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Preface 

In mathematics, the pursuit of understanding and 

innovation has always been driven by the desire to connect 

theoretical foundations with real-world applications. This book is a 

testament to that aspiration, bringing together three distinct yet 

complementary areas of research that span abstract algebra, applied 

mathematics, and differential geometry. 

The first chapter, “k-Fibonacci and k-Lucas 3-Parameter 

Generalized Quaternions”, explores a novel generalization of 

quaternions through the lens of k-Fibonacci and k-Lucas sequences. 

These mathematical structures offer new insights into algebraic 

systems and their extensions, contributing to the broader field of 

number theory and algebraic computation. 

The second chapter, “A New Mathematical Model for 

Monkeypox with Vaccination Effect and Its Quantified Analysis”, 

bridges mathematics and epidemiology. It introduces a 

mathematical model designed to analyze the dynamics of 

monkeypox, incorporating the effects of vaccination. By quantifying 

key epidemiological parameters, this study provides a valuable 

framework for understanding and mitigating the spread of 

infectious diseases. 

The third chapter, “On the Geometry of Pseudo-Slant 

Submanifolds in Bronze Riemannian Manifolds”, delves into the 

geometric properties of pseudo-slant sub manifolds within the 

context of bronze Riemannian manifolds. This investigation 

contributes to the rich tapestry of differential geometry, offering 

new perspectives on manifold structures and their applications. 

The common thread that binds these chapters is the 

innovative use of mathematical tools to address complex problems, 

whether in pure or applied settings. Each chapter represents the 

culmination of rigorous research and a commitment to advancing 

the frontiers of mathematical knowledge. 

This book is intended for mathematicians, researchers, and 

students who are passionate about exploring diverse mathematical 
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disciplines. It is our hope that these studies will inspire further 

investigation and foster interdisciplinary collaboration. 

I would like to express my gratitude to my colleagues and 

collaborators whose insights and contributions have been 

invaluable throughout this journey. I also extend my thanks to the 

readers, whose curiosity and engagement drive the continual 

evolution of mathematical thought. 

 

İlker ERYILMAZ 

Ondokuz Mayıs University   

Samsun, Turkey   

December 2024 
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CHAPTER I 

 

 

k-Fibonacci and k-Lucas 3-Parameter Generalized 

Quaternions 

 

 

Göksal BİLGİCİ1 

 

Introduction 

Fibonacci and Lucas numbers, are very popular sequences 

among integer sequences. Fibonacci numbers and Lucas numbers 

are defined by the recurrence relation  

𝑆𝑟 = 𝑆𝑟−1 + 𝑆𝑟−2. 

The only diffrence is initial conditions. The initial conditions of 

Fibonacci numbers are 𝐹0 = 0 and 𝐹1 = 1  whereas the initial 

conditions of Lucas numbers are 𝐿0 = 2 and 𝐿1 = 1. Binet formulas 

for the Fibonacci and Lucas numbers are 

𝐹𝑟 =
𝛼𝑟 − 𝛽𝑟

𝛼 − 𝛽
 and 𝐿𝑟 = 𝛼𝑟 + 𝛽𝑟 

 
1 Prof. Dr., Kastamonu University, Faculty of Education, Department of Elementary Mathematics Education, 
Kastamonu/Türkiye, Orcid: 0000-0001-9964-5578, gbilgici@kastamonu.edu.tr 
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respectively, where 𝛼 =
1+√5 

2
 and  𝛽 =

1−√5

2
 are roots of the 

characteristic equation 𝑡2 − 𝑡 − 1 = 0 . The positive root 𝛼  is 

known as golden ratio. The generating functions for the sequences 

{𝐹𝑟} and {𝐿𝑟} are 

∑ 𝐹𝑟𝑡𝑟

∞

𝑟=0

=
𝑡

1 − 𝑡 − 𝑡2
 and ∑ 𝐿𝑟𝑡𝑟

∞

𝑟=0

=
2 − 𝑡

1 − 𝑡 − 𝑡2
 

respectively. Detailed information about Fibonacci and Lucas 

sequences and their applications can be found in /Koshy, 2019). 

There are a lot of generalizations of Fibonacci and Lucas 

sequences. One of them is given by Falcon and Plaza (2007). They 

defind k-Fibonacci sequences by the recurrence relation 

𝐹𝑘,0 = 0, 𝐹𝑘,1 = 1 and 𝐹𝑘,𝑛 = 𝑘𝐹𝑘,𝑛−1 + 𝐹𝑘,𝑛−2 (for 𝑛 ≥ 2) 

where any integer 𝑘 ≥ 1. Following this definition Falcon (2011) 

introduced k-Lucas numbers by the relation 

𝐿𝑘,0 = 2, 𝐿𝑘,1 = 𝑘 and 𝐿𝑘,𝑛 = 𝑘𝐿𝑘,𝑛−1 + 𝐿𝑘,𝑛−2 (for 𝑛 ≥ 2). 

The generating functions for the sequences {𝐹𝑘,𝑟} and {𝐿𝑘,𝑟} are 

∑ 𝐹𝑘,𝑟𝑡𝑟

∞

𝑟=0

=
𝑡

1 − 𝑘𝑡 − 𝑡2
 and ∑ 𝐿𝑘,𝑟𝑡𝑟

∞

𝑟=0

=
2 − 𝑡

1 − 𝑘𝑡 − 𝑡2
 

respectively. Binet formulas for these numbers are 

𝐹𝑘,𝑟 =
𝛼𝑘

𝑟 − 𝛽𝑘
𝑟

𝛼𝑘 − 𝛽𝑘
 and 𝐿𝑘,𝑟 = 𝛼𝑘

𝑟 + 𝛽𝑘
𝑟 

where 𝛼𝑘 =
𝑘+√𝑘2+4 

2
 and  𝛽𝑘 =

𝑘−√𝑘2+4

2
 are roots of the 

characteristic equation 𝑡2 − 𝑘𝑡 − 1 = 0. 
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Actaually, the roots of the equation 𝑡2 − 𝑘𝑡 − 1 = 0  are 

called metallic ratios. For example, 𝛼1  gives the golden ratio 

whereas 𝛼2 gives the silver ratio. Therefore, k-Fibonacci numbers 

are also a generalization of Pell-numbers which are famous as 

Fibonacci numbers. 

Quaternions were invented by Sir William Rowan Hamilton 

in 1853. Some generalizations of quaternions have been given so far. 

Recently, Senturk and Unal (2022) introduced one of them, i.e. 3-

parameter generalized quaternions. A quaternion 𝑞 is shown as 𝑞 =

𝑞 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘  where 𝑞0, 𝑞1, 𝑞2 and 𝑞3  are reals and the 

versors satisfy the following rules 

Tablo 1: Multiplication rules of versors (𝜎1, 𝜎2, 𝜎3 are arbitrary 

reals) 

 1 𝑒1 𝑒2 𝑒3 

1 1 𝑒1 𝑒2 𝑒3 

𝑒1 𝑒1 −𝜎1𝜎2 𝜎1𝑒3 −𝜎2𝑒2 

𝑒2 𝑒2 −𝜎1𝑒3 −𝜎1𝜎3 𝜎3𝑒1 

𝑒3 𝑒3 𝜎2𝑒2 −𝜎3𝑒1 −𝜎2𝜎3 

Fibonacci quternions were introduced by Horadam (1963). 

After his definition, some authors studied Fibonacci and Lucas 

quaternions (Iyer, 1969; Swamy, 1973). The milestone of studies 

these quaternions can be regarded the study of Halici (2012), because 

of a systematic equation of Binet-like formula o these quaternions. 

There are a number of studies on Fibonacci and Lucas quaternions 

or their generalizations (Akyigit, Kosal and Tosun, 2013 and 2014; 

Nukan and Guven, 2015; Tan, Yilmaz and Sahin, 2016a, 2016b; 

Yuce and Aydin, 2016a and 2016b; Polatli, Kizilates and Kesim, 

2016; Polatli, 2016; Ipek, 2017; Bilgici, Tokeser and Unal, 2017; 

Aydin, 2018; Kizilates and Kone, 2021; Gul, 2022; Dasdemir and 

Bilgici, 2021). 
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Recently, Bilgici (2022) introduced Fibonacci 3-parameter 

generalized quaternions and gave some properties of the numbers 

including generating functions, Binet-like formulas and a number of 

generalizations of some well-known identities. This study will be 

based on it.  

Definitions, Generatng Functions and Binet Formulas 

For any positive integer n, the nth k-Fibonacci 3-parameter 

generalized quaternions are defined by the equation 

𝜒𝑘,𝑛 = 𝐹𝑘,𝑛 + 𝑒1𝐹𝑘,𝑛+1 + 𝑒2𝐹𝑘,𝑛+2 + 𝑒3𝐹𝑘,𝑛+3 

the nth k-Lucas 3-parameter generalized quaternions are defined by 

the equation 

𝜓𝑘,𝑛 = 𝐿𝑘,𝑛 + 𝑒1𝐿𝑘,𝑛+1 + 𝑒2𝐿𝑘,𝑛+2 + 𝑒3𝐿𝑘,𝑛+3. 

