real-time 

applications is limited. Therefore, it can be preferred in applications 

that require high accuracy. YOLOv5 provided a balanced 

performance between speed and accuracy. Since it has the shortest 

inference time (21.6 ms), it is quite advantageous in real-time 

applications. It achieved better results compared to SSD in precision, 

recall, mAP and F1 scores and ranked second in terms of overall 

performance. YOLOv5 is ideal for scenarios where accuracy and 

speed requirements are balanced. Although SSD has the lowest 

values in both accuracy and recall metrics, it provided fast 

performance with inference time (24.4 ms). It can be used in 

applications where accuracy tolerance is lower but speed is at the 

forefront. However, it is at the end of the preference order due to its 

limited accuracy performance compared to other algorithms. As a 

result, Faster R-CNN is recommended for situations where precision 
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is critical, YOLOv5 for real-time applications, and SSD for 

applications requiring low precision where speed is a priority. 

 

Graph 2: Detection size results of a crack width measured as 12.8 

mm in a mechanical part obtained with Faster R-CNN, SSD and 

YOLOv5 models under sufficient and insufficient light conditions. 

Graph 2 evaluates the performance of three different 

algorithms (Faster R-CNN, SSD and YOLOv5) used for crack 

detection in mechanical parts in low light and high light conditions. 

The graph compares the width values measured by these algorithms 

for a crack with an original width of 12.8 mm. At the same time, the 

accuracy of the measurement results of the algorithms is compared 

with the real crack width (12.8 mm). 

Faster R-CNN measured the crack width as 12.2 mm on 

average in low light conditions, while this value increased to 12.7 

mm in high light conditions. In both cases, some deviation from the 

real width (12.8 mm) was observed. However, the measurement in 
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high light conditions gave a closer result than in low light conditions. 

This shows that the algorithm works more accurately in high light 

conditions. 

The SSD algorithm showed a significant deviation from the 

real width by measuring the crack width as 11.5 mm in low light 

conditions. This value was measured as 11.9 mm in high light 

conditions. The deviation of SSD from the true width in both 

conditions is higher compared to the other algorithms. This shows 

that SSD is less sensitive than the other two algorithms in measuring 

the crack width. 

YOLOv5 measured the crack width as 11.8 mm in low light 

conditions, while this value was measured as 12.02 mm in high light 

conditions. The algorithm gave a result that was quite close to the 

true width, especially in high light conditions. However, its 

performance in low light conditions showed a slightly lower 

accuracy compared to the true width. Nevertheless, YOLOv5's 

performance showed a better sensitivity compared to SSD. 

The graph clearly shows the closeness of the measurement 

results of all algorithms to the true crack width and the performance 

changes in different light conditions. Faster R-CNN and YOLOv5 

produced results closer to the true width, especially in high light 

conditions. SSD showed significant deviations in low and high light 

conditions and showed lower performance compared to the other 

two algorithms. These results reveal the effect of light conditions on 

the algorithm performance in applications that require precise 

measurements such as crack detection. In addition, it is understood 

that Faster R-CNN and YOLOv5 provide more reliable results in 

high light conditions, but SSD’s performance is more limited in such 

cases. In future studies, it can be suggested to use techniques such as 

data augmentation or different preprocessing methods to improve the 

performance of the algorithms in low light conditions. This approach 
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can contribute to obtaining more consistent and reliable results in 

real scenarios. 

6. Conclusion 

This study demonstrates the strengths and limitations of three 

prominent object detection algorithms, Faster R-CNN, SSD, and 

YOLOv5, in the context of crack detection in mechanical 

components. Faster R-CNN excels in precision, recall, and mAP, 

making it the most accurate model for applications where detection 

quality is paramount. However, its slower inference time limits its 

applicability in real-time scenarios. YOLOv5 emerges as a strong 

contender, offering the fastest inference time while maintaining a 

balanced performance across all metrics. It is particularly well-suited 

for real-time industrial applications where speed and accuracy must 

coexist. SSD, despite being faster than Faster R-CNN, falls short in 

precision and recall, indicating limited utility in accuracy-critical 

settings. The analysis also underscores the importance of lighting 

conditions in crack detection, as all models show varying degrees of 

sensitivity to changes in illumination. Future research should focus 

on improving the robustness of these algorithms to diverse 

operational conditions and exploring hybrid approaches that 

combine the strengths of multiple models. These advancements will 

pave the way for more reliable and efficient crack detection systems 

in mechanical engineering and beyond. 
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1. Introduction 

