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FROM SIMPLICIAL R-ALGEBROIDS  TO 2-

CROSSED MODULES OF R-ALGEBROIDS  

Işınsu DOĞANAY YALĞIN1 

İbrahim İlker AKÇA2 

Introduction 

Whitehead introduced crossed modules of groups for the first time 

in (Whitehead ,1941:409), (Whitehead, 1946: 806). Group crossed 

modules are equivalent to simplicial groups with Moore complex of 

length one (Conduche, 1984:155) and similarly for groupoid crossed 

modules (Mutlu & Porter, 1998: 174). Conduche addressed the idea 

of a group 2-crossed module and shown in (Conduche, 1984:155) 

that the category of group 2-crossed modules is equal to the category 

of simplicial groups with a two-length Moore complex.  Arvasi and 

Ulualan investigated the relationships between simplicial groups 

with a length of two Moore complex, crossed squares, quadratic 

modules, and 2-crossed modules in (Arvasi & Ulualan, 2006:1). The 
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definitions of algebra crossed and 2-crossed modules (Arvasi & 

Porter, 1996 : 426), (Arvasi & Porter, 1998: 455),  (Doncel & 

Grandjean, 1992: 131), ( Porter, 1986: 458) are similar to those of 

the group case, actions by the automorphisms is replaced by the 

actions by the multipliers, this algebra action is discussed in (Ege 

Arslan & Hürmetli 2021:72), (Ege Arslan, 2023: 1), (Arvasi & Ege 

2003: 478)  and its different properties are examined. In (Gülsün 

Akay, 2025: 565), it is shown that homotopy relation is an 

equivalence relation on morphisms between free simplicial algebras. 

Algebra 2-crossed modules and simplicial algebras are closely 

related, just like in the group case case (Conduche, 1984:155), 

(Mutlu & Porter, 1998: 174), (Mutlu & Porter, 1998: 148). A 2-

crossed module can be obtained from a simplicial algebra if it has a 

Moore complex of length two. Equivalence from category of 

simplicial algebra with a two-length Moore complex to category 

algebra crossed module is given in (Porter, 1986: 458), (Arvasi 

1997:160), ( Grandjean, M.J. Vale, 1986). Also in (Ege Arslan & 

ark., 2019: 5293), (Özel, Ege Arslan &Akça, 2024), (Ege Arslan & 

Kaplan, 2022: 17), (Ege Arslan, 2019:150) a higher-dimensional 

categorical perspective on 2-crossed modules, fibrations of 2-crossed 

modules and functorial relations are examined. As a more broadly, 

Mitchell in (Mitchell, 1972:1), (Mitchell, 1985: 96.) and Amgott in 

(Amgott, 1986: 1) specifically studied R-algebroids, where R is a 

commutative ring. R-algebroids were defined categorically by 

Mitchell. Later, Mosa introduced crossed modules of R-algebroids 

as a generalization of crossed modules of associative R-algebras and 

demonstrated in his thesis (Mosa,1986) that they are equivalent to 

special double R-algebroids with connections. Additionally, it was 

mentioned in (Gürmen & Ulualan, 2020: 113) that there was a close 

relationship between the category of simplicial R-algebroids with the 

length one Moore complex and the internal categories in the category 

of R-algebroids. Subsequent investigations by Akça and Avcıoğlu 
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(Avcıoğlu & Akça, 2017: 37), (Avcıoğlu & Akça, 2018: 2863), 

(Avcıoğlu & Akça, 2017), (Avcıoğlu & Akça, 2017), (Akça & 

Avcıoğlu, 2022) delve deeper into crossed modules of R-algebroids, 

unraveling intricate connections and properties. As a generalization 

of the 2-crossed module of commutative algebras, we present the 2-

crossed module of R-algebroids in this work. Next, we construct a 

functor from the category of simplicial R-algebroids with Moore 

complex of length two to the category of 2-crossed modules of R-

algebroids. This chapter produced from Ph. D. Thesis of I. Doğanay 

Yalğın, (Doğanay Yalğın, 2024). 

Preliminaries 

Most of the following data, can be found in (Mitchell, 1972:1), 

(Mitchell, 1978: 867), (Mitchell, 1985: 96), (Amgott, 1986: 1) and  

(Mosa, 1986). 

Let R be a commutative ring. An R-category is a category where 

composition is R-bilinear and all homsets possess R-module 

structures. This framework enables the exploration of categorical 

concepts and constructions within the realm of R-modules, offering 

a robust foundation for algebraic and categorical inquiries. 

An R-algebroid is a small R-category. R- algebroids can be 

non identity. A set of functions 𝑠, 𝑡 ∶ 𝑀𝑜𝑟(𝑈)  →  𝑂𝑏(𝑈), the source 

and target functions, respectively, and an object set Ob(U)=𝑈0, a 

morphism set Mor(U), are included with an R-algebroid U.  

 A single object R-algebroid corresponds to an associative R-

algebra. Let U and V be R-algebroids and  𝑈0 = 𝑉0, if the family of 

maps  

𝑉(𝑎, 𝑏) × 𝑉(𝑏, 𝑐) → 𝑉(𝑎, 𝑐)

(𝑣, 𝑢) → 𝑣𝑢
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satisfies the following conditions 

1) 𝑣𝑢1+𝑢2 = 𝑣𝑢1 + 𝑣𝑢2 

2) (𝑣1 + 𝑣2)
𝑢 = 𝑣1

𝑢 + 𝑣2
𝑢      

3) (𝑣𝑢)𝑢
′
= 𝑣𝑢𝑢′ 

4) 𝑣′𝑣𝑢 = 𝑣′𝑣𝑢 

5) 𝑟 ∙ 𝑣𝑢 = (𝑟 ∙ 𝑣)𝑢 = 𝑣𝑟∙𝑢 

6) 𝑣1𝑡𝑣 = 𝑣      

for all 𝑎, 𝑏, 𝑐 ∈ 𝑈0 𝑎𝑛𝑑 𝑢, 𝑢
′, 𝑢1, 𝑢2 ∈ 𝑀𝑜𝑟(𝑈), 𝑣, 𝑣

′, 𝑣1, 𝑣2 ∈
𝑀𝑜𝑟(𝑉)  such that 𝑡(𝑣′)  =  𝑠(𝑣), 𝑡(𝑢)  =  𝑠(𝑢′), 𝑡(𝑣)  =  𝑡(𝑣1)  =
 𝑡(𝑣2)  =  𝑠(𝑢)  =  𝑠(𝑢1)  =  𝑠(𝑢2), 𝑟 ∈ 𝑅, it is called the right 

action of U on V . 

The left action of U on V similarly defined. While U has right and 

left action on V if the condition ( 𝑣 
𝑢 )𝑢

′
= (𝑣𝑢

′
) 

𝑢  is satisfied for all 

𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑈0, 𝑣 ∈ 𝑉(𝑎, 𝑏), 𝑢 ∈ 𝑈(𝑑, 𝑎) 𝑎𝑛𝑑 𝑢
′ ∈ 𝑈(𝑏, 𝑐) then U 

has an associative action on V .   

An R-functor is an R-linear functor between two R-

categories, and an R-algebroid morphism is an R-functor between 

two R-algebroids.  

In category Alg(R), all R-algebroids and their morphisms are 

included. 

Let R is an commutative ring U and V be two R-algebroids of the 

same object set 𝑈0 and V has an associative action on U . For the set  

𝑈  ⋊ 𝑉 = {(𝑢, 𝑣): 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉}, 

if the following conditions are satisfied 

1) (𝑢, 𝑣) + (𝑢′, 𝑣′) = (𝑢 + 𝑢′, 𝑣 + 𝑣′)  

2) (𝑢, 𝑣) = ( 𝑢, 
𝑟 𝑣 

𝑟 ) 
𝑟  

3) (𝑢, 𝑣)(𝑢′′, 𝑣′′) = (𝑢𝑢′′ + 𝑢𝑣′′ + 𝑣𝑢′′, 𝑣𝑣′′)    
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𝑈  ⋊ 𝑉 is an R-algebroid, where for all (u, 𝑣) ∈ 𝑈  ⋊ 𝑉  and 𝑟 ∈ 𝑅, 

𝑠(𝑢, 𝑣) = 𝑠(𝑢)  =  𝑠(𝑣),𝑡(𝑢, 𝑣)  =  𝑡(𝑢)  =  𝑡(𝑣),  
(u, 𝑣), (𝑢′, 𝑣), (𝑢′, 𝑣′), (𝑢′′, 𝑣′′)  ∈ 𝑈  ⋊ 𝑉, s(u,v) =s(u′, v′), t(u, v) = 

t(u′, v′),t(u, v) = s(u′′,v′′). 

