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CHAPTER I 

 

 

Parameter Estimation for Exponentiated Inverse 

Rayleigh Distribution 

 

 

Asuman YILMAZ1 

 

1.Introduction  

The exponentiated inverse Rayleigh distribution (EIRD) can 

be used in reliability estimation and statistical quality control 

techniques. Some well-known statistical distributions, including the 

lognormal, inverse Weibull, and generalized inverted exponential 

distributions, behave similarly to this distribution. The EIRD has 

also found wide application.  Especially, it can represent phenomena 

where components under a study indicate early failure behavior such 

as mechanical or electrical devices. There are different studies on 

EIRD in the literature. For example, (Rao and Mbwambo, 2019) 

estimated the unknown parameters of the EIRD using other methods 

such as maximum likelihood estimation (MLE), least square error 
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(LSE), and weight least square error (WLSE) methods. They also 

compared these methods with an efficient simulation. The estimation 

of the inverted exponentiated Rayleigh distribution under a 

progressively first-failure censoring scheme was investigated by 

(Gao & Gui, 2019) and its prediction was further examined by 

(Maurya, Tripathi & Rastogi, 2019). Inverted exponentiated 

Rayleigh distributions with adaptive type-II progressive hybrid 

censored data were considered (Panahi, & Moradi, 2020).  Also, 

(Fan & Gui, 2022), studied the statistical inference of inverted 

exponentiated Rayleigh distribution based on joint progressively 

type-II censored data. Some statistical properties and parameter 

estimates for the exponentially transformed inverse Rayleigh 

distribution have been investigated by (Banerjee & Bhunia, 2022). 

The reliability function and unknown parameters of the exponential 

inverse Rayleigh distribution were estimated by (İbrahim & Salih, 

2024). 

There is no doubt that precise and effective estimation of 

model parameters is crucial in many fields.  Therefore, both classical 

and Bayesian methods are used in this study to determine the best 

estimation technique for the unknown parameters of EIRD. In 

classical parameter estimation, in addition to MLEs, LSEs, WLSEs, 

and percentile estimators (PEs) are also considered. Also, we used 

the Cramer-von-Mises (CVM) distance to define minimum distance 

estimators for the distribution parameters. We determine the Bayes 

estimators of the unknown parameters under the gamma prior 

distribution and the squared error loss function (SELF).  We used the 

MCMC approximation for Bayesian computations since Bayesian 

estimators are not available in an explicit form. An extensive Monte-
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Carlo simulation analysis is used to evaluate the effectiveness of 

different estimating techniques. 

2.Exponentiated Rayleigh Distribution  

The exponentiated inverse Rayleigh distribution (EIRD) was 

proposed by (Nadarajah & Kotz, 2006) as a generalization of the 

inverse Rayleigh distribution.  The cumulative density function (cdf) 

and the probability density function (pdf) are given below: 

( )
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respectively. Here   is the scale parameter and the  is the shape 

parameter. 

3. Estimation Procedures 

Here, the parameter estimation methods obtained in the study 

are briefly discussed. 

3.1 Maximum Likelihood Estimation 

Let  1 2, ,..., NX X X be a random sample from the 

exponentiated inverse Rayleigh distribution. Then likelihood 

function of a random sample from the this distribution based on 

Equation (2.2) is given by 
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After that, logarithms of Equation (3.1) are taken to obtain the log-

likelihood function as follows: 

( ) ( )( )
2

2
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n n n
x
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i i ii
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                (3.2) 

The estimating equations are obtained by differentiating the 

logarithm of likelihood function and setting it to zero.  

( )2

1

ln
ln 1 0,

xi
n

i

L n
e



 

−

=

  = + − = 
  

                                              (3.3) 
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Then, the parameter   is found by solving equation (3.3) as 

follows: 

( )( )
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ˆ ,

ln 1 i

n
x

i

n

e

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−

=

−
=

−
                                                               (2.5) 

  We use iterative methods such as Newton-Raphson because 

Equation (3.4) does not provide an explicit estimation for the . 

3.2.Least Squares  and Weighted Least Squares Estimators 

The LSEs and WLSE methods were first proposed by (Swain 

et al.,1988) to estimate the parameters of beta distributions. Let 

1,..., nX X  be a random sample of size n from distribution function 

( ).F  and 
( )

; 1,2,...,
i

X i n=  denotes the ordered sample. The 
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expected value and variance of 
( )( )iF X are easily obtained from the 

relation between the Beta and uniform distribution as           

( )( )( )
1

i
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E F X

n
=

+
  and  

( )( )( ) ( )

( ) ( )
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− +
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+ +
 .       

A regression model 
( )( )( )

1
i

i
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n
=

+
can be expressed as follows:  

 

                            
( )( ) , 1,2,..., .

1
ii

i
F X i n

n
= + =

+
 

Then the LSEs of the unknown parameters can be obtained 

by minimizing the sum of squares of errors  
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with respect to the unknown parameters. Therefore, the LSE of the 

unknown parameters of EIRD is as follows: 
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with respect to  and  . The estimates of the parameters  and 
can be also obtained by solving the following nonlinear equations:  
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and 
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respectively. 

The problem of heteroscedasticity emerges because the 

variances of errors are dependent on i. The performance of the 
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estimators is adversely affected by this problem. We employ the 

WLSE method to solve this problem. Therefore, the WLSEs of the 

unknown parameters of the EIRD are obtained by minimizing the 

function (Swain et. al.,1988) 

( )( )
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1 1
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i i
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WLSE w F X
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                                            (3.10) 

with respect to the unknown parameters.  Therefore, in case the of 

the EIRD, the WLSEs of the parameters  and   are found by 

minimizing the following function 
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         (3.11) 

The estimates of the parameters  and  can be also obtained by 

solving the following nonlinear equations: 
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Here,     

( )( )( )
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i
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=                                                           

and            
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+ +
=

− +
. 

3.5 The Percentile Estimators 

A straight line fitted to the theoretical points derived from the 

distribution function and the sample percentile points can be used to 

approximate the unknown parameters if the data originates from a 
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distribution function with a closed form. (Kao,1958) was the first to 

propose this method. Here, we use this method for the unknown 

parameters of the EIRD. Assume that ( )i
X , 1,2,...,i n= represents the 

corresponding order statistics and that 1 2, ,..., nX X X    is a random 

sample of size n drawn from the distribution function ( ).F . 

Then the Percentile estimators can be obtained by 

minimizing the following function 

( )
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Here, 1F − is the inverse distribution function. For the EIRD, 

equation (3.14) reduces to  
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with respect to  and  . The estimates of the parameters 

and  can be also obtained by solving the following nonlinear 

equations: 
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6 Cramer von Misses Method 

This method empirically shows that the bias of the estimator 

is smaller than the bias of other minimum distance estimators, see 

(Macdonald,1971). It is obtained by minimizing the following 

function. 
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                                      (3.18) 

Here, F is the distribution function. For the EIRD, equation (3.18) 

reduces to ( ) ( )( )
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4.Bayesian Inference 

This section examines the Bayesian techniques for 

estimating the unknown parameters of the EIRD under the SELF. 

The choice of loss function is crucial in Bayesian parameter 

estimation. SELF is one of the most widely used loss functions. This 

loss function is symmetric. It assigns equal values to losses for 

overestimation and underestimation of equal magnitude. For more 

details about this loss function, see (Renjini, Abdul-Sathar, & 

Rajesh, 2016; Ali, Aslam, & Kazmi, 2013).  

This loss function is defined as: 

( ) ( )
2

ˆ ˆ,L    = − , 

where ̂ is the estimator of the parameter  . The Bayes 

estimate of  under SELF is the posterior mean of .   
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We assume that the parameters   and σ have independent 

prior distributions of ( ),Gamma a b  and ( ), ,Gamma c d respectively. 

Depending on the parameter values, the gamma distribution can take 

on a variety of shapes. So, the gamma distribution family is quite 

flexible and can be thought of as appropriate priors  and , see 

(Kundu & Pradhan, 2009). 

Then Gamma prior distribution for the parameters   and σ are 

( )
( )

1

1 , , 0
b

a ba
e a b

b

   − −= 


                                           (4.1) 

and 
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1

2 , , 0.
d

c dc
e c d

d

   − −= 


                                     (4.2) 

Now, the joint prior density function of   and σ is 

( ) ( ) ( )
( ) ( )

1 1

1 2, , 0; , , , 0.
b d

a b c da c
e e a b c d

b d

           − − − −= =  
 

   (4.3) 

The hyper parameters , , ,a b c d are assumed to be known. 

They are chosen in a manner to reflect the prior knowledge about the 

unknown quantiles. 

Combining Equation (4.3) with (3.1) and using Bayes 

theorem, the joint posterior distribution of  and  is obtained as: 

( )
( ) ( )
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p x e x e e

L x d d


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   
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= =
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

   (4.4) 

Now, using the Bayes estimators of any function of  and  say, 

( ), ,g   under SELF is obtained as follows: 

( ) ( )( ) ( ) ( )
0 0

ˆ , , , ,g E g g p x d d         
 

= =                (4.5) 

The Bayes estimators of the parameters are the ratio of the 

integral, which is not in explicit form, as we can see in this case for 
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the posterior distribution has an integral in the denominator that 

cannot be solved. Therefore, it will be tedious to determine the 

posterior expectation to construct the Bayes estimator of α and . 

We will use the Monte Carlo Markov Chain (MCMC) method in this 

study. This method is briefly summarized below. 

4.1 Markov Chain Monte Carlo Method 

Here, we discuss the MCMC algorithm procedure to draw 

sequences of samples from the full conditional distributions of the 

parameters under SELF. We also analyze the MCMC 

approximation, namely the Gibbs sampling and M-H algorithm, to 

generate a sample from the posterior distribution and calculate the 

Bayes estimation, see (Gelfand & Smith, 1991). When it is simple to 

sample from the full conditional distributions, the Gibbs sampling 

method can be effective. In other words, if the parameters have 

standard forms, it is simple to model their conditional distributions. 

However, generating samples from full conditionals that correspond 

to the joint posterior distribution is not easy. Thus, the Metropolis-

Hasting algorithm was taken into consideration. To complete a cycle 

in the Gibbs chain, exact samples from a part of the full conditional 

are obtained using the Metropolis step. Consequently, the 

Metropolis-Hastings method was examined. This method was 

proposed by (Metropolis et al., 1953).  