In factories that mass produce in the military field, the 

detection of small mechanical parts with object detection methods is 

a very important issue. This importance stems from the need for the 

production process to be carried out quickly, reliably and without 

errors. In the production of military equipment, it is critical that each 

part is produced in accordance with quality standards, the assembly 

is done correctly and the final product exhibits the expected 

performance (Wang et al., 2024). Therefore, the detection and 

control of small mechanical parts is very important in terms of both 
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quality management and efficiency. First of all, the detection of 

small mechanical parts with object detection methods is important to 

minimize error rates (Chalklen et al., 2020). Errors that may occur 

during the production process can increase production costs and 

disrupt delivery processes. Traditional manual inspection methods 

are not effective enough in modern military production facilities 

because they are both open to human error and time-consuming. At 

this point, artificial intelligence-supported object detection systems 

can detect each part on the production line in milliseconds and 

reduce error rates to much lower levels (Bakirci & Bayraktar, 2024). 

These methods prevent larger problems that may occur later in the 

process by detecting faulty parts at an early stage. In addition, the 

detection of small parts supports automation in the production 

process and increases efficiency. With the spread of Industry 4.0 

technologies, robotic systems and sensor-based solutions have come 

to the fore in military production facilities (Wang et al., 2021). 

Object detection systems are a critical part of these automation 

processes. Advanced technology methods such as cameras, laser 

scanning devices or ultrasonic sensors can check the size, shape, 

surface quality and assembly suitability of parts (Andronie et al., 

2023 : Bakirci, 2023). These detections are integrated with other 

machines in the production line, allowing the parts to be 

automatically separated or included in the assembly process. In this 

way, the need for human intervention is reduced and the production 

process becomes faster and more efficient (Papadaki et al., 2023). 

Moreover, the detection of small mechanical parts is used to 

strengthen quality control mechanisms. The importance of 

production quality in military applications is indisputable, because 

these equipment are used in critical missions and any error can lead 

to serious losses. Object detection systems evaluate each 

manufactured part according to the specified standards and 

immediately separate the non-conforming parts (Bakirci & 
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Bayraktar, 2024). In this way, only flawless products reach the end 

user. In addition, these systems allow for multiple data analysis, 

allowing for the determination of the root causes of quality problems 

and the possibility of making improvements in future production 

cycles. In addition, these technologies support environmentally 

friendly production processes (Khan et al., 2023). Early detection of 

faulty parts reduces waste from production and ensures more 

efficient use of resources. Systems working with recyclable 

materials offer both economic and ecological benefits. This has 

become a strategic advantage for the military production sector with 

the increase in environmental awareness. Finally, the application of 

object detection methods increases data collection and analysis 

capacity. In modern military production facilities, data obtained 

from each production stage is used to optimize system performance 

and for future projections (Hughes-Riley & Dias, 2018). Object 

detection systems create a very valuable data pool by recording each 

step of the production process. This data pool can be analyzed with 

artificial intelligence and machine learning algorithms to develop 

more rational solutions. This enables military production processes 

to become more innovative and competitive. As a result, the 

detection of small mechanical parts with object detection methods in 

factories that perform mass production in the military field is of great 

importance both technically and strategically (Nasim et al., 2024). 

These methods increase quality by reducing error rates, support 

automation in the production line, reduce costs and offer an 

environmentally friendly approach. In addition, they contribute to 

the more effective future production cycles thanks to data collection 

and analysis opportunities. All these benefits make object detection 

technologies an indispensable component in modern military 

production facilities (Bakirci & Cetin, 2023). 