By using the recurrence relations, for any positive integer n, it is 

easily to see that  

𝜒𝑘,𝑛 = 𝑘𝜒𝑛−1 + 𝜒𝑛−2 

and 

𝜓𝑘,𝑛 = 𝑘𝜓𝑛−1 + 𝜓𝑛−2. 

The identities 𝐹𝑘,−𝑛 = (−1)𝑛+1𝐹𝑘,𝑛  and 𝐿𝑘,−𝑛 = (−1)𝑛𝐿𝑛 

gives 

𝜒𝑘,−𝑛 = (−1)𝑛+1(𝐹𝑘,𝑛 − 𝑒1𝐹𝑘,𝑛+1 + 𝑒2𝐹𝑘,𝑛+2 − 𝑒3𝐹𝑘,𝑛+3) 

and 

𝜓𝑘,−𝑛 = (−1)𝑛(𝐿𝑘,𝑛 − 𝑒1𝐿𝑘,𝑛+1 + 𝑒2𝐿𝑘,𝑛+2 − 𝑒3𝐿𝑘,𝑛+3) 

respectively. By using these identities, we can expand the definitions 

for negative subscripts, and we have 

𝜒𝑘,𝑛 + (−1)𝑛+1𝜒𝑘,−𝑛 = 2𝐹𝑘,𝑛 + 2𝑒2𝐹𝑘,𝑛+2 
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and 

𝜓𝑘,𝑛 + (−1)𝑛𝜓𝑘,−𝑛 = 2𝐿𝑘,𝑛 + 2𝑒2𝐿𝑘,𝑛+2. 

Theorem 1. Generating functions for {𝜒𝑘,𝑛} and {𝜓𝑘,𝑛} are 

∑ 𝜒𝑘,𝑟𝑞𝑟 =
𝑒1 + 𝑘𝑒2 + (𝑘2 + 1)𝑒3 + (1 + 𝑒2 + 𝑘𝑒3)𝑞

1 − 𝑘𝑞 − 𝑞2

∞

𝑟=0

 

and 

∑ 𝜓𝑘,𝑟𝑞𝑟

∞

𝑟=0

=
2 + 𝑘𝑒1(𝑘2 + 2)𝑒2(𝑘3 + 3𝑘)𝑒3 + [−𝑘 + 2𝑒1 + 𝑘𝑒2 + (𝑘2 + 2)𝑒3]𝑞

1 − 𝑘𝑞 − 𝑞2
 

respectively. 

Proof. Assume that 𝜒𝑘(𝑞)  is the generating function for the k-

Fibonacci 3-parameter generalized quaternions. So, we have 

𝜒𝑘(𝑞) = 𝜒𝑘,0 + 𝜒𝑘,1𝑞 + ∑ 𝜒𝑘,𝑟𝑞𝑟

∞

𝑟=2

.                           (1) 

If we multiply both sides of Eq.(1) by −𝑘𝑞, we have 

−𝑘𝑞𝜒𝑘(𝑞) = −𝑘𝜒𝑘,0𝑞 − 𝑘 ∑ 𝜒𝑘,𝑟−1𝑞𝑟

∞

𝑟=2

                           (2) 

and multiplying both sides of Eq.(1) by −𝑞2, we obtain 

−𝑞2𝜒𝑘(𝑞) = − ∑ 𝜒𝑘,𝑟−2𝑞𝑟 .

∞

𝑟=2

                           (3) 

Adding Eqs. (1), (2) and (3) side by side and substituting the 

first four terms of k-Fibonacci sequence, we prove the first 
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generating functions in the theorem. The other can be proved 

similarly. ∎ 

Theorem 2. [Binet formulas] For any integer 𝑟, the 𝑟th k-Fibonacci 

and k-Lucas 3-parameter generalized quaternion are 

𝜒𝑘,𝑟 =
𝛼𝑘

∗ 𝛼𝑘
𝑟 − 𝛽𝑘

∗𝛽𝑘
𝑟

𝛼𝑘 − 𝛽𝑘
 and 𝜓𝑘,𝑟 = 𝛼𝑘

∗ 𝛼𝑘
𝑟 + 𝛽𝑘

∗𝛽𝑘
𝑟 

respectively, where 𝛼𝑘
∗ = 1 + 𝑒1𝛼𝑘 + 𝑒2𝛼𝑘

2 + 𝑒3𝛼𝑘
3  and 𝛽𝑘

∗ =

1+𝑒1𝛽𝑘 + 𝑒2𝛽𝑘
2 + 𝑒3𝛽𝑘

3. 

Proof. Binet formula gives  

𝜒𝑘,𝑟 = 𝐹𝑘,𝑛 + 𝑒1𝐹𝑘,𝑛+1 + 𝑒2𝐹𝑘,𝑛+2 + 𝑒3𝐹𝑘,𝑛+3 

      =
1

𝛼𝑘 − 𝛽𝑘

[𝛼𝑘
𝑟 − 𝛽𝑘

𝑟 + 𝑒1(𝛼𝑘
𝑟+1 − 𝛽𝑘

𝑟+1) + 𝑒2(𝛼𝑘
𝑟+2 − 𝛽𝑘

𝑟+2)

+ 𝑒3(𝛼𝑘
𝑟+3 − 𝛽𝑘

𝑟+3)] 

      =
1

𝛼𝑘 − 𝛽𝑘

[𝛼𝑘
𝑟(1 + 𝑒1𝛼𝑘 + 𝑒2𝛼𝑘

2 + 𝑒3𝛼𝑘
3) − 𝛽𝑘

𝑟(1+𝑒1𝛽𝑘

+ 𝑒2𝛽𝑘
2 + 𝑒3𝛽𝑘

3)]. 

By the last equation, we prove the first identity. The other can be 

obtained similarly. ∎ 

The next results are a need for later use. 

Corollary 3. Let 𝛼𝑘
∗  and 𝛽𝑘

∗ be as given in Theorem 2, we have 

𝛼𝑘
∗ 𝛽𝑘

∗ = 𝑌𝑘 + 𝑍𝑘√𝑘2 + 4                                                    (4) 

and 

𝛽𝑘
∗𝛼𝑘

∗ = 𝑌𝑘 − 𝑍𝑘√𝑘2 + 4                                                    (5) 

where  

𝑌𝑘 = 𝜙𝑘,0 − 1 + 𝜎1𝜎2 − 𝜎1𝜎3 + 𝜎2𝜎3 
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and 

𝑍𝑘 = −𝜎3𝑒1 − 𝑘𝜎2𝑒2 + 𝜎1𝑒3. 

Results 

We give some generalizations of well-known identities in 

this section and start with Vajda’s identities given in the next 

theoem. 

Theorem 4. For any integers 𝑚, 𝑛 and 𝑟, the followings hold 

𝜒𝑘,𝑚+𝑛𝜒𝑘,𝑚+𝑟 − 𝜒𝑘,𝑚𝜒𝑘,𝑚+𝑛+𝑟 = (−1)𝑚+1𝐹𝑘,𝑛[−𝑌𝑘𝐹𝑘,𝑟 + 𝑍𝑘𝐿𝑘,𝑟] 

and 

𝜓𝑘,𝑚+𝑛𝜓𝑘,𝑚+𝑟 − 𝜓𝑘,𝑚𝜓𝑘,𝑚+𝑛+𝑟

= (−1)𝑚(𝑘2 + 4)𝐹𝑘,𝑛[−𝑌𝑘𝐹𝑘,𝑟 + 𝑍𝑘𝐿𝑘,𝑟]. 

Proof. The Binet formula gives 

𝜒𝑘,𝑚+𝑛𝜒𝑘,𝑚+𝑟 − 𝜒𝑘,𝑚𝜒𝑘,𝑚+𝑛+𝑟 

=
1

(𝛼𝑘 − 𝛽𝑘)2
[(𝛼𝑘

∗ 𝛼𝑘
𝑚+𝑛 − 𝛽𝑘

∗𝛽𝑘
𝑚+𝑛)(𝛼𝑘

∗ 𝛼𝑘
𝑚+𝑟 − 𝛽𝑘

∗𝛽𝑘
𝑚+𝑟)

− (𝛼𝑘
∗ 𝛼𝑘

𝑚 − 𝛽𝑘
∗𝛽𝑘

𝑚)(𝛼𝑘
∗ 𝛼𝑘

𝑚+𝑟 − 𝛽𝑘
∗𝛽𝑘

𝑚+𝑟)] 

=
1

(𝛼𝑘 − 𝛽𝑘)2
[𝛼𝑘

∗ 𝛽𝑘
∗(𝛼𝑘

𝑚𝛽𝑘
𝑚+𝑛+𝑟 − 𝛼𝑘

𝑚+𝑛𝛽𝑘
𝑚+𝑟)

+ 𝛽𝑘
∗𝛼𝑘

∗ (𝛼𝑘
𝑚+𝑛+𝑟𝛽𝑘

𝑚 − 𝛼𝑘
𝑚+𝑟𝛽𝑘

𝑚+𝑛)] 

