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PREFACE 

Forest ecosystems are one of the most important components 

of the world's ecosystems. These ecosystems, which play a critical 

role in both the conservation of biodiversity and the fight against 

climate change, are increasingly attracting attention with their 

sustainable management and monitoring requirements. In recent 

years, the methods used to understand the health and functionality of 

forest ecosystems have undergone a significant transformation with 

technological advancements and innovations in data analysis. 

Remote sensing, artificial intelligence, deep learning, time series, 

and advanced modeling techniques have made this transformation 

possible. 

"Researches on Advances in Forest Ecosystem Monitoring" 

brings together the latest research and applications in the monitoring 

and management of forest ecosystems. The book addresses various 

scientific studies on critical topics such as biomass and carbon 

estimation in forest ecosystems, detection of forest fires, time series 

analysis in the wood products industry, and controlling forest pests. 

Additionally, the innovative methods and technologies used under 

each topic ensure the more effective monitoring and management of 

forest ecosystems. 

 The first section addresses carbon estimation using the 

MARS modeling technique, while the second section details 

biomass predictions in pure Scots pine stands using dummy variable 

regression analysis. The third section addresses the detection of 

forest fires using the YOLO algorithm from digital forest images. 

The fourth and fifth chapters include the evaluation of forest pests 



 

 

using remote sensing techniques. Finally, the sixth chapter explains 

the use of time series analysis in the wood products industry. 

We hope that this book will be an important resource for 

scientists researching forest ecosystems, forest engineers, and nature 

and environmental experts. Additionally, it offers a guiding study for 

decision-makers and technology developers in forest management. 

The book addresses the challenges encountered in forest monitoring 

and management while also showcasing the potential of innovative 

technologies to overcome them. 

 Every step taken to understand better, protect, and manage 

forest ecosystems is of immense importance for future generations. 

We hope that this book will serve as a scientific resource 

contributing to the sustainability of forest ecosystems and helping 

make more effective decisions in forest management worldwide. 

Editors 

Gonca Ece ÖZCAN 

Korhan ENEZ 
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CHAPTER I 

 

 

Predicting Aboveground Biomass using Multivariate 

Adaptive Regression Splines and Stepwise Regression 

 

 

Alkan GÜNLÜ1 

Semih KUTER2 

 

Introduction 

Forest ecosystems play a critical role in regulating the global 

climate by managing carbon emissions, absorbing carbon, and 

controlling energy and water cycles (Herold et al., 2019; Puliti et al., 

2021). Forest biomass is a key component for understanding and 

predicting the global carbon cycle, essential for effective forest 

management (Moradi et al., 2022; Santoro et al., 2021). Accurately 

estimating forest biomass is essential for effective sustainable forest 

management (Khan et al., 2020; Maack et al., 2015). 
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Mühendisliği Bölümü, Çankırı/Türkiye, Orcid: 0000-0002-4760-3816, 
semihkuter@karatekin.edu.tr 
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Total forest biomass consists of two parts: below-ground and 

above-ground biomass (Tetemke et al., 2024; Vicharnakorn et al., 

2014). In the literature, studies mostly focus on estimating above-

ground biomass (Askar et al., 2018; Chunhua Li et al., 2021; Wang 

et al., 2024). Above-ground biomass (AGB) is accurately estimated 

using the allometric relationship between diameter at breast height 

and tree height, measured through field surveys. However, applying 

this method to large forested areas is challenging, costly, and time-

consuming (Lu, 2006). 

In contrast, with the development of remote sensing 

technologies over the past twenty years, studies have combined 

remote sensing data with field measurements to estimate AGB at a 

regional level (Behera et al., 2024; Goetz et al., 2009; Günlü et al., 

2014; Vafaei et al., 2018). The literature in this area shows that 

regression analysis is commonly used to predict relationships 

between variables obtained from remote sensing data and AGB 

measured in the field (Günlü et al., 2014; Chao Li et al., 2019; Lu, 

2006). 

A regression model can be developed using variables from 

field data and remote sensing data. However, traditional regression 

modeling techniques cannot effectively capture the complex, non-

linear relationships between AGB and satellite data. Therefore, to 

improve the model's ability to predict AGB non-linearly, machine 

learning methods such as decision trees, K-nearest neighbors 

(KNN), artificial neural networks (ANN), support vector machines 

(SVM), and multivariate adaptive regression splines (MARS) are 

used to model the relationships between ground-measured biomass 
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and variables obtained from remote sensing data (Migolet et al., 

2022; Nelson et al., 2009; Vaglio Laurin et al., 2016). 

In this study, the relationships between AGB values 

calculated from field measurements in pure Scots pine stands and the 

Sentinel-2 band reflectance values were examined using multiple 

regression and MARS modeling techniques. 

Material and Methods 

Study Area 

The study area (see Figure 1) is located in the Erenlerkös 

Forest Planning Unit within the boundaries of the Kargı State Forest 

Enterprise, the Amasya Regional Directorate of Forestry (40° 58’ 

06" – 41° 07’ 01" N, 34° 19’ 22" – 34° 41’ 09" E) in Türkiye. 

Elevations in the study area range from 300 m to 2096 m. The 

average annual precipitation is 477.5 mm, and the mean temperature 

is 11.2°C (Anonymous, 20218). The study area covers a total of 

21,360.8 ha, of which 16,100.5 ha is forested. Dominant tree species 

include Pinus sylvestris L., Pinus brutia Ten., Pinus nigra Arnold., 

Carpinus betulus L., Juniperus spp., and Quercus frainetto. The 

specific focus of this study is a 2,147.6 ha pure Scots pine forest 

within this unit. 
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Figure 1: Location of study area 

Data 

Ground Measurements 

The study used data from a total of 195 sample plots (see 

Figure 2). For each plot, the aboveground biomass (AGB) of 

individual trees, measured in kilograms, was calculated based on the 

diameter at breast height (d1.3) data from the inventory. The single-

entry AGB equation developed by Yavuz et al. (2010) (Equation 1) 

was applied to estimate the AGB of each tree. The total AGB for 

each plot was then obtained by summing the individual tree AGB 
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values. Finally, AGB per hectare was calculated for each plot, based 

on its area (400, 600, or 800 m²). 

 (1) 

where AGB is aboveground biomass and d indicates diameter at 

breast height (cm). 

 

Figure 2: Locations of the sample plots in Erenlerkös planning unit 

Remote sensing data 

A Sentinel-2 image acquired on 12th of September, 2018 was 

downloaded from the Sentinel Hub website (https://apps.sentinel-

hub.com/). The Sentinel-2 instrument has 13 spectral bands, with 4 

bands at 10 m resolution, 6 bands at 20 m resolution, and 3 bands at 

60 m resolution. In this study, 10 of these bands, specifically those 

with 10 and 20 m spatial resolution, were selected for analysis. 

Details about Sentinel-2’s spectral channels are presented in Table 

1. The image was calibrated in QGIS Desktop 3.8.1 to produce 

26.89952 2.423793 0.373438A B d dG −=  − 
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reflectance images for the 10 selected bands. Next, using ArcGIS 

Desktop 10.6.1, a buffer zone was applied around each band based 

on sample plot sizes, with radii of 15.96 m for low-coverage plots, 

13.82 m for medium-coverage plots, and 11.28 m for full-coverage 

plots. The “zonal statistics” tool in ArcGIS Desktop 10.6.1 was then 

used to compute the minimum, maximum, mean, sum, and range of 

reflectance values for each sample plot. 

Table 1: Sentinel-2 band designations 

Bands Wavelength 

Interval (nm) 

Spatial 

Resolotion (m) 

Band 2 458 – 523 10 

Band 3 543 – 578 10 

Band 4 650 – 680 10 

Band 5 698 – 713 20 

Band 6 733 – 748 20 

Band 7 773 – 793 20 

Band 8 785 – 900 10 

Band 8A 855 – 875 20 

Band 11 1565 – 1655 20 

Band 12 2100 – 2280 20 

Statistical Analysis 

Multiple regression and MARS modeling techniques were 

used as statistical analyses in the study. 

Multiple Regression Analysis 

The multiple regression model structure used in the study is 

given in the equation below. 

 (2) 0 1 1 2 2 3 3 n nAGB X X X X     = + + + + + +
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In the equation; the AGB: aboveground biomass, β0, β1, 

β2,…, βn are the equation parameters, X1, X2, X3, …, Xn is the 

minimum, maximum, average, total, and range reflectance values 

obtained for each sample plot for the Sentinel-2 image, and ε is the 

error term. 

Multivariate Adaptive Regression Splines 

Multivariate adaptive regression splines (MARS) is a 

regression method used to model complex relationships between 

input variables and an output variable (Friedman, 1991). It is 

especially useful when the relationship between variables is non-

linear or when variables interact with each other, meaning it is 

effective in cases where different variables influence one another. 

MARS is based on the idea of piecewise linear regression. 

Instead of fitting a single equation to the data, MARS divides the 

data into different regions and fits simple linear regressions (called 

“basis functions”) to each region. These regions are defined by 

“knots” where the data is split. The best knot locations are chosen 

automatically during model building. Initially, MARS creates many 

candidate basis functions. These are simple linear functions applied 

to subsets of the data, generally starting as piecewise linear 

segments. The model first fits all possible basis functions to the data 

and selects the ones that best improve the fit (Hastie et al., 2009). 

• Forward Step: The algorithm adds one basis function 

at a time to improve the model, continuing until the 

model fits the data well (though it may risk 

overfitting). 
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• Backward Step: To prevent overfitting, MARS uses 

a backward pruning step that removes basis functions 

that don’t significantly improve accuracy, aiming to 

keep the model simple while capturing key patterns 

in the data. 

• Basis Functions: These are simple functions that 

"bend" at the knots to capture changes in the data. 

They can take forms like (x-c)+ or (c-x)+, where x is 

the input variable and c is the knot location. 

• Interaction Terms: MARS can also model 

interactions between variables, meaning it captures 

cases where the effect of one variable depends on the 

value of another. 

• Selecting Knots and Variables: During the forward 

pass, MARS decides where to place knots and which 

variables to include based on how well they fit the 

model, while also considering a cost function that 

penalizes added complexity. 

The MARS model uses several key parameters to perform 

well on data. These parameters control model complexity, 

interaction degree, and overall performance: 

• max_degree: This parameter sets the maximum 

degree of interaction between variables in the model. 

If max_degree = 1, the model uses only individual 

variables (no interaction terms). Higher values allow 

more complex interactions, which makes the model 
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more expressive but potentially harder to interpret. 

Very high values may lead to overfitting. 

• penalty: MARS uses a penalty term to control model 

complexity, applying a penalty for each additional 

basis function. A higher penalty leads to a simpler 

model using fewer basis functions, which helps 

prevent overfitting but can also make the model fit 

the data less well. 

• thresh (Threshold Value): This parameter sets the 

error improvement threshold for adding a new basis 

function during the forward pass. If a new basis 

function improves the error below this threshold, it’s 

accepted. A low threshold allows many functions to 

be added, making the model complex and potentially 

overfit. A high threshold adds only functions that 

provide major improvements, leading to a simpler 

model. 

• Max Number of Terms: This limits the number of 

basis functions in the model, checked during the 

forward pass to keep the model from becoming 

overly complex. A lower max term count keeps the 

model simple, while a higher count allows a more 

complex, better-fitting model but with a risk of 

overfitting. 

Balancing complexity and overfitting is essential when 

adjusting a MARS model. These parameters help control the number 
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of knots, basis functions, and interaction levels, ensuring the model 

remains flexible yet general. Proper parameter tuning aids in creating 

a model that explains the data well without overfitting. 

Advantages of MARS: 

• Captures non-linear relationships: By using 

piecewise linear functions, MARS can model 

complex, non-linear patterns that traditional linear 

models may miss. 

• Automatic feature selection: MARS automatically 

selects important input variables, reducing the need 

for manual feature engineering. 

• Handles interactions: MARS can capture variable 

interactions without needing them to be specified in 

advance. 

Limitations: 

• Prone to overfitting: Without proper adjustments, 

MARS can fit too many basis functions, causing 

overfitting to the training data. The backward step 

reduces this, but careful tuning is essential. 

• Less interpretable than simple models: While more 

flexible than linear regression, MARS models are 

harder to interpret due to their piecewise and 

interaction-based structure. 
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MARS is commonly used in regression problems in fields 

like environmental modeling, finance, and engineering, especially 

when relationships between variables are complex and non-linear. 

It’s a good choice when interactions among variables play a key role 

in explaining the outcome since it can automatically identify and 

model these interactions. 

In summary, MARS is a powerful prediction tool, especially 

when relationships between variables are non-linear or interactive. It 

adapts to the data, making it a flexible method that can improve 

accuracy in many real-world applications. However, careful 

adjustments are needed to avoid overfitting and keep the model 

understandable. 

Performance metrics 

Various criteria were applied to assess the prediction 

accuracy of the modeling techniques. These criteria include the 

correlation coefficient (R), coefficient of determination (R²), root-

mean-square error (RMSE), and mean absolute error (MAE). 

 (3) 
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 (6) 

where N is the number of observations, p is the number of 

parameters, 𝑦𝑖  are measured values of the AGB, ŷi are predicted 

AGB, �̅� is a mean of measured AGB values, s(y) and s(ŷ) are the 

standard deviations of the observed and the predicted AGB values, 

respectively.  

Results and Discussion 

In the study, the relationships between variables derived 

from Sentinel-2 satellite imagery and AGB data obtained from 

ground measurements were modeled using MARS and MLR 

techniques. The model and test performances are presented in Table 

2. Additionally, the observation and prediction graphs for the model 

(i.e., training) and test datasets, according to both modeling 

techniques, are shown in Figures 3-6. 

Table 2: The performances of MARS and MLR on training and test 

datasets 

Method 

Training Test 

RMSE MAE R RMSE MAE R 

MLR 62.1685 46.9446 0.4603 69.0457 55.0238 0.3170 

MARS 47.1735 37.3444 0.7419 49.2146 41.1786 0.7209 
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As indicated by the statistical performance metrics in Table 

2, for the MLR model, the training RMSE was 62.17, and the MAE 

was 46.94, with a correlation coefficient (R) of 0.4603. On the test 

dataset, the model’s performance decreased, with an RMSE of 

69.05, an MAE of 55.02, and a lower R value of 0.3170. These 

results indicate that the MLR model had relatively poor predictive 

power, especially when applied to unseen data, showing limited 

generalization ability. 

In contrast, the MARS model demonstrated significantly 

better performance. On the training dataset, the RMSE was 47.17, 

and the MAE was 37.34, with a much higher R value of 0.7419. 

Similarly, the MARS model maintained strong predictive accuracy 

on the test dataset, with an RMSE of 49.21, an MAE of 41.18, and 

an R value of 0.7209. These results suggest that the MARS model 

not only fit the training data well but also generalized effectively to 

the test data, outperforming the MLR model in all metrics. 

The MLR and MARS models obtained have different sets of 

predictor variables. MLR uses only two predictor variables, whereas 

the final MARS model employs 4 predictors, as given in Table 3. 

Only one predictor variable is common in both models, i.e., 

B7_Sum. 

