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FROM SIMPLICIAL R-ALGEBROIDS TO 2-
CROSSED MODULES OF R-ALGEBROIDS

Istnsu DOGANAY YALGIN!
Ibrahim ilker AKCA?

Introduction

Whitehead introduced crossed modules of groups for the first time
in (Whitehead ,1941:409), (Whitehead, 1946: 806). Group crossed
modules are equivalent to simplicial groups with Moore complex of
length one (Conduche, 1984:155) and similarly for groupoid crossed
modules (Mutlu & Porter, 1998: 174). Conduche addressed the idea
of a group 2-crossed module and shown in (Conduche, 1984:155)
that the category of group 2-crossed modules is equal to the category
of simplicial groups with a two-length Moore complex. Arvasi and
Ulualan investigated the relationships between simplicial groups
with a length of two Moore complex, crossed squares, quadratic
modules, and 2-crossed modules in (Arvasi & Ulualan, 2006:1). The
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definitions of algebra crossed and 2-crossed modules (Arvasi &
Porter, 1996 : 426), (Arvasi & Porter, 1998: 455), (Doncel &
Grandjean, 1992: 131), ( Porter, 1986: 458) are similar to those of
the group case, actions by the automorphisms is replaced by the
actions by the multipliers, this algebra action is discussed in (Ege
Arslan & Hiirmetli 2021:72), (Ege Arslan, 2023: 1), (Arvasi & Ege
2003: 478) and its different properties are examined. In (Giilsiin
Akay, 2025: 565), it is shown that homotopy relation is an
equivalence relation on morphisms between free simplicial algebras.

Algebra 2-crossed modules and simplicial algebras are closely
related, just like in the group case case (Conduche, 1984:155),
(Mutlu & Porter, 1998: 174), (Mutlu & Porter, 1998: 148). A 2-
crossed module can be obtained from a simplicial algebra if it has a
Moore complex of length two. Equivalence from category of
simplicial algebra with a two-length Moore complex to category
algebra crossed module is given in (Porter, 1986: 458), (Arvasi
1997:160), ( Grandjean, M.J. Vale, 1986). Also in (Ege Arslan &
ark., 2019: 5293), (Ozel, Ege Arslan &Akca, 2024), (Ege Arslan &
Kaplan, 2022: 17), (Ege Arslan, 2019:150) a higher-dimensional
categorical perspective on 2-crossed modules, fibrations of 2-crossed
modules and functorial relations are examined. As a more broadly,
Mitchell in (Mitchell, 1972:1), (Mitchell, 1985: 96.) and Amgott in
(Amgott, 1986: 1) specifically studied R-algebroids, where R is a
commutative ring. R-algebroids were defined categorically by
Mitchell. Later, Mosa introduced crossed modules of R-algebroids
as a generalization of crossed modules of associative R-algebras and
demonstrated in his thesis (Mosa,1986) that they are equivalent to
special double R-algebroids with connections. Additionally, it was
mentioned in (Glirmen & Ulualan, 2020: 113) that there was a close
relationship between the category of simplicial R-algebroids with the
length one Moore complex and the internal categories in the category
of R-algebroids. Subsequent investigations by Akca and Avcioglu
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(Avcioglu & Akga, 2017: 37), (Avcioglu & Akcga, 2018: 2863),
(Avcioglu & Akga, 2017), (Avcioglu & Akca, 2017), (Akca &
Avcioglu, 2022) delve deeper into crossed modules of R-algebroids,
unraveling intricate connections and properties. As a generalization
of the 2-crossed module of commutative algebras, we present the 2-
crossed module of R-algebroids in this work. Next, we construct a
functor from the category of simplicial R-algebroids with Moore
complex of length two to the category of 2-crossed modules of R-
algebroids. This chapter produced from Ph. D. Thesis of I. Doganay
Yalgin, (Doganay Yalgin, 2024).

Preliminaries

Most of the following data, can be found in (Mitchell, 1972:1),
(Mitchell, 1978: 867), (Mitchell, 1985: 96), (Amgott, 1986: 1) and
(Mosa, 1986).

Let R be a commutative ring. An R-category is a category where
composition is R-bilinear and all homsets possess R-module
structures. This framework enables the exploration of categorical
concepts and constructions within the realm of R-modules, offering
a robust foundation for algebraic and categorical inquiries.

An R-algebroid is a small R-category. R- algebroids can be
non identity. A set of functions s,t : Mor(U) — 0Ob(U), the source
and target functions, respectively, and an object set Ob(U)=U,, a
morphism set Mor(U), are included with an R-algebroid U.

A single object R-algebroid corresponds to an associative R-
algebra. Let U and V be R-algebroids and U, =V, if the family of
maps

V(a,b) xV(b,c) - V(a,rc)
(v,u) - vt



satisfies the following conditions
1) Uu.1+u2 - vul + vuz

2) (vy + )" =vi +v¥

3) (vu)u' = puw

4) v'v* = v'vt
SHr-vt=C-v)t=v"
6)viv =p

for all a,b,c€U,andu,u’,u,;,u, € Mor(U),v,v',v,,v, €
Mor(V) such that t(v") = s(v),t(u) = s@),t(v) = t(vy) =
t(vy) = s(u) = s(uy) = s(uy), T €R, it is called the right
actionof Uon V.

The left action of U on V similarly defined. While U has right and

left action on ¥ if the condition (¥v)¥* = “(v*) is satisfied for all
a,b,c,d € Uy,v €V(a,b), ueU(d,a) andu’ € U(b,c) then U
has an associative action on V.

An R-functor is an R-linear functor between two R-
categories, and an R-algebroid morphism is an R-functor between
two R-algebroids.

In category Alg(R), all R-algebroids and their morphisms are
included.

Let R is an commutative ring U and V be two R-algebroids of the
same object set Uy and 7 has an associative action on U . For the set

U XV ={wv):ueUveV}
if the following conditions are satisfied
D@wv)+ @, v)=w@+u,v+v)

2)"(w,v) = ("'u,"v)
3) (w, )W, v'") = (uu” + uv” +vu”,vv")
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U XV is an R-algebroid, where for all (u,v) EU XV andr € R,
s(u,v) =s(u) = s(v),t(u,v) = t(u) = t(v),

(W), W, v), W, v), W', v") €U XV, suy)=s@’ V) (u, v) =
tw', v, t(u, v) =s(u"v").