By using equation (3.4), the conditional posterior 

distributions of the parameters   and σ are given by 

( ) ( )( )
2 1

1

1

, 1 i

n
xn a b

i

x e e


   
−

−+ − −

=

 −                                 (4.6) 

and  
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
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 The Gibbs algorithm consists of these steps: 

• Start with an initial value ( )0 0 0
ˆˆ ˆ, ,a a    = = =  and set 

1.j =  

• Use Metropolis-Hasting algorithm to generate samples from 

posterior density for  and .  

• Repeat the above two steps M times to obtain posterior 

samples. 

• The Bayes estimators  and  under SELF are as follows 

after obtaining of the posterior samples: 
0

10

1
ˆ

M M

MCMC j

jM M
 

−

=

=
−

  and 
0

10

1
ˆ

M M

MCMC j

jM M
 

−

=

=
−

 , 

respectively. Here, 0M is the Markov chain burn period.  

5. Simulation Study 

In this section, the performance of Bayesian and classical 

methods is compared in terms of bias and mean square error (MSE) 

values for different (small med sample sizes using a Monte Carlo 

simulation study. The sample size was taken as 30,50, 100n =  

shape parameter as 0.5,1,2. =  throughout the study, the scale 

parameter   is 1 since all estimators are scale invariant. For 

Bayesian inference, hyper parameters , , ,a b c d were taken as 0. In 

the classical aproximation, MLE, LSE, WLSE, PE and CVM 

methods were used. The MCMC approximation is used to compute 

the Bayes estimate of the unknown parameters under SELF based on 

gamma prior. For the computation, 10,000 MCMC samples are used. 

Matlab R 2013 is used for all calculations, with 10,000 replications 

for each case. Simulation results are summarized in Table 1. The 

Bias and MSE values are found by using the following formula: 
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( ) ( )
1

1 ˆ
n

i

i

Bias
N

  
=

= −  and ( ) ( )
2

1

1 ˆ
n

i

i

MSE
N

  
=

= − , 

respectively. 

Table 1. The Bias and MSE values for the classical different 

parameter estimators of  and   

  ̂  ̂  
n   Estimator Bias MSE Bias MSE 

30 

 

 

 

0.5 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.0453 

0.0184 

0.0222 

-0.0398 

0.0573 

0.0409 

0.0193 

0.0232 

0.0207 

0.0382 

0.0316 

0.0147 

0.0551 

0.0120 

0.0193 

0.0761 

0.0678 

0.0469 

0.0273 

0.0380 

0.0328 

0.0416 

0.0464 

0.0174 

50 

 

 

 

0.5 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.0249 

0.0080 

0.0121 

-0.0372 

0.0297 

0.0155 

0.0093 

0.0112 

0.0098 

0.0171 

0.0135 

0.0046 

0.0259 

-0.0032 

0.0051 

0.0316 

0.0290 

0.0174 

0.0157 

0.0213 

0.0193 

0.0256 

0.0233 

0.0165 

100 

 

 

 

0.5 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.0074 

-0.0009 

0.0021 

-0.0359 

0.0091 

0.0033 

0.0035 

0.0048 

0.0041 

0.0055 

0.0052 

0.0015 

0.0100 

-0.0057 

0.0042 

0.0147 

0.0102 

0.0067 

0.0061 

0.0091 

0.0073 

0.0200 

0.0095 

0.0015 

30 

 

 

 

 

1 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.1133 

0.0278 

0.0404 

-0.0387 

0.1232 

       0.0853 

0.1102 

0.1154 

0.1011 

0.0547 

0.1653 

0.0419 

0.0395 

-0.0066 

0.0038 

0.0522 

0.0356 

0.0323 

0.0185 

0.0225 

0.0193 

0.0239 

0.0256 

0.0082 

50 

 

 

 

1 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.0550 

0.0050 

0.0108 

-0.0307 

0.0379 

0.00397 

0.0446 

0.0538 

0.0455 

0.0087 

0.0662 

0.0274 

0.0210 

-0.0082 

0.0012 

0.0265 

0.0168 

0.0156 

0.0104 

0.0130 

0.0112 

0.0091 

0.0137 

0.0037 
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According to the simulation results, as the sample size of all 

estimators increases, the bias and MSE values decrease. Also, in 

many cases, LSE and WLSE methods have smaller bias values for 

both parameters. Moreover, MCMC method has smaller MSE values 

in all cases. PE and CVM methods have the worst performance 

among the proposed estimators in terms of bias and MSE values in 

many cases. 

 

6. Conclusion  

Effective and accurate parameter estimation has an important 

place in many areas. In this study, the unknown parameters of EIRD 

100 

 

 

 

1 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.0302 

0.0104 

0.0167 

-0.0196 

0.0361 

0.0196 

0.0220 

0.0297 

0.0249 

0.0255 

0.0331 

0.0131 

0.0106 

-0.0015 

0.0031 

0.0385 

0.0109 

0.0054 

0.0048 

0.0063 

0.0053 

0.0059 

0.0065 

0.0032 

30                

 

 

 

2 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.2309 

0.0862 

0.0973 

-0.2226 

0.3321 

0.2072 

0.5496 

0.7324 

0.6006 

0.8191 

0.8277 

0.2120 

0.0265 

-0.0079 

-0.0112 

0.0291 

0.0277 

0.0286 

0.0117 

0.0149 

0.0128 

0.0049 

0.0165 

0.0055 

50          

 

 

 

2 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.1206 

0.0320 

0.0535 

-0.0054 

0.1650 

0.0982 

0.2529 

0.3794 

0.3163 

0.3129 

0.4829 

0.1084 

0.0138 

-0.0069 

-0.0008 

0.0264 

0.0141 

0.0135 

0.0066 

0.0093 

0.0080 

0.0032 

0.0099 

0.0023 

100 

 

 

 

2 

MLE 

LSE 

WLSE 

PE 

CVM 

MCMC 

0.0781 

0.0237 

0.0427 

0.0161 

0.0871 

0.0799 

0.1143 

0.1504 

0.1204 

0.1267 

0.1711 

0.0917 

0.0083 

-0.0023 

0.0018 

0.0177 

0.0081 

0.0084 

0.0033 

0.0045 

0.0038 

0.0016 

0.0047 

0.0018 
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were examined with Bayesian parameter estimation methods in 

addition to classical parameter estimation methods. MLE, LSE, 

WLSE, PE, and CVM methods were used in classical parameter 

estimation. The Gibbs algorithm, a subclass of the MCMC method, 

was used in the Bayesian approximation. Loss function and prior 

distribution are of vital importance in Bayesian inference. Here, a 

gamma prior distribution was used for both shape and scale 

parameters. This prior distribution is very flexible and is frequently 

used in applications. SELF was considered as the loss function, 

which is symmetric and quite useful. Finally, a simulation study was 

conducted to compare the performance of all proposed estimation 

methods. It was seen from the simulation study that LSE and WLSE 

have smaller bias values in many cases, especially in small samples. 

In addition, the MCMC method has a smaller MSE value for both 

parameters. 

This study can be expanded by considering different loss 

functions in future studies. 
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CHAPTER II 

 

 

Lotka-Volterra Model and Estimation of Parameters 

of Lynx-Hare population 

 

 

Levent ÖZBEK1 

Erhan ÇETINKAYA2 

 

Introduction 

Lotka-Volterra models have been applied in different fields. 

It has been applied in various studies such as electricity costs, 

integrated circuit industry, chip manufacturing, optoelectronic 

industry output value and mortality risk prediction measure. The 

general functional form of the Lotka-Volterra model consists of 

strategic interactions of two related variables in a social or economic 

setting. Variables are sometimes described as types when they reflect 

growth patterns for a predator-prey population and their dynamic 

mode of interaction. In a competitive market environment, in 

addition to the natural environment of a constrained ecosystem in the 
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struggle for survival of species, a multifaceted competitive 

relationship can be determined between behavioral variables and 

their interactive parameters. The definition of the market structure is 

possible according to the positive or negative signs of the b and r 

parameters in the second components of Lotka-Volterra models 

equations. The perfect competition market structure provides an 

environment for agents to treat each other as strategic substitutes. 

Coexistence is the only condition for perfect competition, where the 

parameters have positive values. When b has a positive value and the 

other interaction parameter r has a negative value, the market is 

dominated by a predator-prey situation, similar to the natural 

ecosystem where the big agent preys on the small agent. Agents treat 

each other as strategic complements. This time, coexistence is the 

only condition for cooperation, where both of the relevant interaction 

parameters have negative values. The interactions of research and 

development (R&D) and gross domestic product (GDP) can be given 

as examples of the predator-prey model. The interactions of fixed 

asset investment (FAI) and consumer price index (CPI) can also be 

thought of in this way. When the interaction model of the fixed asset 

investments and the consumer price index is examined, this 

corresponds to the market structure of strategic complementarities. 

The sign of the interaction parameters b < 0 and r < 0 of the Lotka-

Volterra model confirms the assumption of strategic 

complementarity. The Lotka-Volterra model for predicting two 

variables in the ecosystem can be used as a useful tool in analyzing 

economic variables in a competitive market mechanism. Variables 

that demonstrate strategic complementarity in terms of market 

structure definition have important economic implications for 

development policies. 
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In this work, we present a new approach to the problem of 

estimating parameters in Lotka-Volterra models. We present how an 

recursive estimator known as the adaptive extended Kalman filter 

(AEKF) can be used to estimate parameters in Lotka-Volterra 

models and how it is implemented in Lynx-Hare species. 

Although various methods are used to estimate parameters in 

Lotka-Volterra models, existing studies have not used the AEKF 

method. The main contribution of this study is that it uses the AEKF 

method, which is an effective way to estimate time-varying model 

parameters simultaneously. 

The Lotka-Volterra predator-prey model  

The explanation about the predator-prey model developed by 

Lotka (1920) and Volterra (1926) is given in this subsection. In this 

study, the predator-prey model considered is used to explain how 

animal populations interact with each other and only takes into 

account how lynx-hare populations change without being exposed to 

any additional environmental or external factors. 