This R-algebroid is called the semi-direct product R-algebroid of U 

and V. 

 A simplicial R-algebroid is a sequence of R-algebroids 𝐸 =
{𝐸0, 𝐸1, ⋯ , 𝐸𝑛, ⋯ } together with homomorphisms  𝑑𝑖

𝑛: 𝐸𝑛 →
𝐸𝑛−1 ,0 ≤ 𝑖 ≤ 𝑛 ≠ 0 and 𝑠𝑗

𝑛: 𝐸𝑛 → 𝐸𝑛+1, 0 ≤ 𝑗 ≤ 𝑛  such that 

identity on object set, this homomorphisms are required to satisfy the 

simplicial identities 

 

 

 

We denote this simplicial R-algebroid with 𝑬 = (𝐸𝑛, 𝑑𝑖
𝑛, 𝑠𝑗

𝑛). 

 

Let E = (En,d
n

i ,s
n

j ) and F = (Fn,δi
n,σj

n) be R-algebroids. A 

simplicial map 𝐟 =  {𝑓𝑛 ∶  𝑛 ∈  𝑁} : E → F is a family of 

homomorphisms fn = En → Fn satisfying δi
nfn = fn-1di

n and

 for all n ∈ N. We have thus defined category 

of simplicial R-algebroids, which we will denote by Simp.R-

Alg.. Let E be a simplicial R-algebroid. The Moore complex 

(NE,∂) of E is the chain complex defined by 𝑁𝐸𝑛  =

⋂ 𝑘𝑒𝑟𝑑𝑖
𝑛 𝑛−1

𝑖=0  with ∂n : NEn → NEn-1 induced from 𝑑𝑛
𝑛

 by 

restriction. 
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We say that the Moore complex (NE,∂) of E is of length k if NEn = 0 

for all n ≥ k + 1. We denote category of simplicial R-algebroids with 

Moore complex of lenght k by Simp.R-Alg.≤k. 

 

2-Crossed Modules R-Algebroids 

As a generalization of the 2-crossed module of commutative 

algebras, we present the 2-crossed module of R-algebroids in this 

section. 

A 2-crossed module of R-algebroids (J,K,L,∂1,∂2,{.}1,2) is given by 

a chain complex of R-algebroids with same object set U0 together 

with associative actions of L on K and J such that ∂1 and ∂2 R-

algebroid morphisms such that identity on U0, where L act on itself 

by composition. We also have an R-bilinear functions (the Peiffer 

liftings) 

{. }1: 𝐾 ×  𝐾 →  𝐽 

{. }2: 𝐾 ×  𝐾 →  𝐽 

satisfying the following axioms for k ∈ K(a,b), k′ ∈ K(b,c), k′′ ∈ 

K(c,d), j ∈ J(a,b), j′ ∈ J(b,c) and l ∈ L(a,b),q ∈ L(d,e), a,b,c,d,e ∈ P0 
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Note that ∂2 : J → K is a crossed module with action of K on J. Let 

𝑪 =  (𝐽, 𝐾, 𝐿, 𝜕1, 𝜕2, {. }1,2) and 𝑪′ = (𝐽′, 𝐾′, 𝐿′, 𝜕′1, 𝜕2
′ , {. }′1,2) be 2-

crossed modules, a 2-crossed module map f = (f2,f1,f0) : C → C′ 

consists of algebroid maps f0 : L → L′ , f1 : K → K′ and f2 : J → J′ 

making the diagram 

 

commutative and preserving all actions and Peiffer liftings 
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1)  𝑓1(
𝑙𝑘) = 𝑓1 

𝑓0(𝑙) (𝑘)

 𝑓1(𝑘
𝑙′) = 𝑓1 

 (𝑘)𝑓0(𝑙
′)

2)  𝑓2(
𝑙𝑗) = 𝑓2 

𝑓0(𝑙) (𝑗)

 𝑓2(𝑗
𝑙′) = 𝑓2(𝑗)

𝑓0(𝑙
′)

 3) 𝑓2{𝑘, 𝑘
′}1,2 = {𝑓1(𝑘), 𝑓1(𝑘

′)}1,2

 

 

for 𝑗 ∈  𝐽(𝑏, 𝑐), 𝑘 ∈  𝐾(𝑏, 𝑐), 𝑘′ ∈  𝐾(𝑐, 𝑑), 𝑙 ∈  𝐿(𝑎, 𝑏), 𝑙′ ∈

𝐿(𝑏, 𝑐), 

 𝑎, 𝑏, 𝑐, 𝑑 ∈  𝑈0. Note from the definition that if f = (f2,f1,f0) is a 2-

crossed module morphism then f2,f1 and f0 are equal to each other on 

object set. 

Thus, all R-algebroid 2-crossed modules and their morphisms form 

a category denoted by 2XMod. 

From Simp.R − Alg.≤2 to 2XMod 

In this section, we shall construct a functor from Simp.R − Alg.≤2 to 

2XMod. 

Construction of the functor 

Given a simplicial R-algebroid E = (En,d
n

i ,s
n
j ) with Moore complex 

of lenght 2, we obtain a 2-crossed module of R-algebroids. 

Let E = (En,d
n
i ,s

n
j ) be a simplicial R-algebroid with Moore complex 

of lenght 2. Then for the simplicial R-algebroid 
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its Moore complex is as follows, 

 

where 𝑁𝐸2 = 𝑘𝑒𝑟𝑑0
2⋂𝑘𝑒𝑟𝑑1

2, 𝑁𝐸1 = 𝑘𝑒𝑟𝑑0
1 and 𝑁𝐸0 = 𝐸0. Let  

𝐿 = 𝑁𝐸2, 𝑀 = 𝑁𝐸1, 𝑃 = 𝐸0 =NE2, M = NE1, P = E0 and 𝜕1 =

𝑑1
1|𝑁𝐸1, 𝜕2 = 𝑑2

2|𝑁𝐸2  

L acts on K and J as ; 

• 𝐿 ×  𝐾 → 𝐾  • 𝐾 ×  𝐿 → 𝐾

 (𝑙, 𝑘) ↦  𝑘 
𝑙 = 𝑠0

0(𝑙)𝑘   (𝑘, 𝑙′) ↦ 𝑘𝑙
′
 =  𝑘𝑠0

0(𝑙′)
         
• 𝐿 ×  𝐽 → 𝐽  • 𝐽 ×  𝐿 → 𝐽

 (𝑙, 𝑗) ↦   𝑗 
𝑙 = 𝑠0

1𝑠 0
0(𝑙)𝑗   (𝑙, 𝑗′) ↦  𝑗𝑙

′
=  j𝑠0

1𝑠 0
0(𝑙′)

 

for k ∈ K(b,c),j ∈ J(b,c) and l ∈ L(a,b),l′ ∈ L(c,d) , a,b,c,d ∈ U0. For 

k ∈ K(a,b) and k′ ∈ K(b,c) set 

{. }1: 𝐾 ×  𝐾 → 𝐽  

 (𝑘, 𝑘′) ↦ {𝑘, 𝑘′}1  =  𝑠1
1(𝑘)[𝑠1

1(𝑘′) − 𝑠0
1(𝑘′)]  

 

{. }2: 𝐾 ×  𝐾 → 𝐽  

 (𝑘, 𝑘′) ↦ {𝑘, 𝑘′}2  =  [𝑠1
1(𝑘) − 𝑠0

1(𝑘)]𝑠1
1(𝑘′)  

 

Thus 

𝐹𝐸 = 𝐽
𝜕2
→𝐾

𝜕1
→ 𝐿 

is a 2-crossed module.   
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Let 𝑬 = (𝐸𝑛, 𝑑𝑖
𝑛, 𝑠𝑗

𝑛) and 𝐄′ = (𝐸′′𝑛, 𝛿𝑖
𝑛, 𝜎𝑖

𝑛) be simplicial R-

algebroids with Moore complex of lenght 2. 