Table 3. The predictor variables involved in the final MLR and 

MARS models 

Model Selected Predictor Variable Set 

MLR B2_Sum, B7_Sum 

MARS B5_Mean, B7_Sum, B7_Max, 

B12_Range 
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Overall, the MARS model proved to be a more robust and 

accurate method for predicting AGB, providing better results in both 

training and test datasets compared to the MLR model. This 

highlights the suitability of the MARS approach for capturing 

complex relationships in the data. 

 

Figure 3: The graph of observed vs predicted values for MLR on 

training 
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Figure 4: The graph of observed vs predicted values for MLR on 

testing 

 

Figure 5: The graph of observed vs predicted values for MARS on 

training 
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Figure 6: The graph of observed vs predicted values for MARS on 

testing 

When examining several related studies in the literature, 

Günlü et al. (2014) modeled the relationships between band 

reflectance values derived from Landsat TM satellite imagery and 

AGB using the MLR method in pure black pine stands. The 

coefficient of determination (R² = 0.465) obtained from their model 

was higher compared to our study (R² = 0.2119). Similarly, in a study 

by Turgut & Günlü (2022), the relationships between band 

brightness values from Landsat 8 OLI satellite imagery and AGB 

were modeled using the MLR method in pure black pine stands, and 

their coefficient of determination (R² = 0.445) was also higher than 

ours. 

In a study by Demirel et al. (2023), the relationships between 

band reflectance values from Sentinel-2 satellite imagery and 

aboveground carbon in pure cedar stands were modeled using the 
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MLR method, with a coefficient of determination of R² = 0.456. In 

another study by Bulut (2023), the relationships between AGB and 

band reflectance values from Landsat 8 OLI in pure Calabrian pine 

stands were modeled using MLR and support vector machine (SVM) 

techniques. The results indicated that R2 was 0.50 for MLR and 0.67 

for SVM. 

In a study by Ayushi et al. (2024), the relationships between 

variables related to bands and vegetation indices from Sentinel-2 

satellite imagery and AGB were predicted using different machine 

learning techniques, including SVM, MARS, k-NN, random forest, 

ANN, gradient boosting, and penalized regression. The model 

results showed that the coefficients of determination ranged from 

0.40 to 0.65, with the MARS technique yielding a coefficient of 

determination of 0.59, similar to the results obtained in our study. 

Lastly, in a study by Safari et al. (2017), conducted in two 

different oak forests (undegraded and highly degraded), the 

relationships between variables derived from Landsat 8 OLI bands 

and AGB were analyzed using SVM, boosted regression trees 

(BRT), RF, and MARS techniques. For the MARS method, the 

coefficients of determination were 0.34 in highly degraded forests 

and 0.56 in undegraded forests. 

Conclusion 

This study evaluated the performance of MLR and MARS 

modeling techniques in predicting AGB using variables derived 

from 10- and 20-meter spatial resolution bands of Sentinel-2 satellite 

imagery. The results clearly indicate that the MARS model 

outperformed the MLR model in terms of accuracy and 
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generalization. While the MLR model exhibited moderate predictive 

capability with relatively higher error rates, the MARS model 

demonstrated superior performance, with lower RMSE and MAE 

values and a significantly stronger correlation between observed and 

predicted AGB values. 

The findings suggest that the MARS modeling technique is 

better suited for capturing the complex, non-linear relationships 

between AGB and variables obtained from satellite images, making 

it a more effective tool for biomass estimation. Given the limited use 

of MARS in both national and international studies, particularly in 

forest ecosystems, this study underscores the need to expand its 

application across different forest types. This would enhance the 

accuracy of AGB predictions and contribute to improved forest 

management and carbon stock assessments. 

Future studies should explore the potential of combining 

MARS with other advanced machine learning techniques and 

increasing the quantity and diversity of data to further improve 

model performance. Additionally, applying MARS in different 

forest ecosystems within the country would provide a more 

comprehensive understanding of its capabilities and limitations in 

biomass estimation. One potential improvement could be increasing 

the amount of data used in the training of the model, which may 

further enhance prediction accuracy.  

Additionally, in our country, there has been no study 

focusing on the prediction of AGB using the MARS modeling 

technique. Even in international literature, studies using the MARS 

technique to predict AGB are relatively scarce. Therefore, there is a 
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need to increase the number of such studies, particularly focusing on 

the diverse forest ecosystems in our country. This would not only 

contribute to filling a gap in the national research landscape but also 

provide valuable insights into the application of MARS for AGB 

estimation across various ecological contexts. 
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Introduction 

Forests undertake many functions such as wood production, 

oxygen production, erosion prevention, landscape effects and more. 

Meanwhile, forests play a central role in the global carbon cycle as 

well as being biomass reserve areas. The biomass is a good indicator 

associated with the forest productivity, forest degradation, 

sustainable forest management strategies, carbon sequestration, and 

the change in forest stands over time (Puliti et al., 2021; 

Pietrzykowski et al., 2021). One of the most important parameters 
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that will help interpret the forest ecosystem is above-ground biomass 

(AGB). The AGB is the amount of living mass of trees in a forest 

ecosystem and provides information about the amount of currently 

carbon sequestration. The change in this parameter is a performance 

criterion for combating climate change and global warming (Bulut 

& Aytaş, 2023). 

Recently, the efficacy of different modeling approaches in 

the remote sensing related studies has been frequently assessed to 

improve the estimation accuracy of tree and stand features, such as 

AGB in different forest types. Aksoy (2024) compared the prediction 

performance of the parametric and non-parametric models in 

modeling stand volume, basal area, and quadratic mean diameter of 

Anatolian black pine. Besides, the influence of different predictors 

including stand and environmental factors on the prediction accuracy 

has been also frequently examined, irrespective of modeling 

approaches. In the study of Bulut (2023), the relative contribution of 

different data sources such as spectral features and topographic 

properties in modeling AGB of Calabrian pine was investigated. It 

was found that an increase in the number of significant predictor 

variables, especially topographic and climatic factors, significantly 

improved the modeling accuracy. 

On the other hand, stand features and site conditions (e.g., 

stand density classes, forest types, site classes, and ecoregion 

clusters) can be also included as a categorical or dummy variable in 

the predictive models. This approach is well examined with field 

data to predict tree and stand properties (e.g., total tree height and 

stand volume) (Manning, McDill & Gilabert, 2016; Seki & Sakıcı, 

2022a; Zeng, Zhang & Tang, 2011). However, the dummy variable 
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approach has less examined in remote sensing-related studies of 

forestry (Li, Li & Li, 2019; Ou et al., 2019). The present study 

hypothesized that determining the main source of variation in remote 

sensing data could provide better prediction accuracy with fewer 

remote sensing-based predictors. The present study aimed to analyze 

the influence of crown closure, stand age, and stand density classes 

as a dummy variable on the prediction accuracy of AGB of naturally 

established and managed pure Scots pine stands (Pinus sylvestris L.). 

Material and Method 

Study area 

The study area is located in the Köroğlu and Dörtdivan Forest 

Planning Units affiliated to the Bolu Regional Directorate of 

Forestry, Dörtdivan Forest Enterprise in the northwest region of 

Türkiye (Figure 1). The geographical coordinates of this area are 

401615 to 426543 east longitudes and from 4484631 to 4514094 

north latitudes (WGS 84, UTM Zone 36 N). The study area covers 

36433.5 ha in total, while the productive and non-productive forest 

areas cover 15574.8 ha and 3192.8 ha, respectively. Pinus sylvestris 

is the most common species in the area (11442.0 ha). It spreads over 

an area of 7569.4 ha as a pure stand, and 3872.6 ha as a mixed stand. 

Apart from this, Pinus nigra (367.2 ha) and Quercus petraea (129.1 

ha) species are widespread. There are also areas managed as uneven 

aged forests with mixed stands of Abies nordmanniana and Pinus 

sylvestris (3636.5 ha). Elevation of the study area varies from 1160 

m to 2390 m above sea level, with an average elevation of 1496 m 

(GDF, 2019). 

 



Predicting Above-ground Biomass of Pure Scots Pine Stands using 

Dummy Variable Regression Analysis in Northwest Türkiye  
 

--33-- 

 

Figure 1: Location of the study area 



Predicting Above-ground Biomass of Pure Scots Pine Stands using 

Dummy Variable Regression Analysis in Northwest Türkiye  
 

--34-- 

Field Measurements 

In the study, forest inventory data carried out to renew forest 

management plans in the forest planning units covering the study 

area in 2018 were used. In this context, 657 sample point data were 

obtained from the ground measurements. Sample plots were 

systematically positioned at 300 × 300 m intervals on productive 

forest areas. The size of sample plots was determined considering 

the closure classes; 800 m2 for 11–40% closed areas, 600 m2 for 41–

70% closed areas and 400 m2 for 71–100% closed areas. Then, all 

trees having diameters above 7.9 cm at breast height were identified 

in each sample plot and their breast height diameters (dbh, 1.30 m) 

were measured. 

Above-ground Biomass Calculation 

For the calculation of AGB in pure Scots pine stands, the 

diameter-dependent AGB equation developed by Yavuz et al. (2010) 

was used (Eq. 1). The AGB calculation for the trees with diameter 

measurements in each sample plot was made on a single tree basis 

using equation 1. Then, total AGB was determined for the sample 

plots. In order to prepare the data, the AGB amounts calculated as 

"kg" on a sample plot basis were converted to "tons" on a hectare 

basis. 

𝐴𝐺𝐵 (𝑘𝑔) = 6.89952 − (𝑑𝑏ℎ × 2.423793) + (𝑑𝑏ℎ2 ×

0.373438)             (1) 

 

Satellite Image Processing and Data 

Landsat 8 Operational Land Imager (OLI) satellite images 

were downloaded free of charge from the 

https://earthexplorer.usgs.gov/ data portal and were used (USGS, 

https://earthexplorer.usgs.gov/
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2000). To ensure compatibility between satellite and field data, time-

series images of Landsat 8 OLI were obtained for 2018 when the 

inventory was made. Blue, green, red, NIR, SWIR 1, and SWIR 2 

satellite bands of Landsat 8 OLI have a 30 m spatial resolution, while 

its panchromatic bands have a 15 m spatial resolution. Landsat 8 OLI 

images, which were completely cloudless, were achieved for the 

study area for six different months of 2018 (Table 1). Next, the 

Reflectance (R) data were obtained for these satellite images for each 

month following the atmospheric correction. Additionally, many 

vegetation indices (VI) were calculated using these R data. A list of 

the significant VIs variables in the AGB model was displayed in 

Table 2. Six-month R and VI data were prepared for each sample 

plot, and the spectral data sets were made ready for modeling. 

Table 1: Description of the time-series Landsat 8 OLI data 

Satellite image Path/Row Acquisition data 

Landsat 8 OLI 178/032 

17 March 2018 

28 June 2018 

14 July 2018 

15 August 2018 

16 September 2018 

3 November 2018 
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Table 2: Vegetation indices derived from Landsat 8 OLI satellite 

image 

Vegetation indices Formula Reference 

EVI  

(Enhanced 

Vegetation Index) 

2.5 x ((NIR – Red) / (NIR + 

(6 x Red) – (7.5 x Blue) + 1)) 

Liu & Huete 

(1995) 

SARVI  

(Soil and 

Atmospherically 

Resistant Vegetation 

Index) 

(1.0 + L) x (NIR - (Rr – y) x 

(RB - Rr)) / (NIR - ((Rr – y) x 

(RB - Rr)) + L)  

y = 0.735, Rr = 0.740, L = 

0.487, RB = 0.560 

Kaufman & 

Tanre (1992) 

VIS123 (Blue + Green + Red) Lu et al. (2004) 

Dummy Variable Regression Analysis 

Prior to developing the predictive AGB model, a suitable set 

of reflectance variables and vegetation indices was determined using 

the forward variable selection method on the basis of Akaike’s 

information criterion. At this time, the collinearity between the 

potential predictors was tested using the variance inflation factor 

(VIF) with a threshold of 10. After determining the significant 

predictors, the present study utilized dummy variable approach to 

predict AGB of Scots pine stands. This method has an ability to 

involve to the factorized effect of different sites and stand features 

such as ecoregions and crown closure classes (Corral-Rivas et al., 

2007; Seki & Sakıcı, 2022a, 2022b). Therefore, it significantly 

improves modeling accuracy, as compared to traditional regression 

models. The general form of dummy variable models is as follows 

(Eq. 2): 

𝑌 = 𝑎0 + ∑ 𝑎𝑖𝑧𝑖 + 𝑏𝑋             (2) 

where Y is a dependent variable, X is a predictor variable, a 

and b are regression parameters to be estimated, ai is a specific 
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parameter to be estimated, and zi is indicator variable tailored to a 

categoric factor such as crown closure classes. 

The indicator variables that have the values 0 and 1 are 

usually used to define dummy variables. Several schemes can be 

used to assign dummy variable ( Zeng, Zhang & Tang, 2011). In the 

current study, dummy variable approach with reference group was 

performed in developing AGB models. In pre-analysis, among 

different classes including crown closure (CC), stand age (SA) and 

stand density (SD), the best AGB predictions were achieved by SD 

classes that were represented by the categorical variable with three 

categories using two dummy variables. Stand density of sample plots 

was calculated using an equation developed for Scots pine stands by 

Yavuz et al. (2010). Accordingly, sample plots were divided into 

three categories involving SD <0.3―SD1, 0.3<SD<0.6―SD2 and 

SD>0.6―SD3. 

Eq. 2 was then extended with dummy variables to include SD 

classes. The resultant form of AGB model is as follows (Eq. 3): 

𝑌 = 𝑎0 + 𝑎1𝐼1 + 𝑎2𝐼2 + (𝑏0 + 𝑏1𝐼1 + 𝑏2𝐼2)𝑋         (3) 

where Ii corresponds dummy variables as follows: 

I1=1 and I2=0 for SD1 

I1=0 and I2=1 for SD2 

I1=0 and I2=0 for SD3 (reference group) 

Model Performance Criteria 

The present study utilized the coefficient of determination 

(R2, Eq. 4) and mean absolute percentage error (MAPE, Eq. 5) to 
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assess modeling accuracy. After the best models were determined 

based on these criteria, their predictive ability was then justified 

using the test data. 

𝑅2 = 1 −
∑(𝐴𝐺𝐵−𝐴𝐺�̂�)2

∑(𝐴𝐺𝐵−𝐴𝐺𝐵̅̅ ̅̅ ̅̅ )2
            (4) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐴𝐺𝐵−𝐴𝐺�̂�

𝐴𝐺𝐵̅̅ ̅̅ ̅̅
|𝑛

𝑖=1             (5) 

 

where the hat corresponds with the predicted values and the 

overline shows the mean of actual values. 

Results  

The results of dummy variable regression models associated 

with various categories were shown in Table 3. The best accuracy 

was gained by SD as a dummy variable. Therefore, in the following 

pages, the results based on only SD were provided. 

Table 3: The performance scores for AGB models with respect to 

different categories in model data 

Data source Categories R2 MAPE 

Reflectance 

CC 0.18 26.16 

SA 0.32 24.22 

SD 0.74 15.23 

Vegetation indices 

CC 0.15 27.32 

SA 0.36 23.59 

SD 0.73 15.33 

CC: Crown closure, SA: Stand age, SD: Stand density 

The results of regression model with and without dummy 

variable were displayed in Table 4. As seen in the table, the inclusion 

of dummy variable into regression model considerably improved 
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modeling accuracy. In addition, the success of this model in test data 

was found to be acceptable. 