Object detection methods play a critical role in various 

industrial and academic fields in today's technological ecosystem. 
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These methods are usually developed as a combination of image 

processing, artificial intelligence, and sensor-based technologies and 

aim to quickly and accurately detect features such as size, shape, 

color, and texture of objects (Bistron & Piotrowski, 2021). Object 

detection has important areas of use not only in the manufacturing 

sector, but also in many different application areas such as security, 

health, transportation, and agriculture. One of the main advantages 

of these technologies is that they increase the accuracy rate by 

reducing human-induced errors (Meng et al., 2020 : Liu et al., 2024). 

Especially in production processes that require high precision, object 

detection systems enable the early detection of faulty products, thus 

saving time and cost. For example, a robotic system on the 

production line automatically sorting a faulty component both 

increases labor efficiency and ensures the quality of the final product 

(Bakirci & Toptas, 2022). Another important aspect of object 

detection methods is that they support automation processes. These 

systems optimize communication between robots and machines in 

accordance with Industry 4.0 principles (Ku et al., 2022: Elsisi et al., 

2021). Equipped with tools such as cameras, laser scanners and 

ultrasonic sensors, these systems have real-time data processing 

capacity (Han et al., 2017). This allows faster and more efficient 

operations in production lines. In addition, object detection 

technologies work integrated with big data analytics to monitor and 

improve operational processes. The collected data can be used in 

strategic decision-making mechanisms for future processes. This 

ensures that industrial systems remain continuously innovative and 

competitive (Bakirci, 2023). As a result, object detection methods 

stand out as a technological solution that responds to today's 

complex industrial needs. The importance of these systems in 

achieving goals such as accuracy, efficiency and sustainability is 

great. 
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YOLOv7 (Zheng et al., 2024) is a deep learning-based 

network architecture that plays an important role in the field of object 

detection. This model is part of the "You Only Look Once" (YOLO) 

family and aims to achieve faster and more accurate results than its 

predecessors. The design of YOLOv7 is optimized to provide 

particularly fast processing times and high accuracy rates. In this 

paper, the network architecture and basic features of YOLOv7 will 

be explained in an academic language.  

2. Methodology 

Object detection is a fundamental task for computer vision 

and artificial intelligence applications. YOLO is one of the most 

effective and popular algorithms in this field, and stands out with its 

ability to detect objects in images in a single pass. Various 

improvements have been made since the first version of the YOLO 

algorithm, and each new version has increased the accuracy, speed, 

and efficiency of the model (Bakirci et al., 2024). YOLOv7 (Zhang 

et al., 2023) is the final link in this process and offers more 

improvements and optimizations compared to previous versions. 

YOLOv7 comes with many optimizations. These include super-

resolution, improvements in optimization algorithms, balancing the 

model in terms of speed and accuracy, and more efficient training 

techniques. The balance between speed and accuracy of the model is 

an important factor, especially in real-time applications. The 

structural improvements of YOLOv7 allow the model to use less 

computational resources in the training and testing phases, making it 

faster and more efficient. YOLOv7 is a model that performs 

significantly better than its previous versions. It is extremely 

effective in real-time object detection applications, especially in 

areas such as video streaming and autonomous vehicles. YOLOv7 is 

capable of accurately detecting both small objects and large objects, 

making it suitable for various industrial applications (Zhou et al. 

2023). 
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2.1. Object Detection Based on the YOLOv7 Model 

YOLOv7, whose network architecture is given in Figure 1, 

has an architecture consisting of three main components: backbone, 

neck, and head. Each of these components helps the model to provide 

high accuracy and efficiency in object detection. 

Backbone is the basic network structure that extracts features 

from images. The backbone used in YOLOv7 is a structure called 

CSPDarknet53 (Cross-Stage Partial Darknet). This structure uses a 

strategy that improves the information flow between layers to 

increase the performance of deep learning models. CSPDarknet53 

provides higher efficiency compared to Darknet structures in 

previous versions (Zhao & Zhu, 2023). 