=
(−1)𝑚

(𝛼𝑘 − 𝛽𝑘)2
[𝛼𝑘

∗ 𝛽𝑘
∗(𝛽𝑘

𝑛+𝑟 − 𝛼𝑘
𝑛𝛽𝑘

𝑟) + 𝛽𝑘
∗𝛼𝑘

∗ (𝛼𝑘
𝑛+𝑟 − 𝛼𝑘

𝑟𝛽𝑘
𝑛)] 

=
(−1)𝑚+1

(𝛼𝑘 − 𝛽𝑘)2
[𝛼𝑘

∗ 𝛽𝑘
∗𝛽𝑘

𝑟(𝛼𝑘
𝑛 − 𝛽𝑘

𝑛) + 𝛽𝑘
∗𝛼𝑘

∗ 𝛼𝑘
𝑟(𝛼𝑘

𝑛 − 𝛽𝑘
𝑛)] 

=
(−1)𝑚+1𝐹𝑘,𝑛

𝛼𝑘 − 𝛽𝑘

[𝛼𝑘
∗ 𝛽𝑘

∗𝛽𝑘
𝑟 − 𝛽𝑘

∗𝛼𝑘
∗ 𝛼𝑘

𝑟] 
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=
(−1)𝑚+1𝐹𝑘,𝑛

𝛼𝑘 − 𝛽𝑘
[𝛽𝑘

𝑟 (𝑌𝑘 + 𝑍𝑘√𝑘2 + 4) − 𝛼𝑘
𝑟 (𝑌𝑘 − 𝑍𝑘√𝑘2 + 4)] 

= (−1)𝑚+1𝐹𝑘,𝑛 [−𝑌𝑘 (
𝛼𝑘

𝑟 − 𝛽𝑘
𝑟

𝛼𝑘 − 𝛽𝑘
) + 𝑍_𝑘(𝛼𝑘

𝑟 − 𝛽𝑘
𝑟)]. 

The final equation proves the first identity. The second identity can 

be obtained similarly. ∎ 

For 𝑟 → −𝑛, The Vajda’s identities with the identity 𝐹𝑘,2𝑛 =
𝐹𝑘,𝑛𝐿𝑘,𝑛 give Catalan’s identities given in the following theorem. 

Theorem 5. For any integers 𝑚 and 𝑛, the followings hold 

𝜒𝑘,𝑚+𝑛𝜒𝑘,𝑚−𝑛 − 𝜒𝑘,𝑚
2 = (−1)𝑚+𝑛+1[𝑌𝑘𝐹𝑘,𝑛

2 + 𝑍𝑘𝐹𝑘,2𝑛] 

and 

𝜓𝑘,𝑚+𝑛𝜓𝑘,𝑚−𝑛 − 𝜓𝑘,𝑚
2 = (−1)𝑚+𝑛(𝑘2 + 4)[𝑌𝑘𝐹𝑘,𝑛

2 + 𝑍𝑘𝐹𝑘,2𝑛]. 

For 𝑛 → 1, The Catalan’s identities Cassini’s identities given 

in the next theorem. 

Theorem 6. For any integers 𝑚, the followings hold 

𝜒𝑘,𝑚+1𝜒𝑘,𝑚−1 − 𝜒𝑘,𝑚
2 = (−1)𝑚[𝑌𝑘 + 𝑘𝑍𝑘] 

and 

𝜓𝑘,𝑚+1𝜓𝑘,𝑚−1 − 𝜓𝑘,𝑚
2 = (−1)𝑚+1(𝑘2 + 4)[𝑌𝑘 + 𝑘𝑍𝑘]. 

Theorem 7. [d’Ocagne’s identity] For any integers 𝑚 and 𝑛 , the 

followings hold 

𝜒𝑘,𝑚𝜒𝑘,𝑛+1 + 𝜒𝑘,𝑚+1𝜒𝑘,𝑛 = (−1)𝑛[𝑌𝑘𝐹𝑘,𝑚−𝑛 + 𝑍𝑘𝐿𝑘,𝑚−𝑛] 

and 

𝜓𝑘,𝑚𝜓𝑘,𝑛+1 + 𝜓𝑘,𝑚+1𝜓𝑘,𝑛

= (−1)𝑛+1(𝑘2 + 4)[𝑌𝑘𝐹𝑘,𝑚−𝑛 + 𝑍𝑘𝐿𝑘,𝑚−𝑛]. 

Proof. The Binet formula gives 

𝜒𝑘,𝑚𝜒𝑘,𝑛+1 + 𝜒𝑘,𝑚+1𝜒𝑘,𝑛 
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=
1

(𝛼𝑘 − 𝛽𝑘)2
[(𝛼𝑘

∗ 𝛼𝑘
𝑚 − 𝛽𝑘

∗𝛽𝑘
𝑚)(𝛼𝑘

∗ 𝛼𝑘
𝑛+1 − 𝛽𝑘

∗𝛽𝑘
𝑛+1)

− (𝛼𝑘
∗ 𝛼𝑘

𝑚+1 − 𝛽𝑘
∗𝛽𝑘

𝑚+1)(𝛼𝑘
∗ 𝛼𝑘

𝑛 − 𝛽𝑘
∗𝛽𝑘

𝑛)] 

=
1

(𝛼𝑘 − 𝛽𝑘)2
[𝛼𝑘

∗ 𝛽𝑘
∗(𝛼𝑘

𝑚+1𝛽𝑘
𝑛 − 𝛼𝑘

𝑚𝛽𝑘
𝑛+1)

− 𝛽𝑘
∗𝛼𝑘

∗ (𝛼𝑘
𝑛+1𝛽𝑘

𝑚 − 𝛼𝑘
𝑛𝛽𝑘

𝑚+1)] 

=
1

(𝛼𝑘 − 𝛽𝑘)2
[𝛼𝑘

∗ 𝛽𝑘
∗𝛼𝑘

𝑚𝛽𝑘
𝑛(𝛼𝑘 − 𝛽𝑘) − 𝛽𝑘

∗𝛼𝑘
∗ 𝛼𝑘

𝑛𝛽𝑘
𝑚(𝛼𝑘 − 𝛽𝑘)] 

=
(−1)𝑛

𝛼𝑘 − 𝛽𝑘

[𝛼𝑘
∗ 𝛽𝑘

∗𝛼𝑘
𝑚−𝑛 − 𝛽𝑘

∗𝛼𝑘
∗ 𝛽𝑘

𝑚−𝑛] 

=
(−1)𝑛

𝛼𝑘 − 𝛽𝑘
[𝛼𝑘

𝑚−𝑛 (𝑌𝑘 + 𝑍𝑘√𝑘2 + 4) − 𝛽𝑘
𝑚−𝑛 (𝑌𝑘 − 𝑍𝑘√𝑘2 + 4)] 

= (−1)𝑛 [𝑌𝑘 (
𝛼𝑘

𝑚−𝑛 − 𝛽𝑘
𝑚−𝑛

𝛼𝑘 − 𝛽𝑘
) + 𝑍𝑘(𝛼𝑘

𝑚−𝑛 − 𝛽𝑘
𝑚−𝑛)]. 

The last equation proves the first identity. The other can be obtained 

similarly. ∎ 

We can obtain many identities between k-Fibonacci and k-

Lucas generalized quaternions by using similar methods. Some of 

them are given in next theorem without proofs. 

Theorem 8. For any integers 𝑚, 𝑛 and 𝑟, the followings hold 

𝜓𝑘,𝑚 = 𝜒𝑘,𝑚+1 + 𝜒𝑘,𝑚−1, 

𝜒𝑘,𝑚𝜓𝑘,𝑛 − 𝜓𝑘,𝑚𝜒𝑘,𝑛 = 2(−1)𝑛[𝑌𝑘𝐹𝑘,𝑚−𝑛 + 𝑍𝑘𝐿𝑘,𝑚−𝑛], 

𝜒𝑘,𝑚𝜓𝑘,𝑛 − 𝜒𝑘,𝑛𝜓𝑘,𝑚 = 2(−1)𝑛𝑌𝑘𝐹𝑘,𝑚−𝑛, 

𝜒𝑘,𝑚𝜒𝑘,𝑛 − 𝜒𝑘,𝑛𝜒𝑘,𝑚 = 2(−1)𝑛+1𝑍𝑘𝐹𝑘,𝑚−𝑛, 

𝜓𝑘,𝑚𝜓𝑘,𝑛 − 𝜓𝑘,𝑛𝜓𝑘,𝑚 = 2(−1)𝑛(𝑘2 + 4)𝑍𝑘𝐹𝑘,𝑚−𝑛, 

𝜒𝑘,𝑚
2 − 𝜓𝑘,𝑚

2 = 4(−1)𝑚+1𝑌𝑘, 
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∑ 𝜒𝑘,𝑖

𝑚

𝑖=1

=
1

𝑘
(𝜒𝑘,𝑚+1 + 𝜒𝑘,𝑚 − 1) − (𝑒1 + 𝑘𝑒2 + 𝑒3 + 𝑘2𝑒3)

+
1

𝑘
(𝑒1 + 𝑒2 + 2𝑒3). 