Table 4: The performance scores of AGB model without (M1) and 

with dummy variable (M2) in model and test data in terms of 

reflectance variables 

Performance 

Criteria 

M1 M2 

Model 

Data 

Test 

Data 

Model 

Data 

Test 

Data 

R2 0.14 0.10 0.74 0.67 

MAPE 27.13 27.90 15.23 17.74 

The model forms involving reflectance variables of linear 

regression (Eq. 6) and dummy variable regression (Eq. 7) were 

presented below. 

• Regression model with reflectance variables (M1) 

AGB ton ha-1 = (a1×SWIR 2July) + (a2×NIRMarch) + (a3×BlueMarch)   (6) 

 

• Dummy variable regression model with reflectance variables 

(M2)  

 

AGB ton ha-1 = (a1+a2×I1+a3×I2) + (a4+a5×I1+a6×I2) × SWIR2July + 

(a7+a8×I1+a9×I2) × NIRMarch + (a10+a11×I1+a12×I2) × BlueMarch          (7) 

 

Similar to the previous results, utilizing dummy variable 

regression model with vegetation indices significantly increased the 

modeling accuracy (Table 5). In addition, the successes of the 

reflectance-based models were close to each other. The same result 

was valid to the vegetation indices-based models. 
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Table 5: The performance scores of AGB model without (M3) and 

with dummy variable (M4) in model and test data in terms of 

vegetation indices variables 

Performance 

Criteria 

M3 M4 

Model 

Data 

Test 

Data 

Model 

Data 

Test 

Data 

R2 0.15 0.14 0.73 0.65 

MAPE 27.33 27.66 15.33 17.91 

 

The model forms involving vegetation indices of linear 

regression (Eq. 8) and dummy variable regression (Eq. 9) were 

presented below. 

• Regression model with vegetation indices (M3) 

 

AGB ton ha-1 = (a1×EVIJuly)+(a2×VIS123June)+(a3×SARVIAugust)    (8) 

 

• Dummy variable regression model with vegetation indices (M4) 

 

AGB ton ha-1 = (a1+a2×I1+a3×I2) + (a4+a5×I1+a6×I2) × EVIJuly + 

(a7+a8×I1+a9×I2) × VIS123June + (a10+a11×I1+a12×I2)×SARVIAugust (9) 

The estimated parameters of dummy variable regression 

model involving reflectance (M2) and vegetation indices (M4) were 

displayed in Table 6. As shown in the table, the coefficients 

belonging to SD classes were very different, suggesting the presence 

of a considerable variation among SD classes in terms of reflectance 

and vegetation indices. 
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Table 6: The estimated parameters of dummy variable regression 

models including reflectance (M2) and vegetation indices (M4) 

variables as predictor variables 

Parameters 
Coefficients 

Parameters 
Coefficients 

M2 M4 M2 M4 

a1 215.76 171.37 a7 -222.40 -76.27 

a2 -165.51 -156.92 a8 235.67 187.65 

a3 -70.25 -26.15 a9 159.03 16.83 

a4 28.11 -107.52 a10 294.05 11.19 

a5 9.15 84.18 a11 -292.78 -6.34 

a6 -103.29 19.59 a12 -265.45 -9.05 

The mathematical expressions of dummy variable regression 

models, that is M2 and M4, were given below to clarify their use. 

 

A) Dummy variable regression models having reflectance 

variables were as follows (Eq. 10-12): 

For SD1: 

AGB ton ha-1 = 50.25 + (37.26 × SWIR2July) + (13.27 × 

NIRMarch) + (1.27 × BlueMarch) (10) 

For SD2: 

AGB ton ha-1 = 145.51 - (75.18 × SWIR2July) - (63.37 × 

NIRMarch) + (28.16 × BlueMarch) (11) 

For SD3: 

AGB ton ha-1 = 215.76 + (28.11 × SWIR2July) - (222.40 × 

NIRMarch) + (294.05 × BlueMarch) (12) 

B) Dummy variable regression model having vegetation 

indices were as follows (Eq. 13-15): 
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For SD1: 

AGB ton ha-1 = 20.45 - (23.34 × EVIJuly) + (111.38 × 

VIS123June) + (4.85 × SARVIAugust) (13) 

For SD2: 

AGB ton ha-1 = 145.22 - (87.93 × EVIJuly) - (59.44 × 

VIS123June) + (2.14 × SARVIAugust) (14) 

For SD3: 

AGB ton ha-1 = 171.37 + (28.11 × EVIJuly) - (222.40 × 

VIS123June) + (11.19 × SARVIAugust) (15) 

Discussion 

The present study found that the R2 and MAPE values of 

reflectance-based models were the closest to that of vegetation-based 

models, which were approximately 0.15 and 27% for linear 

regression and 0.73 and %15 for dummy variable regression, 

respectively. The improved modeling accuracy with the dummy 

variables can be attributed to the different structural properties of 

forests with respect to canopy, density (overstory and understory), 

and species composition. Furthermore, it can be related to the 

different ecological characteristics of forests regarding climate and 

topography. The varying stand structures and growing conditions 

greatly affect the spectral characteristics of forest stands. The stand 

features such as stand volume and AGB are thus reflected by 

different colors, structures and textures in the satellite images (Li, Li 

& Li, 2019). Andalibi et al. (2021) found that the vegetation indices 

including EVI and NDVI had great spatial and temporal variations 

in a semi-arid forest. In another study, Hossain & Li (2021) found 
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that NDVI significantly varied between the study areas including the 

temperate forests located in the cold steppe, humid and dry steppe 

ecoregions. The high reflectance variability presents a significant 

challenge to the traditional linear regression models and leads to the 

low prediction accuracy, as evidenced by the current study. In this 

circumstance, the non-parametric models such as the support vector 

machine have been preferred from the linear regression model. 

However, they could explain only a small proportion of the variation 

in stand features when available data is insufficient (Ou et al., 2019). 

Therefore, considering the effect of forests structural properties as a 

dummy variable can improve modeling accuracy. Ou et al. (2019) 

found that the inclusion of dummy variables relating to stand age in 

linear regression increased the R2 value from 0.32 to 0.70. Likewise, 

Li, Li & Li (2019) found that incorporating the dummy variables 

relating to the crown density into linear model increased the R2 value 

from 0.20 to 0.40 in the pine and mixed forests, and 0.20 to 0.60 in 

the Chinese fir forests. The current study underlined that the stand 

density was the main source of the variation in remote-sensing data 

reflecting AGB of Scots pine stands. When the stand density classes 

were included as a dummy variable in the predictive AGB model, 

the modeling accuracy greatly improved. The dummy variable 

regression model explained a large proportion of the variation in the 

observed AGB, as the R2 was higher than 70%. 

Satellite images-based R and VI data were widely used for 

predicting forest AGB. Bulut & Aytaş (2023) predicted the AGB of 

Scots pine, which is distributed in the Inner Anatolian Region of 

Türkiye, using different data sets. NIR, MIR and EVI were added as 

the auxiliary predictor variables to the linear regression model using 



Predicting Above-ground Biomass of Pure Scots Pine Stands using 

Dummy Variable Regression Analysis in Northwest Türkiye  
 

--44-- 

spectral data obtained from the MODIS satellite (R2
adj=0.46, r=0.69, 

RMSE=18.002 t ha−1). In addition, the highest improvement in the 

AGB model was achieved by using spectral variables. Bulut (2023) 

predicted the AGB of Calabrian pine stands spreading in the 

Mediterranean area of Türkiye. The R and VI data sets were used as 

the auxiliary predictor variables in the multiple linear regression 

model (MLR) and support vector machines (SVM) techniques. In 

these AGB models, the bands included as independent variables 

were blue, NIR, SWIR-1 and SWIR-2, and the indices were NVWI, 

PSSR, SARVI, GLI, ARVI, EVI and GNDVI. The R2 values were 

obtained as 0.34 and 0.50 using the MLR method with the R and VI 

data sets. When the SVM method was used, these values were 0.54 

and 0.61, respectively.  

Turgut & Günlü (2022) predicted the AGB of Anatolian 

black pine stands spreading in the north of Türkiye. The AGB was 

predicted using the MLR method with band brightness (R2
adj=0.445), 

VI (R2
adj=0.387) and texture (R2

adj=0.552) values derived from 

Landsat 8 OLI satellite. In the AGB model, the bands included as 

independent variables were blue, red, SWIR-1 and TIR-2, and the 

indices were FII, DVI, EVI and IPVI. In this study, although the 

prediction performance of R data is higher than VI data, VI variables 

can be used effectively in AGB prediction. In the study conducted 

by Bulut (2023), it was stated that the addition of Landsat 8 OLI 

satellite based VI variables to the model provided the most 

contribution to the AGB model. VI can minimize soil background, 

sun angles, topography effects, atmospheric variability, and canopy 

geometry. It can also significantly increase the sensitivity to green 

vegetation. This situation might improve the correlation between VI 
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and AGB in forest ecosystems. So, VI can be used as an alternative 

variable to predict the AGB (Günlü et al., 2014; Nguyen, Vu & 

Roeder, 2021). 

In modeling using remotely sensed data, the use of time-

series data instead of single-dated data is very important. Zhu & Liu 

(2015) reported that phenological features reflected by time-series 

satellite data instead of single-dated data can reduce saturation 

problems and models with highly predictive can be developed. 

According to Chrysafis et al. (2019), time-series spectral data show 

phenological variations across a range of vegetation species. 

Additionally, they found that time-series spectral data outperform 

single-dated data in estimating growing stock volume. Spectral data 

is influenced by forest phenology, and as a result, spectral variations 

that may exist in various forest types may have an impact on the 

prediction accuracy of the models that need to be developed. In these 

situations, predicting forest stand parameters may not be possible 

with just single-time spectral data. Utilizing spectral data from 

satellite imagery in time-series helps lessen saturation and improve 

the accuracy of models that are being created for various vegetation 

structures (Naik, Dalponte & Bruzzone, 2021; Bulut, Sivrikaya & 

Günlü, 2022). 

Conclusion 

The current study drew attention to the role of dummy 

variable regression model in order to improve the AGB predictions 

of Scots pine stands. The classification of the AGB and spectral data 

by a certain stand feature such as crown closure, stand age, and stand 

density significantly improved the prediction accuracy. The present 
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study showed that the main factor as a dummy variable was the stand 

density. When the influence of stand density was included as a 

dummy variable in the predictive AGB model, the accuracy of the 

AGB predictions significantly improved, as the R2 increased from 

0.15 to 0.70 and the MAPE reduced from 27.3 to 15.3. It is suggested 

utilizing the dummy variable regression with an appropriate 

categorical factor in order to improve the quality of AGB 

predictions. 
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Real Time Detection of Forest Fires with YOLO 

Algorithm Using Digital Forest Images: A Deep 

Learning-Based Approach 
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Introduction 

Forests are biologically rich ecosystems (Zhou et al., 2022), 

that provide wood, non-wood products, food, biofuels, and 

pharmaceutical raw materials for more than one billion people 

(FAO, 2020; Nesha et al., 2021), host wildlife (Gibson et al., 2011; 

Sasaki, 2021) and different plant species (Sullivan et al., 2017; 

Sasaki, 2021). Beyond these services, it is essential for sequestering 

carbon, contributing significantly to the mitigation of global climate 

change (Pan et al., 2011; Nesha et al., 2021). Therefore, monitoring 
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and controlling forest structure is very important for the 

sustainability of forests (Wang et al., 2018; Aksoy and Kaptan, 

2022). Fires have historically played the greatest role in changing 

forest ecosystems and jeopardizing their continuity and 

sustainability (Bond et al., 2005; Glasspool et al., 2004: Sivrikaya et 

al., 2024). In recent times, driven by global climate change, the 

escalation in the occurrence and intensity of forest fires has become 

a critical threat to both forest ecosystems and society. This is because 

these fires not only lead to the degradation of forests and other 

vegetation and the loss of habitats, but can also have a profound 

impact on the ecological balance and the global climate (Thonicke 

et al., 2001; Yadav et al., 2022; Yang et al., 2024). Extended periods 

of hot, dry summers greatly elevate the risk of forest fires, 

particularly in coniferous pine forests and maquis regions, which are 

highly susceptible to large-scale blazes (Bilgili et al., 2021; 

Sivrikaya et al., 2024). As a result, forest fires have become a major 

problem in recent years, particularly in the countries of the 

Mediterranean basin and in Turkey. The development of fire 

monitoring technologies for the early detection and swift response to 

forest fires has become an essential and urgent necessity. (Yang et 

al., 2024). 

The methods commonly used for forest fire detection can be 

summarized under three main headings: forest patrols, satellite 

systems, and video surveillance (Xie et al., 2018; Barmpoutis et al., 

2020; Cao et al., 2024). Ground patrols are conducted on foot or by 

vehicle and can only be carried out in limited areas. This limits 

visibility and is insufficient for fire detection. Satellite systems, on 

the other hand, eliminate the disadvantage of limited space, but 
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provide a long, costly monitoring time and a low-resolution (coarse 

texture) detection service. In addition, satellite systems can be 

affected by weather and cloud cover, making them inadequate for 

real-time fire detection (Chuvieco et al., 2020; Yang et al., 2024). 

Recently, researchers have focused on investigating the real-time 

detection of fires using in-forest cameras (photo traps) that minimize 

the aforementioned limitations and unmanned aerial vehicles 

(UAVs), which have recently developed rapidly and are widely used 

in many fields (Chen et al., 2019; Mahmoud et al., 2019; Yang et al., 

2024). Mukhiddinov et al. (2022) investigated the early detection of 

forest fires based on smoke detection in images using UAV imagery. 

Emmy Prema et al. (2018) investigated fire detection by examining 

both static and dynamic texture features in areas recognized as fire 

zones, employing the YVbCr color model. Moreover, fire detection 

using RGB, HIS and YUV multicolor sensors has been investigated 

by Han et al. (2017). 

The diverse range of data made available through 

advancements in remote sensing has motivated researchers to 

incorporate widely used machine learning and deep learning 

algorithms into remote sensing methodologies (Özer et al., 2022; 

Aysal et al., 2022). The key algorithms for detecting forest fires have 

been developed using deep learning methods (LeCun et al., 2015; 

Cao et al., 2024). Among these is the region-based convolutional 

neural network (R-CNN), a two-stage method known for its high 

accuracy in identifying regional targets, albeit with a slower 

processing speed (Girshick et al., 2014; Ren, 2015; Zou et al., 2023). 

Others are regression-based single-stage algorithms such as Center-

Net, SSD, R-SSD and You Only Look Once (YOLO) series, which 
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are fast but slightly less accurate (Redmon et al., 2016; Liu et al., 

2016; Jeong et al., 2017; Song and Fu, 2018). Two-stage and one-

stage approaches have been applied in forest fire detection (Tan et 

al., 2020; Cheknane et al., 2024; Cao et al., 2024). However, the 

YOLO algorithm is the most common algorithm used in forest fire 

detection as a CNN-based object detector commonly used in 

computer vision applications. Lin et al. (2023) proposed TCA-

YOLO, a highly efficient and precise model for global forest fire 

detection. This model integrates YOLOv5 with a Transformer 

encoder to enhance detection capabilities. TCA-YOLO exhibited 

very high predictive ability in wildfire detection in various scenarios. 

Li et al., (2023) demonstrated approaches to facilitate forest fire 

management by improving forest fire and smoke detection. 