The Lotka-Volterra model of Lynx-Hare population 

The model is given by two equations; first the growth 

equation for hare: 

 ( ) )()()()()(
)(

tmtbnatntbmtam
dt

tdm
−=−=   (1) 

and other, the growth equation for the lynx, 

 ( ) )()()()()(
)(

tntrmctmtrntcn
dt

tdn
+−=+−=  (2) 

 0)0( xm =   ,  0)0( yn =  
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where 

)(tm  : prey population 

)(tn  : predator population  

a ( 0a ) : Prey growth rate in the absence of the prey 

b( 0b ) : Predation rate by the predators on the prey 

 c  )0( c  : Decay rate of the predator in the absence of the 

prey 

 r ( 0r ) : Growth rate of the predators (dependent on the 

prey population) 

The discrete-time model of  Lotka-Volterra equations is 

given by the following equations: 

( ) ttmtbnatmttm −+=+ )()()()(    

( ) ttntrmctnttn −−+=+ )()()()(    

In this study we chose 1.0=t .  In this way, the continuous 

model was made discrete. It becomes easier to convert this discrete 

model into a state-space model. 

Simulation Data for Model 

In order to see how the model behaves, the simulation dataset 

was created with additional noise in addition to the predator-prey 

model. We determined the parameters in the model as a=0.65, 

b=0.023, c=0.65, r=0.014 and Δ=0.1. 
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Figure-1: Simulated dataset from the model 

 

State-Space Model and AEKF 

The discrete-time state-space model of the Lotka-Volterra 

model (1)-(2) can be obtained as follows. Let 1 2[ ]k k kx x x =  be the 

state vector containing the states to be estimated at time k, where the 

states are defined as 1k kx m=  and 2k kx n=  

1, 1 1, 1, 2,

1

2, 1 2, 2, 2,

k k k k

k k

k k k k

x ax bx x
x w

x cx rx x

+

+

+

−   
= = +   

− +   

  (3) 

1 0

0 1
k k kz x v

 
= + 
 

     (4) 

Equation-3. is the unknown parameters. When the matrices 

in the state-space models are unknown, EKF is used to estimate both 
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the state vector and the parameters simultaneously. The unknown 

parameter vector in the model is considered as a random walk 

process as follows. 

1k k k  + = +  

After this assumption 

1

1

( )k k k k k

k k k

x x w

  

+

+

     
= +     

     
    (5) 

   0
k

k k k

k

x
z H v



 
= + 

 
     (6) 

The state-space model can be written in the form of when the 

AEKF given in the Appendix is applied, Estimated values of 

unobserved prey and predator values obtained from EKF are given 

in Figure 2. 

Figure-2: Estimated states of the simulated dataset using AEKF 
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Estimation of Parameters of Lynx-Hare population 

The Lynx-Hare population numbers observed between 1845-

1903 are given in Table-1. According to these observed numbers, the 

EKF method was used to estimate the parameters in the model (1)-

(2) and the recursive time-dependent estimated values of the 

parameters are given in Figure-3. The lynx and hare values estimated 

simultaneously recursively are given in Figure-4. 
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Tablo-1: Lynx-Hare population 

Year Hares (x1000)  Lynx(x1000) 

1845 20 32 

1847 20 50 

1849 52 12 

1851 83 10 

1853 64 13 

1855 68 36 

1857 83 15 

1859 12 12 

1861 36 6 

1863 150 6 

1865 110 65 

1867 60 70 

1869 7 40 

1871 10 9 

1873 70 20 

1875 100 34 

1877 92 45 

1879 70 40 

1881 10 15 

1883 11 15 

1885 137 60 

1887 137 80 

1889 18 26 

1891 22 18 

1893 52 37 

1895 83 50 

1897 18 35 

1899 10 12 

1901 9 12 

1903 65 25 
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Figure-3: Estimation of parameters 

 

Figure-4: Estimation of state vectors 
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Figure-5: Estimation error of predator 

 

Figure-6: Estimation error of prey 

 

Appendix 1: Kalman Filter Algorithm 

The Kalman filter algorithm is given by the following 

algorithm: 

 

0 5 10 15 20 25 30
-3

-2

-1

0

1

2

3

4

5

6

7
x 10

-3

t

Predator estimation error

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

8

10

12

14
x 10

-3

t

Prey estimation error



--31-- 

 

 1 1 11 1 1
ˆ ˆ

n n nn n n n
x x B u− − −− − −

=  +                                (A1) 

 
1 1

ˆ ˆ ˆ
n n nn n n n n n

x x K y H x
− −

 = + −
 

                    (A2) 

 
( (

1

1 1n n n n nn n n n
K P H H P H R

−

− −
  = +
 

                              (A3) 

 
(   ( 1n nn n n n
P I K H P

−
= −                                (A4) 

 1 1 1 1 11 1 1n n n n nn n n n
P P G Q G− − − − −− − −

 =   +                    (A5) 

Appendix 2: Extended Kalman Filter Algorithm 

Suppose that
1

n

n

n

x
X

 −

 
=  
 

,
n

n

n

K
K

L

 
=  
 

( ) ( )

( ) ( )
1 2

2 3

, n T

P n P n
P

P n P n

 
=  
 

 

where K  and P  are Kalman gain and the covariance matrix 

of the extended state, respectively, as stated in Ljung and Söderström 

(1985). Then, the updating equations will be: 

( )1
ˆ ˆ ˆ
n n n n n n n n nx F x G u K y H x+ = + + −          (A6) 

0
ˆ 0x =  

( )1 1
ˆ ˆ ˆ
n n n n n nL y H x  − −= + −                      (A7) 

0 0̂ =  

( ) ( ) ( ) ( )( ) 1

1 1 2 2 12

T T T T T

n n n n n n n n n nK F P n H M P n H F P n D M P n D R S −= + + + +   (A8) 

( ) ( ) ( ) ( )1 2 2 3 2

T T T T T

n n n n n n n n nS H P n H H P n D D P n H D P n D R= + + + +   (A9) 

( ) ( ) ( )( ) 1

2 1 3

T T T

n n nL n P n H P n D S −

−= +                  (A10) 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 11 T T T T T T

n n n n n n n n n n nP n F P n F F P n M M P n F M P n M K S K R+ = + + + − +  (A11) 
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( )1 0 00 ( )P =   

( ) ( ) ( )2 2 31 T

n n n n nP n F P n M P n K S L+ = + −       (A12) 

( )2 0 0P =  

( ) ( )3 31 T

n n nP n P n L S L+ = −                    (A13) 

( )3 00P P=  

Here, it is assumed that 

( )ˆ
n nF F =  

( )ˆ
n nG G =           (A14) 

( )ˆ
n nH H =  

( )ˆ ˆ, ,n n n nM M x u=  

 and 

( ) ( ) ( )ˆ, ,M x u F x G u
 

  
 =


= +  

      (A15) 

and 

( )1
ˆ ˆ,n n nD D x −=  

( ) ( )
ˆ

ˆ,D x H x
 

 
 =


=   
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An Econometric Analysis in Terms of Budget 

Revenues 
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Introduction 

There is a versatile relationship between the purpose we use 

in defining planning, the concepts of decision making and choice. 

The emergence of a purpose carries a decision in itself while 

initiating a conscious thinking process on options. In this sense, 

every decision is a choice and every decision have a purpose. After 

determining the purpose, some decisions are needed in the process 

and there are planning actions where these decisions turn into 

systematic actions (Ersoy, 2012). In this case, planning appears as 

an effort to establish control over time for the future. 
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At the core of the planning, there is an effort to dominate and 

change the future. According to Sezen (1990: 7-8), the basis of this 

effort is the belief that human beings can dominate his/her future by 

using his/her mind and that she/he can change and manage it even if 

not completely.  

How to Achieve Economic Goals? 

Yılmaz (1999, pp.85) has defined the economic planning as 

an information-based effort to achieve results by mobilizing and 

effectively using resources to achieve pre-determined goals. 

Behavioral economics are generally based on the principle of 

rationality and provide a cause-effect relationship between events. 

Therefore, it has been possible to change the results with the 

interventions. In order that a plan to become a plan, it must include 

not only the aims but also the means to achieve them. As Soyak 

(2006) stated, another important issue is the necessity of data 

collection and forecasting activities while planning.  

Although the desire to achieve medium and long-term 

macroeconomic goals differs according to the development level of 

the countries, which financial resources can be used to reach these 

goals, that is, financing the policies to be implemented is the most 

important. In order for the public sector to achieve economic 

development and goals of social policies, it should have the ability 

to create a financial resource or a fiscal area. The fiscal area is 

expressed by the “fiscal space” which allows a government to 

provide resources for a desired purpose, without jeopardizing the 

sustainability of the financial position or the stability of the economy 

(Heller, 2005: 3). It is very important to have an available fiscal area 

for financing budget deficits, especially in times of increasing 
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financial risks. Financial sustainability, medium and long-term 

macroeconomic goals, finding a resource pool and creating fiscal 

discipline also come to the forefront in the definitions made 

regarding the concept of financial field (Ünsal & Durucan, 2013: 

29).  

The “fiscal discipline” is called to ensure the consistency of 

the budget balance in the short and medium term.  

The capacity of the public sector to implement 

macroeconomic goals without any debt obligations, in cases where 

it is financed by borrowing, the transfer of debt payment power 

financial capability to the future is defined as “financial 

sustainability”.  

Along with economic growth, the financial area created for 

the financing of the policies to be implemented by the public sector 

such as ensuring economic stability and fair income distribution is 

used, the capacity of the public to create fiscal areas by using fiscal 

policy tools such as taxes, public expenditures and borrowing 

contribute to achieving macroeconomic goals with available 

resources. 

Governments can shape their policies according to the 

fluctuations in the economy regardless of the general rules. 

Governments which adopt such policy implementations determine 

their policy decisions according to the need of the conjuncture, rather 

than voluntarily (Auerbach et al., 2010). 

The Importance of MTP and MFTP Targets 

In accordance with Article 16 of the Public Financial 

Management and Control Law Nr. 5018, the Medium-Term Program 
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(MTP) and the Medium-Term Fiscal Plan (MTFP) prepared annually 

to cover the three-year period should comply with the Development 

Plan in terms of its goals. The specific macroeconomic goals, 

objectives and policies included in their content are very important 

for both domestic and foreign markets. 

In our country, all plans and programs with economic 

qualities are prepared by going through both a technical and a 

political process. With planning, how and for what purpose the 

resources will be distributed or which strategies will be implemented 

are determined by the political authorities (Soyak, 2006: 5-6).   