Neck is a structure that makes the feature maps obtained from 

the backbone more meaningful. In YOLOv7, a combination of FPN 

(Feature Pyramid Network) and PANet (Path Aggregation Network) 

is used. This structure integrates features at different resolution 

levels and allows the model to detect small and large objects 

simultaneously. While FPN is used to detect objects at different 

scales, PANet improves the information flow of the network and 

provides better results. 

The head section is the output section of the network and 

produces the locations, classes and confidence scores of the detected 

objects. In YOLOv7, this section is optimized to make more precise 

predictions. The model estimates the rectangular coordinates (with 

class labels) for each object, and these predictions are usually made 

with a "grid"-based approach. The head section of YOLOv7 

produces more accurate and faster results than the head structures in 

previous versions. 

YOLOv7 is an efficient and fast deep learning model that has 

made significant progress in the object detection task. The network 
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architecture and structural improvements used increase the accuracy 

of the model while optimizing the processing speed. This model, 

which is especially applicable in the fields of autonomous driving, 

safety monitoring and robotics, can be an important reference point 

for future object detection solutions. YOLOv7 stands out as one of 

the most advanced technologies in the field of deep learning and 

computer vision.YOLOv8 is fundamentally based on a 

Convolutional Neural Network (CNN) architecture. In the first stage, 

the network uses a series of convolutional layers that divide the input 

image into smaller parts. These layers are designed to extract low-

level features (such as edges and corners). This process enables the 

extraction of higher-level features in deeper layers. One of the key 

innovations of YOLOv8 lies in the optimizations designed to make 

this network more efficient. For example, the sparse convolution 

techniques used in the model reduce computational costs while 

increasing accuracy. 

 

Figure 1: YOLOv7 Network Architecture 
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2.2. Loss Function 

YOLOv7 uses various loss functions to optimize the object 

detection task. During the training process of the model, three main 

loss components are calculated for accurate object detection: 

coordinate loss, class loss, and object existence loss.  

Each of these components is optimized from different 

perspectives to improve the accuracy and efficiency of the model. 

Coordinate loss is used to accurately estimate the locations of 

detected objects. YOLOv7 estimates four coordinates (x, y, width, 

height) for each object. This loss is usually calculated using ciou 

(Complete Intersection over Union): 

𝐿𝑐𝑜𝑜𝑟𝑑 = 1 − 𝐼𝑜𝑈 (𝐵̂, 𝐵) 

Here, 𝐵̂ is the predicted box of the model and 𝐵 is the true 

box. IoU (Intersection over Union) shown in Figure 2 measures the 

overlap ratio between the predicted box and the true box. Class loss 

tries to determine the correct class of the detected objects. In 

YOLOv7, this loss is calculated using cross-entropy loss: 

𝐿𝑐𝑙𝑎𝑠𝑠 =  ∑ 𝑦𝑖 log(𝑦𝑖̂

𝑖

) 

Here, 𝑦𝑖 respresents the true class label and  𝑦𝑖̂  represents the 

class probabilities predicted by the model. 

Object existence loss measures the error of the model in 

estimating the confidence score of the object existence. This loss is 

calculated by binary cross-entropy loss: 

𝐿𝑜𝑏𝑗𝑒𝑐𝑡 =  ∑ 𝑦𝑖 log(𝑦𝑖̂

𝑖

) + (1 −  𝑦𝑖) log(1 − 𝑦𝑖̂) 
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Here, 𝑦𝑖 is the actual label (1 veya 0) indicating the existence 

of the object, and 𝑦𝑖̂ is the confidence score estimated by the model. 

YOLOv7 achieves high accuracy in object detection by 

minimizing the sum of these losses. The combination of these losses 

optimizes each component of the model and provides more accurate 

and efficient results in object detection. 

 

Figure 2: Illustration of the concept of IoU. 

3. Dataset 

We created a dataset consisting of 1046 bolt images as the 

basis for our proposed algorithm. To increase the generalization 

ability of the algorithm, data augmentation techniques were applied 

to expand the dataset to a total of 2800 images. These augmentation 

methods included random rotations, cropping, flipping, and changes 

in color channels. Each augmented image was annotated according 

to the YOLO dataset format to facilitate object detection tasks. 