Abdusalomov et al. (2023) explored the use of the Detectron2 model 

and deep learning techniques for detecting forest fires. Similarly, Lu 

et al. (2022) examined real-time fire detection employing UAVs and 

deep learning methods. The YOLOv8 model, as discussed by Talaat 

and ZainEldin (2023), has emerged as an effective solution for real-

time forest fire detection, offering notable advancements in both 

accuracy and speed. This study aims to detect forest fires early by 

using the YOLO algorithm with mild, medium, and heavy digital fire 

images of forest fires obtained from UAVs, photo traps, and other 

camera systems. Thus, forest fires can be detected early and in real 

time with sensors such as UAVs and photo traps, which are being 

used extensively, thus contributing significantly to the first response 

time to forest fires. 
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Material and Method 

This research focuses on the real-time, high-precision 

detection of forest fires, accomplished through three primary phases. 

The initial phase entails the development of fire image datasets, 

followed by the second phase, which focuses on model training, and 

culminating in the final phase, which evaluates the accuracy of 

model. The general flow of the study methodology is shown in 

Figure 1. 

 

Figure 1. Flowchart representing the process of the study 

Data Set and Image Processing 

The first stage of the overall study methodology is data 

acquisition. At this stage, light, medium, and high intensity fire 

images obtained from different sensors such as drones, photo traps, 

cameras, etc. were obtained from the Kaggle public dataset platform. 

Some of the data was also gathered from publicly available sources, 
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including social media and news websites. The obtained images 

were carefully edited and checked for repetition to avoid using the 

same images. All images were manually annotated based on whether 

or not fires were present (Cengiz et al., 2022). In total, 1020 images 

were used for the analysis. Finally, 80% (816 images) of the total 

image dataset was used for training and 20% (204 images) for testing 

(Yıldız and Serttaş, 2023; Kelek et al., 2021). Some of the fire 

images used in the modeling are shown in Figure 2. 
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Figure 2. Fire image series used in modeling 
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Deep Learning (YOLO Algorithm) 

Choosing the right object detection algorithm is essential for 

developing an effective fire detection model. Options such as 

YOLOv8, Faster R-CNN, and SSD each come with their own set of 

benefits and drawbacks. The selected algorithm should align well 

with the dataset and be proficient in identifying different fire 

scenarios to fulfill the requirements of the intelligent fire detection 

system. YOLOv8 and YOLOv10 are the most preferred algorithms 

in fire detection systems due to their speed and accuracy (Talaat and 

ZainEldin, 2023). In this study, these two algorithms are used for the 

forest fire detection system. The YOLOv8 and YOLOv10 models 

were trained on the prepared labeled dataset. Model training consists 

of instructing the deep learning model to identify the characteristics 

of fire images and accurately distinguish them. The methodology of 

the YOLOv8 model is shown in Figure 3 and the methodology of the 

YOLOv10 model is shown in Figure 4. There are three basic 

versions of YOLO algorithms: s (small), m (medium), and x (extra-

large). 

YOLO-s (small): The smallest model and ideal for achieving 

fast results on lightweight hardware. This model is preferred in 

applications that require high speed and low memory consumption 

at the expense of accuracy. 

YOLO-m (medium): Offers a balanced structure. Suitable for 

users looking for a balance between performance and accuracy. 

Increases accuracy with more parameters while remaining efficient 

in terms of speed. 
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YOLO-x (extra-large): This is the larger model compared to 

the other two versions and is designed to provide the highest 

performance. It is especially suitable for use in systems that require 

high performance and have more computing power. 

 

Figure 3. YOLOv8 algorithm working methodology (Talaat and 

ZainEldin, 2023) 

 

Figure 4. YOLOv10 algorithm working methodology (Akhmedov et 

al., 2024) 
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Evaluation of Fire Detection Performance of Models 

The complexity matrix is used to examine the performance 

criteria of YOLO models in the classification process. The 

complexity matrix is given in Figure 5. The fire detection 

performance levels of the images obtained as a result of modeling 

were checked with precision, sensitivity, and F1-score. Precision is 

the ratio of correctly classified images to the sum of misclassified 

and negatively classified images. Sensitivity is defined as the 

proportion of accurately classified images to the total number of 

images. Recall is also known as sensitivity or specificity. F1-score is 

an evaluation criterion expressed as the harmonic mean of precision 

and recall (Yacouby and Axman, 2020). The mathematical 

equivalents of precision, recall, and F1-score are given in Equation 

(1-3) respectively. 

 

Figure 5. Confusion matrix 
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Precision =
TP

TP + FP
 

(1) 

Recall =
TP

TP + FN
 

(2) 

F1 − score = 2 x 
Precision x Recall

Precision + Recall
 

(3) 

Result 

The experimental outcomes of the study are presented in this 

section. YOLOv8 and YOLOv10 models were given 80% of the 

images in the dataset for training. Then the models were tested with 

20% of the remaining dataset. The complexity matrix of 6 different 

models (YOLOv8-s, YOLOv8-m, YOLOv8-x, YOLOv10-s, 

YOLOv10-m, and YOLOv10-x) are given in Figure 6. 

 

Figure 6. Confusion matrix results of YOLOv8 and YOLOv10 

models 

The performance criteria in Equation (1-3) were calculated 

by taking the TP, FN, FP, and TN values in the confusion matrix 
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given in Figure 6. The precision, recall and F1-score values of the 

models according to the calculation results are presented in Table 1. 

Table 1. Presentation of performance parameters of YOLO models 

Model Precision Recall F1-score 

YOLOv8-s 0.69 0.51 0.59 

YOLOv8-m 0.68 0.59 0.63 

YOLOv8-x 0.75 0.67 0.71 

YOLOv10-s 0.48 0.45 0.46 

YOLOv10-m 0.52 0.47 0.49 

YOLOv10-x 0.54 0.53 0.54 

The results in Table 1 compare the forest fire detection 

performance of YOLOv8 and YOLOv10 algorithms in terms of 

precision, recall, and F1-score parameters. YOLOv8 models 

generally showed higher performance. In particular, the YOLOv8-x 

model achieved the highest performance with 75% precision, 67% 

recall, and 71% F1-score. Since this model has a larger structure than 

the other YOLOv8 variants, it is the most suitable model for 

applications requiring high accuracy. On the other hand, YOLOv10 

models showed lower performance than YOLOv8. The YOLOv10-

s model has the lowest precision (48%) and F1-score (46%) and can 

be used in applications where high speed is required but accuracy is 

relatively less important. In general, YOLOv8 models appear to be 

more balanced and accurate, making them a better choice for early 

and accurate detection of forest fires. The outcomes of the fire 

detection analysis in the study are illustrated in Figure 7. 
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Figure 7. The result images of the models used for fire detection 
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Discussion 

This study compares two versions of the YOLO algorithm, 

YOLOv8, and YOLOv10, for forest fire detection. The findings of 

the study show that YOLOv8-x gives the most successful results 

with high precision, recall, and F1-score values compared to the 

other versions. These findings support the achievements of Talaat 

and ZainEldin (2023) in fire detection using YOLOv8. The high 

accuracy and speed of YOLOv8 make it a viable option for early 

detection systems for incidents that require immediate response such 

as forest fires. 

The results of the study are in line with the existing literature. 

For example, Lin et al. (2023) reported that the TCA-YOLO model, 

which they created by combining YOLOv5 and a Transformer 

encoder, offers high accuracy in fire detection. The accuracy 

advantages of YOLO-based models are highlighted by their fast 

response times compared to other single-stage algorithms (SSD, 

CenterNet) (Liu et al., 2016; Song and Fu, 2018). Fast and accurate 

analysis, especially in digital forest fire images obtained from UAV 

and camera systems, can support early intervention and minimize 

forest losses. 

This study is important in terms of emphasizing the 

performance difference between versions of YOLO algorithms. In 

previous studies, Mukhiddinov et al. (2022) used the YOLOv5 

model for smoke detection on UAV images and obtained successful 

results in detecting fires at an early stage. However, in this study with 

YOLOv8 and YOLOv10 models, it was revealed that YOLOv8 is 

superior in terms of accuracy and sensitivity. In particular, the fact 
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that YOLOv8-x was trained with a wider set of parameters increased 

the accuracy of the model in fire detection. This is a critical 

advantage, especially for systems that can analyze at high resolution 

and process more data. 

However, the study has some limitations. Although 

YOLOv10 models provide a speed advantage, they are characterized 

by low accuracy rates. This limits its use in emergency response 

systems that require high accuracy. Abdusalomov et al. (2023) 

obtained successful results in fire detection using the Detectron2 

model but suggested that faster algorithms such as YOLO are 

preferable for applications with higher speed requirements. 

Accordingly, the low accuracy of YOLOv10 may be suitable for 

scenarios where speed requirements are higher but accuracy is less 

important. 

In conclusion, the findings of the study show that the 

YOLOv8-x model is one of the best options for forest fire detection. 

With its high precision and recall, this model provides a reliable 

solution for fire detection applications. In future studies, the 

improved versions of YOLOv8 and YOLOv10 can be examined in 

more complex fire detection scenarios to provide suggestions for 

performance improvement. In addition, testing with high-resolution 

satellite imagery and multiple data sources could increase the 

sensitivity and overall accuracy of the models to different types of 

data. 

Conclusion 

In this study, a dataset composed of digital images obtained 

from UAVs, camera traps, and various imaging devices was utilized 
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to employ deep learning models for the early detection of forest fires. 

Training datasets were applied on three different versions (s, m, and 

x) of the deep learning models YOLOv8 and YOLOv10. The models 

were then evaluated using a test dataset, and the results were 

presented in a confusion matrix. The experimental results showed 

that the YOLOv8 model outperformed the YOLOv10 model. In 

particular, the YOLOv8-x model (F1-score, 0.71), with high 

precision and recall rates, emerged as a reliable option for fire 

detection. These results demonstrate the viability of deep learning-

based fire detection systems in enabling rapid response capabilities 

in emergency management and forest fire control. 

In future studies, further improvements could be made to 

achieve higher accuracy and adaptability in this field. Firstly, 

advanced versions of the YOLO algorithms or comparisons with 

other deep learning models could be considered. In particular, the 

future versions of YOLOv8 and YOLOv10 could be tested on more 

complex datasets and high-resolution images to enhance their 

performance. Additionally, data diversity could be increased; for 

example, integrating information on smoke propagation and wind 

speed along with fire area imagery could lead to a more 

comprehensive fire detection system. The combination of multiple 

data sources, such as drone and satellite imagery, camera traps, and 

meteorological data, would allow the model to better adapt to 

various scenarios. This would result in more accurate outcomes in 

determining fire risk. 
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Introduction 

Pine processionary moth (PPM) [Thaumetopoea pityocampa 

(Den. & Schiff.) / Thaumetopoea wilkinsoni (Tams)] is a species that 

causes damage, especially in pine forests (İpekdal & et al., 2015). In 

regions exhibiting severe forest degradation, dead stands of leafless 

trees may emerge, along with damage observed on individual trees 

(Lambers, Chapin & Pons, 1998). The species, widely dispersed 

over Europe, Asia, Africa, and North America, is recognized for 

causing damage in the coastal regions of the Mediterranean, Aegean, 

Marmara, and Black Sea in Türkiye, as well as in the south-facing 
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areas of Central Anatolia. T. pityocampa has distribution in the North 

Aegean and Thrace, whereas T. wilkinsoni is located in the 

Mediterranean, Aegean, and Black Sea regions. A potential hybrid 

of the two species was discovered in Türkiye (İpekdal & et al., 2015). 

The primary hosts include Pinus brutia, P. halepensis, P. mugo, P. 

radiata, P. nigra, P. pinaster, and P. sylvestris (Cayuela, Hódar & 

Zamora, 2011; Hódar, Castro & Zamora, 2003; Petrakis & et al., 

2005; Stastny & et al., 2006), alongside Cedrus atlantica, C. 

deodara, C. libani, and Juniperus excelsa. It has also been noted to 

inflict injury on P. heldreichii, P. taeda, P. pinea, P. strobus, P. 

elliottii, Pseudotsuga menziesii (Avtzis, 1986; Cayuela, Hódar & 

Zamora, 2011; Kanat, Sivrikaya & Serez, 2002; Petrakis & et al., 

2005). In Türkiye, it generally causes damage in pine forests and 

rarely in cedar forests (Can & Özçankaya, 2003). 

PPM lays their eggs by aggregating two or more needles, 

typically commencing from the lower branches towards the top of 

the tree, in cylindrical clusters around the needles, like corn cobs, 

then surround the egg clusters with a protective covering. The color 

of the eggs is yellowish-white. There are 10 eggs arranged 

transversely in the cobs and 20-30 eggs distributed longitudinally, 

resulting in a total of 150-300 eggs. Egg dimensions may fluctuate. 

They typically measure 25-40 mm in width and around 5 mm in 

height. Upon completion of the 25-40 day incubation period, the 

caterpillars emerging from the eggs possess a disproportionately big 

head relative to their body and exhibit 16 legs, 6 of which are toroidal 

(Romanyk & Cadahía, 1992; Schmidt, Tanzen & Bellin, 1999; 

EPPO, 2004; Mirchev & et al., 2007). The species has five larval 

stages, with the initial stage exhibiting a dull green color. Fifth-stage 
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larvae measure 35 to 45 mm in length. Each body segment is covered 

with hairs that possess allergenic characteristics (EPPO, 2004). 

The eggs laid on pine needles hatch in about two weeks, and 

the emerging larvae start to feed on the needles nearby. Immediately 

after this feeding stage, the larvae start to form bags. As the larvae 

start to grow, they continue to feed on the other shoots around them. 

The bags that are formed continue to grow during these stages, and 

they are usually positioned towards the ends of the shoots. The 

caterpillars usually feed at night. It has been observed that they feed 

during the day in overcast weather. They do not leave their nests 

when the temperature drops below 6°C (Öymen, 1990; Çanakçıoğlu 

& Mol, 2000) 

Adults have dull bluish, ventral, and dorsal hairs that vary 

from gray to black and white to yellow. The pupae of the species are 

oval. They are about 20 mm long and reddish brown (Romanyk & 

Cadahía, 1992). The wingspan of male adults is smaller than 

females, and both sexes have sharp-tipped protrusions on their 

thorax (EPPO, 2004). In adult individuals belonging to this genus, 

the web parts are dull, and their abdomens are covered with scales. 

Males are weaker than females, and the ends of their bodies are 

covered with hair. They have larvae with 8 pairs of legs and 

allergenic microscales on their dorsals (Çanakçıoğlu & Mol, 2000). 

The pine insect has one generation per year. It usually causes an 

epidemic every 6-8 years (Jacquet & et al., 2013). 

Insects pose the greatest threat to the survival, production, 

and continuity of Turkish forests (Onaran & Katı, 2010). The PPM, 

renowned for its vast damage to trees in Türkiye for years, is present 
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along the entire coastal strip (İpekdal & Çağlar, 2011). Pine needles 

are eaten by insect larvae (Kanat, Sivrikaya & Serez, 2002; 

Kerdelhué & et al., 2009), causing tree leaf loss. They can kill the 

tree in advanced stages. Needle leaf eating, they cause much leaf loss 

and limited tree development (Jacquet & et al., 2013). 