This R-algebroid is called the semi-direct product R-algebroid of U
and V.

A simplicial R-algebroid is a sequence of R-algebroids E =
{Eo,Eq,+,En, -+ } together with homomorphisms  di':E, —
En1,0<i<n=#0and s"E, > En,0<j<n such that
identity on object set, this homomorphisms are required to satisfy the
simplicial identities

1) dzi_ld}l = d;-l__lld? 0<i<j<nm
2) S:Hl 1= ?-ljlls:f 0<i1<7<n
3) ditlst =S dr 0<i<j<n
4) dit'st=1d i=jori=j4+1
5) d;prls;-l:s?_ld?_l 0<j<i—1<n

We denote this simplicial R-algebroid with E = (En, dy, sj").

— dy—
L ] —= o |—=

‘E = E;ﬁ—?Eg do—= F do—= Ei
= S T

Let E = (E,,d"i ,s"; ) and F = (F,,,0{",0{") be R-algebroids. A
simplicial map f= {f,: n € N} : E — F is a family of
homomorphisms f, = E, — F, satisfying 0/'f, = fs-1d" and
""‘“"';‘H = 9j e for all » € N. We have thus defined category
of simplicial R-algebroids, which we will denote by Simp.R-
Alg.. Let E be a simplicial R-algebroid. The Moore complex
(NE,0) of E is the chain complex defined by NE, =
N kerd® with 8, : NE, — NE,.; induced from d? by
restriction.



d2 d!
.= NE, 5 NE; = Ey = E
We say that the Moore complex (NE,0) of E is of length k if NE,=0

for all n > k + 1. We denote category of simplicial R-algebroids with
Moore complex of lenght £ by Simp.R-Alg.<..

2-Crossed Modules R-Algebroids

As a generalization of the 2-crossed module of commutative
algebras, we present the 2-crossed module of R-algebroids in this
section.

A 2-crossed module of R-algebroids (J,K,L,01,02,{.}12) is given by
a chain complex of R-algebroids with same object set Up together
with associative actions of L on K and J such that 01 and 0> R-
algebroid morphisms such that identity on Up, where L act on itself
by composition. We also have an R-bilinear functions (the Peiffer
liftings)

(LK XK > ]
(1K XK > ]

satisfying the following axioms for k € K(a,b), k € K(b,c), k' €
K(c,d),j € J(a,b),j € J(b,c) and | € L(a,b),q € L(d,e), a,b,c,d,e € Py



CM1)

C'M?2)
C'M3)

C'MA4)
C'M5)

C'M6)

A {k, K}
(kK
{02(5), 9a(j
(ke KK}
{}" ;‘f;‘fﬁ'}
{92(4). k' h
{92(7). k'}
{2 h
1k, 02(5') b2
I{;‘ ) 11}1_2

{K' 1"}

= kk' —
= kk' —

,,'k

J'
j’
Lo

j*
k‘
k.
{'w
{¥,

{m, Ky A+ ke K
{M..A"_’}

o1 (k")

_ O1(k) {; .fl”}g.

Note that 0; : J — K is a crossed module with action of K on J. Let

C = (],K,L, 61, 02, { }1,2) and C, =

("K', L',0'1,05,{.}12) be 2-

crossed modules, a 2-crossed module map f = (2,/1,/0) : C — C

consists of algebroid maps fo: L > L', fi: K—> K and o: J — J

making the diagram

o))

o
9% a9’

J —=K

commutative and preserving all actions and Peiffer liftings

--10--



D filk) = 2Of (k)
f1(kl,) = f1(k)f°(l,)
2) () ="PL3H)
£G") = f()®)
3) fz{k;k'}Lz = {fl(k)'fl(k,)}l,z

for j € J(b,c),k € K(b,c),k' € K(c,d),l € L(a,b), !l €
L(b,c),

a,b,c,d € U,. Note from the definition that if /= (,f1,/0) is a 2-
crossed module morphism then f3,fi and fo are equal to each other on
object set.

Thus, all R-algebroid 2-crossed modules and their morphisms form
a category denoted by 2XMod.

From Simp.R — Alg.<2to 2XMod

In this section, we shall construct a functor from Simp.R — Alg.<> to
2XMod.

Construction of the functor

Given a simplicial R-algebroid E = (E,,d";,s"; ) with Moore complex
of lenght 2, we obtain a 2-crossed module of R-algebroids.

Let E = (E,,d",s";) be a simplicial R-algebroid with Moore complex
of lenght 2. Then for the simplicial R-algebroid

——
] —= | —
EB dl::- = El d[] — EO

T S

i

=
I
=

—11--



its Moore complex is as follows,
A3 o di
.—0—=-0—=NE, = NE, — NEy = Ey
where NE, = kerd3 N kerd?, NE; = kerd} and NE, = E,. Let

L :NEz,M :NEl,P:EO :NEZ, M = NEl, P = EO and 61 =
d%|NE1,62 :d§|NEz

L actson K and J as ;

e I XK - K e K XL - K

Lk +» k= siDk (k1) & = ksd(1)
e L X] - Ji e /XL - Ji

LjpH v Y= sisdW)j LjH ~ U= isds S

for k € K(b,¢),j € J(b,c) and I € L(a,b)] € L(c,d) , a,b,c;d € Up. For
k € K(a,b) and k € K(b,c) set
(}: KxK = ]
(k,k) = (kK3 = st()[si(k") —so(k")]
()} KxK J
(kk) o {kk}; = [si(k) —s5(k)]si (k)

\)

Thus

9, 0,
Fpr=]->K->L
1s a 2-crossed module.
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CM1)