 

Also let f = (...,f2,f1,f0) be a simplicial R-algebroid morphism from 

𝐄 = (𝐸𝑛, 𝑑𝑖
𝑛, 𝑠𝑖

𝑛) to 𝐄′ = (𝐸′′𝑛, 𝛿𝑖
𝑛, 𝜎𝑖

𝑛). If 𝐹𝐸 =

(𝐿,𝑀, 𝑃, 𝜕1, 𝜕2, {. }1,2) and 𝐹𝐸′ = (𝐿′,𝑀′, 𝑃′, 𝜕′1, 𝜕′2, {. }′1,2) are 2-
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crossed modules then we obtain a 2-crossed module morphism from 

𝐹𝐸  to 𝐹𝐸′  by using f = (...,f2,f1,f0) 

 

we define as 𝑓0̅ = f0, 𝑓1̅  =  𝑓1|𝑁𝐸1
 ,  𝑓2̅ =  𝑓2|𝑁𝐸2

 . We show that 

(𝑓2̅, 𝑓1̅, 𝑓0̅) is a 2-crossed module morphism from 𝐹𝐸  to 𝐹𝐸′ 

1) 𝑓1̅( 𝑘 
𝑙 ) = 𝑓1(𝑠0

0(𝑙)𝑘)

  = 𝑓1(𝑠0
0(𝑙)𝑓1(𝑘)

  = 𝜎0
0𝑓0(𝑙)𝑓1(𝑘)

  = 𝑓1̅(𝑘) 
𝑓0̅̅̅(𝑙)

 

 𝑓1̅(𝑘
𝑙′) = 𝑓1(𝑘𝑠0

0(𝑙′))

  = 𝑓1(𝑘)𝑓1(𝑠0
0(𝑙′)

  = 𝑓1(𝑘)𝜎0
0𝑓0(𝑙′)

  = 𝑓1̅(𝑘)
𝑓0(𝑙

′)

 

2) 𝑓2̅( 𝑗 
𝑙 ) = 𝑓2(𝑠0

1𝑠0
0(𝑙)𝑘)

  = 𝑓2(𝑠0
1𝑠0
0(𝑙)𝑓2(𝑘)

  = 𝜎1
0𝑓1𝜎0

0(𝑙)𝑓2(𝑗)

  = 𝜎1
0𝜎0

0𝑓0(𝑙)𝑓2(𝑗)

  = 𝑓2̅(𝑗) 
𝜎𝑓0(𝑙)
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 𝑓2̅(𝑗
𝑙′) = 𝑓2(𝑗𝑠0

1𝑠0
0(𝑙′))

  = 𝑓2(𝑗)𝑓2(𝑠0
1𝑠0
0(𝑙′)

  = 𝑓2(𝑗)𝜎1
0𝑓1𝜎0

0
 
(𝑙′)

  = 𝑓2(𝑗)𝜎1
0𝜎0

0𝑓 0 
(𝑙′) 

 

  = 𝑓2̅(𝑗)
𝑓0̅̅̅(𝑙

′)

 

3) 𝑓2̅ {𝑘, 𝑘′}1 = f2(𝑠1
1(𝑘)[𝑠1

1(𝑘′)−𝑠0
1(𝑘′)])

  =  f2𝑠1
1(𝑘)[𝑓2𝑠1

1(𝑘′)−f2𝑠0
1(𝑘′)]

  = 𝜎1
1𝑓1(𝑘)[𝜎1

1𝑓1(𝑘
′) − 𝜎1

0𝑓1(𝑘′)]

  = {𝑓1̅(𝑘), 𝑓1̅(𝑘′)}1
   
 𝑓2̅ {𝑘, 𝑘′}2 = f2([𝑠1

1(𝑘)−s0
1(𝑘)]𝑠1

1(𝑘′))

  = [f2𝑠1
1(𝑘) − 𝑓2s0

1(𝑘)]f2𝑠1
1(𝑘′))

  = [𝜎1
1𝑓1(𝑘)−𝜎0

1𝑓1(𝑘)]𝜎1
1𝑓1(𝑘′)   

  = {𝑓1̅(𝑘), 𝑓1̅(𝑘
′)}

2

 

for 𝑗 ∈ 𝐽(𝑏, 𝑐), 𝑘 ∈ 𝐾(𝑏, 𝑐), 𝑘′ ∈ 𝐾(𝑐, 𝑑), 𝑙 ∈ 𝐿(𝑎, 𝑏), 𝑙′ ∈

𝐿(𝑏, 𝑐), 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑈0. 

Therefore (f2,f1,f0) is a 2-crossed module morphism. Then, a direct 

calculation proves to following proposition: The assignment 

 𝐅 ∶  𝐒𝐢𝐦𝐩. 𝐑 − 𝐀𝐥𝐠.≤2  →  𝟐𝐗𝐌𝐨𝐝   defined by F(E) = FE   on 

objects and by 𝑭(𝒇)  =  (𝑓2̅, 𝑓1̅, 𝑓0̅) on morphisms is a functor.  
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FROM CROSSED SQUARES OF R-ALGEBROIDS 

TO SIMPLICIAL R-ALGEBROIDS  

Işınsu DOĞANAY YALĞIN3 

İbrahim İlker AKÇA4 

Introduction 

Whitehead introduced crossed modules of groups for the first time 

in (Whitehead ,1941:409), (Whitehead, 1946: 806). Group crossed 

modules are equivalent to simplicial groups with Moore complex 

of length one (Conduche, 1984:155) and similarly for groupoid 

crossed modules (Mutlu & Porter, 1998: 174). Conduche addressed 

the idea of a group 2-crossed module and shown in (Conduche, 

1984:155) that the category of group 2-crossed modules is equal to 

the category of simplicial groups with a two-length Moore 

complex. Also in (Gülsün Akay, 2025: 565) it was given an 

equivalence relation and groupoid structure on simplicial 

morphisms and in  (Gülsün Akay, 2023) it was obtained crossed 

module homotopies from simplicial homotopies. Arvasi and 

Ulualan investigated the relationships between simplicial groups 
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with a length of two Moore complex, crossed squares, quadratic 

modules, and 2-crossed modules in (Arvasi & Ulualan, 2006:1). 

The definitions of algebra crossed and 2-crossed modules (Arvasi 

& Porter, 1996 : 426), (Arvasi & Porter, 1998: 455),  (Doncel & 

Grandjean, 1992: 131), ( Porter, 1986: 458) are similar to those of 

the group case, actions by the automorphisms is replaced by the 

actions by the multipliers, this algebra action is discussed in  (Ege 

Arslan & Hürmetli 2021:72), (Ege Arslan, 2023: 1), (Arvasi & Ege 

2003: 478) and its different properties are examined. 

Algebra 2-crossed modules and simplicial algebras are closely 

related, just like in the group case (Conduche, 1984:155), (Mutlu & 

Porter, 1998: 174), (Mutlu & Porter, 1998: 148). A 2-crossed module 

can be obtained from a simplicial algebra if it has a Moore complex 

of length two. Equivalence from category of simplicial algebra with 

a two-length Moore complex to category algebra crossed module is 

given in (Porter, 1986: 458), (Arvasi 1997:160), ( Grandjean & Vale 

1986). Also in (Ege Arslan & ark., 2019: 5293), (Özel, Ege Arslan 

&Akça, 2024), (Ege Arslan & Kaplan, 2022: 17), (Ege Arslan, 

2019:150), a higher-dimensional categorical perspective on 2-

crossed modules, fibrations of 2-crossed modules and functorial 

relations are examined. Moreover in (Akça & Arvasi, 2002: 43), the 

higher order Peiffer elements in simplicial Lie algebras are 

examined. The homotopy theory of 2 -crossed modules of 

commutative algebras studied in (Akça, Emir & Martins, 2016: 99). 

Then in (Akça, Emir & Martins, 2019: 289), the concept of a 2 -fold 

homotopy between a pair of 1-fold homotopies connecting 2-crossed 

module morphisms was defined. As a more broadly, Mitchell in 

(Mitchell, 1972:1), (Mitchell, 1985: 96.) and Amgott in (Amgott, 

1986: 1) specifically studied R-algebroids, where R is a commutative 

ring. R-algebroids were defined categorically by Mitchell. Later, 

Mosa introduced crossed modules of R-algebroids as a 

generalization of crossed modules of associative R-algebras and 

demonstrated in his thesis (Mosa,1986) that they are equivalent to 



--25-- 

special double R-algebroids with connections. Additionally, it was 

mentioned in (Gürmen & Ulualan, 2020: 113) that there was a close 

relationship between the category of simplicial R-algebroids with the 

length one Moore complex and the internal categories in the category 

of R-algebroids. Guin- Waléry and Loday defined crossed squares in 

(Guin- Waléry & Loday, 1981: 179) as an algebraic model for 

homotopy 3-type connected spaces. Thus crossed squares model 

homotopy types in dimensions bigger than 3. Later Ellis defined the 

commutative algebra version of crossed squares in (Ellis, 1988: 277). 

In this work we introduce R-algebroid version of crossed square. 

Then we construct a functor from the category of crossed squares of 

R-algebroids to the category of simplicial R-algebroids with Moore 

complex of length two. This chapter produced from Ph. D. Thesis of 

I. Doğanay Yalğın, (Doğanay Yalğın, 2024). 

Preliminaries 

Most of the following data, can be found in (Mitchell, 1972:1), 

(Mitchell, 1978: 867), (Mitchell, 1985: 96), (Amgott, 1986: 1) and  

(Mosa, 1986). 