The PPM induces economic detriment by reducing tree 

diameter and height, health issues stemming from its allergic 

properties, and aesthetic concerns resulting from foliar loss (Mendel, 

1990). In old forests, trees rarely die, but losses can add up. It has 

been determined that trees with significant leaf loss have a diameter 

of 24%, a height of 36%, and a volume of 52% (Carus, 2004). 

Research indicates a 38.2% reduction rate in Calabrian pine forests 

(Kanat, Sivrikaya & Serez, 2002). 

In controlling these pests, regional assessment of the damage 

is crucial for deciding the appropriate measures to implement. 

Nonetheless, the on-site identification of damage inflicted by the 

PPM on forests is a labor-intensive and expensive endeavor. 

Consequently, alternative procedures that are cost-effective and 

maintain an acceptable degree of accuracy are required. Remote 

sensing techniques are efficiently employed for the detection and 

monitoring of insect damage. The identification of insect damage by 

remote sensing data is sensitive to the extent of leaf damage, 

resulting in leaf discoloration and eventual tree mortality (Wulder & 

et al., 2006). Each satellite image displays varying degrees of insect 

damage (White, Wulder & Grills, 2006). Landsat, which is medium-

resolution satellite imagery, is proficiently utilized in studies of 

insect damage detection owing to its extensive area coverage, 
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multispectral bands, and 16-day temporal resolution (Collins & 

Woodcock, 1996; Skakun, Wulder & Franklin, 2003). 

Study Area 

The study area is the black pine forests in Kastamonu 

Regional Directorate of Forestry (RDF), İnebolu Forest Enterprise 

(FE). In the region with the Black Sea climate, summers are dry and 

hot; winters are warm and rainy. A transition to a continental climate 

is observed in the inland areas. The annual average temperature is 

13.2 C°, and the total rainfall is 1019.77 mm. The area of İnebolu FE 

is 66,468.70 hectares in total, 47,180.10 hectares of which are forests 

and 19,288.60 hectares of which are open areas. 

Database 

Records regarding the infestation caused by the PPM in the 

black pine forests in Kastamonu RDF, İnebolu FE in 2016, when it 

caused intense damage, were obtained from the “Forest Pest Control 

Project” tables and the field survey. Using these records, 30 forest 

stands were determined from the Çkbc2 stand type infected by the 

PPM in the study area, and 37 forest stands were determined from 

the Çkbc2 stand type with uninfected. Figure 1 presents the bags and 

adult specimens of the PPM found on the black pine tree in the 

research area this year. 
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Figure 1. The PPM and image of the processionary moth on the 

tree 

Method 

Thirty compartments of the Çkbc2 stand type were identified 

as infected by the PPM, while thirty-seven were found to be clear of 

the pest. These areas were processed into the stand map in the 

ArcGIS environment. Landsat 8 OLI satellite imagery from 2016 

was utilized to compute Normalized Vegetation Index (NDVI) 

values in areas infected and uninfected by PPM damage. Landsat 8 

OLI satellite imagery was acquired at no cost from the website 

(USGS, 2016). 
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Table 1: Landsat 8 OLI imagery information 

Acquisition Date 
Cloud 

cover (%) 
Bands 

Wavelength 

(µm) 

Resolution 

(m) 

19/09/2016 1,04 

Blue 

Green 

Red 

NIR 

SWIR 1 

SWIR 2 

0.45-0.51 

0.53-0.59 

0.64-0.67 

0.85-0.88 

1.57-1.65 

2.11-2.29 

30 

 

Landsat 8 OLI satellite images were preprocessed to make 

them ready for analysis. First, the images were atmospherically 

corrected, and the digital number values of the NDVI bands were 

transformed into reflectance values. In the study area, 30 and 37 

infected and uninfected forest stands were satellite-imaged. NDVI 

was determined from reflectance measurements. NDVI values were 

calculated for 67 forest stands using the formula below. 

NDVI = (NIR – RED) / (NIR + RED)  (Formula 1) 

The minimum, average, maximum, and total NDVI values 

for each stand were calculated, considering the variability in the area 

of each stand and the number of pixels included within it. The 

compliance of the obtained NDVI values with normal distribution 

was tested using the one-sample Kolmogorov-Smirnov test 

(p>0.05). After the normality control, the statistical differences 

between the NDVI values of the stands with insect damage and those 

without were tested using the independent t-test for data showing 
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normal distribution in NDVI values. We used IBM SPSS version 23 

for all of our statistical studies. 

Results and Discussion 

NDVI was utilized to assess the damage inflicted by the 

PPM. NDVI images were utilized to assess the damage inflicted by 

the PPM on black pine trees in the Kastamonu RDF, İnebolu FE, in 

2016. NDVI images of the Çkbc2 stand type with infected and 

uninfected are given in Figure 2. 

 

Figure 2. NDVI images of infected and uninfected forest stands 

(2016 Çkbc2) 

 

Study area 
Infected stands 
Uninfected stands 



 Evaluating the Infestation Assessment of the Pine Processionary Moth 

using Remote Sensing Techniques  
 

--82-- 

The differences between the minimum, average, and 

maximum NDVI values obtained from a total of 67 forest stands in 

2016, where infestation was observed (30 stands) and not observed 

(37 stands), were statistically evaluated. The normality of the data 

was checked using the Kolmogorov-Smirnov test (p> 0.05). 

According to the analysis, minimum NDVI, maximum NDVI, and 

average NDVI values show normal distribution (Table 2).  

Table 2: Normality control of minimum, average, maximum, and 

total NDVI values according to the Kolmogorov-Smirnov test 

NDVI N Average 
Standard 

deviation 
Minimum Maximum P* 

Minimum 

NDVI 

67 0.2582 0.06376 0.03 0.36 0.255 

Maximum 

NDVI 

67 0.3843 0.05212 0.21 0.50 0.992 

Average 

NDVI 

67 0.3170 0.04999 0.15 0.42 0.727 

*P < 0.05       

In this study, minimum, maximum, and average NDVI 

values in infected stands by PPM were calculated as 0.2085, 0.3451, 

and 0.2727, respectively. In contrast, minimum, maximum, and 

average NDVI values in infected stands were calculated as 0.2985, 

0.4161, and 0.3528, respectively. Minimum, maximum, and average 

NDVI values in uninfected stands were higher than NDVI values in 
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infected stands (Table 3). Accordingly, the differences between 

minimum NDVI, maximum NDVI, and average NDVI values 

showing normal distribution in stands infected and uninfected stands 

were determined by independent t-test. Minimum NDVI, maximum 

NDVI, and average NDVI values in infected and uninfected stands 

were statistically different (p<0.05) (Table 3). 

Table 3: Independent t-test results of the differences between 

minimum, maximum, and average NDVI values in infected and 

uninfected stands 

NDVI Infestation n Average 
Standard 

deviation 
p 

Minimum 

NDVI 

Infected stands  30 0.2085 0.05962 0.000 

Uninfected stands  37 0.2985 0.02942 

Maximum 

NDVI 

Infected stands  30 0.3451 0.04189 0.000 

Uninfected stands  37 0.4161 0.03533 

Average 

NDVI 

Infected stands  30 0.2727 0.03668 0.000 

Uninfected stands  37 0.3528 0.02323 

*P<0.05 

In this study, minimum, maximum, and average NDVI 

values were found to be statistically different in infected and 

uninfected stands. In a study conducted in the same 70 stands in the 

Calabrian pine forests of the Kahramanmaraş RDF, Elmalar FE in 

2016, when there was intense PPM damage, and in 2022, when no 

damage was observed, statistically significant differences were 
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found between the NDVI data (Özcan & Sivrikaya, 2022). In this 

study, it was observed that the minimum, maximum, and average 

NDVI values in infected stands with PPM were higher than in 

uninfected stands. Similar results were found in a study conducted 

with the same pest in different regions and tree species (Özcan & 

Sivrikaya, 2022). NDVI values are lower in years with infected 

stands due to the decrease in NIR band values (Junttila & et al., 

2015). In a study conducted to determine leaf loss caused by 

Lymantria dispar in broadleaved forests, leaf losses occurring in two 

consecutive years were evaluated. In the study, NDVI and EVI 

indices were widely used. It was determined that NDVI performed 

significantly better in determining leaf fall in large areas (>0.6 km2) 

in MODIS 250 m data. In addition, they recommended MODIS due 

to its higher spatial resolution and the results obtained compared to 

alternative indices such as NDVI (De Beurs & Townsend, 2008). 

NDVI is more effective in differentiating moderate damage from 

low damage in broadleaved trees (Spruce & et al., 2011). In addition, 

Jepsen & et al. (2009) stated that NDVI is more reliable than MODIS 

in long-term monitoring due to significant cloud cover during the 

periods when leaf fall occurs. 

The damage caused by the PPM can have considerable 

negative impacts on the forest environment. Assessing the harm 

inflicted by this species on forests using on-site field surveys is 

laborious, time-consuming, and expensive. Consequently, assessing 

the harm inflicted by the insect and monitoring it through remote 

sensing techniques will aid in mitigating these adverse effects. This 

study assessed the infected stands by the insect using remote sensing 

techniques. The results will help in understanding the infestation of 
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this species across extensive regions with reduced work and expense, 

hence enhancing effectiveness in pest management. It is crucial for 

mitigating harm to forest resources and implementing appropriate 

measures for ecosystem sustainability. 
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Assessment of Damage Status of Ips sexdentatus 

Utilizing Remote Sensing Data 
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Introduction 

Insects are a crucial component of the ecological balance of 

forests, contributing to ecological diversity. The dynamic forest 

ecosystem is influenced by bark beetle infestations, whether on a 

small or major scale (Özcan, 2017; Özcan et al., 2022). In recent 

years, outbreaks of bark beetles (Coleoptera: Curculionidae, 

Scolytinae), which result in tree mortality increased by global 

climate change, have dramatically grown worldwide (Hlásny et al., 

2019; Hlásny et al., 2021; Sommerfeld et al., 2021). Forecasts 

indicate that the outbreaks will continue to increase (Evangelista et 
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al., 2011; Seidl et al., 2014). Sixteen species of the genus Ips, a 

taxonomically classified group of bark beetles, are found in the 

forests of Eurasia (Cognato & Felizet, 2000).  

Ips sexdentatus Boerner (Coleoptera: Curculionidae: 

Scolytinae) is a native species found in Turkish forests, causing harm 

to spruce, fir, and pine trees (Bernhard, 1935; Oymen, 1992; Özcan, 

Eroğlu & Alkan-Akıncı, 2011; Sivrikaya et al., 2022). I. sexdentatus 

is a beetle that falls under the order Coleoptera and is classified 

within the subfamily Scolytinae of the family Curculionidae. I. 

sexdentatus, measuring between 5.5 and 8.0 mm, stands out as a 

relatively large species within the bark beetle category (Çanakçıoğlu 

& Mol, 1998; Güzel, 2018). I. sexdentatus typically produces two 

generations annually, with flight times varying based on altitude and 

climatic conditions (Yüksel & Akbulut, 2005). I. sexdentatus is a 

secondary pest species that favors trees weakened by various factors 

such as snow breakage, storm overturns, air pollution, and water 

stress for reproduction. Nonetheless, in instances of nutrient 

deficiency and over-reproduction, it may also harm healthy trees 

(Yüksel & Akbulut, 2005). I. sexdentatus inflicts damage on 

coniferous trees across a vast region of the world, notably in Europe, 

Russia, the Caucasus, Asia, Siberia, Korea, and Japan, as well as on 

spruce in Türkiye and Georgia (Güzel, 2018). 

I. sexdentatus is generally considered a secondary pest that 

slows down growth and causes growth loss. However, it reproduces 

rapidly under suitable conditions, especially in newly formed young 

stands (Beşceli & Ekici, 1969), can become a primary pest 

threatening the entire forest, and can destroy the entire stand. In this 
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respect, bark beetle has great importance in terms of economic loss 

in forestry activities in Türkiye. Although I. sexdentatus is not 

generally considered an aggressive species, increasing populations 

of more aggressive Tomicus and other Ips species can attack and kill 

healthy trees, especially after fires. This species favors weak, 

stressed, and deceased trees in endemic populations (Gil & Pajares, 

1986). It can also infest healthy trees and initiate epidemics when 

appropriate hosts are present (Raffa & Berryman, 1983). 

I. sexdentatus is among the largest species within the Ips 

genus and is recognized for causing harm to spruce and 

predominantly black pine species in Türkiye. Spruce is the tree 

species most adversely impacted in Türkiye. However, it is also 

known to inflict significant harm to Pinus nigra, P. brutia, and P. 

sylvestris species. In 2021, Calabrian pine constituted 22.7% of our 

total forest area, black pine 18.3%, Scots pine 6.1%, and spruce 

1.6%. Consequently, 48.7% of our forests consist of tree species 

infected by I. sexdentatus. I. sexdentatus represents a significant 

biological danger to these tree species, which inhabit about fifty 

percent of the country's forests (URL, 1). 

Türkiye's entire forest area comprises 27.6% of the nation's 

overall land area. Moreover, it is a species with significant 

afforestation potential in Türkiye's steppe and semi-arid regions. 

Sixty-four percent of Kastamonu province, significant in Türkiye for 

its forest area, forestry operations, and forestry economy, is forested. 

In the region's forests, I. sexdentatus, Pityokteines curvidens, Ips 

acuminatus, Tomicus piniperda, Cryphalus piceae, and 

Thaumetopoea pityocampa, which caused considerable damage 
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primarily to coniferous species, have been identified, and it has been 

noted that bark beetles cause severe harm. Between 2007 and 2011, 

a total of 100,173.9 hectares of land were infected, including 24% in 

2011, 21% in 2010, 19% in 2008, 18% in 2007, and 17% in 2009 

(Bayırcık, 2018). 

In addition to biotechnical control against bark beetles using 

pheromone traps, removing dead or dried trees near healthy stands 

are important measures. The locational determination of damaged 

trees and stands is of critical importance in terms of measures to be 

taken in pest control. However, in order to detect the damage caused 

by I. sexdentatus to forests on site, much time and high cost are 

required. Therefore, alternative methods with sufficient accuracy 

and lower cost are needed. Remote sensing (RS) techniques are 

efficiently used for the identification and monitoring of I. 

sexdentatus damage (Özcan & Sivrikaya, 2022). 

The degree of tree mortality and alterations in leaf 

pigmentation influence the identification of insect damage by RS 

(Wulder et al., 2006). Satellite imagery reveals varied degrees of 

insect damage (White, Wulder & Grills, 2006). Medium-resolution 

Landsat satellite imagery effectively identifies and delineates insect 

damage (Özcan & Sivrikaya, 2022; Skakun, Wulder & Franklin, 

2003). Insect damage can be assessed through the desiccation of tree 

leaves with RS data (Entcheva, Cibula & Carter, 1996), hence 

allowing for the use of tree reflectance values and NDVI. Vegetative 

indices, particularly NDVI, have proven effective in ecological 

applications as they directly quantify vegetative productivity (Walter 

& Platt, 2013). NDVI utilizes the principle that leaf chlorophyll 
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absorbs red light and correlates with chlorophyll concentration, 

while leaf mesophyll structure reflects near-infrared (NIR) 

wavelengths (Tucker, 1979; Pettorelli et al., 2005). 

Satellite data is an effective tool for mapping and monitoring 

insect outbreaks. While there are many studies on this subject in the 

world, there are very few studies in Türkiye. The main purpose of 

this study is to determine I. sexdentatus damage with RS data and to 

test its applicability. 