Conclusion 

Nowadays, hyper-complex numbers with integer sequences 

coefficients are very popular area. There are a lot of studies on these 

numbers and present stusy is one of them. k-Fibonacci gives metalic 

ratios and generalizes a number of integer sequences. In this study, 

two new definitions have been made, namely k-Fibonacci and k-

Lucas 3-parameter generalized quaternions. 3-parameter generalized 

quaternions are a generalization of Hamilton quaternions. We give 

generating functions, Binet formulas and some identities. This study 

can fill in a gap in literatüre. 
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A New Mathematical Model for Monkeypox with 

Vaccination Effect and Its Quantified Analysis 
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1.Introduction 

Monkeypox (MPOX), one of the zoonotic diseases, is a rare 

infection caused by a virus belonging to the Poxviridae family. 

Zoonotic diseases are defined as infections that can be transmitted 

from animals to humans, and monkeypox falls into this category.  

It was first identified in humans in 1970 in the Democratic 

Republic of Congo and is typically associated with the tropical 

rainforests of Central and West Africa (Breman, 1980). 
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The monkeypox virus can be transmitted from infected 

animals to humans, with rodents and primates being the primary 

reservoirs. Transmission to humans can occur through animal bites, 

scratches, or the consumption of infected animal meat. Among 

humans, the virus spreads via direct contact with skin lesions, bodily 

fluids, respiratory droplets during prolonged face-to-face 

interactions, or contaminated objects. 

Symptoms of the disease usually begin with flu-like signs, 

including fever, headache, muscle pain, and swollen lymph nodes. 

These are followed by characteristic skin rashes that appear as fluid-

filled blisters and lesions. While most cases resolve within a few 

weeks, severe complications and high mortality rates can occur in 

immunocompromised individuals or in regions with limited access 

to healthcare (Nuzzo, Borio & Gostin, 2022). 

Although monkeypox cases in developed countries remain 

limited, it continues to pose a significant public health threat in 

developing countries, where high mortality rates persist. Therefore, 

understanding the behavior of the disease and conducting dynamic 

analysis is of great importance. For this purpose, mathematical 

models and numerical solutions are essential. In our study, an Mpox 

model based on real-world data was developed, and different 

numerical solutions were compared for interpretation. 

Mathematical modeling is the process of using mathematical 

structures to represent real-world systems, and it is crucial for 

predicting and understanding the behavior of these systems over 

time (Kermack & McKendrick, 1927). In epidemiological research, 

mathematical models are used to examine the mechanisms of 
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infectious disease transmission and to design intervention strategies. 

For example, Anderson and May (1991) worked on epidemiological 

models to understand the dynamics of infectious diseases and 

develop strategies for their control. Hethcote (2000) used differential 

equations to analyze the spread of infectious diseases, simulating the 

effects of various intervention strategies. Additionally, Diekmann, 

Heesterbeek & Britton (2013) developed mathematical tools for 

preventing and controlling diseases by modeling the spread of 

infections. These studies highlight the importance of mathematical 

models in optimizing disease control and public health strategies. 

 

In recent years, studies in mathematical modeling have become more 

diverse. For example, Bacaër (2015) discussed the need for multi-

scale models to understand epidemiological processes and examined 

how infectious diseases can spread at local, regional, and global 

levels. Moreover, Brauer (2017) compared the use of different 

models to simulate the spread of infections, detailing the advantages 

and limitations of each model. Arenas et al. (2020) adapted a 

Microscopic Markov Chain Approach (MMCA) metapopulation 

mobility model to simulate the spread of COVID-19, accounting for 

age-specific incidence rates and mobility patterns. The model, 

applied to the epidemic in Spain, predicted a peak in infections by 

April 2020 without mobility restrictions and highlighted the strain 

on the healthcare system, especially intensive care units. The study 

emphasized the importance of enforcing a total lockdown to prevent 

a collapse of the Spanish national health system by analyzing various 

epidemic containment scenarios. 
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Usman and Adamu (2017) developed a mathematical model 

to study the transmission dynamics of monkeypox under vaccination 

and treatment interventions. They found that the disease-free 

equilibrium is stable when the basic reproduction number (R₀) is less 

than 1, while the endemic equilibrium exists when R₀ is greater than 

1.  

Their simulations showed that with appropriate control 

strategies, the infection would eventually die out in both human and 

non-human primate populations. 

Peter et al. (2022a) developed and analysed a deterministic 

mathematical model for monkeypox virus (MPXV), investigating 

both local and global asymptotic stability for disease-free and 

endemic equilibria. Their results show that the model exhibits 

backward bifurcation, where a locally stable disease-free 

equilibrium can coexist with an endemic equilibrium, and that 

isolating infected individuals in the human population helps to 

reduce disease transmission. Peter et al. (2022b) present a 

deterministic mathematical model of monkeypox using both 

classical and fractional-order differential equations, incorporating all 

possible interactions that contribute to the spread of the disease. 

Their results, based on fitting the model to reported cases from 

Nigeria in 2019, show that the stability of the model depends on the 

basic reproduction number (R₀), and provide insights into the 

dynamics of the disease and appropriate control measures for its 

eradication. Elsonbaty et al. (2024) introduced a novel model to 

simulate the spread of monkeypox, incorporating human-rodent 

interactions, imperfect vaccination and nonlinear incidence rates, 

with the human population divided into low-risk and high-risk 
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groups. Their analysis showed that the virus is more prevalent in the 

high-risk group, and through bifurcation analysis and numerical 

simulations they identified key parameters for controlling the virus 

and developing effective prevention strategies. 

To determine the dynamic analysis of monkeypox disease A 

mathematical model was developed using current data on deaths in 

Africa between 1 January 2024 and 6 October 2024 (T.C. Sağlık 

Bakanlığı, 2024). The aim was to determine the behaviour of the 

model by including the effect of vaccination in the modelling. This 

model was used to observe the effect of vaccination on monkeypox. 

Four different numerical methods were used for the observations.  

The solution of the modelling was expressed using Euler, 

Central difference, Runge-Kutta and Nonstandard finite difference 

(NSFD) methods and graphics. This allowed the dynamic analysis 

of the model system to be interpreted. 

This study consists of five sections. The second section 

contains basic information for solving the mathematical model 

system. This part provides the definitions and advantages of 

numerical methods. The third section includes the diagram and 

modeling of the created system. The fourth section presents the 

numerical solutions of the system. Each numerical method used for 

the solutions is discussed. Additionally, the data obtained from the 

solutions are presented in figures and tables. The fifth section 

contains the conclusion, which includes evaluations related to the 

topic. 
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2.Basic Definitions about numerical methods 

In many cases, analytical solutions to differential equations 

are either too complex or infeasible, especially for real-world 

problems with complex dynamics. This is where numerical solutions 

become crucial.  

Numerical methods such as finite difference, finite element 

or Runge-Kutta provide practical approaches to approximate 

solutions to these equations. They allow the simulation and analysis 

of systems that would otherwise be impossible to solve analytically.  

Through numerical methods, we can gain valuable insights 

into the behaviour of complex systems, make predictions and 

optimise solutions, which is particularly important in fields such as 

epidemiology, engineering and physics (Oruç & Sondaş, 2018). 

One of these methods, the Euler Method, aims to obtain an 

approximate solution to the well-conditioned initial value problem 

as follows. 

Definition 2.1: (Burden & Faires, 2010) Let the initial value 

problem can be given as follows: 

𝒅𝒚

𝒅𝒕
= 𝒇(𝒕, 𝒚)      ,      𝒂 ≤ 𝒕 ≤ 𝒃 ,      𝒚(𝒂) = 𝒂.                              (1) 

Assuming that the grid points are evenly distributed over the 

interval [a,b], a positive N and grid points are chosen for 

computation. The distance between two points is denoted as h, and 

this is called the step size. To derive the Euler method, the Taylor 

theorem is applied, leading to the following equality: 

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(𝜉𝑖).                                   (2) 
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Accordingly, if the error term is neglected, the Euler method is 

obtained as follows: 

y(ti+1) = y(ti) + hf(ti, y(ti)).                  (3) 

The Adams method makes predictions based on previous 

points, while Runge, in his approach, makes predictions based on 

just one step. For accuracy, approximate values of the interior points 

are calculated at each step, and exact results are obtained according 

to these steps (Runge, 1895; Butcher, 2000). The reason the Runge-

Kutta method is the most commonly used method for ordinary 

differential equations is that it does not involve solving with higher-

order derivatives and yields results that are very close to exact 

accuracy. Accordingly, the 4th-order Runge-Kutta method is defined 

as follows: 

Definition 2.2: (Çengel &Pan, 2013) Considering the initial 

value problem given by Equation 1, the classical fourth-order 

Runge-Kutta method is derived using the fourth-order Taylor series 

method as follows: 

y(t + h) = y(t) +
1

6
ℎ(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4).                 (4) 

Here, the 𝑘1, 𝑘2, 𝑘3 and 𝑘4 parameters are defined as follows. 