® O’Q{k M}Q

CM2) o {3a(). (i

o Oo{k, k'}y

= d3 (st(k)[s1(K) — s ()D
= d%%( Oﬁ Hk) d3sp (k')
= k(K — sgdi(K))
= kK — L%(&( )
— Lk — |O1(K)
d3 ([s1(k) — sp(k)]) s ()
[d3s(k) — dQS%(f»)]d2 1K)
(k — sQdi(k)) K’
kk' — sg (di(k)) K’
kk!_al(k)k_!
= s1d3()) [s1d3(j") — spd3(j")]
= dis3i) [ds3(5") — disg ()] — i’ + i’
= @ﬁ@ﬂﬁﬁUﬂ*ﬁ%Uﬂgd%ﬂn)+ﬁ’
= dj [§1() (s1(5) — so(0")) — s3(43")] +i’
€ NEs
= 0445
= jj'

13-



CM3) o {k KK} sh(k) [sLORR") — sb(kE")]

st (k) [s1 ()5 (k) — s (k) sh(K")]

SHR) OO — 51O )sh ) + 1K) s (67)
—sh(k)sh (k)]

st (k) [1(K) (s} (k) = s§(K") + (s1() = sb(K) sh(k")]
sHB)sLF) [s1(K) = sh(E] + s 0k) [s10) = s ()] sh(k)
[ K71+ Lk, ks ()

(k! K"y, + {ky K'Yy sb (k)

— kK s tsQa () + (e K}t s (1)

(R K"+ (kKb [sh(k") — shsddt (K] + (kB
(kKb -+ 1Ok [sTOF) = sb k] [sHO7) — 1ol ()]

+{k kf}'(l'}l(k")
= {RKO KD+ sh(R) [SYK) — shO)] [sh) — dds2sh(k)]
+{k‘ kr}‘f‘l(k")
= {kE K"} + df [s3s1(k)[s3s1 (k') — s3so(k")][s3s0(k") — sisg(K")]]
NE.
+{h Ky o

= {kk' K"}y + {k, K fljl(}w)

LKL =[50 — s()] sH)sL ()
= [sk(k)sH(K') — sh(k)st (k)] sh(k)
= [sh(R)s0) — sh(R)sb () + shR)s(F) — b5t ()] sh()
= [[sq(kK) = s5(kE)] + sg(k) [s5(K') = s1(K)]] s1(K")
= |sH(kk) — s§(EE)] sT(K") + s§(k) [sS(E) — sT(K)] sT(R")
= (R K7 — sHOR) [sHF) — shO] s
— (kK K)o — sh(R) K K}
{1 — S Y + bRl () (. K2

—sbsodi (k) {K K" }s )

(k! Ko (—sb(k) + shsddb (k) Lk K"}y — O MR 17y

{E 1" }a (—s5(k) + sgsgdi(k)) [st(k') — sg(K)]sy(K")

_ (k){k! kﬁ}Q

(k' K"}yo (—sb(k) + d3s3sd(k)) [sH(K') — s(K')]sT(K")

_ (r'c){k! kﬂ}Q

= (KK K"}od] [(—s3so(k) + siso(k))[sas1(K) — shsg(')]s3s1(K")]

€ NE3

_ (k) {k-’. k"}g
= {kk’ kf-’ }2 o a9 (k}){k! ll\f”}g

—-14--



CMY)

o {k (i)}

C'M5)

o {I. da(j

. {dg

o {Da(7)

JH

kYo

o= si(k) [s1d3(7) — spd3 ()]
= si(k) [d3s3()) — disg(R)]
= d3s3st(k) [d3s3()) — d3st(j) — d3s3(j) + j]
= d3sisi(k) [d3si()) — d3sg(d) — dis3 ()] + dis3si(k)j
= d3 [s3s1(k) [s1(4) — s5(4) — s3(7)]] +d5s3s1(k)j
ENE;
= 0+ sh(k)j
_ kj
[s1(k) — sg(k)] std3(5)
[sh(k) — s(k)] std3(j) — st(k)j + st(k)j
—spspdi(k)j + ?oSod%(k)J
[d3s3s1(k) — d3s3sh(k)] d3st(s) — dis3st(k)d3s3(5) + s1(k)(4)
—sgsQdi(k)j + d3sgsh(k)d3s3())
d3 [[s3s1(k) — s3sp(k)] (4) — s5s1(k)s3(7) + spsp(k)s3(4)]

Ef\'Ea
+s1(k)j — shsodi (k)
0+kj — ok}
kj _ al(k)j

= S}dz ) [s1(K') = sg(K")]

= ( }[ 1(k') — sp(K) ] — jsi (k") + jsi(K))

Jr35050 {’)735030 (Af)

= d351( }[déa%a%(k) dgégétl}(k'” d3s3(j)d3s3st(K) + jsi(K)
+d3s3(j )d%é?h(ff’) ~ jsosod; (K')

= & [31 ) [s3s1(K') — s3s0(K)] — s3()s3s1(K') + s3(7)sgs0(k')]

J

€ R’rEa
+isi(K) — jspsgdi (k)
— 0+jk‘" jal(k’)

I
—
?-:

(J) (J)] I('I‘7f)
aﬂf%ﬁmfjfﬂﬁMU,,
107) — d3sg(7) — dis3(7) + 7] ds3si(k)
j) - s%(g) = 53(4)] s3s1(K)] + jsi (k")

—

(

-15--



o

CMG6) oMk k')

Vsl

AR
e e e L™ L

I I T T
W

o {k 1/ }]

Let E = (E, d},s]') and E' = (E",, 87, 0") be simplicial R-
algebroids with Moore complex of lenght 2.

d3
—_—
d3 a’i
2 -
E = Ey b—F W Fy
-5 "#
—(1— 50
50
f2 52 J1 Jo
3
_—
52 5]1
52
B = S W - o
P, § —
% 08
1
To

Also let f = (...,f2,/1,/0) be a simplicial R-algebroid morphism from
E = (E, d}, s/ to E'=(E", &' a"). If Fp =
(L, M, P, 61, 62,{. }1‘2) and FE’ = (LI, MI, P’, 0'1, 6,2, {.}’1'2) are 2-