Study Area 

Mergüze Forest Planning Unit, which is located in 

Kastamonu Regional Directorate of Forestry, İhsangazi Forest 

Enterprise, was selected as the case study area. The study area 

borders are at 41°13’46” N, 33°27’01” E. The area of the Mergüze 

Forest Planning Unit is 11164.9 ha, and approximately 62% (6887.8 

ha) of the area is covered with forest areas. The productive forest 

area is 4616.4 ha. The main tree species in the forest ecosystem are 

black pine, Scots pine, oak, fir, and hornbeam. Although İhsangazi 

District is located in the Black Sea climate zone, it has a more 

difficult climate structure in terms of temperature and precipitation 

characteristics. The highest temperature in the history of the district 

was determined as 37.7 C° and the lowest temperature as -26.9 C°. 

While an increase in the amount of precipitation is observed in May 

and June due to the effect of atmospheric conditions, this situation 

exhibits a decreasing trend in July and August.  

Database and Method 

Data from the "Forest Pest Control Project," along with field 

surveys conducted by the Kastamonu Regional Directorate of 
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Forestry (RDF), İhsangazi Forest Enterprise, Mergüze Forest 

Planning Unit, indicate that I. sexdentatus damage its most severe 

harm in 2023. Consequently, based on the relevant information and 

field survey for 2023, a total of 60 forest stands were identified, 

comprising 30 from the Çkbc2 stand type, both with and without I. 

sexdentatus damage. The stand types were analyzed using the digital 

stand map acquired from the Kastamonu RDF within the ArcGIS 

environment.  

Landsat 8 OLI satellite imagery from 2023 was utilized to 

compute and compare NDVI values in stands with and without I. 

sexdentatus damage. The 2023 satellite imagery was obtained at no 

cost from the website, and the image characteristics are presented in 

Table 1 (USGS, 2023). Essential preliminary procedures were 

conducted for the analysis of the Landsat 8 OLI satellite imagery 

utilized in the study. The satellite image performed atmospheric 

correction, and the reflectance values required to calculate NDVI 

were determined. 

In the subsequent phase, the forest stands with (30) and 

without (30) I. sexdentatus damage in the research region was 

incorporated into the satellite image. NDVI values were computed 

based on the reflectance measurements for the 60 specified forest 

stands. NDVI is employed to assess vegetation existence by 

enhancing the contrast between the near-infrared (NIR) and red 

bands, subsequently consolidating the data from these two bands into 

a singular band (Duran, 2007). The above formula was employed to 

compute the NDVI value. 
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Table 1: Fundamental characteristics of Landsat 8 OLI satellite 

imagery 

Acquisition 

Date 

Cloud 

cover 

(%) 

Bands 
Wavelength 

(µm) 

Resolution 

(m) 

2023/09/23 0.62 

Blue 

Green 

Red 

NIR 

SWIR 1 

SWIR 2 

0.45-0.51 

0.53-0.59 

0.64-0.67 

0.85-0.88 

1.57-1.65 

2.11-2.29 

30 

NDVI = (NIR – RED) / (NIR + RED)  

The minimum, mean, and maximum NDVI values for each 

forest stand were computed. The normal distribution of the estimated 

NDVI values was assessed using the Kolmogorov-Smirnov 

normality test (p>0.05). Following the normality assessment, 

statistical differences in NDVI values between stands with and 

without I. sexdentatus damage and those devoid of such damage 

were analyzed using an independent t-test for data demonstrating 

normal distribution in NDVI values. Statistical analyses were 

performed with IBM SPSS version 23 software. 

Results and Discussion 

NDVI values were employed to assess I. sexdentatus damage 

utilizing Landsat 8 OLI satellite images. To illustrate the impact of 

I. sexdentatus on the black pine forest within the Mergüze Forest 
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Planning Unit, NDVI from the Çkbc2 forest stands, with and without 

bark beetle damage in 2023, are presented in Figure 1 and Figure 2.  

 

Figure 1. NDVI of Çkbc2 stands with and without I. sexdentatus 

damage 

 

 

 

 

 

Study area 
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Figure 2. Detailed view of NDVI in Çkbc2 stands with and without 

I. sexdentatus damage 

In 2023, NDVI values of stands of with and without I. 

sexdentatus damage was statistically analyzed. This investigation 

statistically analyzed the differences among minimum, maximum, 

and mean NDVI values. The research revealed that the maximum, 

minimum, and mean NDVI values exhibited a normal distribution (p 

> 0.05) (Table 2). 
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Stands without I. sexdentatus damage 
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Table 2: Assessment of normality for minimum, maximum, and 

mean NDVI values via the Kolmogorov-Smirnov test 

NDVI N 
Mean Standard 

deviation 

Min. Max. P* 

Min. 

NDVI 

60 0.1862 0.05364 0.08 0.28 0.349 

Max. 

NDVI 

60 0.2722 0.05565 0.19 0.38 0.368 

Mean 

NDVI 

60 0.2296 0.04858 0.16 0.31 0.217 

*P < 0.05       

In stands damaged by I. sexdentatus, the minimum, mean, 

and maximum NDVI values were calculated as 0.1386, 0.2227, and 

0.1826, respectively. Conversely, in stands without damage by I. 

sexdentatus, the minimum, mean, and maximum NDVI values were 

recorded as 0.2338, 0.3216, and 0.2766, respectively. The minimum, 

mean, and maximum NDVI values in stands without damage were 

substantially greater than those in areas affected by bark beetle 

damage (Table 3). The differences among the minimum, mean, and 

maximum NDVI values exhibit a normal distribution in stands with 

and without I. sexdentatus damage was examined using an 

independent t-test. Statistical analysis indicates that the minimum, 

maximum, and mean NDVI values exhibit significant differences 

between stands with and without I. sexdentatus damage (p<0.05) 

(Table 3). 
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Table 3: Results of the independent t-test comparing the minimum, 

mean, and maximum NDVI values in stands affected by I. 

sexdentatus damage to those without such damage. 

NDVI  Damage status n Mean Standard 

deviation 

P* 

Min. 

NDVI 

Stands with damage 30 0.1386 0.02510 
0.000 

Stands without damage 30 0.2338 0.02322 

Max. 

NDVI 

Stands with damage 30 0.2227 0.02425 
0.000 

Stands without damage 30 0.3216 0.02569 

Mean 

NDVI 

Stands with damage 30 0.1826 0.00966 

0.000 
Stands without damage 30 0.2766 0.01188 

*P<0.05 

NDVI facilitates the examination of trees' vitality by 

quantifying the light absorbed and reflected by trees, as well as the 

presence of chlorophyll. The NDVI value of stands subjected to 

stress, such as insect damage or desiccation, is inferior to that of 

healthy forests (Stoyanova et al., 2018). NDVI values are typically 

recognized to range from 0.55 to 0.70 for healthy trees when 

evaluating stand health (Yu et al., 2020; Bryk, Kołodziej & Pliszka 

2021). In stands affected by bark beetle damage, the NDVI value 

typically falls below 0.5 (Georgiev et al., 2022a). A study in Pinus 

nigra and P. sylvestris stands in Bulgaria revealed that the mean 

NDVI value for healthy trees was 0.617, while that for dead trees 

was 0.343 (Georgiev et al., 2022b). 

De Beurs & Townsend (2008) utilized MODIS images to 

delineate defoliation caused by Lymantria dispar in broadleaf and 
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oak-dominated forests during two successive years. The study 

employed NDVI and EVI indices with the BioSIM model. NDVI 

results greatly surpassed EVI in detecting insect-induced defoliation 

using daily MODIS 250 m data. Spruce et al. (2011) indicated that 

NDVI is more effective in differentiating moderate damage from 

moderate damage in broadleaved forests. NDVI exhibits a robust 

positive linear connection with vegetation cover ranging from 25% 

to 80% (Zhang et al., 2010). 

NDVI is frequently utilized to evaluate disturbances in 

spruce stands. According to Lausch et al. (2013), in Germany's 

Bavarian Forest, the Vis and NIR wavelengths are the most 

significant spectral indicators of spruce health. Heurich et al. (2010) 

employed object-oriented image analysis of spruce bark beetle 

infestation in Bavarian Forest to demonstrate that the NDVI can 

differentiate deadwood from healthy vegetation. Mišurec et al. 

(2016) found that NDVI showed significant forest degradation and 

minor physiological changes in spruce in the Ore Mountains 

(Czechia), even though there was only a small amount of leaf loss. 

In the eastern San Juan Mountains (USA), Hart & Veblen (2015) 

employed NDVI to distinguish between gray and green stands in 

beetle-infested spruce-fir. 

Huo et al. (2021) utilized Sentinel-1 and Sentinel-2 imagery 

to detect damage to Ips typographus (L.) in southern Sweden in 

spruce forests. They used the Normalized Distance Red & SWIR 

(NDRS) index. NDRS recognized stressed forests with accuracy 

ranging from 0.80 to 0.88 prior to the attacks, 0.80 to 0.82 during 

early-stage infestations, and 0.81 to 0.91 in middle-stage and late-
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stage infestations. Jamali et al. (2023) used Sentinel-2 data from 

2015 to 2021 to investigate the early identification of Ips 

typographus infestations in Sweden. Bark beetle infestations 

affected wavelength bands and vegetative indices (VIs). The red 

band (81%), SWIR1 (74%), and SWIR2 (71%) performed well, 

followed by the red-edge (66%), green/blue bands (63%), and NIR 

(33%). NDVI exhibited lower sensitivity to attack impacts compared 

to NDRS and NDWI. 

Anees et al. (2013) detected beetle infestations in North 

American pine forests using MODIS. The beetles induce gradual 

alterations that deteriorate the NDVI time series. NDVI time series 

methodologies are more effective at detection than window-based 

techniques, as they evaluate individual pixels sequentially. Bryk, 

Kołodziej & Pliszka (2021) conducted a study in the spruce forest in 

the Bialowieza. Quantitative NDVI distributions exhibited 

fluctuations, with declines in the minimum, mean, and median 

values, as well as alterations in the forms of index value 

distributions. Analysis of spatial NDVI distributions indicated that a 

threshold NDVI value of 0.6 differentiates betGonzaween healthy 

and unhealthy spruce stand locations. This study demonstrated that 

we can effectively check the health of spruce stands using NDVI 

from Landsat archives with easily accessible, medium-resolution 

images and that spatial NDVI distributions simplify forest 

monitoring on a larger scale. 

Gomez et al. (2020) used MODIS and Sentinel-2 data to 

detect bark beetles in Florida. MODIS and Sentinel-2 are capable of 

identifying bark beetle damage, while MODIS NDVI change 
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detection exhibits a 30% false negative rate. Sentinel-2 NDVI 

products find bark beetle disturbances more accurately than MODIS 

change maps because they always find negative NDVI changes. 

Yang (2019) said that NDVI is a good way to find bark beetle gray 

attacks when combined with raw bands and other greenness-related 

VIs from Sentinel-2 with a 10-meter resolution. 

Conclusion 

This study evaluated the efficacy of NDVI values derived 

from Landsat 8 OLI satellite data in assessing damage caused by Ips 

sexdentatus. A total of 60 forest stands exhibiting with and without 

I. sexdentatus damage in the Mergüze Forest Planning Unit. The 

minimum, maximum, and mean NDV values of these stands were 

subjected to statistical comparison. The Independent t-test results 

indicated significant differences among the minimum, mean, and 

maximum NDVI values in stands with and without I. sexdentatus 

damage. These results will help with the assessment of I. sexdentatus 

damage across extensive regions more efficiently and with reduced 

effort, enabling the implementation of necessary actions. Early 

identification of bark beetle damage will greatly influence the 

efficacy of controlling such damage. This study will enhance the 

conservation and sustainability of forests. 
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Time Series Analysis in the Wood Products Industry: 

Methodology and Application 
 

 

 

Hakan AYDOĞAN1 

 

Introduction 

Wood industry holds significant importance due to its 

contributions to the global economy and its critical role in natural 

resource management. The sustainable use of forest resources is 

increasingly prioritized in the production of fundamental products 

such as timber and paper, as well as in innovative applications like 

bioenergy and biomaterials (He et. al., 2023; Szulecka, 2019). The 

rising global demand for forest products necessitates the 

implementation of technologies that enhance efficiency in 

production processes, as well as the development of strategic plans 

aimed at ensuring the long-term preservation of these resources. In 

 
1 Dr. Öğr. Üyesi/Assistant Professor, Kastamonu University, Faculty of Forestry, Department of Foreset 
Industry Engineering, Kastamonu/TÜRKİYE, Orcid: 0000-0001-9482-9888, 
hakanaydogan@kastamonu.edu.tr 



Time Series Analysis in the Wood Products Industry: Methodology and 

Application 
 

--113-- 

this context, time series analysis offers an indispensable tool for 

decision-makers and researchers in the industry to understand 

current trends, forecast future developments based on historical data, 

and steer their actions toward sustainability objectives. 

Time series analysis provides in-depth insights into various 

issues within the forest industry (Huang et. al., 2024; Kożuch et. al, 

2023; Huda et. al., 2023), including monitoring supply-demand 

balance, analyzing price fluctuations, and understanding the sectoral 

impacts. Numerous factors such as seasonal variations in wood raw 

materials and by-products, the impact of forest fires, and 

environmental influences on forest assets contribute to both short- 

and long-term fluctuations in the forest products market. Effectively 

analyzing these changes necessitates an approach that not only relies 

on historical data but also offers robust projections for the future, 

which are critical for the sustainable management of forest 

resources. Time series models facilitate the assessment of such 

complex dynamics, supporting strategic decisions aimed at 

minimizing sectoral risks and fostering the development of 

innovative approaches by bridging market and environmental data. 

Time series-based analyses of the forest industry are also 

crucial for identifying global changes and regional differences 

within the sector. For example, the supply-demand balance, growth 

dynamics, and climate change sensitivity of forest products vary 

widely across developed and developing economies. Given these 

factors, the data-driven approaches provided by time series analysis 

play a key role in integrating the forest industry into global 

sustainability efforts. 
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This section will comprehensively examine the importance 

and applications of time series analysis within the forest industry, 

providing a detailed exploration of methods for analyzing sector-

specific variables, modeling approaches, and forecasting techniques. 

Aimed at developing solutions for the forest industry's variable 

nature, the foundations for holistic and sustainable approaches will 

be laid, contributing to both industry professionals and academic 

research. 

The role and importance of time series analysis in wood products 

industry 

Wood products industry, reliant on forests as a renewable 

resource, demands careful and strategic management to ensure 

sustainable use. In this regard, time series analysis stands out as an 

essential tool for understanding the industry’s dynamic structure and 

forecasting critical factors such as demand fluctuations, price 

movements, environmental influences, and climate change. Since 

forestry activities are directly linked to natural conditions, seasonal 

effects, climatic variability, and natural events play a significant role 

in determining the supply-demand balance of forest resources. Time 

series analysis is one of the foremost methods used to understand 

these natural and market-driven changes and to develop effective 

management strategies. 