Let R be a commutative ring. An R-category is a category where 

composition is R-bilinear and all homsets possess R-module 

structures. This framework enables the exploration of categorical 

concepts and constructions within the realm of R-modules, offering 

a robust foundation for algebraic and categorical inquiries. 

 An R-algebroid is a small R-category. R- algebroids can be non 

identity. A set of functions s,t : Mor(U) → Ob(U), the source and 

target functions, respectively, and an object set Ob(U) = U0, a 

morphism set Mor(U), are included with an R-algebroid U. A single 

object R-algebroid corresponds to an associative R-algebra. 

Let U and V be R-algebroids and U0 = V0 , if the family of maps 
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𝑉(𝑎, 𝑏) × 𝑉(𝑏, 𝑐) → 𝑉(𝑎, 𝑐)

(𝑣, 𝑢) → 𝑣𝑢
 

     

satisfies the following conditions 

1) 𝑣𝑢1+𝑢2 = 𝑣𝑢1 + 𝑣𝑢2 

2) (𝑣1 + 𝑣2)
𝑢 = 𝑣1

𝑢 + 𝑣2
𝑢      

3) (𝑣𝑢)𝑢
′
= 𝑣𝑢𝑢′ 

4) 𝑣′𝑣𝑢 = 𝑣′𝑣𝑢 

5) 𝑟 ∙ 𝑣𝑢 = (𝑟 ∙ 𝑣)𝑢 = 𝑣𝑟∙𝑢 

6) 𝑣1𝑡𝑣 = 𝑣      

for all 𝑎, 𝑏, 𝑐 ∈ 𝑈0 𝑎𝑛𝑑 𝑢, 𝑢
′, 𝑢1, 𝑢2 ∈ 𝑀𝑜𝑟(𝑈), 𝑣, 𝑣

′, 𝑣1, 𝑣2 ∈

𝑀𝑜𝑟(𝑉)  such that 𝑡(𝑣′)  =  𝑠(𝑣), 𝑡(𝑢)  =  𝑠(𝑢′), 𝑡(𝑣)  =  𝑡(𝑣1)  =

 𝑡(𝑣2)  =  𝑠(𝑢)  =  𝑠(𝑢1)  =  𝑠(𝑢2), 𝑟 ∈ 𝑅, it is called the right 

action of U on V . 

The left action of U on V similarly defined. While U has right and 

left action on V if the condition 

( 𝑣 
𝑢 )𝑢′ = (𝑣𝑢′) 

𝑢   

is satisfied for all d,a,b,c ∈ U0, v ∈ V (a,b),u ∈ U(d,a) and u′ ∈ 

U(b,c) then U has an associative action on V . 

An R-functor is an R-linear functor between two R-categories, and 

an R-algebroid morphism is an R-functor between two R-algebroids. 

In category Alg(R), all R-algebroids and their morphisms are 

included. 
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Let R is an commutative ring U and V be two R-algebroids of the 

same object set U0 and V has an associative action on U . For the 

set U  ⋊ V = {(u, v): u ∈ U, v ∈ V}, if the following conditions 

are satisfied 

1) (𝑢, 𝑣) + (𝑢′, 𝑣′) = (𝑢 + 𝑢′, 𝑣 + 𝑣′)  

2) (𝑢, 𝑣) = ( 𝑢, 
𝑟 𝑣 

𝑟 ) 
𝑟  

3) (𝑢, 𝑣)(𝑢′′, 𝑣′′) = (𝑢𝑢′′ + 𝑢𝑣
′′
+ 𝑢′′ 

𝑣 , 𝑣𝑣′′)    

𝑈  ⋊ 𝑉 is an R-algebroid, where for all  (𝑢, 𝑣) ∈ 𝑈  ⋊ 𝑉 and 𝑟 ∈

𝑅 , 𝑠(𝑢, 𝑣)  = 𝑠(𝑢)  =  𝑠(𝑣),  𝑡(𝑢, 𝑣)  =  𝑡(𝑢)  =  𝑡(𝑣),  

(𝑢, 𝑣), (𝑢′, 𝑣), (𝑢′, 𝑣′), (𝑢′′, 𝑣′′)  ∈ 𝑈  ⋊ 𝑉,  𝑠(𝑢, 𝑣)  =

𝑠(𝑢′, 𝑣′), 𝑡(𝑢, 𝑣)  =  𝑡(𝑢′, 𝑣′), 𝑡(𝑢, 𝑣) =  𝑠(𝑢′′, 𝑣′′). This R-

algebroid is called the semi-direct product R-algebroid of U and 

V. 

 A simplicial R-algebroid is a sequence of R-algebroids E 

={E0,E1,...,En,...} together with homomorphisms di
n ∶  En  →

 En−1 (0 ≤  i ≤  n ≠  0) and sjn ∶  En →   En + 1 (0 ≤  j ≤  n)  for 

each (0 ≤  i ≤  n ≠  0) such that identity on object set, this 

homomorphisms are required to satisfy the simplicial identities 

 

 

   

We denote this simplicial R-algebroid with 𝑬 = (𝐸𝑛, 𝑑𝑖
𝑛, 𝑠𝑖

𝑛).    

 

Let 𝐄 = (En, di
n, si

n) and 𝐅 = (Fn, δi
n, σj

n) be R-algebroids. A 

simplicial map f = {fn : n ∈ N} : E → F is a family of 
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homomorphisms fn = En → Fn satisfying δi
nfn  =  fn−1di

n
 and 

fnsj
n−1   =  ∂j

n−1fn−1 for all n ∈ N. We have thus defined category of 

simplicial R-algebroids, which we will denote by Simp.R-Alg.  

Let E be a simplicial R-algebroid. The Moore complex (NE,∂) of E 

is the chain complex defined by NEn  = ⋂ kerdi
n  with ∂n ∶

n−1
i=0

 NEn  →  NEn−1 induced from ∂n
n by restriction. 

 

We say that the Moore complex (NE,∂) of E is of length k if NEn = 0 

for all n ≥ k + 1. We denote category of simplicial R-algebroids with 

Moore complex of lenght k by Simp.R-Alg.≤k. 

 

Crossed Squares of R-algebroids 

Guin- Waléry and Loday defined crossed squares in (Guin- Waléry 

& Loday, 1981: 179) as an algebraic model for homotopy 3-type 

connected spaces. Thus crossed squares model homotopy types in 

dimensions bigger than 3. Later Ellis defined the commutative 

algebra version of crossed squares in (Ellis, 1988: 277). In this 

section we introduce R-algebroid version of crossed square. 

A crossed square is a commutative square of R-algebroids with the 

same object set M0 
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together with associative actions P on L,M,N and a function h ∶

 M × N → L identity on M0 . Let M and N act on M,N and L via P. 

The structure must satisfy the following axioms 

CS1) λ and λ′ preserve the action of P, and λ,λ′,µ,υ and υλ′ = µλ are 

crossed modules. 

CS2) ℎ(𝑚 +𝑚1, 𝑛) =  ℎ(𝑚, 𝑛) + ℎ(𝑚1 + 𝑛),  

ℎ(𝑚, 𝑛 + 𝑛1) =  ℎ(𝑚, 𝑛) +  ℎ(𝑚, 𝑛1), 

CS3) 𝑟 ∙ ℎ(𝑚, 𝑛) = ℎ(𝑟 ∙ 𝑚, 𝑛) = ℎ(𝑚, 𝑟 ∙ 𝑛), (𝑟 ∈ 𝑅) 

CS4) ℎ(𝑚, 𝑛) 
𝑝  =  ℎ( 𝑚 

𝑝 , 𝑛), 𝑎𝑛𝑑 ℎ(𝑚, 𝑛)𝑝
′

 =  ℎ(𝑚, 𝑛𝑝
′

) 

CS 5) ℎ(𝑚′𝑚, 𝑛)  = ℎ(𝑚, 𝑛) =  ℎ(𝑚′, 𝑛 
𝑚 ), 

𝑚′   

CS 6) ℎ(𝑚, 𝑛𝑛′)  =  ℎ(𝑚, 𝑛)𝑛′    =  ℎ(𝑚𝑛, 𝑛′), 

CS 7) 𝜆(ℎ(𝑚, 𝑛))  =  𝑚𝑛, 

CS 8) 𝜆
′
(ℎ(𝑚,𝑛))= 𝑛 𝑚 , 

CS 9) ℎ(𝜆𝑙, 𝑛) =  𝑙𝑛, 

CS 10) ℎ(𝑚, 𝜆′𝑙)  = 𝑙 
𝑚 ,  

𝑪𝑺 𝟏𝟏) ℎ(𝑚, 𝑛)ℎ(𝑚′′, 𝑛′′) = ℎ(𝑚𝑛, 𝑛′′ 
𝑚′′

)  

for all 𝑟 ∈ 𝑅,𝑚,𝑚1, 𝑚
′, 𝑚′′ ∈ 𝑀, 𝑛, 𝑛1, 𝑛′, 𝑛′′ ∈  𝑁, 𝑝, 𝑝′ ∈  𝑃, 𝑙 ∈

 𝐿 with 𝑡(𝑚)  =  𝑡(𝑚1)  =  𝑠(𝑛 ) =  𝑠(𝑛1),  𝑡(𝑝)  =  𝑠(𝑚), t(n)  =

𝑠(𝑝′), 𝑡(𝑚′)  =  𝑠(𝑚), 𝑡(𝑛)  =  𝑠(𝑛′), 𝑡(𝑙)  =  𝑠(𝑛), 𝑡(𝑚)  =  𝑠(𝑙), 

𝑡(𝑛)  =  𝑠(𝑚′′). 