—-16--



crossed modules then we obtain a 2-crossed module morphism from
Fg to Fgr by using f= (...,/2,/1,/0)

dq

I M P
S a8
Y TR Y

we define as f, = fo, f; = filng,> = f2|nE,- We show that
(2, f1, fo) is a 2-crossed module morphism from Fg to Fr

D ACK) = filss(Dk)
= fi(so(Df1 (k)
= 00 foDf1(K)
= foOf, (k)

A = flksd))
= f1(k)f1(58(l’)
= f,(k)ad fo(I')
= f, (k) /o)

2) () = falssso(Dk)
= f2(s350 (D f2 (k)
= a7 f100 (D2 ()
= 0700 fo(Df2()
= Gfo(l)fz 6

—-17--



HGY) = f3sEsdd)

= f,(Dfa(sdsd(l)

= (N fiad (1)

= fz(i)af‘fé)fo (9]

= fz(j)ﬁ(l’)
3) fHikk}h = fB(siUO[sik)—si(kN])
£o51 () [fost (k) —fps8 (k)]
ot fi(k)[o fi (k") — a0 £ (k)]
= {fi(k), (N},

fo([s1 (k) =s5 (k)]s (k")
[f251 (k) = fosg()]fas1 (k"))
(o1 1 (k) a5 fu (k)] ot fu (k")
= {00, i lkN},

for j€eJ(b,c), k€ K(b, ) k' €K(c,d),l€L(ab)l €
L(b,c),a,b,c,d € U,.

fZ {kr k,}Z

Therefore (f2,f1,f0) is a 2-crossed module morphism. Then, a direct
calculation proves to following proposition: The assignment

F: Simp.R — Alg.., - 2XMod defined by F(E) = Fr on
objects and by F(f) = (f2, f1, fo) on morphisms is a functor.

--18--
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FROM CROSSED SQUARES OF R-ALGEBROIDS
TO SIMPLICIAL R-ALGEBROIDS

Isinsu DOGANAY YALGIN?
Ibrahim ilker AKCA*

Introduction

Whitehead introduced crossed modules of groups for the first time
in (Whitehead ,1941:409), (Whitehead, 1946: 806). Group crossed
modules are equivalent to simplicial groups with Moore complex
of length one (Conduche, 1984:155) and similarly for groupoid
crossed modules (Mutlu & Porter, 1998: 174). Conduche addressed
the idea of a group 2-crossed module and shown in (Conduche,
1984:155) that the category of group 2-crossed modules is equal to
the category of simplicial groups with a two-length Moore
complex. Also in (Giilslin Akay, 2025: 565) it was given an
equivalence relation and groupoid structure on simplicial
morphisms and in (Giilsiin Akay, 2023) it was obtained crossed
module homotopies from simplicial homotopies. Arvasi and
Ulualan investigated the relationships between simplicial groups
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with a length of two Moore complex, crossed squares, quadratic
modules, and 2-crossed modules in (Arvasi & Ulualan, 2006:1).
The definitions of algebra crossed and 2-crossed modules (Arvasi
& Porter, 1996 : 426), (Arvasi & Porter, 1998: 455), (Doncel &
Grandjean, 1992: 131), ( Porter, 1986: 458) are similar to those of
the group case, actions by the automorphisms is replaced by the
actions by the multipliers, this algebra action is discussed in (Ege
Arslan & Hiirmetli 2021:72), (Ege Arslan, 2023: 1), (Arvasi & Ege
2003: 478) and its different properties are examined.

Algebra 2-crossed modules and simplicial algebras are closely
related, just like in the group case (Conduche, 1984:155), (Mutlu &
Porter, 1998: 174), (Mutlu & Porter, 1998: 148). A 2-crossed module
can be obtained from a simplicial algebra if it has a Moore complex
of length two. Equivalence from category of simplicial algebra with
a two-length Moore complex to category algebra crossed module is
given in (Porter, 1986: 458), (Arvasi 1997:160), ( Grandjean & Vale
1986). Also in (Ege Arslan & ark., 2019: 5293), (Ozel, Ege Arslan
&Akga, 2024), (Ege Arslan & Kaplan, 2022: 17), (Ege Arslan,
2019:150), a higher-dimensional categorical perspective on 2-
crossed modules, fibrations of 2-crossed modules and functorial
relations are examined. Moreover in (Akga & Arvasi, 2002: 43), the
higher order Peiffer elements in simplicial Lie algebras are
examined. The homotopy theory of 2 -crossed modules of
commutative algebras studied in (Ak¢a, Emir & Martins, 2016: 99).
Then in (Akga, Emir & Martins, 2019: 289), the concept of a 2 -fold
homotopy between a pair of 1-fold homotopies connecting 2-crossed
module morphisms was defined. As a more broadly, Mitchell in
(Mitchell, 1972:1), (Mitchell, 1985: 96.) and Amgott in (Amgott,
1986: 1) specifically studied R-algebroids, where R is a commutative
ring. R-algebroids were defined categorically by Mitchell. Later,
Mosa introduced crossed modules of R-algebroids as a
generalization of crossed modules of associative R-algebras and
demonstrated in his thesis (Mosa,1986) that they are equivalent to
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special double R-algebroids with connections. Additionally, it was
mentioned in (Giirmen & Ulualan, 2020: 113) that there was a close
relationship between the category of simplicial R-algebroids with the
length one Moore complex and the internal categories in the category
of R-algebroids. Guin- Waléry and Loday defined crossed squares in
(Guin- Waléry & Loday, 1981: 179) as an algebraic model for
homotopy 3-type connected spaces. Thus crossed squares model
homotopy types in dimensions bigger than 3. Later Ellis defined the
commutative algebra version of crossed squares in (Ellis, 1988: 277).
In this work we introduce R-algebroid version of crossed square.
Then we construct a functor from the category of crossed squares of
R-algebroids to the category of simplicial R-algebroids with Moore
complex of length two. This chapter produced from Ph. D. Thesis of
I. Doganay Yalgin, (Doganay Yalgin, 2024).