In these plans, which are prepared in accordance with the 

multi-year budgeting approach, although it is stated that the effects 

of uncertainties experienced in the world economy on the country's 

economy are kept to a minimum, the targets set in the programs 

remain only as “intent” and it is seen that the realizations are quite 

deviated from the target.  

Status of Budget Revenue Realizations According to the Goals 

in the MTP 

In general, all information and numerical data obtained are 

taken into account when making a plan or program. Especially in 

plans with economic and financial content, indicative numerical data 

on economic events form the backbone of these studies.  

Central administration budget revenues, which are the 

subject of this study, are an important element that markets follow 

carefully as they provide financing for a significant part of public 

expenditures. From this point of view, the relation of the budget 

income target included in the program with other economic 

indicators should be taken into consideration and the target number 
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should be estimated by modeling in this technical analysis. Annex 1 

includes some macroeconomic indicators and central government 

budget revenue targets and annual realization figures included in the 

annual MTP and MTFP for the period 2006-2019.  

Method  

In this study, it is aimed to obtain medium-period estimations 

for the target revenues of central administration budget. Kalman 

filter was used to obtain these estimates and the interaction of budget 

revenue with both its internal dynamics and national income and 

inflation data were also taken into account. In our estimation study 

of budget revenue, the state space model was used to model the 

current structure, and the Kalman filter was used to obtain medium-

period estimations. Revenue estimates for the 2018-2021 period 

were obtained from the model created. 

Data 

The target data used in the study were obtained from the 

annual MTP, MTFP’s, and the realization data were obtained from 

the data on the websites of the Turkish Statistical Institute (TUIK) 

and Ministry of Treasury and Finance of Turkey, which shared the 

realization figures of the relevant data with the public. The data used 

in the study belongs to the period 2006-2018 and is included in 

Annex 1. To evaluate the prospective model estimates, data from the 

study in MTP and MTFP for the period 2019-2021 were utilized. 

Methodology 

The model in below is called the State-Space Model, which 

shows the state of a system but cannot be observed, a state equation 

related { , 0,1,2,...}tx t =  stochastic process and a 
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measurement(observation) equation related to the { , 0,1,2,...}ty t =  

stochastic process that can be observed. 

1t t t t tx F x G w+ = +
 

t t t ty H x v= +
 

Here; 

𝑥𝑡 ∈ ℜ
𝑛

  is called system state vector  

 𝑦𝑡 ∈ ℜ
𝑚

 is called system output vector 

 𝑢𝑡 ∈ ℜ
𝑟
 is called system control vector 

The mxn  matrix tF   shows system the transition matrix, , 

mxn  matrix tH  shows the observation matrix. tG is a matrix of 

properly selected dimensions. n

tw   and  m

tv   indicates zero 

mean white noise processes i.e. error terms. For every  ,t j value of 

white noise processes 

1,

0,
tj

t j

t j


=
= 

  

it has been accepted that it provides the following assumptions: 

   0tE v =
                                                                   

   0tE w =
                      

      

 
'

t j t tjE v v R  =                                 
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'

t j t tjE w w Q  =                      

 
' 0t jE v w  =          

  0 0E x x=
 

 
'

0 0 0 0 0( )( )E x x x x P − − =         

 
'

0[ ] 0tE x w =         

 
'

0[ ] 0tE x v =   

In addition, it is assumed that in every 0,1,2,...t =  times  all 

tF , tH  , tG  , tQ  and tR   matrices are known. The aim here is, to 

create a state space model related to the system of interest and to 

estimation the unobservable state vector. Error terms 

 t~ N(0,Q )tw  

 t~ N(0,R )tv  

and its initial state 

 0 0 0~ N( ,P )x x  

indicate as assumed to have a normal distribution. The 

filtering problem is the problem of determining the best estimate of 

the tx  state when 0 1( , ,..., )t tY y y y=  observations are given. When 

0 1( , ,..., )t tY y y y=  observations are given, estimation of tx  is shown 

as, 
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 0 1
ˆ ( , ,..., ) ( )t t t t tx E x y y y E x Y= =

 

and covariance matrix of error is shown as, 

 

'ˆ ˆ( )( )t t tt t t t t t
P E x x x x Y = − −

   

and when  1 0 1 1( , ,..., )t tY y y y− −=  observations are given, estimation 

of tx  is shown as, 

 0 1 1 11
ˆ ( , ,..., ) ( )t t t tt t
x E x y y y E x Y− −−

= =
 

and covariance matrix of error is shown as, 

 

'

11 1 1
ˆ ˆ( )( )t t tt t t t t t

P E x x x x Y −− − −
 = − −
   

Kalman Filter, 

 00 1
P P

−
=

 

 00 1
x̂ x

−
=

 

depending on the initial values, given with the following equations: 

 1 11
ˆ ˆ

t tt t
x F x− −−

=
                                                  

 
' '

1 1 1 1 11 1 1t t t t tt t t t
P F P F G Q G− − − − −− − −

= +
                   

 
' ' 1

1 1
( )t t t t tt t t t

K P H H P H R −

− −
= +

                        

 1
[ ]t tt t t t

P I K H P
−

= −
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 1 1
ˆ ˆ ˆ( )t t t tt t t t
x x K y H x

− −
= + −

   
Özbek (2017), Öztürk and Özbek (2015). 

 

Model and Findings 

Model; 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )* 2 * 1 2 * 2       Income k a k Income k inf k b k GDP k v k= − + − + − + (1) 

when ( )a k  and ( )a k time-varying parameters 

 ( ) ( ) ( )11 wa k a k k−= +                                             (2) 

 ( ) ( ) ( )1 2wk kb kb −= +                                             (3) 

are assumed to be a random walking process (ie assuming time-

varying parameters), the equations given by (1-3) can be written in 

the form of a state-space model. Here, ( )a k  and ( )b k , which 

cannot be observed in the state vector, are time-varying parameters. 

These parameters are estimated using the Kalman filter. The results 

of the income estimates obtained from the model are given in Figure 

1. 
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Figure 1. Budget Revenue Estimations from the Model 

 

The model we use for the estimation of budget revenues is a 

dynamic model using only GDP and inflation data. As it is known, 

the complexity of the economic events, the problems experienced 

due to the selection of the influencing data, or the constant change 

of the dynamics of the system over time appear as an important 

problem both in the creation of the model to be used and in the 

quality of the predictions to be obtained from the model. 

Furthermore, in our estimation study, the estimates obtained should 

deviate since we use a dynamic model consisting of only two data 

and other influencing data is excluded from the model. In Table 1 

below, the target, realization and model estimation results and 

deviations related to these are given. 2018 realization data and 2019-

2021 target data are estimates in 2019 MTP and MTFP 
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Table 1. Target-Realization-Estimation Values and Deviation Rates 

of Budget Revenue for the 2006-2021 Period (%) 

Date Actual Estimation Target Estimation - Actual, Deviation (%) 

2006 173,5 198,4 141,8 0,14 

2007 190,4 205,0 181,1 0,08 

2008 209,6 220,3 186,8 0,05 

2009 203,9 244,7 244,0 0,20 

2010 254,3 300,5 236,8 0,18 

2011 296,8 339,8 279,0 0,14 

2012 332,5 380,2 329,8 0,14 

2013 389,7 440,3 370,1 0,13 

2014 425,4 468,9 436,3 0,10 

2015 482,8 559,0 452,0 0,16 

2016 554,1 618,1 525,4 0,12 

2017 630,5 751,3 598,3 0,19 

2018* 749,6 784,2 696,8 0,05 

2019*   861,8 880,4   

2020*   928,7 1014,3   

2021*   988,9 1133,9   

Conclusion 

The aim of the study is to analyze the budget revenue targets 

in the light of past realizations and to estimate the values that they 

will receive in the medium-term period by using an econometric 

model. The results obtained from the model estimates are both 

information to policymakers and markets about the nominal values 

of the data in the medium term. This study is very important in terms 

of providing an analysis to decision makers based on reforms needed 

to be achieved in order to reach the 2019-2021 MTP budget revenue 

targets and fiscal policies that should be implemented. In their 

expectations and economic decisions, we think that the estimation 
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results obtained from the econometric model (without any political 

decision) created using only realization data are more effective in 

eliminating the current uncertainty. 
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1 Introduction 

Life analysis allows the realization of different events that 

occur in t time periods and that are not the "death" event and that are 

also important in the study to be examined in determining the 

effectiveness of treatment. These different events identified in the 

study are called the endpoints of the study (Rauch, Schüler, & 

Kieser, 2017). 

More than one endpoint can be identified in a study. This is 

because it is difficult to use a single outcome to characterize 
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treatment effects in clinical trials. The complexity of a disease cannot 

be adequately described by a single outcome. Therefore, in most 

studies, in order to find the most appropriate treatment, as much 

information as possible is collected by examining the area of interest 

in various aspects and multiple outcomes are tried to be considered 

(Wu & Cook, 2012). 

The composite endpoint is frequently used in randomized 

clinical trials, primarily in the area of cardiovascular disease. An 

advantage of using a composite endpoint is that the event rate is 

higher than either of its components alone and can be used with a 

smaller sample size (Dong et al., 2018). In studies with such a 

composite endpoint, patients may experience two different types of 

events. In this case, a treatment may reduce the risk of both events 

or reduce the risk of one event while increasing the risk of the other 

event. At this point, it is very difficult for the physician to measure 

the treatment effect (Wu & Cook, 2012). 

In the literature, commonly used methods for composite 

endpoint analysis are well-known statistical methods such as 

Kaplan-Meier and Cox Proportional Hazard. These methods are 

inadequate for analyzing the composite endpoint. All contributing 

endpoints are analyzed as if they are of equal importance, and only 

the first endpoint to occur matters. For example, after a patient has a 

non-fatal myocardial infarction, it is ignored whether he or she dies 

later. Therefore, non-fatal events that occur early are prioritized over 

later serious events or deaths. Furthermore, non-fatal events can 

occur more than once. However, this traditional approach to 

composite endpoints and analyses has been used in cardiovascular 
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trials despite critical comments (Pocock et al., 2012), (Oakes, 2016), 

(Abdalla et al., 2016). 

Another example is in solid organ transplantation trials, 

where a common primary endpoint is a combination of treated 

biopsy-proven acute rejection (tBPAR), graft loss or death. A 

traditional primary endpoint analysis ignores the death of subjects 

who have already experienced tBPAR, but arguably death is the 

most clinically impactful event. Among the various methods 

proposed to solve this problem, which take into account the clinical 

significance of the different events to be considered together, the 

Win Ratio method stands out in particular for its simplicity and 

straightforward interpretation (Dong et al., 2018). 