We will denote such a crossed square with (
𝐿 𝑀
𝑁 𝑃

).  
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A morphism  Φ: (
𝐿 𝑀
𝑁 𝑃

) → (𝐿′ 𝑀′
𝑁′ 𝑃′

) of crossed squares consists 

of four R-algebroid morphisms Φ𝐿: 𝐿 → 𝐿′, Φ𝑀:𝑀 → 𝑀′, Φ𝑁: 𝑁 →

𝑁′ 𝑎𝑛𝑑 Φ𝑃: 𝑃 → 𝑃′ such that: the resulting cube of R-algebroid 

morphisms is commutative; 𝛷𝐿(ℎ(𝑚, 𝑛))  =  ℎ(𝛷𝑀(𝑚),𝛷𝑁(𝑛)) for 

m ∈ M, n ∈ N; each of the morphisms ΦL, ΦM and ΦN preserve the 

action of ΦP. Thus, all Ralgebroid crossed squares and their 

morphisms form a category denoted by XSqua. 

𝑭𝒓𝒐𝒎 𝑿𝑺𝒒𝒖𝒂 𝒕𝒐 𝑺𝒊𝒎𝒑.𝑹 − 𝑨𝒍𝒈.≤ 𝟐  

In this section, we will obtain a simplicial R-algebroid 𝑬 =

(𝐸𝑛, 𝑑𝑖
𝑛, 𝑠𝑖

𝑛) with Moore complex of lenght 2 from a crossed square 

of R-algebroids. 

Proposition 3.1 Given a crossed square of R-algebroids. We obtain 

a simplicial R-algebroid 𝑬 = (𝐸𝑛, 𝑑𝑖
𝑛, 𝑠𝑖

𝑛) with Moore complex of 

lenght 2. 

Proof: 

Let 𝐊 =  (𝐿,𝑀,𝑁, 𝑃, 𝜅, 𝜅′, 𝜐, 𝜔) be a crossed square of 

R-algebroids 

 

Therefore there are associative actions of P on L, M and N. Also M 

acts on N and L, N acts on M and L. 

1) Let 𝐸0 = 𝑃. 

2) We can get M o N with actions of N on M 𝑚 
𝑛 = 𝑚 

𝑣(𝑛)   and 𝑚 
𝑛′ =

𝑚 
𝑣(𝑛′). Also it can be get 𝐸1 = (𝑀 ⋊ 𝑁) ⋊ 𝑃  with actions of P on 

 𝑀 ⋊ 𝑁 
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(𝑚, 𝑛) = ( 𝑚 
𝑝 , 𝑛 

𝑝 ) 
𝑝  and (𝑚, 𝑛) 

𝑝 = (𝑚 
𝑝, 𝑛 

𝑝′)  

 and we define the morphisms; 

  •  𝑑0
1: 𝐸1 → 𝐸0 ,  𝑑0

1(𝑚, 𝑛, 𝑝) = 𝑝

 •  𝑑1
1: 𝐸1 → 𝐸0 ,  𝑑1

1(𝑚, 𝑛, 𝑝) = 𝜔(𝑚) + 𝑣(𝑛) + 𝑝

 •  𝑠0
0: 𝐸0 → 𝐸1 ,  𝑠0

0(𝑝) = (𝟎, 𝟎, 𝑝)

  

 

3) We have actions of 𝑀⋊𝑁 on L defined by 𝑙 
(𝑚,𝑛) =

ℎ2(−𝑛, 𝜅(𝑙)) = − 𝑙 
𝑛  and 𝑙 

(𝑚′,𝑛′) = ℎ1(𝜅((𝑙), 𝑛
′) = 𝑙𝑛′. By means 

of this actions, 𝐻 = 𝐿 ⋊ (𝑀 ⋊ 𝑁) can be constructed. Also it can be 

get  𝐸2 = (𝐿 ⋊ (𝑀 ⋊𝑁)) ⋊ ((𝑀 ⋊ 𝑁) ⋊ 𝑃)  with actions of  E1   on  

H  

  

(𝑙,(𝑚′,𝑛′)) 
((𝑚,𝑛),𝑝)

=( 𝑙+ 𝑙 
𝑝

 
𝜔(𝑚)+𝑣(𝑛) −ℎ1(−𝑚,𝑛

′), (𝑚′,𝑛′)+(𝑚,𝑛)(𝑚′,𝑛′) 
𝑝

        

(𝑙, (𝑚′, 𝑛′)) 
((𝑚′′,𝑛′′),𝑝)

= 𝑙𝜔(𝑚′′)+𝑣(𝑛′′) + 𝑙𝑝′ − ℎ2(−𝑛
′, 𝑚′′), (𝑚′, 𝑛′)𝑝

′
+ (𝑚′, 𝑛′)(𝑚′′, 𝑛′′)

     

and we define the morphisms;    

 •  𝑑0
2: 𝐸2 → 𝐸1,  𝑑0

2(l,m, n,m′, n′, p) = (m′, n′, p)

 •  𝑑1
2: 𝐸2 → 𝐸1,  𝑑1

2(l,m, n,m′, n′, p) = (m +m′, n + n′, p)

 •  𝑑2
2: 𝐸2 → 𝐸1,  𝑑2

2(l,m, n,m′, n′, p) = (−κ(l) + m, κ′(l) + n,ω(m′) + v(n′) + p)

 •  𝑠0
1: 𝐸1 → 𝐸2,   𝑠0

1(𝑚, 𝑛, 𝑝) = (0,0,0,𝑚′, 𝑛′, 𝑝)

 •  𝑠1
1: 𝐸1 → 𝐸2,   𝑠1

1(𝑚′, 𝑛′, 𝑝) = (0,𝑚′, 𝑛′, 0,0, 𝑝)

     

 4) We have actions of  𝐻 = 𝐿 ⋊ (𝑀 ⋊ 𝑁)  on  L   defined by  

𝑙′ = (𝑙𝑙′ − 𝑙′ 
𝑛 ) 

(𝑙,𝑚,𝑛)   and  𝑙′ 
(𝑙′′,𝑚′,𝑛′) = 𝑙′𝑙′′ + 𝑙′𝑛′ . By means of 

this actions   𝐽 = 𝐿 ⋊ (𝐿 ⋊ (𝑀 ⋊ 𝑁))  can be costructed. Also it 

can be get   

𝐸3 = (𝐿 ⋊ (𝐿 ⋊ (𝑀 ⋊𝑁))) ⋊ (𝐿 ⋊ (𝑀 ⋊ 𝑁))𝐿 ⋊ ((𝑀 ⋊ 𝑁) ⋊ 𝑃) 
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 with actions of  E2   on  J  

(𝑙′, 𝑙′′, 𝑚′′, 𝑛′′) 
(𝑙,𝑚,𝑛,𝑚′,𝑛′,𝑝)

= 𝑙′ + 𝑙′′ + 
𝜔(𝑚′)+𝑣(𝑛′)

 
𝜔(𝑚)+𝑣(𝑛)

𝑙′ + 𝑙′ − ℎ1(−𝑚, 𝑛
′′) − ℎ2(−𝑛, 𝜅(𝑙′′)) 

𝑝 − 𝑙𝑙′′ − ℎ1(−𝜅(𝑙), 𝑛
′′), 

𝜔(𝑚′)+𝑣(𝑛′)

𝑙′′ + 𝑙′′ 
𝑝

 
𝜔(𝑚′)+𝑣(𝑛′) − ℎ1(−𝑚

′, 𝑛′′) + ℎ2(−𝑛, 𝜅(𝑙
′′)) + ℎ1(−𝜅(𝑙), 𝑛

′′) + 𝑙𝑙′,

𝑚𝑚′′ +𝑚𝑛′′ + 𝑚′′ +𝑚′𝑚′′ +𝑚′𝑛
′′
+ 

𝑛 𝑚′′ 
𝑛′ + 𝑚′′ 

𝑝 ,

𝑛𝑛′′, 𝑛′𝑛′′, 𝑛′′ 
𝑝 )