Preliminaries

Most of the following data, can be found in (Mitchell, 1972:1),
(Mitchell, 1978: 867), (Mitchell, 1985: 96), (Amgott, 1986: 1) and
(Mosa, 1986).

Let R be a commutative ring. An R-category is a category where
composition is R-bilinear and all homsets possess R-module
structures. This framework enables the exploration of categorical
concepts and constructions within the realm of R-modules, offering
a robust foundation for algebraic and categorical inquiries.

An R-algebroid is a small R-category. R- algebroids can be non
identity. A set of functions s,t : Mor(U) — Ob(U), the source and
target functions, respectively, and an object set Ob(U) = Uy, a
morphism set Mor(U), are included with an R-algebroid U. A single
object R-algebroid corresponds to an associative R-algebra.

Let U and V be R-algebroids and Up= Vo, if the family of maps
_05-.



V(a,b) xV(b,c) - V(a,rc)
(v,u) - v

satisfies the following conditions
1) vtz =y 4 ple

2) (vy + )" =vi +v¥

3) (vu)u’ — puw

4y v'v* = v'vt
S)yr-vt=(r-v)t=v"¢
6)viv =p

for all a,b,c€U,andu,u’,u,;,u, € Mor(U),v,v',v,,v, €
Mor(V) such that t(v") = s(v),t(u) = s@),t(v) = t(vy) =
t(vy) = s(u) = s(uy) = s(uy), r €R, it is called the right
actionof Uon V.

The left action of U on V similarly defined. While U has right and
left action on V if the condition

() = (™)
is satisfied for all d,a,b,c € Uy, v € V (a,b),u € U(d,a) and u' €
U(b,c) then U has an associative action on V .
An R-functor is an R-linear functor between two R-categories, and
an R-algebroid morphism is an R-functor between two R-algebroids.

In category Alg(R), all R-algebroids and their morphisms are
included.
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Let R is an commutative ring U and V be two R-algebroids of the
same object set Uoand V has an associative action on U . For the
set U XV ={(u,v):u € U,v eV}, if the following conditions
are satisfied

N (wv)+@W,v)=w+u,v+v")

2) "(u,v) = ("u,"v)

3) ()W, v") = wu'’ +u” + "

U >V is an R-algebroid, where for all (u,v) €U XV andr €
R,s(u,v) =s(u) = s(v), t(u,v) = t(u) = t(v),

(u,v), W, v), W, v),W",v") eU %V, s(u,v) =
s, V), t(u,v) = t@',v), t(u,v) = s, v'"). This R-
algebroid is called the semi-direct product R-algebroid of U and
V.

A simplicial R-algebroid is a sequence of R-algebroids E
={Eo,E1,...,En,..} together with homomorphisms dj : E, —
En_l(O <i<n=# 0) and Sjn: En — En+1(0 < ] < Il) for
each (0 < i < n # 0) such that identity on object set, this
homomorphisms are required to satisfy the simplicial identities

1) di 'y =d_}d} |, 0<i<j<n
2) ?"’ls}-‘:s?ﬂs? , 0<i<j<n
3) dittst=s"Tldr, 0<i<j<n
4) d*'s?=1d , i=jori=j+1
5) d;”ls}l:s}}_ld?_l ., 0<j<i—1<n

We denote this simplicial R-algebroid with E = (E,, d}', s{*).

= —d— d
I —t —ly— —dy—
E = i E; = [y —do—= Iy —do—= Ej

N S T

Let E = (E,, di',si') and F = (F,, 6{,05') be R-algebroids. A
simplicial map f = {f, : n € N} : E — F is a family of
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homomorphisms f, = E, — F, satisfying &8f, = f,_;d' and
fosft = 0)7'f,_ for all n € N. We have thus defined category of

simplicial R-algebroids, which we will denote by Simp.R-Alg.

Let E be a simplicial R-algebroid. The Moore complex (NE,d) of E
is the chain complex defined by NE, = NI;'kerd! with d,, :
NE, — NE,_; induced from 9} by restriction.

o d!
.= NE, 5 NE, =5 Ey = E

We say that the Moore complex (NE,0) of E is of length k if NE, =0
for all n > k + 1. We denote category of simplicial R-algebroids with
Moore complex of lenght k by Simp.R-Alg.««.

Crossed Squares of R-algebroids

Guin- Waléry and Loday defined crossed squares in (Guin- Waléry
& Loday, 1981: 179) as an algebraic model for homotopy 3-type
connected spaces. Thus crossed squares model homotopy types in
dimensions bigger than 3. Later Ellis defined the commutative
algebra version of crossed squares in (Ellis, 1988: 277). In this
section we introduce R-algebroid version of crossed square.

A crossed square is a commutative square of R-algebroids with the
same object set Mo

L " M
H'r il
N - P




together with associative actions P on LM,N and a function h :
M X N - L identity on Mo. Let M and N act on M,N and L via P.
The structure must satisty the following axioms

CS1) A and A’ preserve the action of P, and A,A’,u,u and VA’ = pA are
crossed modules.

CS2) h(m + my,n) = h(m,n) + h(m, + n),

h(m,n +n,) = h(m,n) + h(m,ny),

CS3) r-h(m,n) = h(r-m,n) = h(m,r -n),(r €R)

CS4) Ph(m,n) = h(Pm,n),and h(m,n)? = h(m,nP)

CS 5) h(mm,n) = ™h(m,n) = h(m,™n),

CS 6) h(m,nn) = h(m,n)™ = h(m™,n),

CS 7) A(h(m,n)) = m™",

CS 8 A (h(m, n)) = Mp,

CS9) h(Al,n) = I,

CS 10) h(m, A1) =™,

CS 11) h(m,n)h(m'",n'") = h(m", m'

forallr € R,m,m;,m',m"” € M,n,n,,n’,n"" € N,p,p’ € P,l €
Lwitht(m) = t(my) = s(n) = s(ny), t(p) = s(m), t(n) =
s(p'), t(m’) = s(m), t(n) = s(n'),t(D) = s(n), t(m) = s(1),
t(n) = s(m').