The importance of time series analysis in the wood industry 

is reflected in its role in providing forecasts aimed at sustainable 

resource management. The variations in the production, export, and 

pricing of forest products across years, seasons, and even months 

significantly influence decision-making processes within the sector. 
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For instance, periodic fluctuations in the supply of wood raw 

materials lead to seasonal price changes, while extreme weather 

events associated with climate change affect the quality and quantity 

of timber. By deciphering long-term trends in these factors, time 

series analysis helps improve understanding of the changes 

occurring within the forest industry. Furthermore, analyzing both 

long-term trends and short-term fluctuations enables industry 

professionals to make more informed and effective decisions. 

In addition, time series analysis adds substantial value to 

resource management in the forest industry. Anticipating the impacts 

of global environmental issues such as climate crisis on forest 

resources allows for the development of conservation strategies and 

efficient utilization of natural resources. This approach is crucial not 

only for enhancing environmental sustainability in resource 

management but also for maximizing economic returns. In forest 

product production processes, forecasts based on seasonal data 

analysis prepare the ground for predicting potential risks and 

ensuring the efficient use of resources toward a sustainable 

production cycle. By revealing trends based on historical data, time 

series models enable the industry to address future challenges and 

seize emerging opportunities. 

Time series analysis plays a vital role in understanding and 

managing the inherently dynamic nature of the forest industry. These 

analyses serve as foundational tools in processes such as production 

planning, demand forecasting, price prediction, and understanding 

the impacts of environmental factors. The data-driven insights 

provided by time series analysis contribute to a more deliberate and 
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long-term approach to the sustainable management of forest 

resources, laying an essential scientific foundation for the 

preservation of forest ecosystems for future generations. 

Time Series Analysis Methods 

Introduction to time series analysis and fundamental concepts 

Time series analysis involves the examination of values 

recorded for a specific variable over time, focusing on patterns, 

trends, and seasonal variations within the data. This method, widely 

applied across disciplines from economics to engineering, biology to 

environmental sciences, aims to generate insights into future 

outcomes based on historical data. In a dynamic sector such as the 

forest industry, the significance of time series analysis becomes even 

more evident, given the industry's susceptibility to natural cycles and 

economic fluctuations. Understanding the effects of various factors 

such as fluctuations in the supply and demand of forest products, 

seasonal production volumes, price movements, and climatic 

influences relies on the foresight that time series analysis provides. 

The fundamental concepts of time series analysis are 

essential for understanding data characteristics and selecting 

appropriate analytical methods. One of the primary concepts is the 

presence of a trend in a time series. A trend represents the general 

direction of a series and indicates whether data values tend to 

increase or decrease over the long term. For example, rising 

household income or an increase in forest resources may correspond 

to an upward trend in demand for specific forest products, 

necessitating long-term resource planning. 
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In addition to trend, seasonal fluctuations form a crucial part 

of a time series; this refers to recurring variations within the series 

that repeat at specific intervals. In the forest industry, seasonality is 

particularly evident in timber production and biomass processing. 

Understanding seasonal fluctuations enables more efficient planning 

of production processes by anticipating recurring patterns. 

The third fundamental component of time series analysis, 

cyclical fluctuations, refers to variations that occur over longer 

periods due to external factors, such as economic cycles. These 

fluctuations often include unpredictable changes and are influenced 

by factors outside the system being studied. For instance, prices of 

forest products may be affected by global economic cycles, 

underscoring the need for both short-term forecasts and long-term 

planning insights within the industry. 

In addition to cyclical patterns, the concept of stationarity is 

critical in time series analysis. A time series is considered stationary 

if its statistical properties, such as mean and variance, remain 

constant over time. Non-stationary series, where these properties 

change, complicate the analysis process and may lead to misleading 

results if modeling is conducted without first removing trends and 

seasonality. 

The fourth component of time series analysis involves 

random and irregular fluctuations. These represent unexpected 

variations often triggered by unforeseen events, such as natural 

disasters (e.g., earthquakes or fires), which can cause sudden 

economic shifts. Understanding these random components is 
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essential, particularly when developing robust models capable of 

accounting for unexpected disruptions in the data. 

The methods used in time series analysis vary depending on 

the structure of the series and the purpose of the analysis. One of the 

most widely used methods is the ARIMA (Autoregressive 

Integrated Moving Average) model, which is particularly effective 

for both short-term forecasting and long-term trend analysis. 

ARIMA models use past values of the data to predict future values, 

making them especially beneficial in areas such as supply-demand 

forecasting for forest products. For analyzing seasonal data, models 

with seasonal components, such as SARIMA (Seasonal 

Autoregressive Integrated Moving Average), are preferred 

(Hyndman and Athanasopoulos, 2018). These models facilitate a 

detailed analysis of seasonal production cycles in the forest industry, 

supporting the development of strategies for efficient resource 

utilization by capturing the seasonality inherent in production 

processes. 

These fundamental concepts and methods in time series 

analysis are essential for making effective and sustainable decisions 

in sectors like the forest industry, which are closely tied to 

environmental variables. Considering features such as trend, 

seasonality, cyclicity, and irregular fluctuations provides industry 

professionals and researchers with reliable, data-driven insights. 

This approach contributes to establishing a sustainable management 

model, ensuring the preservation of forest resources for future 

generations. 
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Components of time series 

A time series 𝒀𝒕, composed of observations 𝒙𝒕 recorded at 

specific times 𝒕 , can include several fundamental components: 

trend, seasonal variations, cyclical fluctuations, and irregular 

variations. Representing these components formally: 

 𝑇𝑡 , the trend component, which shows the long-term 

direction of the series (e.g., overall increase or decrease over time), 

𝑆𝑡, the seasonal component, reflecting regular patterns that repeat 

over specific intervals (e.g., quarterly or annual fluctuations), 𝐶𝑡, the 

cyclical component, indicating fluctuations influenced by economic 

or external cycles over longer periods, which are often irregular, 𝐼𝑡, 

the irregular component, capturing random and unpredictable 

variations (e.g., sudden events like natural disasters). 

 A time series of 𝑌𝑡 can be expressed as: 

 
𝑌𝑡 = 𝑓(𝑇𝑡, 𝑆𝑡, 𝐶𝑡, 𝐼𝑡) (1) 

 

Thus, in this context, a time series is composed as a function 

of trend, seasonality, cyclical, and irregular fluctuations. Two 

primary modeling approaches can be employed here: additive and 

multiplicative. The additive model is represented as in Equation (2), 

while the multiplicative model is formulated as in Equation (3). 

 

𝑌𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡 (2) 

 

𝑌𝑡 = 𝑇𝑡 ∗ 𝑆𝑡 ∗ 𝐶𝑡 ∗ 𝐼𝑡 (3) 

Trend analysis 
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The trend in a time series represents a long-term directional 

pattern. Due to the extended nature of these periods, the trend is 

typically calculated from annual data. In time series applications, 

periods generally range between 10 to 20 time intervals, during 

which the data often exhibit a linear or near-linear trend. 

Several methods are utilized for estimating the trend line, 

including the semi-average method, the simple graphical method, 

and the Ordinary Least Squares (OLS) method. However, in 

practice, the OLS method is among the most commonly employed 

for trend estimation. Briefly, the OLS estimation method identifies a 

line that best represents the distribution of data points by minimizing 

the sum of squared errors, thereby producing the line that best fits 

the data. 

In a time series, let 𝑌𝑡 represent the observed values and 𝑌�̂� 

represent the corresponding values on the estimated line. The sum of 

squared errors (SSE) is then given by: 

 

𝑆𝑆𝐸 = ∑(𝑌𝑡 − �̂�𝑡)
2

𝑛

𝑖=1

(4) 

 

In this case, if the independent variable 𝑋𝑡 denotes time, the 

estimated trend line can be expressed as:  

 

𝑌�̂� = 𝛽0𝑡 + 𝛽1𝑡𝑋 (5) 

 

Here; 

𝛽0𝑡 represents the intercept, or the value of the line when 𝑋 = 0 
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𝛽1𝑡  represents the slope of the trend line, indicating the rate of 

change over time. 

 

Example 1: Turan Wood Entegre Inc. is a company 

operating in the forest products sector, specializing in the production 

of MDF, particle board, and OSB. Table 1 below presents the MDF 

board production quantities for the company from 2010 to 2023. 

Based on this data, determine the time-dependent trend in the 

company’s production quantities. 

 Table 1: MDF production quantities by year 

Year X Production Quantities (*1000 𝒎𝟑) 

2010 0 500.34 

2011 1 525.44 

2012 2 505.37 

2013 3 544.44 

2014 4 566.91 

2015 5 575.88 

2016 6 565.11 

2017 7 580.25 

2018 8 584.84 

2019 9 588.88 

2020 10 591.34 

2021 11 577.35 

2022 12 595.34 

2023 13 600.44 

Solution:  

We can use the OLS method to estimate the trend line. 

Accordingly, with: 
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𝑋𝑡
̅̅ ̅ =

∑ 𝑋𝑡
𝑛
𝑡=1

𝑛
=

91

14
= 6.5 

  

 

and 

 

𝑌�̅� =
∑ 𝑌𝑡

𝑛
𝑡=1

𝑛
=

7901.93

14
= 564.42, 

 

the trend line can be estimated as: 

 

𝑌�̂� = 𝛽0𝑡 + 𝛽1𝑡𝑋𝑡 = 518.73 + 7.03𝑋𝑡 

 

 

The graph of the observed values and the trend line is displayed in 

Figure 1. 

 

 

Figure 1: MDF production quantities by year and the trend line 

In the graph, the time series data for MDF production 

quantities from 2010 to 2023 has been analyzed with observed 
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values following a specific linear trend. The trend line modeling the 

change in production quantity is defined as: 

 

𝑌�̂� = 518,73 + 7,03𝑋𝑡 (5) 

 

This linear model reflects a steady increase of approximately 

7.03 units per year. Observed data indicate an overall increase in 

MDF production from 2010 onward, although deviations from the 

projected trend are noticeable in certain years. Such deviations 

suggest that production quantities may experience short-term 

fluctuations due to industrial, economic, or environmental factors 

impacting production. 

Nevertheless, the general upward trend aligned with the 

linear model indicates growth in MDF production over the long 

term. This trend analysis can be instrumental in forecasting future 

production quantities, guiding industrial planning processes, and 

supporting strategic decisions regarding capacity expansion or 

resource allocation. 

This trend analysis can be used to forecast production for 

future years, informing industrial planning processes and supporting 

strategic decisions such as capacity expansion or resource allocation. 

Armutlulu (2008, pp. 292) proposed eight models that can be 

used to determine trends. These models, along with their respective 

linear transformations, are presented in Table 2.  
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Table 2:  Eight models and their linear transformations for the trend 

determination 

Model 

no 

Model Linear 

transformation 

1 𝑌𝑡 = 𝛼 + 𝑏𝑋 𝑌𝑡 = 𝛼 + 𝑏𝑋 

2 
𝑌𝑡 = 𝛼 +

𝑏

𝑋
 𝑌𝑡 = 𝛼 + 𝑏

1

𝑋
 

3 𝑌𝑡 = 𝛼𝑋𝑏 𝐿𝑛𝑌𝑡 = 𝐿𝑛𝛼 + 𝑏𝐿𝑛𝑋 

4 𝑌𝑡 = 𝛼 + 𝑒𝑏𝑋 𝐿𝑛𝑌𝑡 = 𝐿𝑛𝛼 + 𝑏𝑋 

5 
𝑌𝑡 =

1

𝑎 + 𝑏𝑋
 

1

𝑌𝑡
= 𝑎 + 𝑏𝑋 

6 
𝑌𝑡 =

𝑋

𝑎𝑋 + 𝑏
 

1

𝑌𝑡
= 𝑎 + 𝑏

1

𝑋
 

7 𝑌𝑡 = 𝛼 + 𝑏𝐿𝑜𝑔𝑋 𝑌𝑡 = 𝛼 + 𝑏𝐿𝑜𝑔𝑋 

8 
𝑌𝑡 = 𝑒𝑎+

𝑏
𝑋 𝐿𝑛𝑌𝑡 = 𝑎 + 𝑏

1

𝑋
 

Moving averages (MA) 

Moving averages are a fundamental method for analyzing 

trends, seasonal fluctuations, and forecasting within time series data. 

According to Hyndman (2011), a moving average is a mathematical 

convolution created by taking the average of sequential values, 

which reduces short term variations, thereby clarifying the 

underlying trend in a series. This process diminishes the impact of 
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transient fluctuations, allowing long-term patterns to become more 

prominent. 

Moving averages are primarily employed in two forms: two-

sided moving averages and one-sided moving averages. While two-

sided moving averages are calculated using both past and present 

observations in the series, one-sided moving averages consider only 

past values. Hyndman (2011) notes that two-sided moving averages 

are particularly effective for highlighting underlying trends and 

seasonal components in time series data, whereas one-sided moving 

averages are more useful for short-term forecasting. 

Additionally, there are centered and weighted versions of 

moving averages. Centered moving averages are particularly useful 

in removing seasonal fluctuations in data with strong seasonal 

components by averaging observations symmetrically around a 

given point. This approach provides a more balanced representation 

of the central trend. Weighted moving averages, on the other hand, 

assign varying weights to data points, which can result in a smoother 

representation of long-term trends. 

In a time series with n elements, a s-period moving average 

is calculated by first taking the arithmetic mean of the initial s values. 

Then, the series progresses by one period, and the arithmetic mean 

of the next k values, starting from the second value up to the (s+1)-

th value is calculated. This process continues throughout the series, 

smoothing out fluctuations and highlighting trends by averaging 

over consecutive subsets of data points.  
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Here, the first moving average value is positioned to align 

with the 
(𝑠+1)

2
-th value in the series. Similarly, the second moving 

average value is placed next to the subsequent data point in the 

series. This alignment continues throughout the series, ensuring that 

each moving average value corresponds to the central position of the 

k-period window it represents, providing a balanced view of the 

trend over time.  

Revisiting the dataset in Example 1, Table 3 below represents 

the 3 period and 5 period MA fort his dataset. 

Table 3: Calculation of 3 period and 5 period MA 

Year X Production quantities 

(*1000 𝑚3) 

3 MA 5 MA 

2010 0 500.34 
  

2011 1 525.44 510.38 
 

2012 2 505.37 525.08 528.50 

2013 3 544.44 538.91 543.61 

2014 4 566.91 562.41 551.54 

2015 5 575.88 569.30 566.52 

2016 6 565.11 573.75 574.60 

2017 7 580.25 576.73 578.99 

2018 8 584.84 584.66 582.08 

2019 9 588.88 588.35 584.53 

2020 10 591.34 585.86 587.55 

2021 11 577.35 588.01 590.67 

2022 12 595.34 591.04 
 

2023 13 600.44 
  

As observed in Table 3 above, in the 3-period moving 

average, one period is lost from both the beginning and end of the 

series. In the 5-period moving average, two periods are lost from 
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each end, creating new series based on the averages. Generalizing 

this, when the moving average is 3 or greater and consists of an odd 

number 𝑠, then (𝑠 − 1)/2 periods are lost from both the start and 

end of the series, totaling (𝑠 − 1) periods lost overall. 

If the moving average count, denoted as the value 𝑠, is an 

even number, as in the case of monthly data (e.g., 12-period MA) or 

quarterly data (e.g., 4-period MA), the moving average is computed 

in two stages. In the first stage, an s-period moving average is 

calculated. The first computed average is placed against the (𝑠 +

1)/2-th period. However, this value is not an integer. Therefore, in 

the second stage, a double MA is taken to perform centering, with 

the first value positioned opposite the (𝑠 + 2)/2-th period. 