 

 

(𝑙′, 𝑙′′,𝑚′′, 𝑛′′)(𝑘,𝑤,𝑣,𝑤
′,𝑣′,𝑞)

= (𝑙′ 
𝜔(𝑚)+𝑣(𝑛)

+ 𝑙′′ 
𝜔(𝑚)+𝑣(𝑛)

+ 𝑙′   
𝜔(𝑚′)+𝑣(𝑛′)

+𝑙′𝑞 − ℎ2(−𝑛
′′, 𝑤) − ℎ2(−𝑛

′′, 𝜅(𝑘)) − ℎ1(−𝜅(𝑙
′′), 𝑣) − 𝑙′′𝑘, 

 

 

𝑙′′
(𝜔(𝑤′)+𝑣(𝑣′))

+𝑙′′
𝑞
−ℎ2(−𝑛

′′,𝑤′)+ℎ2(−𝑛
′′,𝜅′(𝑘))+ℎ1(−𝜅

′(𝑙′′),𝑤)+𝑙′′𝑘,𝑚′′𝑤+𝑚′′𝑣

+ 𝑤+𝑚′′𝑤′+𝑚′′𝑣
′

 
𝑛′′

 

+ 𝑤′+𝑚′′𝑞,𝑛′′𝑣+𝑛′′𝑣′+𝑛′′𝑞). 
𝑛′′

 

 

 

 
 

Let the morphisms 𝑑0
3, 𝑑1

3, 𝑑2
3, 𝑑3

3: 𝐸3 → 𝐸2 be defined so as to map 

element  (𝑙, 𝑙′, 𝑚, 𝑛, 𝑙′′, 𝑚′, 𝑛′, 𝑚′′, 𝑛′′, 𝑝)  of   E3   to the elements  

(𝑙′′, 𝑚′, 𝑛′, 𝑚′′, 𝑛′′, 𝑝),  (𝑙′ + 𝑙′′, 𝑚 + 𝑚′, 𝑛 + 𝑛′, 𝑚′′, 𝑛′′, 𝑝), 

(𝑙 + 𝑙′, 𝑚, 𝑛,𝑚′ +𝑚′′, 𝑛′ + 𝑛′′, 𝑝), (𝑙, −𝜅(𝑙′) + 𝑚, 𝜅(𝑙′) +

𝑛,−𝜅(𝑙′′) + 𝑚′, 𝜅(𝑙′′) + 𝑛′, 𝜔(𝑚′′) + 𝑣(𝑛′′) + 𝑝) of   E2  , 

respectively, and let the morphisms 𝑠0
2, 𝑠1

2, 𝑠2
2: 𝐸2 → 𝐸3 be defined so 

as to map the element  (𝑙,𝑚, 𝑛,𝑚′, 𝑛′, 𝑝) of  E2   to the elements 

(𝟎, 𝟎, 𝟎, 𝟎, 𝑙,𝑚, 𝑛,𝑚′, 𝑛′, 𝑝), (𝟎, 𝑙,𝑚, 𝑛, 𝟎, 𝟎, 𝟎,𝑚′, 𝑛′, 𝑝), (𝑙, 𝟎,𝑚, 𝑛, 𝟎, 𝟎, 𝟎,𝑚′, 𝑛′, 𝑝) 

of   E3  , respectively.    Thus, we obtain         

 𝑘𝑒𝑟𝑑0
3 = {(𝑙, 𝑙′, 𝑚, 𝑛, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎)|𝑙, 𝑙′ ∈ 𝐿,𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁}

 𝑘𝑒𝑟𝑑1
3 = {(𝑙, −𝑙′′, −𝑚′, −𝑛′, 𝑙′′, 𝑚′, 𝑛′, 𝟎, 𝟎, 𝟎)|𝑙, 𝑙′′ ∈ 𝐿,𝑚′ ∈ 𝑀, 𝑛′ ∈ 𝑁}

 𝑘𝑒𝑟𝑑2
3 = {(𝑙, −𝑙′′, −𝑚′, −𝑛′, 𝑙′′, 𝑚′, 𝑛′, 𝟎, 𝟎, 𝟎)|𝑙, 𝑙′′ ∈ 𝐿,𝑚′ ∈ 𝑀, 𝑛′ ∈ 𝑁}

 𝑘𝑒𝑟𝑑0
3⋂  𝑘𝑒𝑟𝑑1

3⋂  𝑘𝑒𝑟𝑑2
3 = {(𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎)} = 𝑁𝐸3

     

Consequently, these definitions give rise to simplisel R-algebroids 

with Moore complex of lenght 2.       
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QUARTIC TRIGONOMETRIC TENSION B-

SPLINE COLLOCATION METHOD FOR 

FITZHUGH-NAGUMO EQUATION 

ÖZLEM ERSOY HEPSON5 

KÜBRA KAYMAK6 

Introduction 

The Fitzhugh-Nagumo (FHN) equation is a reduced version of the 

Hodgkin-Huxley model. They is a simplified neuron model, while 

retaining fundamental features, used to describe the dynamics of 

excitable systems. This structure allows for analytical and numerical 

analysis. Neural networks are widely used in many fields, including 

biophysics, medicine, and computational neuroscience. The FHN 

equation was solved using a spectral and colocation-based approach 

with a special type of basis function related to Chebyshev 

polynomials of generalized Gegenbauer polynomials (Abd-

Elhameed, Alqubori, & Atta, 2025:2). A spectral approach based on 

two-dimensional shifted Legendre polynomials was used for partial 
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5369-8233  
6 PhD., Eskişehir Osmangazi University, Faculty of Science, Department of 

Mathematics and Computer Science, Orcid: 0009-0004-4379-8929  



--38-- 

differential equations of type FHN (Uma et al.,2025:2). The 

modified FHN neuron model under the influence of an external 

electric field was addressed using a discrete matching approach 

(Zhang et al.,2023:3). Numerical results were analyzed using a two-

step effective hybrid block method (Rufai et al., 2023:1) 

B-spline functions are commonly used approximation functions in 

the numerical solution of differential equations. These functions can 

be defined in various forms, such as polynomial, exponential, 

trigonometric, and trigonometric tension. In this study, quartic 

trigonometric tension B-spline functions are used. The tension B-

splines are defined by a tension parameter that varies within specific 

ranges. Trigonometric tension B-spline functions have also been 

applied to various differential equations; Burgers-Huxley equation 

(Alina & Zarebnia, 2019:3) Burger’s equation (Yigit, Hepson & 

Allahviranloo, 2024:2), RLW equation (Iqbal, Akram & Alsharif, 

2024:2). 

In this study, the spatial integration of the FHN equation, which has 

a partial differential equation structure, was applied using the quartic 

trigonometric tension B-spline collocation method. The FHN 

equation was solved numerically using the Crank–Nicolson method, 

and various test problems were applied to evaluate the accuracy of 

the method. FHN Eq. is 

𝜕𝑢

𝜕𝑡
−
𝜕2𝑢

𝜕𝑥2
− 𝑢(1 − 𝑢)(𝑢 − 𝑝) = 0, 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [0, 𝑇).       (1) 

Here, p represents an arbitrarily chosen constant. The initial 

condition (IC) and boundary conditions (BCs) of the problem are as 

follows: 

𝑢(𝑥, 0) = 𝑢0 (2) 

with  
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𝒖(𝒂, 𝒕) = 𝒇𝟎,   𝒖(𝒃, 𝒕) = 𝒇𝟏,

𝝏𝒖(𝒂, 𝒕)

𝝏𝒙
= 𝟎, 

𝝏𝒖(𝒃, 𝒕)

𝝏𝒙
= 𝟎,

𝝏𝟐𝒖(𝒂, 𝒕)

𝝏𝒙𝟐
= 𝟎, 

𝝏𝟐𝒖(𝒃, 𝒕)

𝝏𝒙𝟐
= 𝟎.

(𝟑) 

 

 

 

 

 

Quartic Trigonometric Tension B-Spline Collocation Method 

This section introduces the B-spline function, based on quartic 

trigonometric tension curves, to be used in the colocation scheme. 

Then, the spatial and temporal discretization procedures, along with 

the linearization step, are examined in detail to obtain the fully 

discretized scheme. 