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖), 

𝑘2 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖 +

ℎ𝑘1

2
), 

𝑘3 = 𝑓(𝑥𝑖 +
ℎ

2
, 𝑦𝑖

ℎ𝑘2

2
), 
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                                 𝑘4 = 𝑓(𝑥𝑖 + ℎ, 𝑦𝑖 + ℎ𝑘3).                            (5) 

Definition 2.3: (Oruç & Sondaş 2018) When the Taylor series 

expansion of the g(x + h)  function is performed for the central 

difference method, 

g(x + h) = g(x) + hg′(x) +
1

2!
h2g′′(x) +

1

3!
h3g′′′(x)+. ..     (6) 

is obtained. Likewise the Taylor series expansion of the function 

gives the following equation: 

g(x − h) = g(x) − hg′(x) +
1

2!
h2g′′(x) −

1

3!
h3g′′′(x)+. ..  (7) 

If Equation (7) is subtracted from Equation (6) and rearranged, 

g(x + h) − g(x − h) = 2hg′(x) +
1

3
h3g′′′(x)+. ..   (8) 

However, since it has performed subtraction, the even-order 

derivatives of the  g(x0) term is eliminated. 

g′(x) =
g(x + h) − g(x − h)

2h
+ εi 

Here the expression represents higher order derivatives. As it 

approaches zero, quality becomes: 

                                   g′(x) =
g(x+h)−g(x−h)

2h
                               (10) 

This equation represents the first derivative in terms of 

central differences. 

The Nonstandard Finite Difference method is a powerful tool 

for solving differential equations that involve complex or nonlinear 

dynamics. Unlike traditional finite difference methods, NSFD 

schemes are designed to address stability issues, particularly when 

dealing with stiff equations. By carefully selecting appropriate 
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denominator functions, NSFD methods help avoid instability and 

prevent negative solutions, making them more reliable and accurate 

in certain scenarios. This flexibility is especially important for 

systems with intricate interactions, which are common in fields such 

as epidemiology, physics, and engineering (Mickens, 1989). 

Definition 2.4: (Mickens, 1989) For a general first-order 

differential equation of the form: 
𝒅𝒚

𝒅𝒕
= 𝒇(𝒕, 𝒚). An NSFD scheme 

may use a more modified form for the difference, such as: 

                                     
(𝐲(𝐭 + 𝐡) − 𝐲(𝐭))

𝜽(𝒉)

𝒅𝒚

𝒅𝒕
                                      (11) 

where 𝜽  is  denominator function and it  can be chosen 

as 𝜽(𝒉) =
𝒆𝒑𝒉−𝟏

𝒉
 , where 𝐩 is a parameter. The denominator function 

𝜽(𝒉)  depends on the step size  𝐡  and the variable 𝐩 , which is 

calculated based on the equilibrium point. (Mickens, 2002; Ongun,  

Arslan & Farzi, 2017; Kocabıyık, Ongun & Çetinkaya, 2021; 

Çetinkaya, Kocabıyık & Ongun, 2021; Çetinkaya, 2023; Kocabiyik 

& Ongun, 2023 ;Kocabiyik & Ongun, 2024) 

Euler method, Runge-Kutta method, Central difference 

method, and Nonstandard finite difference (NSFD) method each 

offer unique advantages in numerical analysis. The Euler method is 

simple and easy to implement, making it a good choice for basic 

problems, although it may be less accurate for stiff equations due to 

its first-order approximation.  

In contrast, the Runge-Kutta method, especially the 4th-order 

version, provides higher accuracy by using multiple evaluations 

within each step, making it ideal for more complex problems where 
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precision is crucial. The Central difference method is particularly 

effective for problems involving spatial derivatives, offering second-

order accuracy in both time and space, which makes it suitable for 

solving partial differential equations with more precise results. 

Finally, the NSFD method is often used for systems with non-linear 

dynamics and provides flexibility in modeling complex interactions, 

making it particularly advantageous in systems where other methods 

may struggle. Each method’s strength lies in its suitability for 

specific types of problems, with accuracy, simplicity, and efficiency 

being the key distinguishing factors. 

3.Mathematical modelling of monkeypox disease 

Mathematical modelling of monkeypox involves tracking the 

dynamics of susceptible, vaccinated, infected and recovered 

populations to understand the behaviour and spread of the disease.  

These models highlight the importance of vaccination in reducing 

the number of susceptible individuals, thereby limiting infection 

rates and containing outbreaks. By integrating vaccination strategies, 

the models provide valuable insights into effective disease control 

measures and public health interventions. The mathematical model 

of the behaviour of monkeypox disease, including the effect of 

vaccination, has been constructed as follows: 

𝑑𝑆

𝑑𝑡
=  𝑎 −  𝜇𝑆(𝑡)  − 𝛽1𝑆(𝑡)𝐼(𝑡) − 𝛽2𝑆(𝑡) 

𝑑𝑉

𝑑𝑡
= 𝛽2𝑆(𝑡) − 𝑎1𝑉(𝑡)𝐼(𝑡) − 𝑎2𝑉(𝑡) − 𝜇𝑉(𝑡) 

                   
𝑑𝐼

𝑑𝑡
= 𝛽1𝑆(𝑡)𝐼(𝑡) + 𝑎1𝑉(𝑡)𝐼(𝑡) − 𝜆𝐼(𝑡) − 𝜇𝐼(𝑡)       (12) 
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𝑑𝑅

𝑑𝑡
= 𝑎2𝑉(𝑡) + 𝜆𝐼(𝑡) − 𝜇𝑅(𝑡) 

The variables used in the mathematical model are defined as 

follows: S represents the susceptible individuals in the population, V 

represents the vaccinated individuals, I represents the infected 

individuals, and R  represents the recovered individuals. The 

parameters used in the model are defined as follows: α   is the 

recovery rate, μ is the natural mortality rate, λ is the recovery rate of 

infected individuals,  𝛼1 is the transmission rate of the disease when 

vaccinated individuals are in contact with infected individuals,  𝛼2 

is the rate at which vaccinated individuals become recovered 

individuals, 𝛽1  the transition rate from susceptible to infected 

individuals, and 𝛽2   is the transition rate from susceptible to 

vaccinated individuals. The diagram of the model is shown in Figure 

1. 
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Figure 1: The diagram of the mathematical model for MPOX  

 

4.Numerical analysis 

In this section, the numerical analysis of the constructed 

mathematical model system has been performed using different 

methods. The constants and initial values used for the analysis are 

provided in Table 1. 

Table 1:Initial conditions and constant values for the monkeypox 

model system. 

Initial Conditions Constant values 

S(0) 36.787 𝛽1 0.03 𝛼1 0.23 

V(0) 32.004 𝛽2 0.07 𝛼2 0.21 

I(0) 7.535 α 2 λ 0.27 

R(0) 7.503 μ 0.02   

If the Euler method is applied to the mathematical model 

system expressed in Equation 12, the system takes the following 

form: 

S(k + 1) = S(k) + h(α − μS(k) − β1S(k)I(k) − β2S(k)) 

V(k + 1) = V(k) + h(β2S(k) − α1V(k)I(k) − α2V(k) −

μV(k))(13) 

I(k + 1) = I(k) + h(β1S(k)I(k) + α1V(k)I(k) − λI(k) − μI(k)) 

R(k + 1) = R(k) + h(α2V(k) + λI(k) − μR(k)) 

Using the values provided in Table 1 and Equation 13, the 

system's graphs for the Euler method are shown in Figures 2-5 (with 

h=0.1). Figure 2 illustrates the analysis for susceptible individuals 

using the Euler method. As seen in the figure, the susceptible 

individuals reach a disease-free equilibrium point after t=200 and 
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continue at a constant level. In Figure 3, the analysis for vaccinated 

individuals shows a decrease until t=100, after which it continues at 

a constant level.  

Figure 4, showing the analysis for infected individuals, 

demonstrates a rapid increase and decrease until t=100, followed by 

a constant progression. Figure 5 represents recovered individuals, 

showing a rapid increase until t=100, after which it continues to rise 

steadily. Table 2 shows the changes in populations at different time 

intervals using the Euler method. Thus, the character of the system 

under vaccination has been determined. 

Figure 2: The change graph for susceptible individuals using the 

Euler method. 
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Figure 3: The change graph for vaccinated individuals using the 

Euler method. 

Figure 4: The change graph for infected individuals using the 

Euler method. 
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Figure 5: The change graph for recovered individuals using the 

Euler method.  

Table 2: Population numbers over time with the Euler method 

t S(t) V(t) I(t) R(t) 

0 36.787 32.004 7.535 7.503 

1 35.824  25.978 13.694 8.363 

2 34.230 17.449 22.951 9.262 

3 31.765 8.076 33.854 10.229 

4 28.453  1.824 42.387 11.292 

5 24.778  0.202 46.555 12.453 

6 21.295 0.154 48.883 13.689 

7 18.180 0.126 50.762 14.985 

8 15.448 0.103 52.206 16.328 

9 13.089 0.085  53.235 17.707 

10 11.081 0.070 53.886 19.111 

50 2.041 0.023 24.360 58.944 

100 4.120 0.108 9.498 73.035 

200 7.347 0.338 5.532 75.946 

300 7.381 0.314 6.180 77.253 
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When the Runge-Kutta method is applied to the SVIR 

mathematical model system with the given parameter values, the 

graphs in Figures 6-9 are obtained. Figure 6 illustrates the analysis 

for susceptible individuals using the Runge-Kutta method. As seen 

in the figure, the number of susceptible individuals decreases rapidly 

until t=20, after which it progresses steadily. In Figure 7, the analysis 

for vaccinated individuals shows a rapid decrease followed by steady 

progression. Figure 8, showing the analysis for infected individuals, 

demonstrates a sharp increase and decrease until t=20, after which it 

continues at a constant rate. Figure 9 represents recovered 

individuals, showing a rapid increase until t=20, after which it 

continues to rise steadily. Table 3 presents the population change 

values at different time points t, which have been determined using 

the Runge-Kutta method. 