The dataset was divided into three subsets, namely training, 

validation, and test sets, with a distribution ratio of 6:2:2. This 
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division ensures that the training set has sufficient data for model 

learning, while the validation and test sets provide reliable metrics 

to evaluate performance and prevent overfitting (Bakirci & 

Bayraktar, 2024). To maintain experimental consistency and 

fairness, the same initial training parameters were used in all 

experiments. 

Before training, the resolution of all input images was 

standardized to 640x640 pixels. Each model was trained for 250 

epochs to provide sufficient learning opportunities. Training 

hyperparameters were carefully selected to optimize performance. 

The initial learning rate was set to 0.001 to allow for efficient 

gradient descent updates, while a momentum coefficient of 0.935 

was used to stabilize training and speed up convergence. 

Additionally, a weight decay coefficient of 0.0004 was applied to 

regularize the model and prevent overfitting by penalizing large 

weights. 

4. Hardware and Software Configurations 

The experimental environment, including hardware and 

software configurations, is detailed in Table 1 to ensure 

reproducibility. The detection of mechanical components, 

specifically bolts in this case, was carried out on a system with a 

high-performance hardware and software configuration, enabling 

efficient and accurate model training and inference. The hardware 

utilized includes an NVIDIA RTX 3060 GPU, a graphics processing 

unit equipped with 12GB of GDDR6 memory, which is particularly 

well-suited for deep learning tasks, especially real-time object 

detection models like YOLOv7. The CUDA cores and Tensor cores 

present in the RTX 3060 ensure accelerated computations for 

parallel processing of matrix operations, which are critical for neural 

network training and inference. 
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The CPU used in the system is the Intel Xeon E5, which is 

widely recognized for its high computational power and multi-

threading capabilities. Xeon processors are typically utilized in 

workstations and server-grade systems for intensive computational 

workloads, making them suitable for pre-processing data, running 

auxiliary scripts, and managing the overall pipeline during training. 

Additionally, the system is equipped with 128GB DDR5 RAM, 

which provides ample memory for handling large datasets, caching 

operations, and ensuring smooth operation during model training 

and testing phases. This significant memory capacity is particularly 

advantageous when dealing with high-resolution images or large-

scale object detection tasks that require substantial memory for batch 

processing. 

The operating system running on the hardware is Mac OS, 

which offers a stable and secure environment for deep learning 

development. While Mac OS is not as common as Linux-based 

systems for deep learning tasks, it remains a suitable platform for 

running frameworks such as PyTorch, given proper GPU support 

and CUDA configuration. The deep learning framework utilized in 

this study is PyTorch, a widely adopted library for developing 

machine learning and deep learning models. PyTorch is preferred for 

its dynamic computational graph, ease of use, and extensive 

community support. It is highly optimized for GPU-based operations 

and integrates seamlessly with CUDA, enabling faster matrix 

computations for YOLOv7 inference. 

The software environment was further supported by Python 

version 3.10.8, which serves as the programming language for 

implementing the YOLOv7 model. Python's versatility, wide range 

of libraries, and compatibility with PyTorch make it an ideal choice 

for deep learning research. In particular, Python allows for efficient 

pre-processing of images, annotation management, and post-

processing of model outputs. 
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In summary, the combination of an NVIDIA RTX 3060 

GPU, Intel Xeon E5 CPU, 128GB DDR5 RAM, and PyTorch on 

Python 3.10.8 running on Mac OS provided a robust and efficient 

environment for the YOLOv7-based object detection task. The 

GPU's computational power accelerated model inference, while the 

CPU and RAM ensured smooth handling of large datasets and image 

processing tasks. This configuration highlights the importance of 

high-performance hardware and optimized software environments in 

achieving accurate and efficient results in real-world object detection 

applications. Future studies with even more advanced GPUs or 

distributed systems could further enhance the performance of similar 

tasks, especially in industrial and military production environments 

requiring real-time detection capabilities. 