Pocock et al. proposed two different calculation methods for 

the Win Ratio, the matched-pairs approach and the unpaired 

approach. In the matched-pairs approach, patients in the two groups 

are matched according to their risk profile, for any pair, the time of 

the most important event (e.g., death) determines the "winner", if a 

winner cannot be determined (e.g., both patients survive), the second 

most important event (e.g., graft loss) is examined and so on until a 

winner is determined; otherwise, the pairs are tied. In the unpaired 

approach, the same principle is applied to all possible pairs of 

patients between the treatment group and the control group (every 

patient in the treatment group is compared to every patient in the 

control group), does not require a matching strategy and can 

therefore be more widely used in practice. Win Ratio is the ratio of 

winners to losers for the treatment group. Values above 1 indicate 

that treatment is more effective than control (Pocock et al., 2012). 
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The aim of this study is to evaluate the Win Ratio approach 

developed by Pocock et al. under different conditions and to guide 

researchers. For this purpose, simulation studies were carried out 

with scenarios created with different numbers of observations, 

different averages, different event/phenomenon occurrence rates, 

and different numbers of endpoints. After the simulation study, an 

application was made with a real data set and an example of the use 

of the Win Ratio approach in cardiology diseases was given (Pocock 

et al., 2012). 

Pocock et al. exemplified a clinical trial comparing novel and 

standard therapy with a composite primary endpoint. The endpoints 

were cardiovascular death and hospitalization for advanced heart 

failure. In this example, cardiovascular death is considered more 

important than hospitalization. Therefore, when comparing any two 

patients on new and standard treatment, it determines whether one 

has cardiovascular death before the other. If this is unknown, it is 

determined which patient was hospitalized first. This is the essence 

of the new approach to analyzing composite endpoints. When 

comparing two such patients, it seems appropriate to consider the 

risks underlying the composite endpoint (Pocock et al., 2012). 

The first method proposed by Pocock et al. is the matched 

pairs method. In this method, matched pairs of patients receiving 

new and standard treatment are created. The matching method takes 

individual patient risk into account. 

After the match is made  

(1) For each matched pair, the more important event 

(cardiovascular death) is examined. 
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(2) Is it known which patient had a shorter time to 

cardiovascular death?  

If neither has a cardiovascular death, hospitalization is 

examined. 

If one patient has a cardiovascular death, the other should be 

followed for longer to know for sure who had a cardiovascular death 

first. 

If it is not known who had cardiovascular death first, the 

same principles are used to check whether it is known which patient 

was hospitalized first. So each matched pair fits into one of the five 

categories:  

(a) in the new treatment group, the patient experienced 

cardiovascular death first; 

(b) in the standard treatment group, the patient experienced 

cardiovascular death first; 

(c) in the new treatment group, the patient experienced 

hospitalization first; 

(d) in the standard treatment group, the patient experienced 

hospitalization first; 

(e) none of the above.  

It should be noted that categories (a) and (b) have priority 

over (c) and (d). Category (e) mostly includes pairs where neither 

the patient had a cardiovascular death nor hospitalization, but 

includes a few pairs where one had an event but the others had a 

shorter follow-up period (Pocock et al., 2012). 
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The composite endpoint results are shown in categories (a), 

(b), (c), (d) and (e) with the number of wins for the standard 

treatment and new treatment groups as a result of matching in 

categories Na, Nb, Nc, Nd and Ne. 

Nb + Nd= NW shows the number of "winners" for the new 

treatment. It shows the results that the new treatment group achieved 

the endpoint later than the standard treatment group, and therefore 

the standard treatment was worse. Similarly Na + Nc= NL gives the 

number of losers for the new treatment. It shows the results that the 

new treatment group met the endpoint earlier than the standard 

treatment group and therefore the standard treatment was better 

(Dong et al. 2016). 

Win Ratio formula is defined as follows, 

 𝑅𝑤 =
𝑁𝑊

𝑁𝐿
⁄        (1) 

To calculate the confidence interval of the Win Ratio, first 

the win rate/probability of the new treatment should be calculated as 

below, 

𝑝𝑊 =
𝑁𝑊

𝑁𝑊+𝑁𝐿
       (2)  

After obtaining the the win rate/probability of the new 

treatment, the confidence interval of the Win Ratio can be calculated 

as follows: 

𝑝𝑊 ± 1,96 [
𝑝𝑊(1−𝑝𝑊

𝑁𝑊+𝑁𝐿
]

1 2⁄

= 𝑝𝐿 , 𝑝𝑈    (3)  

For significance test, z score is calculated using the Equation 

4. 
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𝑧 = (𝑝𝑊 − 0,5)/[𝑝𝑊(1 − 𝑝𝑊)/(𝑁𝑊 + 𝑁𝐿]1/2  (4)    

Where z is the standardized value under the null hypothesis 

and gives the required p-value. 

The second method mentioned in Pocock et al. is the 

unpaired pairs method. In this method, trials are conducted without 

any strategy for selecting matched pairs. Each patient receiving new 

treatment is compared with each patient receiving standard treatment 

and it is determined who "wins" each time. Let Ny and Ns be the 

numbers of patients receiving new and standard treatment (Pocock 

et al., 2012). 

In this method, Ny x Ns pairs will be compared. As in the 

paired method, each pair is classified into one of the categories (a), 

(b), (c), (d), (e). Continuing with the same examples from the other 

method, for the two composite primary endpoints, cardiovascular 

and hospitalization Nb + Nd= NW ve Na + Nc= NL shown as the 

number of "winners" and "losers" for the new treatment. Win Ratio 

formula 𝑅𝑤 =
𝑁𝑊

𝑁𝐿
⁄  calculated in the same way (Pocock et al., 

2012). 

Additionally, the distribution of the number of winners can 

be defines using Xi (i=1, 2, …, Nt) information for the i.th patient in 

the treatment group (death, hospitalization, renal failure, etc.) and Yj 

(j=1, 2, …, Nc) get information for the j.th patient in the control 

group. Kij=K(Xi, Yj) defined a general form of the Kernel function 

as (Dong et al., 2016). 

Kij = 1 if patient i in the treatment group won against patient 

j in the control group; 
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Kij = 0 if patient i in the treatment group lost to patient j in 

the control group; 

Kij = 0 if patient i in the treatment group is similar to patient 

j in the control group, 

Number of the winners in the treatment groups can be 

calculated as follows: 

 𝑛𝑡 = ∑ ∑ 𝐾(𝑋𝑖, 𝑌𝑗)
𝑁𝑐
𝑗=1

𝑁𝑡
𝑖=1      (5) 

2 Methods 

The codes used in the study were created using R Studio v 

1.1.463 and R v 3.5.3 package programs and R Programming 

Language. The survival (Therneau, 2020), gamlss, eha, dplyr 

packages in the R Program were used. 

2.1 Simulation Study 

Scenarios were created taking into account the number of 

groups, the number of composite endpoint components, the average 

time when the event occurred, the rate at which the event occurred 

and the number of observations. 

In all scenarios, the time derivation was generated from the 

Weibull distribution using mean (d) (which varies across scenarios 

and groups) and standard deviation (σ=1). The event occurrence rate 

was generated from the Binomial distribution as high and low. The 

number of observations was equal across groups. 

In the simulations, the number of outcomes was determined 

as 2, 3, 4 and the number of groups as two groups, standard treatment 

and new treatment. While creating the scenarios, the averages 

determined for the time until the event occurred in the groups; "the 
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new treatment group is superior to the standard treatment group", the 

average of the new treatment group is the same, and the averages of 

the standard treatment group are created by changing. The 

realization rate of the event was determined as high observation rate 

and low observation rate in the scenarios and was taken the same in 

the groups. 

For each scenario, Win ratio, Win ratio confidence interval, 

p-value for Win ratio, Hazard ratio / Proportional Hazard assumption 

met, hazard ratio confidence interval results obtained using the semi-

parametric Cox regression model are included. 

In the simulation scenarios for the three groups, the outcome 

number was set as 2 and the number of groups was set as three 

groups: standard treatment 1, standard treatment 2 and new 

treatment. The scenarios were created to show only the superiority 

of the new treatment over the other treatments, with the averages 

determined for the time until the event occurred in the groups; "the 

new treatment group is superior to the standard treatment 1 group 

and the standard treatment 2 group". The rate of occurrence of the 

event was determined as high occurrence rate and low occurrence 

rate in the scenarios and taken the same in the groups. 

In the findings, only the Win ratio value is included as a result 

of the scenario. 

2.2 Real Data Set Implementation 

The study was approved by the Non-Interventional Clinical 

Research Ethics Committee of the Eskisehir Osmangazi University 

[Date: 16.10.2020, Number: 16] and the real data set was obtained 

from Baskent University Hospital Cardiology Department.   
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While the number of groups was 2, the actual data set: 

The results of 74 adult patients who underwent left 

ventricular assist device implantation for End-Stage Heart Failure at 

Ankara Başkent University Department of Cardiovascular Surgery 

were included in the study. 

Patients were divided into two groups in terms of Pulmonary 

Vascular Resistance (PVR) values. 

Group 1: PVR value above 2.5 (n=37) 

Group 2: PVR value 2.5 and below (n=37) 

As composite endpoints, data on the occurrence and time of 

nosebleeds, the occurrence and time of driveline infection, the 

occurrence and time of device thrombosis and finally the occurrence 

and time of death due to multiple organ failure were used. 

Actual data set when the number of groups was 3:  

The results of 69 adult patients who underwent left 

ventricular assist device implantation for End-Stage Heart Failure at 

Ankara Başkent University Department of Cardiovascular Surgery 

were included in the study. 

Patients were divided into three groups in terms of 

Pulmonary Artery Pressure (PAP) value. 

Group 1: Pulmonary Artery Pressure (PAP) value 40 and 

below (n=17) 

Group 2: PABP value 41-55 (n=26) 

Group 3: PABP value >55 (n=26) 
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Data on the occurrence and time of driveline infection and 

the occurrence and time of device thrombosis were used as 

composite endpoints.  

In the calculation of the WR value, winners were calculated 

as those who were superior in both conditions to determine that the 

first group was more effective than both the second and third groups. 