 

Figure 6: The variation in the number of susceptible individuals 

using the Runge-Kutta method.  
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Figure 7: The variation in the number of vaccinated individuals 

using the Runge-Kutta method.  

 

Figure 8: The variation in the number of infected individuals using 

the Runge-Kutta method.  
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Figure 9: The variation in the number of recovered individuals 

using the Runge-Kutta method.   

Table 3: Population numbers over time with the Runge-Kutta 

method 

t S(t) V(t) I(t) R(t) 

0 36.787 32.004 7.535 7.503 

1 10.731 0.072 53.112 19.536 

2 3.030 0.020 47.681 32.876 

3 1.838 0.014 38.307 43.705 

4 1.799 0.016 30.342 51.974 

5 2.027 0.023 24.146 58.193 

6 2.349 0.032 19.414 62.837 

7 2.718 0.0454 15.813 66.286 

8 3.113 0.061 13.073 68.828 

9 3.524 0.081 10.984 70.682 

10 3.941 0.104 9.392 72.015 

50 7.084 0.336 5.405 74.959 

100 7.086 0.336 5.407 75.957 

200 7.086 0.336 5.407 76.460 

300 7.086 0.336 5.407 76.529 
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If the Central Difference method is applied to the monkeypox 

mathematical model system, the system takes the following form: 

S(k + 1) = S(k − 1) + 2h(α − μS(k) − β1S(k)I(k) − β2S(k)) 

V(k + 1) = V(k − 1) + 2h(β2S(k) − α1V(k)I(k) − α2V(k) −

μV(k))(14) 

I(k + 1) = I(k − 1) + 2h(β1S(k)I(k) + α1V(k)I(k) − λI(k) − μI(k)) 

R(k + 1) = R(k − 1) + 2h(α2V(k) + λI(k) − μR(k)) 

The system's graphs using the Central difference method are 

shown in Figures 10-13. Figure 10 illustrates the analysis for 

susceptible individuals using the Central Difference method. As seen 

in the figure, the number of susceptible individuals decreases rapidly 

until t=200, after which it progresses steadily. In Figure 11, the 

analysis for vaccinated individuals shows mobility until t=50, after 

which it continues at a constant level.  

Figure 12, showing the analysis for infected individuals, 

demonstrates a sharp increase and decrease until t=200, followed by 

a steady progression. Figure 13 represents recovered individuals, 

showing a rapid increase until t=100, after which it continues to rise 

steadily. Table 4 presents the population change values at different 

time points t. 
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Figure 10: The population values for susceptible individuals using 

the Central difference method.  

 

Figure 11: The population values for vaccinated  individuals using 

the Central difference method. 
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Figure 12: The population values for infected individuals using the 

Central difference method.   

 

Figure 13: The population values for recovered  individuals using 

the Central difference method. 
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Table 4: Population numbers over time with the Central difference 

method 

t S(t) V(t) I(t) R(t) 

0 36.787 32.004 7.535 7.503 

1 36.690 31.401 19.854 7.589 

2 34.861 19.953 21.243 9.224 

3 34.635 18.697 41.078 9.317 

4 30.481 1.300 42.698 11.097 

5 29.997 0.050 48.666 11.212 

6 22.819 -0.790 48.006 13.325 

7 22.172 0.368 48.006 13.475 

8 16.145  1.334 50.738 15.867 

9 15.786 -0.151 52.422 16.029 

10 11.339 -1.615 55.825 18.599 

50 2.030 0.020 24.317 59.002 

100 4.145 0.110 9.370 73.139 

200 7.386 0.341 5.519 75.921 

300 7.373 0.313 6.194 77.254 

Finally, in the MPOX system, the system takes the following 

form when the nonstandard finite difference method is applied: 

S(k + 1) = S(k) + (𝜃1(ℎ))(α − (μ + β2)S(k) − β1S(k)I(k)) 

V(k + 1) = V(k) + (𝜃2(ℎ))(β2S(k) − α1V(k)I(k) − (μ + α2)V(k))(15) 

I(k + 1) = I(k) + (𝜃3(ℎ))(β1S(k)I(k) + α1V(k)I(k) − (μ + λ)I(k)) 

R(k + 1) = R(k) + (𝜃4(ℎ))(α2V(k) + λI(k) − μR(k)) 

where, 𝜃𝑖(ℎ), 𝑖 = 1,2,3,4 are denominator functions, and they are 

selected as follows: 

𝜃1(ℎ) =
e((μ + β2)h − 1

μ + β2
, 𝜃2(ℎ) =

e((μ + α2)h − 1

μ + α2
,  



 

--42-- 

 

𝜃3(ℎ) =
e((μ + λ)h − 1

μ + λ
, 𝜃4(ℎ) =

e(μh) − 1

μ
 

Using the given parameter values and Equation 15, the 

system's graphs obtained with the NSFD method are shown in 

Figures 14-17. Figure 14 illustrates the analysis for susceptible 

individuals using the NSFD method. As seen in the figure, the 

number of susceptible individuals decreases rapidly until t=200, 

after which it progresses steadily. In Figure 15, the analysis for 

vaccinated individuals shows a rapid decrease followed by a steady 

progression. Figure 16, showing the analysis for infected 

individuals, demonstrates a sharp increase and decrease until t=200, 

followed by a constant progression. Figure 17 represents recovered 

individuals, showing a rapid increase until t=100, after which it 

continues to rise steadily. Table 5 presents the population values 

over time, obtained and expressed using the NSFD method. 

 

Figure 14: The behavior of the monkeypox model for susceptible 

individuals using the NSFD method  
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Figure 15: The behavior of the monkeypox model for vaccinated 

individuals using the NSFD method  

 

Figure 16: The behavior of the monkeypox model for infected 

individuals using the NSFD method  
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Figure 17: The behavior of the monkeypox model for recovered 

individuals using the NSFD method 

Table 5: Population numbers over time with the NSFD method 

t S(t) V(t) I(t) R(t) 

0 36.787 32.004 7.535 7.503 

1 35.820 25.909 13.784 8.364 

2 34.209 17.250 23.216 9.264 

3 31.707 7.773 34.297 10.236 

4 28.344 1.613 42.819 11.306 

5 24.631 0.169 46.867 12.474 

6 21.130 0.155 49.187 13.720 

7 18.008 0.123 51.081 15.025 

8 15.274  0.101 52.526 16.378 

9 12.919  0.083 53.546 17.767 

10 10.918 0.069 54.181 19.180 

50 2.053 0.023 24.103 58.957 

100 4.167 0.111 9.326 72.768 

200 7.379 0.340 5.531 75.565 

300 7.371 0.313 6.190 76.980 
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All calculations and figures in this section have been 

obtained using the Maple program. 

5.Conclusions 

In our study, a mathematical model incorporating 

vaccination data for the epidemiological disease monkeypox was 

developed. The SVIR mathematical model, which includes 

susceptible, vaccinated, infected, and recovered individuals, was 

designed. The immune systems of individuals after vaccination and 

infection were analyzed using numerical methods and graphs. For 

the numerical analysis, Euler, Runge-Kutta, Central difference, and 

Nonstandard finite difference methods were used. When comparing 

the data obtained from the methods, it was observed that all solutions 

of the system were similar. This indicates that in such an 

epidemiological disease, the proposed system with appropriate 

parameter values can assist in the analysis. This work makes a 

significant contribution to the literature in this field.  

According to the current data for the first six months of 2024 

in Africa, it was observed that susceptible individuals in this study 

reached a disease-free equilibrium point with the given parameter 

values. The number of infected individuals, however, approached 

zero as the vaccination rate increased, which was evident in all 

numerical solutions. Thus, as seen from the recovered individuals' 

graph, it is predicted that vaccination could prevent deaths in a short 

time interval. 
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CHAPTER III 

 

 

On The Geometry Of Pseudo-Slant Submanıfolds In 

Bronze Rıemannıan Manıfolds 
 

 

Süleyman DİRİK1 

Ramazan SARI2 
An 𝑓 − structure on a manifold is a (1,1) − tensor field of 

constant rank,  first intoduced by Yano in (Yano & Kon, 1984). It 

satisfying the equation 𝑓3 + 𝑓 = 0,  and this concept generalizes 

both almost contact and almost complex structures. Lather, Goldberg 

and yano extended this concept by examining  a polynomial structure 

of degree 𝑙 for a (1,1) tensor field 𝑓 of constant rank on 𝑀̃ satisfied 

the equation: (Goldberg & Yano,1970). 

𝛩(𝑓) = 𝑓𝑙 + 𝑎𝑙𝑓𝑙−1 + 𝑎2𝑓 + 𝑎1𝐼 = 0. 