We will denote such a crossed square with (Il\} 1;1)
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. L M LI MI
A morphism ®: (N P) - (N' Y
of four R-algebroid morphisms ®;:L —» L', ®y: M - M',dp: N -
N’ and ®p: P — P’ such that: the resulting cube of R-algebroid
morphisms is commutative; @; (h(m,n)) = h(®y(m), dy(n)) for
m € M, n € N, each of the morphisms @, ®uand Py preserve the
action of ®p. Thus, all Ralgebroid crossed squares and their
morphisms form a category denoted by XSqua.

) of crossed squares consists

From XSqua to Simp.R — Alg.< 2

In this section, we will obtain a simplicial R-algebroid E =
(Eyn, d}, si*) with Moore complex of lenght 2 from a crossed square
of R-algebroids.

Proposition 3.1 Given a crossed square of R-algebroids. We obtain
a simplicial R-algebroid E = (E,,d}', si") with Moore complex of
lenght 2.

Proof:

LetK = (L,M,N,P,k, k', v, w) be a crossed square of
R-algebroids

L—" =M

N——— =P

Therefore there are associative actions of P on L, M and N. Also M
acts on N and L, N acts on M and L.

1) Let E, = P.

2) We can get M o N with actions of Non M "m = *™m and m" =
mP(™)_ Also it can be get E; = (M X N) x P with actions of P on

M x N
--30--



P(m,n) = (Pm,Pn) and (m,n)P = (mp,np')

and we define the morphisms;

L4 d%:El_)EO ) d%(m:n:p):p
e dl:E, > E, , dimnp)=wim)+v(n) +p
® Sg:EO - El ) S(())(p) = (0' 0,p)

3) We have actions of MxN on L defined by ™M] =
hy(=n, k(1)) = =" and 10" = by (k((1),n") = I"'. By means
of this actions, H = L X (M % N) can be constructed. Also it can be
get E, = (L > (M x N))> ((M > N)x P) with actions of £1 on
H

((mrn)vp)(l'(m"n’))
=@M+ P1_p, (-mn"),P(m' n")+(mn)(m’ nn

(l, (m/’ nl))((mll,n//),p)
— lw(mu)+v(nn) + [P — hz (—n',m"), (m/’ nr)p’ + (m’, Tl’) (m”, Tl”)
and we define the morphisms;

e d3:E, > E;, di(,m,n,m’,n’,p)=(m’,n’,p)

e d>:E, » E;, d?(,m,nm’,n',p)=(m+m’,n+n’,p)

e d%:E, > E;, di(,m,n,m’,n’,p)=(—k(1) + m,x'(1) + n,w(m’) + v(n') + p)
o si:E; o E,, si(m,n,p)=(00,0m,n,p)

o sl:E, o E,, si(m/,n,p) = (0,m',n’,0,0,p)

4) We have actions of H =L > (M x N) on L defined by

amn)pr — (ll’ _ nl') and l’(l”.m’,n’) ="+ ' By means of

this actions | = L > (L % (M x N)) can be costructed. Also it

can be get

E;=(L>X(LX(MxN))>x(Lx(M>xN))L>x((M>xN)xP)
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with actions of £2 on J
Emauminnp) (11 11, n'")
— om)+vm)r | om)+vm)r |
wmO+vm)) L P — h, (—=m,n"") — hy(—n, k(")) = 1" — hy(—x(D),n""),
wm+vm)rr 4 pprr _ hy(—=m',n") + hz(—n, K(l”)) + hy(—k(D),n'") + 1,
mm” +m® +"m +m'm” +m™ +vm’ + Pm",
nn'',n'n",Pn'")

W, 1, m", 0" kwow'v'a)

= remrem | remrvm | grem)r@)

+0' — hy(—n",w) — hy(—n", k(k)) — hy (—x(1"),v) = Uk,
l”(w(wl)+v(v’))+l”q—h2(—Tl”,W’)+h2(—n”,K’(k))+h1(—x’(l”),w)+l”k,m”W+m”V

/
n v n
+ wm''w+m!” + " wm O n v+n v +n'' ),

Let the morphisms d3,d3,d3, d3: E; - E, be defined so as to map

element (L,1I',m,n,l",m',n',m",n",p) of E3 to the elements
(l”, ml} Tl’, mll’ TL”, p)’ (ll + lll’ m + ml’ n + nI’ mll, nll’ p)’

(l +U',mnm +m',n + n”,p), (L, =) +m, k(") +

n,—k(l")+m' k(") +n",w(m") +v(n")+p) of E, |
respectively, and let the morphisms sZ, sZ, s%: E, — E; be defined so

as to map the element (I,m,n,m’,n’,p) of E2 to the elements
(0,0,0,0,[,m,n,m’,n’',p), (0,[,m,n,0,0,0,m',n,p), ([,0,m,n,0,00,m', n,p)

of E3 ,respectively. Thus, we obtain

kerd} = {(1,I'ym,n,0,0,0,0,0,0)|,,I' € L,m € M,n € N}

kerd? = {(I,=l",—m',—n/,1",m',n’,0,0,0)|.,I" € L,m' € M,n' € N}
kerds = {(l,-l",—m',—n’,",m',n,0,0,0)|[,I" € L,m' € M,n’ € N}
kerd3 N kerd? N kerds = {(0,0,0,0,0,0,0,0,0,0)} = NE;
Consequently, these definitions give rise to simplisel R-algebroids

with Moore complex of lenght 2.
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QUARTIC TRIGONOMETRIC TENSION B-
SPLINE COLLOCATION METHOD FOR
FITZHUGH-NAGUMO EQUATION