In the calculation of the losers, each situation that was not won in 

both cases was taken into account and the numerator was 

proportioned to the denominator to obtain the WR. Win Ratio value 

is given in the results. 

3 Results 

3.1 Simulation Results 

When the scenario prepared with the highest event 

occurrence rates and time averages of "new treatment group superior 

to the standard treatment group" was analyzed, Win Ratio values 

were found as expected. The new treatment method was found 

superior to the standard treatment for all four types of outcomes 

(p<0.001). 

As the number of composite outcomes increased, win ratio 

and hazard ratio values decreased. As the observation rate of the 

event decreases and the number of composite outcomes increases, 

the hazard ratio loses its significance, while the win ratio value is 

found to be significant in the same situation. Both values increased 

as the number of observations increased.  When the observation rate 

of the event was high and the number of observations was high, both 

values adapted to the scenario for each composite outcome number, 

but as the observation rate decreased, the win ratio value continued 

to adapt to the scenario, while the hazard ratio lost its value and the 
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p values became insignificant.  Win ratio value, which is not affected 

by the number of observations, decreased as the number of 

composite outcomes increased and observation rates decreased 

(Table 1 and Table 2). 

Table 1. Win Ratio and Hazarda Ratio Results for 50 and 500 

observations 
n  50 500 

  ER 1 ER 2  ER 1 ER 2  

NCE 2 Win ratio 

value (95% 
CI) 

1.95 

(0.96-3.97) 

1.50 

(0.79-2.84) 

1.82 

(1.47-2.26) 

1.38 

(1.14-1.68) 

Win ratio p 

value 

<0.001 <0.001 <0.001 <0.001 

Hazard 

Ratio value 
(95% CI) 

2.51 

(1.33-4.78) 

2.27 

(1.19-4.32) 

2.3 

(1.91-2.77) 

2.17 

(1.79-2.63) 

Hazard 

Ratio p 

value 

0.033 0.075 <0.001 <0.001 

NCE 3 Win ratio 
value (95% 

CI) 

1.74 

(0.87-3.46) 

1.55 

(0.79-3.05) 

1.69 

(1.36-2.09) 

1.42 

(1.15-1.75) 

Win ratio p 

value 

<0.001 <0.001 <0.001 <0.001 

Hazard 
Ratio value 

(95% CI) 

3.02 

(1.56-5.85) 

2.42 

(1.31-4.49) 

2.85 

(2.35-3.44) 

2.39 

(1.98-2.89) 

Hazard 

Ratio p 
value 

0.027 0.040 <0.001 <0.001 

NCE 4 Win ratio 

value (95% 

CI) 

1.54 

(0.78-3.0) 

1.36 

(0.70-2.62) 

1.41 

(1.14-1.74) 

1.28 

(1.04-1.57) 

Win ratio p 
value 

<0.001 0.002 <0.001 <0.001 

Hazard 

Ratio value 

(95% CI) 

3.04 

(1.55-5.98) 

2.18 

(1.19-4.02) 

2.68 

(2.22-3.25) 

2.28 

(1.89-2.75) 

Hazard 
Ratio p 

value 

0.017 0.098 <0.001 <0.001 

NCE: Number of the Composite Endpoint  

ERR 1: High Event Rate 

ERR 2: Low Event Rate 

CI: Confidence Interval 
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Table 2. Win Ratio and Hazarda Ratio Results with 100 and 250 

observations 

n  100 250 

  ER 1 ER 2  ER 1 ER 2  

NCE 2 Win ratio 

value (95% 

CI) 

1.84 

(1.14-2.97) 

1.50 

(0.96-2.35) 

1.75 

(1.3-2.37) 

1.43 

(1.08-1.89) 

Win ratio p 

value 

<0.001 <0.001 <0.001 <0.001 

Hazard 

Ratio value 

(95% CI) 

2.45 

(1.59-3.78) 

2.32 

(1.48-3.62) 

2.27 

(1.74-2.95) 

2.14 

(1.63-2.82) 

Hazard 

Ratio p 

value 

<0.001 0.009 <0.001 <0.001 

NCE 3 Win ratio 

value (95% 

CI) 

1.76 

(1.08-2.88) 

1.44 

(0.90-2.30) 

1.71 

(1.26-2.33) 

1.45 

(1.07-1.95) 

Win ratio p 

value 

<0.001 <0.001 <0.001 <0.001 

Hazard 

Ratio value 

(95% CI) 

2.71 

(1.76-4.18) 

2.45 

(1.59-3.75) 

2.86 

(2.18-3.75) 

2.37 

(1.81-3.10) 

Hazard 

Ratio p 

value 

<0.001 0.007 <0.001 <0.001 

NCE 4 Win ratio 

value (95% 

CI) 

1.46 

(0.91-2.33) 

1.31 

(0.83-2.08) 

1.42 

(1.06-1.91) 

1.28 

(0.96-1.72) 

Win ratio p 

value 

<0.001 <0.001 <0.001 <0.001 

Hazard 

Ratio value 

(95% CI) 

2.78 

(1.79-4.33) 

2.30 

(1.51-3.50) 

2.74 

(2.09-3.59) 

2.67 

(1.74-2.95) 

Hazard 

Ratio p 

value 

<0.001 0.015 <0.001 <0.001 

NCE: Number of the Composite Endpoint  

ER 1: High Event Rate 

ER 2: Low Event Rate 

CI: Confidence Interval 

When the results of the three groups of artificial data sets 

were analyzed, the newly recommended treatment group was found 
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to be more effective than the other two standard treatment groups for 

each number of observations when the case observation rate was the 

highest (WR>1.00). In the case of the lowest case observation rate, 

the newly proposed treatment group was not effective for each 

number of observations compared to the other two standard 

treatment groups (WR < 1.00). 

3.2 Results Of The Real Data Sets 

Results for two groups of three composite outcome counts:  

Outcome one (Least Significant): Driveline Infection, second 

outcome: Occurrence of Thrombosis, third Outcome (Most 

Important): Death Due to Organ Failure 

The number of winners was determined according to the 

comparison results made over the data set. 

Patients with heart failure with a PVR value above 2.5 were 

found to be more effective in terms of treatment (WR=1.35 p<0.001) 

than patients with heart failure with a PVR value of 2.5 and below, 

while according to the hazard ratio results, the second group was 

found to be 1.27 times more risky than the first group and this value 

was not statistically significant (p=0.394). 

Results for two groups of four composite outcome counts: 

Outcome one (Least Important): Nosebleed Occurrence, 

second outcome: Driveline Infection, third outcome: Thrombosis, 

the fourth and most important outcome: Death due to organ failure; 

patients with heart failure with a PVR value above 2.5 were found to 

be more effective in terms of treatment than patients with heart 

failure with a PVR value of 2.5 and below (WR=1.42 p<0.001), 

while according to hazard ratio results, the second group was found 
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to be 1.41 times more risky than the first group and this value was 

not statistically significant (p=0.189). 

According to the results of the data analysis prepared in 

accordance with the three groups of two composite outcome 

numbers; 

First Outcome (Least Important): Driveline Infection 

Secondary Outcome (Most Important): Thrombosis 

Detection 

The number of winners was determined according to the 

comparison results over the data set. 

WR=0.25 was obtained. The group with low PAB was not 

superior to the group with medium and high PAB (p>0.05). 

4 Discussion 

Having more than one endpoint in clinical trials is important 

to determine treatment effects. For this reason, in most studies, more 

than one outcome is considered to examine the area of interest from 

various aspects to find the most appropriate treatment.  

Although it is desirable to increase the number of endpoints, 

it has long been known that there are some problems that have not 

been resolved in the analysis of data. One of these problems is that 

the importance of the endpoints is not taken into account. Standard 

analyses for composite endpoints include the first occurrence and the 

time of occurrence without considering the order of importance. For 

this reason, in 2012, Pocock et al. proposed an approach that takes 

into account the order of importance in composite endpoint analysis 

called Win ratio (Pocock et al., 2012). 
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When the simulation results are analyzed, it is seen that the 

win ratio results are not affected by the number of observations, but 

they are highly affected by the number of endpoints. Win ratio 

values, which were higher when the number of composite endpoints 

was 2, decreased as the number of composite endpoints increased. 

Dong et al. took three composite endpoints in his study and 

derived the time of occurrence of the event by giving a fixed number 

to a number they created while creating the artificial data set (Dong 

et al., 2016). In this study, the time of occurrence was derived from 

the Weibull distribution with a standard deviation of 1 and the mean 

varied according to the scenarios. The event times were derived from 

the binomial distribution with different probabilities. In addition, not 

only 3 composite outcome numbers but also two and four composite 

outcome numbers with different observation rates were added to the 

study design. 

The z value calculated for the win ratio was calculated using 

the calculation formula given in the study by Pocock et al. The 

confidence interval was calculated using the Kernel function 

calculation codes given in the study by Dong et al (Dong et al., 

2020). 

Mao proposed an alternative hypothesis to the win ratio 

approach by extending the work of Luo et al. on confidence intervals 

(Mao, 2019). Luo et al. constructed weighted win ratios targeting 

ordered hazard alternatives. In the study, it is referred to as weighted 

win and loss statistics. In their study, they stated that weighted win 

ratios with weight functions are based on censoring distributions. 

They suggested that some appropriate weights could be used to get 

rid of the censoring distributions, so that the win ratio would depend 
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only on the hazard functions (Luo et al., 2017).  Wang et al. pointed 

out the ease of interpretation of the win ratio approach and developed 

a more efficient estimator to estimate treatment effects after 

correcting for the confounding effects of other variables through a 

simulation study (Wang et al., 2017). 

Fergusson et al. described the composite outcome and Win 

ratio approach in a renal transplantation study and shared both win 

ratio and hazard ratio results by taking two groups as treatment and 

control groups and three composite outcomes on the transplantation 

dataset (Fergusson et al., 2018). In this study, 74 (n1=n2=37) adult 

patients who received left ventricular assist devices for Heart Failure 

were included and divided into two groups as above 2.5 and 2.5 and 

below according to Pulmonary Vascular Resistance (PVR) values. 