 Here 𝐼 is identity tensor of (1,1) − type, and 𝑎𝑙, . . . , 𝑎2, 𝑎1 are real 

numbers. 
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          Inspired by the intriguing characteristics of the golden ratio, 

𝜑 =
1+√5

2
= 1.618  which is a positive root of the quadratic equation 

𝑥2 − 𝑥 − 1 = 0,  a novel concept called the golden structure on 

manifolds was introduced and examined by Hretcanu 

(Hretcanu,2007).  

1. Prof. Dr., Amasya  Üniversitesi, Fen-Edebiyat Fakültesi, Matematik 

 Bölümü, Amasya Türkiye, Orcid: 0000-0001-9093-1607, slymndirik@gmail.com 

2. Doç. Dr., Amasya  Üniversitesi, Fen-Edebiyat Fakültesi, Matematik 

Bölümü,Amasya Türkiye, Orcid: 0000-0002-4618-8243 , ramazansr@gmail.com 

         This approach involves the development of an associated 

almost product structure. Subsequently, Crasmareanu and 

collaborators (Crasmareanu & Hreţcanu, 2008) delved into the field 

of golden differential geometry, uncovering several significant 

findings.  Inspired by the silver ratio 𝜃 = 1 + √2 = 2.414   a 

positive root of 𝑥2 − 2𝑥 − 1 = 0. In 2016, Ozkan et al. (Özkan & 

Peltek,  

2016) introduced a new structure on manifolds known as the silver 

structure. 

          Building on the ideas of golden and silver structures on 

manifolds, we have recently explored the concept of a bronze 

structure on manifolds (Pandey & Sameer, 2018) inspired by the 

bronze ratio 𝜓 =
3+√13

2
= 3.302, which is the positive root of the 

equation 𝑥2 − 3𝑥 − 1 = 0. Notably, the golden ratio is recognized 

for its exceptionally slow convergence, making it the most 

"irrational" of all irrational numbers (Spinadel,Vera & Jose, 1996) 

This unique property enhances the appeal of studying the silver and 

bronze ratios, as their faster convergence characteristics introduce 
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intriguing mathematical properties and make their exploration 

particularly compelling. 

In this paper, we assume that all manifolds, connections, and tensor 

fields are differentiable and belong to the specified class. 

          In the late 20th century, Chen developed the concept of slant 

submanifolds within the framework of almost Hermitian manifolds, 

as detailed in references (Chen,1990)  A. Lotta later expanded this 

idea to contact metric manifolds (Lotta, 1996), and Cabrerizo et al. 

extended it further to include slant submanifolds of K-contact and 

Sasakian manifolds ( Cabrerizo et all, 2000). Moreover, semi-slant 

and slant submanifolds of metallic Riemannian  manifolds were 

examined in (Hretcanu & Blaga, 2018). 

           The concept of semi-slant submanifolds within an almost 

Hermitian manifold was initially introduced by Papagiuc (Papaghuic 

2009). Similarly, hemi-slant submanifolds were first presented by A. 

Carrizo. These submanifolds were also described as pseudo-slant 

submanifolds.  More recently, Dirik and his colleagues have studied 

pseudo-slant submanifolds in various manifolds (Dirik & Atçeken, 

2014),  ( Dirik & Atçeken, 2016). 

This paper investigates pseudo-slant submanifolds in the 

context of Bronze Riemannian  manifolds. Section 2 introduces 

fundamental definitions and concepts. Section 3, explores key 

findings regarding submanifolds in Riemannian  manifolds endowed 

with a Bronze structure. In Section 4, we provide a detailed 

characterization of pseudo-slant submanifolds within Bronze 

Riemannian  manifolds. The paper concludes with illustrative 

examples of non-trivial pseudo-slant submanifolds in these 

manifolds. 
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2.Preliminers  

In this section, we introduce certain definitions and notations 

related to Bronze Riemannian  manifolds. 

Definition 1.  Let M̃ be a  C∞ -manifold.  If a tensor field  φ 

of type (1,1) satisfies the equation  

                                𝜑2 = 𝜑 + 𝐼                                        

 then φ is called a golden structure on M̃  and , (M̃, 𝜑) is the golden 

manifold (Hretcanu, 2007). 

Definition 2.  Let M̃ be a  C∞ -manifold. A (1,1)- tensor 

field 𝜃 that satisfies the equation  

𝜃2 = 2𝜃 + 𝐼     

is referred to as a Bronze structure on M̃ and (M̃, 𝜃)  is the silver 

manifold. (Özkan, 2016). 

Definition 3.  Let M̃ be a  C∞ -manifold. A (1,1)- tensor 

field 𝜓 that satisfies the equation  

𝜓2 = 3𝜓 + 𝐼                                                (2.1) 

is referred to as a Bronze structure on M̃ and (M̃, 𝜓)  is the Bronze 

manifold. Where 𝐼  denotes the identity map (Pandey & Sameer, 

2018). 

          Proposition 1. 

i) 𝜓 and 3 − 𝜓 are the eigenvalues of the bronze structure . 

ii) The bronze structure 𝜓 is an isomorphism on 𝑇𝑝M̃,∀p ∈M̃.  



 

--54-- 

 

iii) Consequently, 𝜓 is invertible and its inverse 𝜓−1 = 𝛹̂ verifies 

the following:  

                                      𝛹̂2= −3𝛹̂ + 𝐼 

We now present the following theorem, which demonstrates a 

connection between the bronze structure and the almost product 

structure of the manifold M̃ (Pandey & Sameer, 2018). 

 If 𝜓  represents  a Bronze structure on a manifold 𝑀̃ , then the 

expression 

        Theorem 1. Let 𝑃 represent an almost product structure. In this 

case, P defines a bronze structure on the manifold as follows.  

                        𝜓 =
1

2
(3𝐼 + √13𝑃) 

moreover, if 𝜓 denotes a bronze structure on , then 

                             𝑃 =
1

√13
(2𝜓 − 3𝐼) 

gives an almost product structure on manifold  M̃ (Pandey & 

Sameer, 2018). 

Consider 𝑃 as an almost product structure on a manifold 𝑀̃,  and 𝑔 

as a Riemannian  metric satisfying:  

𝑔(𝑃𝑋, 𝑃𝑌) = 𝑔(𝑋, 𝑌)                                                 (2.2) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀̃). 

Alternatively, 𝑃  can be considered as a 𝑔-symmetric tensor, defined 

as: 
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𝑔(𝑃𝑋, 𝑌) = 𝑔(𝑋, 𝑃𝑌)                                         (2.3) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀̃).   Here, (𝑔, 𝑃) is called a Riemannian  almost 

product structure . 

𝜓 is referred to as the Bronze structure. If the Riemannian  metric 𝑔 

is 𝜓 harmonious, then (𝑀̃, 𝑔, 𝜓) is called a bronze Riemannian  

manifold  (Pandey & Sameer, 2018). For 𝜓 − harmonious metric, 

we get 

𝑔(𝜓𝑋, 𝑌) = 𝑔(𝑋, 𝜓𝑌)                                           (2.4) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇 𝑀̃). If the interchange 𝑋 and 𝜓𝑋 in (2.4), then , 

we have 

𝑔(𝜓𝑋, 𝜓𝑌) = 𝑔(𝜓2𝑋, 𝑌) = 𝑔(3𝜓𝑋 + 𝑋, 𝑌) 

                                  = 3𝑔(𝜓𝑋, 𝑌) + 𝑔(𝑋, 𝑌).                          (2.5) 

Example 1. Let ℝ4 denote the Euclidean 4-space with 

standard coordinates (u1, u2, u3, u4).  Consider 𝜓 a (1,1)-tensor 

field defined on ℝ4. 

𝜓(𝑢1, u, 𝑢3, 𝑢4) = (𝜓𝑢1, 𝜓𝑢2, (3 − 𝜓)𝑢3, (3 − 𝜓)𝑢4) 

for any vector field (u1, u2, u3, u4) ∈ ℝ4, where 𝜓 = 
3+√13

2
 and 3 −

𝜓 = 
3−√13

2
 are the roots of  𝑥2 − 3𝑥 − 1 = 0. To understand the 

structure of this tensor, we can look at its matrix representation. 