Seasonal fluctuations in time series 

In time series analysis, seasonal fluctuations refer to regular, 

recurring patterns that occur over specific intervals within the data 

set, often influenced by seasonal or periodic factors such as months, 

quarters, or years (Hyndman and Athanasopoulos, 2018). These 

fluctuations represent changes in the time series that recur 

consistently due to influences tied to calendar-based cycles, 

including weather, holidays, and other cyclical factors. Detecting 

and adjusting for seasonal fluctuations is essential for accurately 

understanding the underlying trends and making reliable predictions 

in time series data. 

Seasonal adjustments in time series analysis typically 

involve decomposing the data to isolate and remove these periodic 

effects, ensuring that the trend and cyclical components of the data 

are not obscured. 
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In identifying seasonal fluctuations within series, 12-period 

moving averages are typically calculated for monthly data, while 4-

period moving averages are used for quarterly data. For instance, the 

12-period moving averages calculated for monthly data correspond 

to the 
12+1

2
= 6.5-th value. Consequently, as noted in the previous 

section, a double moving average is performed to achieve centering. 

As a result of this centering process, the first moving average value 

aligns with the seventh month.  

Following this process, the ratio-to-moving average method 

is applied. By dividing each observed monthly value by the 

corresponding moving average value and then multiplying by 100, 

the percentage ratios to the moving average are obtained. This 

calculation provides the relative percentage deviation of each data 

point from its moving average, which aids in identifying and 

analyzing seasonal patterns within the time series. 

Let us now revisit the data set for the annual MDF production 

quantities provided in Example 1. This time, however, we will 

evaluate this data set on a monthly basis. By converting the data to a 

monthly frequency, we can apply monthly moving averages and 

ratio-to-moving average methods, which will allow for a more 

granular analysis of potential seasonal fluctuations and trends over 

shorter intervals within the year. 
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Table 4: Calculation of the seasonal index for MDF production 

volume (*1000 m3) using the Ratio to Moving Average Method 

Y

Year 

M

Month 

𝒀𝒕 

(*100

0m3) 

1

2 MA 

2 

MA 

Y

Year 

M

Month 

𝒀𝒕 

(*100

0m3) 

1

2 MA 

2 

MA 

2
0
1
0
 

J

Jan 

4

2.48 

  

2
0
1
1
 

J

Jan 

4

5.11 

 4

2.94 

      4

3.01 

 

F

Feb 

4

3.58 

  F

Feb 

4

5.85 

 4

3.09 

      4

3.16 

 

M

March 

4

3.40 

  M

March 

4

6.23 

 4

3.24 

      4

3.32 

 

A

Apr 

4

3.64 

  A

Apr 

4

5.69 

 4

3.41 

      4

3.49 

 

M

May 

4

2.41 

  M

May 

4

4.80 

 4

3.58 

      4

3.67 

 

J

June 

4

2.01 

  J

June 

4

4.06 

 4

3.73 

  4

1.69 

   4

3.79 

 

J

July 

4

1.28 

 4

1.80 

J

July 

4

2.85 

 4

3.72 

  4

1.91 

   4

3.65 

 

 

A

Aug 

3

9.62 

 4

2.01 

 A

Aug 

4

1.42 

 4

3.59 

  4

2.10 

 

 

  4

3.53 

 

S

Sept 

3

9.64 

 4

2.22 

S

Sept 

4

1.61 

 4

3.45 
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Table 4: Calculation of the seasonal index for MDF production 

volume (*1000 m3) using the Ratio to Moving Average Method 

Y

Year 

M

Month 

𝒀𝒕 

(*100

0m3) 

1

2 MA 

2 

MA 

Y

Year 

M

Month 

𝒀𝒕 

(*100

0m3) 

1

2 MA 

2 

MA 

   4

2.33 

    4

3.37 

 

O

Oct 

3

9.59 

 4

2.42 

O

Oct 

4

1.53 

 4

3.31 

  4

2.50 

   4

3.25 

 

N

Nov 

4

0.65 

 4

2.61 

N

Nov 

4

2.89 

 4

3.17 

  4

2.70 

   4

3.09 

 

D

Dec 

4

2.03 

 4

2.79 

D

Dec 

4

3.39 

 4

3.00 

   4

2.87 

    4

2.91 

 

2
0
2
2
 

J

Jan 

5

1.36 

 4

9.14 

2
0
2
3
 

J

Jan 

5

0.63 

 4

9.60 

  4

9.20 

   4

9.61 

 

F

Feb 

5

2.09 

 4

9.25 

F

Feb 

5

1.69 

 4

9.64 

 
 

4

9.31 

   4

9.68 

 

M

March 

5

2.38 

 4

9.36 

M

March 

5

2.74 

 4

9.73 

 
 

4

9.41 

   4

9.79 

 

A

Apr 

5

2.14 

 4

9.42 

A

Apr 

5

2.79 

 4

9.85 

 
 

4

9.44 

   4

9.91 

 

M

May 

5

1.27 

 4

9.45 

M

May 

5

1.28 

 4

9.97 

 
 

4

9.47 

   5

0.03 
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Table 4: Calculation of the seasonal index for MDF production 

volume (*1000 m3) using the Ratio to Moving Average Method 

Y

Year 

M

Month 

𝒀𝒕 

(*100

0m3) 

1

2 MA 

2 

MA 

Y

Year 

M

Month 

𝒀𝒕 

(*100

0m3) 

1

2 MA 

2 

MA 

 J

June 

4

9.47 

 4

9.54 

 J

June 

4

9.94 

 5

0.03 

 
 

4

9.61 

   5

0.04 

 

J

July 

4

8.31 

 4

9.58 

J

July 

4

8.39 

  

 
 

4

9.55 

     

A

Aug 

4

6.83 

 4

9.53 

A

Aug 

4

7.68 

  

 
 

4

9.52 

     

S

Sept 

4

6.97 

 4

9.53 

S

Sept 

4

8.38 

  

 
 

4

9.55 

     

O

Oct 

4

6.77 

 4

9.55 

O

Oct 

4

8.22 

  

 
 

4

9.56 

     

N

Nov 

4

7.68 

 4

9.56 

N

Nov 

4

9.07 

  

 
 

4

9.56 

     

D

Dec 

5

0.05 

 4

9.58 

D

Dec 

5

0.14 

  

   4

9.60 

      

 

Table 5 has been created by reorganizing the centered 2-

month moving average values in the last column of Table 4. In this 

new table, the seasonal index is obtained by calculating the 
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arithmetic average for each month. However, while calculating the 

arithmetic average for each month, the outliers for that specific 

month were excluded from the calculation. 

Table5: The calculation of the seasonal index based on the 

percentage ratios to the 12-month moving average 

Month 2010 2011 . . . 2022 2023 

Monthly 

Average 

Index 

Adjusted 

Index 

Jan 
  42.94 . 

. 
. 49.25 49.64 

47.34 100.03 

Feb 
  43.09 . 

. 
. 49.36 49.73 

47.40 100.16 

March 
  43.24 . 

. 
. 49.42 49.85 

47.47 100.30 

Apr 
  43.41 . 

. 
. 49.45 49.97 

47.53 100.44 

May 
  43.58 . 

. 
. 49.54 50.03 

47.61 100.60 

June 
  43.73 . 

. 
. 49.58   

47.49 100.35 

July 
41.80 43.72 . 

. 
. 49.53   

47.06 99.44 

Aug 
42.01 43.59 . 

. 
. 49.53   

47.10 99.54 

Sept 
42.22 43.45 . 

. 
. 49.55   

47.15 99.63 

Oct 
42.42 43.31 . 

. 
. 49.56   

47.20 99.74 

Nov 
42.60 43.17 . 

. 
. 49.58   

47.25 99.84 

Dec 
42.79 43.00 . 

. 
. 49.60   

47.29 99.93 

Since the index represents a percentage value, the total for 

the 12 months must equal 1200. Therefore, by performing a 

secondary adjustment in which we multiply the average of each 

month by the ratio (
1200

𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑑𝑒𝑥
) , we obtain the 

adjusted seasonal index. 

 

 

Seasonal adjustment of time series 

In the literature, various methods have been developed to 

seasonally adjust series by removing seasonal effects. These include 
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STL-Based Seasonal Adjustment with RegARIMA (Ollech, 2021), 

Bayesian Seasonal Adjustment (Holan and McElroy, 2012), State-

Space Modelling (Harvey et al., 1997), and RSVD (Regularized 

Singular Value Decomposition) for Seasonal Decomposition (Lin et 

al., 2020). However, in this study, we will employ a more traditional 

approach, using the Ratio-to-Moving-Average method or the 

Seasonal Factor method to remove seasonal effects from the series. 

In this method, the observed values are first divided by the 

adjusted index data obtained in Table 5 and then multiplied by 100 

(Equation 6), effectively removing the seasonal effects from the 

data.  

𝑆𝐴𝑡 = (
𝑌𝑡

𝑆𝑡
) ∗ 100 (6) 

where: 

𝑆𝐴𝑡 , represents seasonally adjusted value at time 𝑡 ,  𝑌𝑡 

represents original series value at time 𝑡 , and 𝑆𝑡  shows seasonal 

factor at time 𝑡. 

The new data, adjusted for seasonal fluctuations using the 

formula in Equation 6, is presented in Table 6 below. 
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Table 6: Monthly MDF production values adjusted for seasonal 

effects 

Month 2010 2011 . . . 2022 2023 

Jan 42.47 45.10 . . . 51.35 50.62 

Feb 43.51 45.78 . . . 52.01 51.61 

March 43.27 46.09 . . . 52.22 52.58 

Apr 43.45 45.49 . . . 51.91 52.06 

May 42.16 44.53 . . . 50.97 50.98 

June 41.87 43.91 . . . 49.30 49.77 

July 41.51 43.09 . . . 48.58 48.66 

Aug 39.80 41.61 . . . 47.05 47.90 

Sept 39.79 41.76 . . . 47.14 48.54 

Oct 39.69 41.64 . . . 46.89 48.35 

Nov 40.71 42.96 . . . 47.75 49.15 

Dec 42.06 43.42 . . . 50.08 50.17 

The graph illustrating the seasonal fluctuations in the original 

observation values is presented in Figure 2. Additionally, the graph 

for series adjusted for seasonal fluctuations is provided in Figure 4. 

In addition, Figure 5 shows the comparision of original and 

seasonally adjusted data. 
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Figure 2: Seasonal fluctuation graph of observation values 𝑌𝑡 

If we compile the production amounts from the same month 

across different years to calculate an average value for each month, 

this approach allows us to establish a general monthly production 

average over the years, thereby enabling us to observe seasonal 

patterns. The resulting graph, as shown in Figure 3, illustrates these 

monthly averages. 
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Figure 3: Average MDF production quantities by month 

Since Figure 3 represents the overall monthly averages 

across years, it reveals the seasonal trend and allows us to observe 

recurring patterns at the monthly level. 

 

Figure 4: Seasonally adjusted production quatities over time 
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Figure 5: Comparision of original and seasonally adjusted data 

The graph shows the deseasonalized monthly production 

amounts is presented in Figure 6. By removing the effect of the 

seasonal component in this graph, we can now observe the 

production amounts’ fluctuations more clearly and irregularly. This 

adjustment facilitates a more straightforward analysis of cyclical or 

irregular variations. 

 

Figure 6: Deseasonalized monthly MDF production quantities 
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Cyclical and irregular fluctuations of time series 

We can examine cyclical fluctuations using the formula 𝑌𝑡 =

𝑇 + 𝑆 + 𝐶. Here, cyclical fluctuations can be calculated as 𝐶 = 𝑌𝑡 −

(𝑇 + 𝑆) . In other words, by removing the trend component and 

seasonal fluctuations from our observed values, we can isolate and 

analyze cyclical fluctuations more effectively.  

 

Figure 7: Cyclical trend analysis of deseasonalized monthly MDF 

production quantities 

In the Figure 7, we can observe the long-term trend of 

seasonally adjusted production amounts showing cyclical 

fluctuations (blue line). This blue line has been generated using a 12-

month moving average, which clarifies cyclical trends. Upon closer 

examination of the graph, certain years reveal upward or downward 

trends in production, indicating potential cyclical fluctuations. This 

approach allows for observing more extended and irregular 

variations in production levels. 
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To examine irregular fluctuations (𝐼 component), we need to 

remove the trend (𝑇), seasonal (𝑆), and cyclical (𝐶) components 

from the current time series. Thus, the irregular fluctuation can be 

calculated as 𝐼 = 𝑌𝑡 − (𝑇 + 𝑆 + 𝐶). 

 

Figure 8: Irregular component of monthly MDF production 

quantities 

In Figure 8, it can be observed the irregular component. This 

component has been adjusted to remove trend, seasonal, and cyclical 

effects, representing the remaining random fluctuations. The 

irregular component typically reflects changes caused by unexpected 

events, lacking any specific pattern or continuity. As this component 

does not exhibit a discernible pattern, it primarily reflects the 

influence of unpredictable, random factors. 

Conclusion 

In this chapter, a time series analysis was conducted on a 

sample dataset from the wood products sector, with a particular 

focus on the MDF industry, to examine sectoral trends, seasonal 
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variations, and the cyclical and irregular components in detail. The 

primary objective of this study is to decompose the different 

components of the time series to gain a deeper understanding of 

production dynamics within the Forest Products Industry, develop 

forecasts concerning sectoral fluctuations, and support strategic 

decision-making. 

Initially, the trend analysis applied to annual data reveals a 

general upward trend over the years. This finding suggests that the 

wood products sector exhibits a long-term growth tendency, 

indicating sustainable development within the industry. 

Furthermore, while trend analysis confirms a steady increase in 

annual production volume, it also highlights the potential 

vulnerability of this trend to economic fluctuations. 

To facilitate a more detailed examination, the analysis then 

shifts to monthly data to focus on seasonal fluctuations. However, 

no distinct and recurring seasonal pattern was observed in the data, 

indicating that there is no regularly increasing or decreasing 

production volume during specific periods within the sector. This 

suggests that seasonal factors do not exert a notable influence on 

production, or that other factors such as external environmental or 

economic conditions might have a more dominant impact. 

The data, adjusted to exclude seasonal effects, enabled a 

more precise analysis of cyclical fluctuations. In this analysis, 

cyclical trends were clarified, and long term, broader period 

fluctuations within the sector were identified. Although these 

fluctuations lack a strict periodicity, they point to long-term shifts 

that could arise due to various economic cycles, changes in demand, 
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or supply demand imbalances within the industry. An accurate 

understanding of these cycles plays an essential role in strategic 

planning and resource management. 

Finally, after removing trend, seasonal, and cyclical 

components, the remaining irregular component reflects the impact 

of unexpected and unpredictable short-term variations in MDF 

production. The presence of this irregular component suggests that 

production volumes in the sector are subject to momentary 

fluctuations, which introduce risk factors that must be considered in 

the production process. 

Overall, time series analysis provides significant insights into 

the production dynamics of the wood products sector, offering 

valuable findings to guide long-term strategic decision-making. The 

methodological approaches offered by time series analysis are 

valuable not only in assessing current production data but also in 

anticipating potential risks and opportunities within the sector. In 

conclusion, this study highlights the application potential of time 

series analysis on sectoral data, thereby contributing to future studies 

and researchers in the wood products industry. 
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