In general studies, the Win ratio approach is used to determine the 

efficacy of treatment between treatment and control groups, whereas 

in this study, it was used to determine which of the groups divided 

according to PVR values the same treatment was effective. In 

addition, the data set was prepared as three composite endpoints and 

four composite endpoints and Win ratio and Hazard ratio results are 

given. Similar to the simulation results, win ratio values were found 

to be lower in the analysis of four composite endpoints. In the results 

with three composite endpoints and four composite endpoints, the 

win ratio value was found to be lower and statistically significant, 

while the hazard ratio results were not significant and almost close 

to 1. 

There are very few studies with three groups in composite 

outcome analysis. Bebu et al. studied the three-group theoretical 

study for high numbers of observations. The theoretical calculations 
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given by Bebu et al. are used in the variance-covariance matrix 

calculations in this study (Bebu & Lachin, 2016). In this study, the 

number of observations was 750 (n1=n2=n3=250) and 375 

(n1=n2=n3=125). The composite endpoint analyses with three 

groups consisted of standard treatment 1, standard treatment 2 and 

newly proposed treatment groups. Although it is a rare case, in this 

study, a simulation with three groups and two composite endpoints 

was included and win ratio values were calculated. In the win ratio 

calculation, scenarios were created by planning the newly 

recommended treatment to be more effective than both standard 

treatment 1 and standard treatment 2. However, this was only 

observed in the simulation with the highest event occurrence rate. In 

addition, when the averages given for the realization times of the 

phenomenon used in the two-group simulations are compared with 

the averages given in the three groups, the averages given for the 

three groups are kept quite high for the proposed treatment. Very low 

win ratio values were obtained when working with the averages 

given for two groups. Despite the high averages, win ratio values 

were similar to the two standard treatments as the observation rates 

of the case decreased. The highest number of observations in the 

study was 750 (n1=n2=n3=250). In Bebu et al.'s study, on the other 

hand, they worked with a much higher number of observations 

(N=7500) (Bebu & Lachin, 2016). This problem can be thought to 

be due to the number of observations. Here, the three groups should 

not be considered only as three different treatments. The same 

treatment can also be used to determine which of the three different 

patient groups is more effective. Therefore, more studies are needed 

for endpoint analyses involving three groups. 
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5 Conclusions  

Win Ratio analysis, which takes into account the order of 

importance instead of traditional analysis in compound endpoint 

analysis, which is of great importance in clinical trials, was evaluated 

under different conditions. From the simulation results obtained with 

the artificial data set, it was observed that the win ratio value was not 

affected by whether the number of observations was small or large, 

but was affected by the observation rates and the number of 

composite endpoints. Win ratio values decreased as the number of 

composite endpoints increased. Similarly, as the realization rates of 

the phenomenon decreased, win ratio values decreased. When the 

number of observations is 50 and 100, the confidence interval 

calculated with the Kernel function based on the study of Dong et al. 

includes 1 even though the win ratio is significant.5 

In the results obtained from patients from Cardiovascular 

Surgery, Win ratio was found to be significant in three and four 

composite endpoint analyses involving two groups, while Hazard 

model results were not significant. 

In conclusion, it was found that using the Win Ratio 

approach instead of traditional analyses such as Hazard Ratio 

estimation in clinical studies with more than one endpoint provides 

better point of view to the treatment effect.  
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CHAPTER V 

 

 

Bayesian Estimation Of Inverse Pareto Distribution 

Under Different Loss Functions  

 

 

Asuman YILMAZ1 

 

Introduction 

Numerous real-world scenarios need data for a probability 

distribution function with an upside-down bathtub or decreasing 

failure rate function. For instance, during the first few days following 

a heart transplant, when the body adapts to the new organ, patients 

are at an increased risk of dying. As the patient grows healthier, the 

hazard rate gradually drops (Collett, 2015). In such a situation, both 

declining and upside-down bathtub-shaped failure rate functions can 

be appropriate. Depending on the true value of the parameter, the 

one-parameter inverse Pareto distribution (IPD) has both decreasing 

and upside-down bathtub-shaped failure rate functions. The failure 

rate and the cumulative distribution function are crucial in survival 

analysis. They are also nicely expressed in closed form. Recently, 

(Gua & Gui, 2018) studied Bayesian and classical estimation of the 

stress-strength reliability for IPD using complete sample data. 
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(Kumar &Kumar, 2020) obtained MLE and Bayesian analysis of the 

parameters IPD using randomly censored data. The application of 

IPD in extreme events is discussed by (Dankunprasert, 

Jaroengeratikun &Talangtam, 2021). (Kumar & Kumar, 2022) 

investigated Bayesian and classical estimation of stress-strength 

reliability for IPD using progressively censored data. (Mustafa, Ijaz 

& Jamal, 2022) studied the distribution of order statistics of the IPD. 

Different estimation techniques for the unknown parameter and 

reliability function of the inverse Pareto distribution from both 

classical and Bayesian approximation have been examined by 

(Kumar, Jha & Kumar, 2023). (Alharbi et al., 2023) deals with the 

estimation of the stress-strength reliability model for ( )P X Y  

from both classical and Bayesian methods. 

One of the main benefits of Bayesian models is that they allow us to 

use prior knowledge to analyze unknown parameters and thus 

generate stronger inferences. Furthermore, Bayesian models 

outperform classical models, especially for small samples. 

Therefore, the parameter of the inverse Pareto distribution will be 

examined under the square error loss function (SELF), linear 

exponential (LINEX) loss function, and general entropy (GELF) 

based on Lindley and MCMC approximation methods, in this study. 

The study is designed as follows. In section 2, the inverse Pareto 

distribution is briefly mentioned. In Section 3, MLE estimators are 

found. Also, an asymptotic confidence interval is derived. In Section 

4, SELF, LINEX, and GELF are summarized. Also, Lindley and 

MCMC approximations for Bayesian computations are briefly 

mentioned. In Section 5, an effective simulation study is conducted 

to compare the performance of all proposed estimators. Finally, the 

significant results of the study are reported. 

Inverse Pareto Distribution 

The inverse Pareto distribution can be used quite effectively in 

analyzing the upside-down bathtub shape hazard rate data. The 

shorthand  ( )X IPD :  is used to indicate that the random variable 

X has the inverse Pareto distribution with parameter 0.  The 
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probability density function (pdf) the cumulative density function 

(cdf), and the failure rate function are given by 

( )
( )

1

0
1

x
f x x

x





 −

= 
+

                                                       (2.1) 

( ) 0
1

x
F x x

x


 

=  
+ 

                                                  (2.2) 

and  

( )
( )

1( )
( ) 0

1
1 1

1

f x x
h x x

F x x
x

x






 −

= = 
−   

+ −   +  

            (2.3) 

The monotonicity of hazard function of IPD ( ) for different values 

of the parameter , is shown in Figure 1.  
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Figure 1.Hazard rate function and pdf of inverse Pareto 

distribution for different values of , respectively. 

Maximum Likelihood Estimation 

In this section we will discuss the maximum likelihood estimation of 

the   parameter of the inverse Pareto distribution.  

Let  1 2, ,..., nX X X be a random sample from ( )IPD  . Then, the 

likelihood function for  1 2, ,..., nX X X is as follow: 

( )
( )

1

1
1

.
1

n
n i

i i

x
L x

x




 

−

+
=

=
+

                                                           (3.1) 
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Following that, the log-likelihood function is 

( ) ( ) ( ) ( ) ( )
1 1

ln 1 ln 1 ln 1 0
n n

i i

i i

lnL x n x x   
= =

= + − − + + =     (3.2) 

The estimating equations are obtained by differentiating the log-

likelihood function and setting it to zero.  

( ) ( )
1 1

ln
ln ln 1 0

n n

i i

i i

L n
x x

  = =


= + − + =


                                       (3.3) 

Therefore, from the solution of Equation (3.3) 

1

ˆ
1

ln 1
n

i i

n

x



=

=
 
+ 

 


                                                                       (3.4) 

Let us define the MLE of  as ̂ . 

Now, we obtain the asymptotic confidence interval of the 
parameter based on the observed Fisher information matrix. The 

observed Fisher information matrix of the ̂  parameter is obtained 

as follows: 

( )
( )2

2 2

lnL x n
I E




 

 
= − = 

  

                                                   (3.5) 

Thus, the observed variance become ( )
2

1I
n


− = . 

4.Bayesian Inference 

In this section, the parameter   of the inverse Pareto distribution 

will be estimated by Bayesian methods.  In the Bayesian method, the 

loss function and the prior distribution are very important. Firstly, 

the loss functions considered in this study will be discussed. 

One of the popular loss functions is SELF and it is given below: 

( ) ( )
2

ˆ ˆ,L    = −                                                                        (4.1) 

where ̂  is the estimator of the parameter  . The posterior mean is 

the Bayesian estimate of the parameter θ under SELF, which is given 

as: 



--76-- 

 

( ) ( )ˆ
SELF E x x d



    = =                                                              (4.2)                                                                       

SELF is symmetric. That is, it assigns equal weight to overestimation 

and underestimation. However, the true loss is not symmetric with 

respect to overestimation and underestimation, in most situations. 

Therefore, asymmetrical loss functions can be used as an alternative 

to symmetric loss functions. (Varian, 1975) introduced the LINEX 

loss function (Linear-Exponential) and since then it has been widely 

used by many researchers such as (Zellner ,1986; Soliman et al., 

2012). The properties of the LINEX loss function were studied by 

(Zelner, 1986). This function is  

( ) ( ) 
ˆ

ˆˆ 1 ; 0.
k

LINEXL k e k k
 

 
−

= − − −                                       (4.3) 

Under this loss function, the Bayes estimate is given by the following 

equation: 

( )( ) ( )
1 1ˆ ln logk k

LINEX E e x e x d
k k

 



   − −−
= − =                         (4.4) 

(Calabria & Pulcini, 1996), also proposed another asymmetric loss 

function named as a GELF is given as follows: 
1

1 1 1

ˆ ˆ
ˆ ln 1 ; 0.

k

GELFL k k k
 

 

     
= − −        

     

                                     (4.5) 

Under this loss function, the Bayes estimate is given by the following 

equation: 

( ) ( )
1

1
1 1

1

1

0

ˆ

k

k
k k

GELF E x x d     

−


−
− −

 
= =  

 
                               (4.6) 

The sign and magnitude of k  in LINEX and GELF express the 

direction and degree of symmetry. For more details about loss 

functions, see (Renjini et al., 2016; Yılmaz, Kara& Aydoğdu, 2020). 