Parameter Configuration 

GPU NVIDIA RTX 3060 

CPU Intel Xeon E5 

RAM 128GB DDR5 

Operating System Mac OS 

DL Framework PyTorch 

Python Version 3.10.8 

Table 1: Hardware and Software Configurations 

5. Test Results 

This study presents an evaluation of the detection of 

mechanical components used in the production of military vehicles 

with the YOLOv7 model. In the provided image which shows in Fig. 

2, bolts of various sizes and positions were detected by the YOLOv7 

model and are shown with blue rectangles. When examining the 

overall performance of the algorithm, it can be observed that the 

model successfully identifies and classifies many bolts. However, in 
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cases where some bolts are partially obscured by other objects, the 

model fails to detect these bolts. 

The YOLOv7 (You Only Look Once) model is a deep 

learning-based algorithm developed for real-time object detection. 

One of the key advantages of this model is its ability to make fast 

and accurate predictions for multi-object detection. However, there 

are certain limitations to this success. In particular, the visibility 

problem (occlusion), where objects overlap and obscure one another, 

can reduce detection performance. In this image, the high density of 

bolts and the partial occlusion caused by neighboring mechanical 

components have significantly affected the YOLOv7 model's 

detection performance. 

 

Figure 3: Detection examples with YOLOv7 model. 

The impact of the occlusion problem on detection accuracy 

is a common challenge in computer vision studies. Single-stage 

object detection algorithms like YOLOv7 are highly effective at 
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detecting large objects and those with distinct edges. However, they 

are prone to errors in conditions involving occlusion, small objects, 

or complex backgrounds. This phenomenon is also observed in the 

presented image. Bolts positioned close to each other may cause the 

model to perceive multiple objects as a single bolt or fail to detect 

some of them. 

Furthermore, the presence of varying color tones and 

material surfaces in the image is another factor affecting the overall 

performance of the model. The different reflections of corroded or 

rusted bolts have made it difficult for the algorithm to distinguish 

these objects. On the other hand, shiny metallic surfaces have also 

led to misleading results in the shape recognition process. 

In conclusion, although the YOLOv7 model successfully 

detects most of the bolts in the image, factors such as occlusion, 

complex arrangements, and surface reflections have caused some 

bolts to remain undetected. These results emphasize the need for 

continued research to improve object detection algorithms for 

industrial applications. In future studies, enriching datasets, using 

multi-angle perspectives to address the occlusion problem, and 

supporting models like YOLOv7 with multi-layer learning strategies 

will be beneficial. 

5.1. Test Results in Numerical 

This study presents an evaluation of the detection of 

mechanical components used in the production of military vehicles 

with the YOLOv7 model. In the provided image, bolts of various 

sizes and positions were detected by the YOLOv7 model and are 

shown with blue rectangles. When examining the overall 

performance of the algorithm, it can be observed that the model 

successfully identifies and classifies many bolts. However, in cases 

where some bolts are partially obscured by other objects, the model 

fails to detect these bolts. The quantitative performance evaluation 
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for this test yields the following results: Precision is measured as 

0.899, Recall as 0.844, the mean Average Precision (mAP) as 0.863, 

and the F1-Score as 0.871, with a mean inference speed of 28 FPS 

(frames per second). Precision, in this context, refers to the ratio of 

correctly predicted bolts to the total predicted bolts, indicating the 

model's ability to avoid false positives.  

A Precision value of 0.899 suggests that 89.9% of the 

predicted bolts are accurate, which is a strong result for the YOLOv7 

model. Recall, on the other hand, measures the ratio of correctly 

detected bolts to the total number of ground-truth bolts present in the 

image. With a Recall value of 0.844, the model successfully 

identifies 84.4% of all bolts, although some bolts remain undetected 

due to occlusion or complex spatial arrangements. The mAP metric, 

a widely used measure in object detection tasks, represents the mean 

of Average Precision values across all object classes and Intersection 

over Union (IoU) thresholds. An mAP value of 0.863 indicates that 

the model achieves a high level of accuracy when both Precision and 

Recall are considered together, further demonstrating its robustness. 