OZLEM ERSOY HEPSON?
KUBRA KAYMAK®

Introduction

The Fitzhugh-Nagumo (FHN) equation is a reduced version of the
Hodgkin-Huxley model. They is a simplified neuron model, while
retaining fundamental features, used to describe the dynamics of
excitable systems. This structure allows for analytical and numerical
analysis. Neural networks are widely used in many fields, including
biophysics, medicine, and computational neuroscience. The FHN
equation was solved using a spectral and colocation-based approach
with a special type of basis function related to Chebyshev
polynomials of generalized Gegenbauer polynomials (Abd-
Elhameed, Alqubori, & Atta, 2025:2). A spectral approach based on
two-dimensional shifted Legendre polynomials was used for partial
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5369-8233
¢ PhD., Eskisehir Osmangazi University, Faculty of Science, Department of
Mathematics and Computer Science, Orcid: 0009-0004-4379-8929
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differential equations of type FHN (Uma et al.,2025:2). The
modified FHN neuron model under the influence of an external
electric field was addressed using a discrete matching approach
(Zhang et al.,2023:3). Numerical results were analyzed using a two-
step effective hybrid block method (Rufai et al., 2023:1)

B-spline functions are commonly used approximation functions in
the numerical solution of differential equations. These functions can
be defined in various forms, such as polynomial, exponential,
trigonometric, and trigonometric tension. In this study, quartic
trigonometric tension B-spline functions are used. The tension B-
splines are defined by a tension parameter that varies within specific
ranges. Trigonometric tension B-spline functions have also been
applied to various differential equations; Burgers-Huxley equation
(Alina & Zarebnia, 2019:3) Burger’s equation (Yigit, Hepson &
Allahviranloo, 2024:2), RLW equation (Igbal, Akram & Alsharif,
2024:2).

In this study, the spatial integration of the FHN equation, which has
a partial differential equation structure, was applied using the quartic
trigonometric tension B-spline collocation method. The FHN
equation was solved numerically using the Crank—Nicolson method,
and various test problems were applied to evaluate the accuracy of
the method. FHN Eq. is

ou 0%u

o~z - ul-wW-p)=0x€lablte(0,N. (1)

Here, p represents an arbitrarily chosen constant. The initial
condition (IC) and boundary conditions (BCs) of the problem are as
follows:

u(x,0) = ug (2)

with
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u(a, t) = fO' u(b' t) = fl;

au(a,t)_o au(b,t)_o
ax  ax (3)

d%*u(a,t) a*u(b,t)
dx?2 =0 dx2 =0

Quartic Trigonometric Tension B-Spline Collocation Method

This section introduces the B-spline function, based on quartic
trigonometric tension curves, to be used in the colocation scheme.
Then, the spatial and temporal discretization procedures, along with
the linearization step, are examined in detail to obtain the fully
discretized scheme.

First consider the interval [a, b] as uniformly divided knots such that,
h=xps1 —xnm=0,1,..,N— 1 with the points a = x, < x; <
-+ < xy = b. Furthermore, the fictitious knots outside the domain
X_4,X_3,X_5,X_1 and Xy41, Xn+2, Xn+3, Xn+4 are included to form
the b-spline base on the domain [x,, xy]. Therefore, this tension B-
spline curve is given by
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QTT
(Tz(ﬁn—z + 20—, — 2), v [Xm—2,Xm-1]
—1*(3h? + 6hqp_, + 2q%_2) — 2K, (t°qf-1 — 2)

+6Wy_1 + 20, — 4, ’
t2(13h? + 10hqy,_, + 2q9%,_,) + 2K;t2(11h? + 10hqy,_,)
+4'K1T2q1?n—2 - 8K1 + 6(1)m+1 - 4,

2t | —12(23h? + 14hqu_; + 20%_;) — 2K, (t2qZ4, — 2)
+2(l)m+1 + 6(1)m+2 - 4,

2.2
T“Qm+3 T 20m43 — 2, » [Xme2 Xmas3]
0 , otherwise

[Xm—ltxm]
) [Xm'Xm+1] (4_)

’ [Xm+ 1, Xm+2]

1
where r = G-k, Om+j = €OS (T(xm+j - x))'qm+j = Xm+j —
x, K, = cos(th),K, = sin(th),7 < V1,1 = %(/1 € R) is tension

parameter. The set QTT,, QTTy, ..., QTTy,, constitutes a basis for
the space of functions defined on the interval [a, b].
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Table 1 Values of QTT(x) and its derivatives at knots

QTT (x,) QTT' (xn) QTT" (xy,) | QTT"' (x1)
X3 | 0 0 0 0
Xm—2 h212 4+ 2K, — 2 . (hr - Kz) r(1-K,) 7K,
" 212 T
el h?t? — 2K, (h?t?2 + 1) + 2 , (hT — 3K, + ZthT> r(K; — 1) -3r1K,
" 212 T
X h*t? = 2K, (h*t?+ 1) + 2 , (31(2 — 2K, — h‘f) r(K;—1) 311K,
" 272 T
Tl h?t? 4+ 2K, — 2 - (hT - Kz) r(1—-Ky) -1k,
r 272 T
Xmig | O 0 0 0

Building on the unified spline approach of Wang and Fang (2008:2),
Alinia and Zarebnia (2018:3) employed trigonometric tension B-
spline basis functions to develop a collocation method for problems
in the calculus of variations. An approximation U(x,t) of the
analytical solution u(x, t) can then be expressed, as in

N+1

U = ) 6n (OQTTn(), 5)
m=-2

as a linear combination of quartic trigonometric tension B-spline
basis functions, where §,, denotes time-dependent parameters. The
approximate solution U (x, t) and its derivative at the knot points x,,
are expressed in terms of the time-dependent parameters &, using
Eq. (5) as follows:

U(xm» t) = a16m—2 (t) + a26m—1(t) + a26m(t) + a15m+1(t)
U'(Xpyt) = b18—2(t) + D261 (t) + b8, () + b1 6141 (t) (6)

U" (X, t) = ¢16m—2(t) — c16m—1(t) — €16, (t) + €161m41 ()
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where

(Rt 42K -2
=T 272 ’

<h272 — 2(h?12 + 1)2K, + 2)
=r ,

272
b= (55
T
hT - 3K2 + 2K1hT
e )
T
Cl = T‘(l - Kl)

The temporal discretization of Eq. (1) is carried out using the Crank—
Nicolson method. The application of this method to Eq. (1) is given
below:

Un+1 —yn Ugrcl;l + Uprclx N (U3)n+1 + (US)TL

At 2 2
(UZ)n+1 + (UZ)n Un+1 + Un
-(p+1) > tr— =0 (8)

where and U™ are defined as U(x,t, + At). According to the
Taylor expansion, the nonlinear term, when linearized, is given as
follows:

(UZ)(n+1) =yn yn+l _ (Un)z (9)
and
(U3)n+1 — 3(Un)2un+1 _ Z(Un)3 (10)

Hence, Eq. (8) takes the following form:
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Un+1 _ Un U)I(l)-(l—l + U)r(lx N 3(Un)2Un+1 _ (Un)3
At 2 2

Un+1 + Un
—(p + 1)UnUn+1 + pT = 0. (11)

Therefore, Eq. (11) is reduced to its simplified form:

N16mts + 020055 + 060t + 654

=1N30m—2 + NaOm_1 + N4Sp + N30 41 (12)
where
At At
=(1+3—L2—(p+1)AtL+p2) 1= 5
At At
=(1+3—L2—(p+1)AtL+p2) +761,
At At (13)
= (1 +—L p ) +7C1,

At At At
m=(1+7t-rg)m-Fo

and the coefficients L,, is defined as:

Ly = a105_5(t) + a0, _1(t) + a6, () + a,65,41(0). (14)

We now obtain a system with (N +4) unknowns and (N + 1)
equations. For the system to be solvable, the numbers of unknowns
and equations must be equal. Therefore, three unknowns
(6731, 671, 60%1) are eliminated using the BCs, and (N +
1) X (N + 1) alinear system is derived. The solution of this system
yields the approximate values at the knots. Then, the quantities 57,1
are computed using the initial data 63,.

Numerical Results

The accuracy of the proposed scheme is assessed by evaluating the
maximum error norm
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Lo = lu(x,t) = U(x, t)|oo = max|u(xy,, t) — Ulxy,, t)]
m

(15)

where u(x,t) denotes the exact solution and U(x, t) represents the

numerical solution at time t.

Test-1

To evaluate the accuracy of the proposed method, the analytical
solution of the FHN equation is given as:

2

1 1
u(x,t) = — =+ —tanh(0.3536x).

2

2

1 1 3
ulx,t) =—=+ Etanh (0.3536x — —t)

with IC (Pathak et al., 2024:7):

(16)

(17)

Numerical solutions were obtained for different values of At =

0.01,0.05; h =0.1,0.2,0.5; n

and p=-—1 over the range

[—15,30]. The results of these calculations are shown in Table-2.

Table 2 Error norms for Testl, 15<x<30andt=>5

h At QTT* QTT* QTT*
(Tt =+2) (7 =vV1/10) (T =V1/5)
0.1 |0.01|1.3882x 107*|1.3926 x 10~*| 1.3925 x 10~*
0.05 | 7.3179 x 10~* | 7.3216 x 10| 7.3215 x 10~*
0.2 | 0.0l 1.3565x 10~* | 1.3921 x 10~*| 1.3910 x 10~*
0.05 | 7.2868 x 10~* | 7.3179 x 10~* | 7.3170 x 10~*
0.5 | 0.01| 85479 x 1075 | 1.3776 x 10~*| 1.3611 x 10~*
0.05 | 6.8272 x 10~* | 7.3179 x 10~ | 7.3039 x 10~*
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Figure 1 Numerical Simulations for Test-1

20 25 30

Test-2

In the following problem, we consider another analytical solution of
the FHN equation.

1
u(x, t) =— (18)
1+eV2

where s = x + ct,c =2 G — a). IC (Inan et al., 2021:9)

1
u(x, O) = ——x (19)
1+eV2
BCs
u(l, ) = — = (20)
1+eV2
and
1
u(l,t) = ——5op (21)
1+e V2
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Numerical solutions were obtained for different values of At =
0.01,0.05;h=10.1,0.2,0.5; 1 and p=0.75 over the range
[—25,25]. The results of these calculations are shown in Table-3.

Table 3 Error norms for Test2, —25 < x < 25andt=>5

h | At QTT* QTT* QTT*
(T=V2) (1 =vV1/10) (t=vVA4/5)
0.1|0.01| 67624 x 1077 1.7142 x 1077 1.6456 x 1077
0.05 | 3.9246 x 107° 41579 x 107° 41508 x 107°
0.210.0]| 57831 x 107 3.1174 x 1077 2.2412 x 1077
0.05| 45790 x 107° 4.2436 x 107° 41861 x 107°
0.5 0.0l | 88190 x 107° 1.1320 x 107° 8.6726 x 107°
0.05 | 8.6441 x 107° 1.2516 x 1075 9.6966 x 107°
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Figure 2 Numerical Simulations for Test-2

Uty

Test-3

I
20

25

In this problem, the analytical solution of the FHN equation is

expressed as follows:

1 1
u(x,t) = 5 + Etanh[k(x —ct)]

where k = %, c= 23;. IC (Inan et al., 2020:11):
1 1 x
u(x,0) = > + > tanh (ﬁ) )
BCs:

u(—1,t) = %+ %tanh[k(—l —ct)]

u(l,t) = % + %tanh[k(l —ct)]
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(23)
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Numerical solutions were obtained for different values of At =
0.01,0.05h=10.1,0.2,0.5;7 and p=—1lover the range
[—35,30]. The results of these calculations are shown in Table-4.

Table 4 Error norms for Test3,—-35 <x<30andt=>5

h | At QTT* QTT* QTT*
(t=V2) (t=vV4/10) | (z=V4/5))
011001 24614 x 1075 24978 x 107° 24967 x 107°
0.05 | 6.2248 x 107* 6.2284 x 107* 6.2283 x 1074
021001 22062 x 107° 2.4965 x 107° 2.4878 x 107°
0.05| 61988 x 107* 6.2283 x 107* 6.2274 x 107*
0.51 0.0l 83999 x 107° 2.6620 x 1075 2.5451 x 1075
0.05 | 57273 x 107* 6.2178 x 107* 6.2038 x 107*
Figure 2: Numerical Simulations Test-3
.
01
0.4
0.3
02l
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