First consider the interval [𝑎, 𝑏] as uniformly divided knots such that, 

ℎ = 𝑥𝑚+1 − 𝑥𝑚, 𝑚 = 0,1, … ,𝑁 − 1 with the points 𝑎 = 𝑥0 < 𝑥1 <

⋯ < 𝑥𝑁 = 𝑏. Furthermore, the fictitious knots outside the domain 

𝑥−4, 𝑥−3, 𝑥−2, 𝑥−1 and 𝑥𝑁+1, 𝑥𝑁+2, 𝑥𝑁+3, 𝑥𝑁+4 are included to form 

the b-spline base on the domain [𝑥0, 𝑥𝑁]. Therefore, this tension B-

spline curve is given by 
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QTT

=  
r

2τ2

{
 
 
 
 
 

 
 
 
 
 
(τ2qm−2

2 + 2ωm−2 − 2), , [xm−2, xm−1]

−τ2(3h2 + 6hqm−2 + 2qm−2
2 ) − 2K1(τ

2qm−1
2 − 2)

+6ωm−1 + 2ωm − 4,
, [xm−1, xm]

τ2(13h2 + 10hqm−2 + 2qm−2
2 ) + 2K1τ

2(11h2 + 10hqm−2)

+4K1τ
2qm−2

2 − 8K1 + 6ωm+1 − 4,
, [xm, xm+1]

−τ2(23h2 + 14hqm−2 + 2qm−2
2 ) − 2K1(τ

2qm+2
2 − 2)

+2ωm+1 + 6ωm+2 − 4,
, [xm+1, xm+2]

τ2qm+3
2 + 2ωm+3 − 2, , [xm+2, xm+3]

0 , otherwise

(4)

m = 0,1, … , N + 1

 

 

where 𝑟 =
1

2ℎ2(1−𝐾1)
, 𝜔𝑚+𝑗 = cos (𝜏(𝑥𝑚+𝑗 − 𝑥)) , 𝑞𝑚+𝑗 = 𝑥𝑚+𝑗 −

𝑥,𝐾1 = cos(𝜏ℎ) , 𝐾2 = sin(𝜏ℎ) , 𝜏 ≤ √𝜆, 𝜆 =
𝜋

ℎ
(𝜆 ∈ 𝑅) is tension 

parameter. The set 𝑄𝑇𝑇0,  𝑄𝑇𝑇1, … ,  𝑄𝑇𝑇𝑁+1 constitutes a basis for 

the space of functions defined on the interval [𝑎, 𝑏]. 
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Table 1 𝑽𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝑸𝑻𝑻(𝒙) 𝒂𝒏𝒅 𝒊𝒕𝒔 𝒅𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆𝒔 𝒂𝒕 𝒌𝒏𝒐𝒕𝒔 

 𝑄𝑇𝑇(𝑥𝑚) 𝑄𝑇𝑇′(𝑥𝑚) 𝑄𝑇𝑇′′(𝑥𝑚) 𝑄𝑇𝑇′′′(𝑥𝑚) 

𝑥𝑚−3 0 0 0 0 

𝑥𝑚−2 
𝑟 (
ℎ2𝜏2 + 2𝐾1 − 2

2𝜏2
) 𝑟 (

ℎ𝜏 − 𝐾2
𝜏

) 
𝑟(1 − 𝐾1) 𝑟𝜏𝐾2 

𝑥𝑚−1 
𝑟 (
ℎ2𝜏2 − 2𝐾1(ℎ

2𝜏2 + 1) + 2

2𝜏2
) 

 

𝑟 (
ℎ𝜏 − 3𝐾2 + 2𝐾1ℎ𝜏

𝜏
)  

𝑟(𝐾1 − 1) −3𝑟𝜏𝐾2 

𝑥𝑚 
𝑟 (
ℎ2𝜏2 − 2𝐾1(ℎ

2𝜏2 + 1) + 2

2𝜏2
) 𝑟 (

3𝐾2 − 2𝐾ℎ𝜏 − ℎ𝜏

𝜏
) 

𝑟(𝐾1 − 1) 3𝑟𝜏𝐾2 

𝑥𝑚+1 
𝑟 (
ℎ2𝜏2 + 2𝐾1 − 2

2𝜏2
) 𝑟 (

ℎ𝜏 − 𝐾2
𝜏

) 
𝑟(1 − 𝐾1) 

 

−𝑟𝜏𝐾2 

 

𝑥𝑚+2 0 0 0 0 

Building on the unified spline approach of Wang and Fang (2008:2), 

Alinia and Zarebnia (2018:3) employed trigonometric tension B-

spline basis functions to develop a collocation method for problems 

in the calculus of variations. An approximation 𝑈(𝑥, 𝑡) of the 

analytical solution 𝑢(𝑥, 𝑡) can then be expressed, as in 

𝑈(𝑥, 𝑡) = ∑ 𝛿𝑚

𝑁+1

𝑚=−2

(𝑡)𝑄𝑇𝑇𝑚(𝑥), (5) 

as a linear combination of quartic trigonometric tension B-spline 

basis functions, where 𝛿𝑚 denotes time-dependent parameters. The 

approximate solution 𝑈(𝑥, 𝑡) and its derivative at the knot points 𝑥𝑚 

are expressed in terms of the time-dependent parameters 𝛿𝑚 using 

Eq. (5) as follows: 

𝑈(𝑥𝑚, 𝑡) = 𝑎1𝛿𝑚−2(𝑡) + 𝑎2𝛿𝑚−1(𝑡) + 𝑎2𝛿𝑚(𝑡) + 𝑎1𝛿𝑚+1(𝑡)       

 𝑈′(𝑥𝑚, 𝑡) = 𝑏1𝛿𝑚−2(𝑡) + 𝑏2𝛿𝑚−1(𝑡) + 𝑏2𝛿𝑚(𝑡) + 𝑏1𝛿𝑚+1(𝑡) (6) 

𝑈′′(𝑥𝑚, 𝑡) = 𝑐1𝛿𝑚−2(𝑡) − 𝑐1𝛿𝑚−1(𝑡) − 𝑐1𝛿𝑚(𝑡) + 𝑐1𝛿𝑚+1(𝑡)      
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where 

𝑎1 = 𝑟 (
ℎ2𝜏2 + 2𝐾1 − 2

2𝜏2
) ,

𝑎2 = 𝑟 (
ℎ2𝜏2 − 2(ℎ2𝜏2 + 1)2𝐾1 + 2

2𝜏2
) ,

𝑏1 = 𝑟 (
ℎ𝜏 − 𝐾2

𝜏
) ,

𝑏2 = −𝑟 (
ℎ𝜏 − 3𝐾2 + 2𝐾1ℎ𝜏

𝜏
) ,

𝑐1 = 𝑟(1 − 𝐾1).

(7) 

The temporal discretization of Eq. (1) is carried out using the Crank–

Nicolson method. The application of this method to Eq. (1) is given 

below: 

𝑈𝑛+1 − 𝑈𝑛

Δ𝑡
−
𝑈𝑥𝑥
𝑛+1 + 𝑈𝑥𝑥

𝑛

2
+
(𝑈3)𝑛+1 + (𝑈3)𝑛

2

−(𝑝 + 1)
(𝑈2)𝑛+1 + (𝑈2)𝑛

2
+ 𝑝

𝑈𝑛+1 + 𝑈𝑛

2
= 0 (8)

 

where and 𝑈𝑛+1 are defined as 𝑈(𝑥, 𝑡𝑛 + 𝛥𝑡). According to the 

Taylor expansion, the nonlinear term, when linearized, is given as 

follows: 

(𝑈2)(𝑛+1) = 2𝑈𝑛 𝑈𝑛+1 − (𝑈𝑛)2 (9) 

and 

(𝑈3)𝑛+1 = 3(𝑈𝑛)2𝑈𝑛+1 − 2(𝑈𝑛)3. (10) 

Hence, Eq. (8) takes the following form: 
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Un+1 − Un

Δt
−
Uxx
n+1 + Uxx

n

2
+
3(Un)2Un+1 − (Un)3

2

−(p + 1)UnUn+1 + p
Un+1 + Un

2
= 0.  (11) 

 

Therefore, Eq. (11) is reduced to its simplified form:  

𝜂1𝛿𝑚−2
𝑛+1 + 𝜂2𝛿𝑚−1

𝑛+1 + 𝜂2𝛿𝑚
𝑛+1 + 𝜂1𝛿𝑚+1

𝑛+1

= 𝜂3𝛿𝑚−2
𝑛 + 𝜂4𝛿𝑚−1

𝑛 + 𝜂4𝛿𝑚
𝑛 + 𝜂3𝛿𝑚+1

𝑛 (12)
 

where 

 

𝜂1 = (1 + 3
Δ𝑡

2
𝐿2 − (𝑝 + 1)Δ𝑡𝐿 + 𝑝

Δ𝑡

2
) 𝑎1 −

Δ𝑡

2
𝑐1,

𝜂2 = (1 + 3
Δ𝑡

2
𝐿2 − (𝑝 + 1)Δ𝑡𝐿 + 𝑝

Δ𝑡

2
) 𝑎2 +

Δ𝑡

2
𝑐1,

𝜂3 = (1 +
Δ𝑡

2
𝐿 − 𝑝

Δ𝑡

2
) 𝑎1 +

Δ𝑡

2
𝑐1,

𝜂4 = (1 +
Δ𝑡

2
𝐿 − 𝑝

Δ𝑡

2
) 𝑎2 −

Δ𝑡

2
𝑐1,   

 (13) 

and the coefficients 𝑳𝒎 is defined as: 