Since the Gamma prior distribution has a flexible structure, it will be 

accepted as the prior distribution in this study. Independent gamma 

priors for different distributions have been used by numerous 

researchers, see (Danish &Aslam, 2016; Kundu, 2013). 
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Thus, the pdf of the independent gamma prior for parameter is 

given as: 

( )
( )

1

1 212
1 2

1

, , 0; 0
a

a aa
e a a

a



   − −
=  


                                 (4.7) 

where 1a  and 2a  are hyper parameters and they are known. 

Thus, the posterior distribution is obtained as follows: 

( )
( ) ( )

( ) ( ) ( )
1 2

1
1

1
1

0

1

n
a n a i

i i

L x x
x e

x
L x d


 





  
  

   

−
− + −

 +
=

= 
+




         (4.8) 

From Equation (4.8),  

( ) 1 2

1

, ln .
1

n
i

i i

x
x Gamma n a a

x
 

=

  
+ −   +  

:  

Although Equation (4.8) under SELF can be calculated analytically, 

it is tedious to calculate these integrals one by one for Equations (4.4) 

and (4.6). Therefore, we will use MCMC and Lindley approximation 

methods for Bayesian computations.  

 

4.1 Lindley approximation 

  (Lindley, 1980) developed an approximation procedure for 

the evaluating the ratio of the two integrals. According to this 

procedure, the posterior mean of arbitrary ( )u  is given by: 

( )( )
( ) ( ) ( )

( ) ( )

0

0

ˆ .

u a x L x d

u E u x

x L x d

   



   




= =





                                     (4.9)                

Here, ( )u  denotes a function of  only, ( )  denotes the joint 

prior density function, ( )L x and represents the likelihood 

function. 

In our case, the following equation can be obtained. 

 



--78-- 

 

( ) ( ) ( ) ( )2

11 1 1 11 111 11 1

ˆ

1 1
ˆ 2

2 2
u u u u L u



    
 

= + + + 
 

                       (4.10) 

where ̂  is the MLEs of .  Here, 

2

1 11 2

( ) ( )
, ,

u u
u u

 

 

 
= =

 
 

1
1 2

1ln ( )
,

a
a

 


 

−
= = −


 

3

111 3 3

ln 2L n
L

 


= =


 and 

1
2 2

11 2

ln L
E

n






−

  
= − =  

  
. 

From Equation (4.10), the Bayes estimator of  under SELF using 

the Lindley method is obtained as follows:   

If ( ) ,u  =  1 111, 0,u u= =   

1 2
ˆ

ˆ ˆ 1SELF

a a

n


 

− 
= + 

 
 

Similarly, the Bayes estimators of α under LINEX and GELF using 

the Lindley method are given as follows:  

If ( ) ku e  −=  
2

2

1 11 2
,k ku u

u ke u k e 

 

− − 
= = − = =
 

 

ˆ
ˆ

1 2

ˆ ˆ1
ˆ ˆlog

2

k
k

LINEX

ke k
e a a

k n


  

 
−

− −  
= + − +  

  
 

If ( ) ku   −=
( ) ( ) ( )

( ) ( )
2

1 2

1 11 2
1

k ku u
k u k k

 
 

 

− + − + 
= = − = = +

 
 

( )
( )

1

1 2

1
ˆ ˆ ˆ 1

2

k
k

GELF

k k k
a a

n n
  

−

−
 + 

= + − + +  
   

, 

respectively. 

4.2 Markov Chain Monte Carlo Method 

In this section we will use Gibbs sampling, a subclass of the MCMC 

method, to obtain the Bayesian estimator of the parameter , see 

(Gelfand & Smith, 1991). 

The Gibbs algorithm consists of the following steps: 
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Step 1: Start with j=1.  

Step 2: Generate 
( )j  from Gamma 

1 2

1

, ln .
1

n
i

i i

x
n a a

x=

  
+ −   +  

  

Step 3:Set 1j j= +  . 

Step 4: Repeat Steps 2-3, N times.  

Then, the Bayesian estimators under the loss functions mentioned 

above are obtained as given below: 

1

1
ˆ

N

SELF j

jN
 

=

=  , 
1

1 1
ˆ ln ,j

N
k

LINEX

j

e
k N




−

=

 −
=  

 
 and 

1

1

1
ˆ ,

N k
k

GELF j

jN
 

−

−

=

 
=  
 
  

respectively. 

 

1. Simulation Study  

In this Section, an effective simulation study was conducted to 

compare the performances of the proposed estimators. These 

estimators were compared in terms of bias and MSE values. The 

simulation study has been conducted for different sample sizes 

( )30,50,100n =  and different parameter values ( )0.5,2 = . 

Bayesian estimators have been calculated with Lindley and MCMC 

methods under the gamma prior distribution and SELF, LINEX, and 

GELF loss functions. Also, for LINEX and GELF loss functions 

0.8k = was taken. Two different cases have been considered for 

hyper parameters in the gamma prior distribution. In the first case

0a b= = , has been taken and called Prior-I. In the second case, the 

prior mean is chosen to be the true values of the parameters. In other 

words, a b =  is taken and called Prior- II.  All calculations were 

done in Matlab R 2013. The results are presented in Table 1. The 

Bias and MSE values are found by using the following formula: 

( ) ( )
1

1
ˆ

n

i

i

Bias
N

  
=

= −  and ( ) ( )
2

1

1
ˆ

n

i

i

MSE
N

  
=

= − , 

respectively. 
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Table 1. The Bias  and MSE values for the classical different 

parameter estimators of  . 

 

   Prior-I Prior-II 

n    Estimator Bias MSE Bias MSE 

30 

 

 

 
0.5 

 

 

LİNDLEY 
 

 

MCMC 

MLE                  

SELF 

LINEX 
GELF 

SELF 

LINEX 

GELF 

0.0166 

0.0134 

0.0101 
0.0096 

0.0150 

0.0124 

     0.0097 

0.0098 

0.0070 

0.0069 
0.0056 

0.0079 

0.0073 

0.0068 

0.0174 

0.0160 

0.0131 
0.0139 

0.0153 

0.0133 

0.0116 

0.0096 

0.0074 

0.0072 
0.0070 

0.0067 

0.0064 

0.0062 

50 

 

 

 
0.5 

 

 

LINDLEY 
 

MCMC 

MLE 
SELF 

LINEX 

GELF 
SELF 

LINEX 

GELF 

0.0065 
0.0090 

0.0084 

0.0086 
     0.0075 

0.0064 

-0.0025 

0.0053 
0.0036 

0.0030 

0.0029 
0.0032 

0.0031 

0.0030 

0.0116 
0.0110 

0.0095 

0.0090 
0.0096 

 0.0088 

 0.0079 

0.0056 
0.0050 

0.0048 

0.0044 
0.0052 

0.0049 

0.0046 

100 

 

 
 

0.5 

 

 
LINDLEY 

 

 
MCMC 

 

MLE 

SELF 
LINEX 

GELF 

SELF 
LINEX 

GELF 

0.0053 

0.0039 
0.0033 

0.0028 

0.0022 
0.0012 

-0.0013 

0.0027 

0.0033 
0.0030 

0.0031 

0.0027 
0.0026 

0.0024 

0.0054 

0.0052 
0.0048 

0.0047 

0.0050 
0.0043 

0.0044 

0.0027 

0.0020 
0.0018 

0.0015 

0.0022 
0.0024 

0.0016 

30 

 

 
 

2 

 

 
LINDLEY 

 
 

MCMC 

MLE 

SELF 
LINEX 

GELF 

SELF 
LINEX 

GELF 

0.0710 

0.0698 
0.0680 

0.0648 

0.0697 
0.0641 

     0.0679 

0.1513 

0.1371 
0.1242 

0.1206 

0.1310 
0.1204 

0.1246 

0.0844 

0.0802 
0.0804 

0.0793 

0.0786 
0.7446 

0.0755 

0.1755 

0.1584 
0.1351 

0.1311 

0.1508 
0.1309 

0.1375 

50 

 
 

 

2 

 
 

LINDLEY 

 
MCMC 

MLE 

SELF 
LINEX 

GELF 

SELF 
LINEX 

GELF 

0.0548 

0.0433 
0.0382 

     0.0243 

0.0437 
     0.0327 

     0.0334 

0.0885 

0.0733 
0.0706 

0.0709 

0.0685 
0.0636 

0.0634 

0.0351 

0.0416 
0.0376 

0.0354 

0.0391 
0.0304 

0.0331 

0.0894 

0.0629 
0.0665 

0.0611 

0.0617 
0.0657 

0.0599 

100 

 

 

 
2 

 

 

LINDLEY 
 

 

MCMC 

MLE 

SELF 
LINEX 

GELF 

SELF 

LINEX 

GELF 

     0.0150 

     0.0132 
     0.0128 

     0.0120 

     0.0130 

     0.0125 

     0.0122 

     0.0431 

     0.0392 
     0.0349 

     0.0340 

     0.0390 

     0.0314 

     0.0320 

0.0144 

0.0157 
0.0120 

0.0123 

0.0139 

0.0117 

0.0114 

0.0384 

0.0365 
0.0320 

0.0350 

0.0367 

0.0354 

0.0359 
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The simulation results can be summarized as follows: 

• The bias and MSE values of all proposed estimators decrease 

as the sample size increases. 

• Bayesian methods have smaller Bias and MSE values than 

MLE. 

• The Gibbs sampling method has slightly better performance 

than Lindley approximation method in many cases. 

• GELF and LINEX generally outperforms the SELF when 

compared with each other. 

• Similarly, when comparing Prior-I with Prior-II, Prior-II 

performs better in many cases. 

Discussion and Results 

In this study, the parameter of the inverse Paretto distribution was 

estimated by MLE and Bayesian methods. SELF, LINEX, and GELF 

were considered for Bayesian parameter estimation. The gamma 

distribution was considered as a prior distribution due to its flexible 

structure. Also, two different prior distributions were examined 

according to the values given to the hyper parameters. (Prior-I and 

Prior-II). Lindley and MCMC approximation methods were used for 

Bayesian calculations. A simulation study was conducted to 

compare the performances of all the estimation methods considered 

in the study. It was seen from the simulation results that in many 

cases Bayesian methods have smaller bias and MSE values than 

MLE. Also, when Bayesian methods were compared, the MCMC 

method performed slightly better under prior II based on asymmetric 

loss functions (LINEX and GELF). 
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