The F1-Score, which is the harmonic mean of Precision and Recall, 

combines these two metrics into a single value to balance the trade-

off between false positives and false negatives. The F1-Score of 

0.871 shows that the YOLOv7 model achieves a well-balanced 

performance in detecting bolts under the current conditions. 

Furthermore, the mean inference speed, reported as 28 FPS, 

highlights the model's capability to process frames in near-real time, 

making it suitable for industrial applications where high-speed 

object detection is required.  

Despite these strong performance metrics, the challenges 

posed by occlusion, overlapping bolts, and varying material 

surfaces, such as corrosion and reflections, limit the model's ability 

to achieve perfect detection results. Specifically, bolts partially 

hidden behind other mechanical parts or in regions with high visual 
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complexity reduce the Recall metric, as they remain undetected. 

Additionally, reflective surfaces and inconsistent lighting conditions 

may cause minor inaccuracies in localization, affecting the Precision 

score. Overall, the YOLOv7 model demonstrates a high level of 

accuracy and speed in detecting bolts, as evidenced by the reported 

metrics. However, addressing the issues of occlusion and improving 

the model's robustness against visual complexities will be crucial for 

further enhancing its performance in real-world industrial 

environments. Future work can focus on augmenting the training 

dataset with occlusion-heavy images, utilizing multi-view detection 

techniques, or integrating post-processing algorithms to mitigate 

false negatives and improve overall detection efficiency. 

4. Conclusion 

In conclusion, the integration of advanced object detection 

methods, particularly the YOLOv7 algorithm, plays a transformative 

role in enhancing the efficiency, accuracy, and reliability of military 

production processes. The study demonstrates that the ability of 

YOLOv7 to detect small mechanical components, such as bolts, not 

only minimizes error rates but also strengthens quality control 

mechanisms and promotes automation within Industry 4.0 

environments. This advancement has been validated through 

rigorous experimentation, where the model achieved high precision 

(0.899), recall (0.844), and mean average precision (0.863) metrics, 

showcasing its robust performance in detecting objects even under 

challenging conditions like occlusion and surface variations. 

However, limitations such as reduced detection performance in 

occluded environments and the influence of reflective or corroded 

surfaces underscore the need for further enhancements in 

algorithmic design and dataset enrichment. 

Moreover, the deployment of YOLOv7 contributes 

significantly to sustainable and resource-efficient production 
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processes. By reducing waste through early fault detection and 

optimizing resource utilization, these technologies align with 

contemporary environmental objectives while maintaining the 

stringent quality standards required in military applications. The 

real-time capabilities of YOLOv7, as evidenced by its mean 

inference speed of 28 FPS, further position it as an indispensable tool 

for industrial settings demanding high-speed object detection. 

The study underscores the critical role of robust hardware 

and optimized software environments in achieving these outcomes. 

Utilizing high-performance configurations such as the NVIDIA 

RTX 3060 GPU and Intel Xeon E5 CPU, coupled with PyTorch's 

dynamic deep learning capabilities, provided a stable foundation for 

implementing YOLOv7 effectively. This emphasizes the importance 

of a synergistic relationship between technological infrastructure 

and algorithmic advancements. 

Looking ahead, addressing the current model's limitations 

through strategies such as multi-angle perspectives, improved 

handling of occlusion, and integration of multi-layer learning 

frameworks holds promise for further enhancing its detection 

capabilities. Additionally, augmenting the training datasets with 

diverse scenarios and leveraging big data analytics for continuous 

optimization can significantly elevate the model's efficacy. These 

advancements will not only bolster its applicability in military 

production but also extend its relevance across diverse industrial and 

academic domains. 

Ultimately, the findings of this study affirm that the adoption 

of cutting-edge object detection technologies like YOLOv7 is 

pivotal in advancing the precision, efficiency, and sustainability of 

modern industrial systems. As industries continue to embrace 

automation and artificial intelligence, the role of such technologies 
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will only grow, paving the way for more innovative, competitive, 

and environmentally conscious production methodologies. 
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