𝐿𝑚 = 𝑎1𝛿𝑚−2
𝑛 (𝑡) + 𝑎2𝛿𝑚−1

𝑛 (𝑡) + 𝑎2𝛿𝑚
𝑛 (𝑡) + 𝑎1𝛿𝑚+1

𝑛 (𝑡).
 (14)

We now obtain a system with (𝑁 + 4) unknowns and (𝑁 + 1) 

equations. For the system to be solvable, the numbers of unknowns 

and equations must be equal. Therefore, three unknowns 

(𝛿−2
𝑛+1, 𝛿−1

𝑛+1, 𝛿𝑁+1
𝑛+1) are eliminated using the BCs, and (𝑁 +

1) × (𝑁 + 1) a linear system is derived. The solution of this system 

yields the approximate values at the knots. Then, the quantities 𝛿𝑚
𝑛+1 

are computed using the initial data 𝛿𝑚
0 . 

Numerical Results 

The accuracy of the proposed scheme is assessed by evaluating the 

maximum error norm 
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𝐿∞ = |𝑢(𝑥, 𝑡) − 𝑈(𝑥, 𝑡)|∞ = max
𝑚
|𝑢(𝑥𝑚, 𝑡) − 𝑈(𝑥𝑚, 𝑡)| (15) 

where 𝑢(𝑥, 𝑡) denotes the exact solution and 𝑈(𝑥, 𝑡) represents the 

numerical solution at time 𝑡. 

Test-1 

To evaluate the accuracy of the proposed method, the analytical 

solution of the FHN equation is given as: 

𝑢(𝑥, 𝑡) = −
1

2
+
1

2
tanh (0.3536𝑥 −

3

4
𝑡) (16) 

with IC (Pathak et al., 2024:7): 

𝑢(𝑥, 𝑡) = −
1

2
+
1

2
tanh(0.3536𝑥). (17) 

Numerical solutions were obtained for different values of Δ𝑡 =

0.01, 0.05;  ℎ = 0.1, 0.2, 0.5;  η and 𝑝 = −1 over the range 

[−15,30]. The results of these calculations are shown in Table-2. 

 

Table 2 𝑬𝒓𝒓𝒐𝒓 𝒏𝒐𝒓𝒎𝒔 𝒇𝒐𝒓 𝑻𝒆𝒔𝒕𝟏, 𝟏𝟓 ≤ 𝒙 ≤ 𝟑𝟎 𝒂𝒏𝒅 𝒕 = 𝟓 

h 𝜟𝒕 𝑸𝑻𝑻𝟒 

(𝝉 = √𝝀) 

𝑸𝑻𝑻𝟒 

( 𝝉 = √𝝀/𝟏𝟎) 

𝑸𝑻𝑻𝟒 

( 𝝉 = √𝝀/𝟓) 

0.1 0.01 1.3882 × 10−4 1.3926 ×  10−4 1.3925 × 10−4 

 0.05 7.3179 × 10−4 7.3216 ×  10−4 7.3215 × 10−4 

0.2 0.01 1.3565 × 10−4 1.3921 ×  10−4 1.3910 × 10−4 

 0.05 7.2868 × 10−4 7.3179 ×  10−4 7.3170 × 10−4 

0.5 0.01 8.5479 × 10−5 1.3776 ×  10−4 1.3611 × 10−4 

 0.05 6.8272 × 10−4 7.3179 ×  10−4 7.3039 × 10−4 

 

 



--45-- 

Figure 1 Numerical Simulations for Test-1 

 

Test-2 

In the following problem, we consider another analytical solution of 

the FHN equation. 

𝑢(𝑥, 𝑡) =
1

1 + 𝑒
−𝑠

√2

 (18) 

where 𝑠 = 𝑥 + 𝑐𝑡, 𝑐 = √2(
1

2
− α). IC (Inan et al., 2021:9) 

𝑢(𝑥, 0) =
1

1 + 𝑒
−𝑥

√2

(19) 

BCs 

𝑢(1, 𝑡) =
1

1 + 𝑒
−𝑐𝑡

√2

 (20) 

and 

𝑢(1, 𝑡) =
1

1 + 𝑒
−(1+𝑐𝑡)

√2

 (21) 
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Numerical solutions were obtained for different values of Δ𝑡 =

0.01, 0.05; ℎ = 0.1, 0.2, 0.5;  η and 𝑝 = 0.75 over the range 

[−25,25]. The results of these calculations are shown in Table-3. 

Table 3 𝑬𝒓𝒓𝒐𝒓 𝒏𝒐𝒓𝒎𝒔 𝒇𝒐𝒓 𝑻𝒆𝒔𝒕 𝟐, −𝟐𝟓 ≤ 𝒙 ≤ 𝟐𝟓 𝒂𝒏𝒅 𝒕 = 𝟓 

h 𝜟𝒕 𝑸𝑻𝑻𝟒 

(𝝉 = √𝝀) 

𝑸𝑻𝑻𝟒 

( 𝝉 = √𝝀/𝟏𝟎) 

𝑸𝑻𝑻𝟒 

( 𝝉 = √𝝀/𝟓) 

0.1 0.01 6.7624 ×  10−7 1.7142 × 10−7 1.6456 ×  10−7 
 

0.05 3.9246 ×  10−6 4.1579 × 10−6 4.1508 ×  10−6 

0.2 0.01 5.7831 ×  10−6 3.1174 × 10−7 2.2412 ×  10−7 
 

0.05 4.5790 ×  10−6 4.2436 × 10−6 4.1861 ×  10−6 

0.5 0.01 8.8190 ×  10−5 1.1320 × 10−5 8.6726 ×  10−6 
 

0.05 8.6441 ×  10−5 1.2516 × 10−5 9.6966 ×  10−6 
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Figure 2 Numerical Simulations for Test-2 

 
 

 

 

 

Test-3 

In this problem, the analytical solution of the FHN equation is 

expressed as follows: 

𝑢(𝑥, 𝑡) =
1

2
+
1

2
𝑡𝑎𝑛ℎ[𝑘(𝑥 − 𝑐𝑡)] (22) 

where 𝑘 =
1

2√2
, 𝑐 =

2α−1

√2
. IC (Inan et al., 2020:11): 

𝑢(𝑥, 0) =
1

2
+
1

2
𝑡𝑎𝑛ℎ (

𝑥

2√2
) , (23) 

BCs:

𝑢(−1, 𝑡) =
1

2
+
1

2
𝑡𝑎𝑛ℎ[𝑘(−1 − 𝑐𝑡)] (24) 

𝑢(1, 𝑡) =
1

2
+
1

2
𝑡𝑎𝑛ℎ[𝑘(1 − 𝑐𝑡)] (25) 
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Numerical solutions were obtained for different values of Δ𝑡 =

0.01, 0.05; ℎ = 0.1, 0.2, 0.5;  𝜂  and 𝑝 = −1 over the range 

[−35,30]. The results of these calculations are shown in Table-4.  

Table 4 𝑬𝒓𝒓𝒐𝒓 𝒏𝒐𝒓𝒎𝒔 𝒇𝒐𝒓 𝑻𝒆𝒔𝒕𝟑,−𝟑𝟓 ≤ 𝒙 ≤ 𝟑𝟎 𝒂𝒏𝒅 𝒕 = 𝟓 

𝒉 𝜟𝒕 𝑸𝑻𝑻𝟒   

(𝝉 = √𝝀)  

𝑸𝑻𝑻𝟒   

( 𝝉 = √𝝀/𝟏𝟎) 

𝑸𝑻𝑻𝟒 

(𝝉 = √𝝀/𝟓)) 

0.1 0.01 2.4614 × 10−5 2.4978 ×  10−5 2.4967 ×  10−5 
 

0.05 6.2248 × 10−4 6.2284 ×  10−4 6.2283 ×  10−4 

0.2 0.01 2.2062 × 10−5 2.4965 ×  10−5 2.4878 ×  10−5 
 

0.05 6.1988 × 10−4 6.2283 ×  10−4 6.2274 ×  10−4 

0.5 0.01 8.3999 × 10−5 2.6620 ×  10−5 2.5451 ×  10−5 
 

0.05 5.7273 × 10−4 6.2178 ×  10−4 6.2038 ×  10−4 

Figure 2: Numerical Simulations for Test-3
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