The tensor field   𝜓 maps the vector field as follows, corresponding 

to the matrix B:  
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B= (

𝜓      0     0            0 
0      𝜓    0           0
0      0    3 − 𝜓    0

   0     0     0     3 − 𝜓 

) 

The eigenvalues of this matrix are 𝜓 and 3 − 𝜓. Then we obtain 

Thus, we have 𝜓2 − 3𝜓 − 𝐼 = 0. Moreover, we get 

〈𝜓(u1, u2, u3, u4), (𝑡1, 𝑡2, 𝑡3, 𝑡4)

= 〈(𝜓𝑢1, 𝜓𝑢2, (3 − 𝜓)𝑢3, (3

− 𝜓)𝑢4), (𝑡1, 𝑡2, 𝑡3, 𝑡4)〉 

 = 𝜓𝑢1𝑡1 + 𝜓𝑢2𝑡2 + (3 − 𝜓)𝑢3𝑡3 + (3 − 𝜓)𝑢4𝑡4 

 = 𝜓𝑡1𝑢1 + 𝜓𝑡2𝑢2 + (3 − 𝜓)𝑡3𝑢3 + (2 − 𝜓)𝑡4𝑢4 

 = 〈(u1, u2, u3, u4), (𝜓𝑡1, 𝜓𝑡2, (3 − 𝜓)𝑡3, (3 − 𝜓)𝑡4)〉 

 = 〈(u1, u2, u3, u4), 𝜓(𝑡1, 𝑡2, 𝑡3, 𝑡4)〉 

On the other hand,  

〈𝜓𝑋, 𝜓𝑌〉 = 〈𝜓2𝑋, 𝑌〉 = 〈3𝜓𝑋 + 𝑋, 𝑌〉

= ⟨3𝜓(u1, u2, u3, u4)

+ (u1, u2, u3, u4), (𝑡1, 𝑡2, 𝑡3, 𝑡4)⟩     

= ⟨(3(𝜓𝑢1, 𝜓𝑢2, (3 − 𝜓)𝑢3, (3 − 𝜓)𝑢4)

+ (u1, u2, u3, u4)), (𝑡1, 𝑡2, 𝑡3, 𝑡4)⟩, 

                  =⟨(3(𝜓𝑢1, 𝜓𝑢2, (3 − 𝜓)𝑢3, (3 −

𝜓)𝑢4), (𝑡1, 𝑡2, 𝑡3, 𝑡4))⟩ +  ⟨(u1, u2, u3, u4), (𝑡1, 𝑡2, 𝑡3, 𝑡4)⟩ 

               =⟨3𝜓(u1, u2, u3, u4), (𝑡1, 𝑡2, 𝑡3, 𝑡4)⟩ +

⟨(u1, u2, u3, u4), (𝑡1, 𝑡2, 𝑡3, 𝑡4)⟩ 

               = 〈3𝜓𝑋, 𝑌〉 + 〈𝑋, 𝑌〉. 
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for each vector fields (u1, u2, u3, u4),  (𝑡1, 𝑡2, 𝑡3, 𝑡4) ∈ ℝ4.  Hence, 

(ℝ4, 〈, 〉, 𝜓) is a Bronze Riemannian  manifold. 

        Theorem 2. Let (M̃, 𝑔, 𝜓) represent a Bronze Riemannian  

manifold. The Bronze structure 𝜓 is said to be integrable ⟺ ∇̃𝜓 =

0, 

3. Submanifolds of a Bronze Riemannian Manifold   

Submanifolds of a Bronze Riemannian  manifold are 

structures that preserve the geometric and metric properties of the 

manifold, characterized by a special tensor structure related to the 

Bronze  ratio. 

Let  𝑀  be a submanifold of a Beonze Riemannian  manifold 

(𝑀̃, 𝑔, 𝜓),  here 𝑔  metric on 𝑀.  Furthermore, let 𝛻  and 𝛻⊥  be the  

connections on  𝑇𝑀 and 𝑇⊥𝑀 of 𝑀, respectively. In this context, the 

Gauss and Weingarteen formulas can be stated as follows: 

       𝛻̃𝑋𝑌 = 𝛻𝑋𝑌 + 𝜎(𝑋, 𝑌),                                               (3.1) 

        𝛻̃𝑋𝑉 = −𝐴𝑉𝑋 + 𝛻𝑋
 ⊥𝑉,                                                    (3.2) 

for all 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀), 𝑉 ∈ 𝛤(𝑇⊥𝑀). 

 𝜎 and  𝐴𝑉 are connected by the following relationship. 

  𝑔(𝐴𝑉𝑋, 𝑌) = 𝑔(𝑉, 𝜎(𝑋, 𝑌))                                                (3.3) 

for all 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀), 𝑉 ∈ 𝛤(𝑇⊥𝑀). The mean curvature vector 𝐻  

of 𝑀 is given by 

          𝐻 =
1

𝑚
∑ 𝜎(𝑒𝑖, 𝑒𝑖)

𝑚
𝑖=1                                              (3.4)                                                     
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Here 𝑚 =dim(𝑀),  𝑠𝑝{𝑒1, 𝑒2, . . . , 𝑒𝑚} is a local orthonormal frame of 

𝑀. 

Let (𝑀, 𝑔)  be a submanifold of a Bronze Riemannian  

manifold (𝑀̃, 𝑔, 𝜓) . The submanifold  𝑀  is said to be totally 

umbilical if  𝜎 satisfies  

𝜎(𝑋, 𝑌) = 𝑔(𝑋, 𝑌)𝐻,                                            (3.5) 

for all 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀),  here 𝐻  is the mean curvature vector. A 

submanifold  𝑀  is said to be totally geodesic if the second 

fundamental form 𝜎 = 0,  and the manifold 𝑀  is said to be minimal 

if 𝐻 = 0. 

Let (𝑀, 𝑔)  be a submanifold of a Bronze Riemannian  

manifold (𝑀̃, 𝑔, 𝜓). Then, we get 

𝜓𝑋 = 𝑇𝑋 + 𝑁𝑋,                                                (3.6) 

In this context, TX represents the tangential part, while NX 

denotes the normal part of 𝜓X,  for all 𝑋 ∈ 𝛤(𝑇𝑀). 

Similary , we get 

         𝜓𝑉 = 𝑡𝑉 + 𝑛𝑉,                                                  (3.7) 

In this context, tV represents the tangential part, while nV denotes 

the normal part of 𝜓, for all   𝑉 ∈ 𝛤(𝑇⊥𝑀). 

Proposition 2.  Let M be a submanifold of Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓). Then, we get 

           𝑔(𝑇𝑋, 𝑌) = 𝑔(𝑋, 𝑇𝑌),                                               (3.8) 

          𝑔(𝑛𝑊, 𝑉) = 𝑔(𝑊, 𝑛𝑉),                                                (3.9)  
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           𝑔(𝑁𝑋, 𝑉) = 𝑔(𝑋, 𝑡𝑉) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀)    and for 𝑊, 𝑉 ∈ 𝛤(𝑇𝑀)⊥. 

 From (2.5) , we easily see that 

𝑔(𝑇𝑋, 𝑇𝑌) + 𝑔(𝑁𝑋, 𝑁𝑌) = 𝑔(𝑋, 𝑌) + 3𝑔(𝑇𝑋, 𝑌). (3.10) 

Thus by using (2.1), (3.6) and (3.7), we obtain 

𝑇2𝑋 = 3𝑇𝑋 + 𝑋 − 𝑡𝑁𝑋, 3𝑁𝑋 =   𝑁𝑇𝑋 + 𝑛𝑁𝑋      (3.11) 

and 

3𝑡𝑉 = 𝑇𝑡𝑉 + 𝑡𝑛𝑉, 𝑛2𝑉 = 3𝑛𝑉  + 𝑉 − 𝑁𝑡𝑉.                    (3.12)                  

 If 𝑀 is 𝜓 − invariant, thus 𝑁 = 0. Thus from (3.11) and (3.12), we 

obtain 

𝑇2 = 3𝑇 + 𝐼, 𝑛2 = 3𝑛 + 𝐼.                                            (3.13) 

Therefore, (𝑇, 𝑔) and (𝑛, 𝑔) forms a bronze structure on 𝑀.  

Here, the covariant derivatives of   𝑇,  𝑁,  𝑡  and 𝑛  are defined as 

follows: 

(𝛻𝑋𝑇)𝑌 = 𝛻𝑋𝑇𝑌 − 𝑇𝛻𝑋𝑌,                                             (3.14) 

(𝛻𝑋𝑁)𝑌 = 𝛻𝑋
⊥𝑁𝑌 − 𝑁𝛻𝑋𝑌,                                            (3.15) 

  (𝛻𝑋𝑡)𝑉 = 𝛻𝑋𝑡𝑉 − 𝑡𝛻𝑋
⊥𝑉                                            (3.16) 

and 

  (𝛻𝑋𝑛)𝑉 = 𝛻𝑋
⊥𝑛𝑉 − 𝑛𝛻𝑋

⊥𝑉.                                           (3.17)                         

For any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀). 
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Through direct calculations, the following formulas are obtained: 

(𝛻𝑋𝑇)𝑌 = 𝐴𝑁𝑌𝑋 + 𝑡𝜎(𝑋, 𝑌)                               (3.18) 

and 

    (𝛻𝑋𝑁)𝑌 = 𝑛𝜎(𝑋, 𝑌) − 𝜎(𝑋, 𝑇𝑌).                                    (3.19) 

Similary, for all 𝑉 ∈ 𝛤(𝑇⊥𝑀), we have 

          (𝛻𝑋𝑡)𝑉 = 𝐴𝑛𝑉𝑋 − 𝑇𝐴𝑉𝑋                                          (3.20) 

and 

   (𝛻𝑋𝑛)𝑉 = −𝜎(𝑡𝑉, 𝑋) − 𝑁𝐴𝑉𝑋.                                       (3.21) 

Corollary 1.  Let  M  be a submanifold of a Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓). If M are 𝜓 − anti invariant and  

invariant submanifold,  the following properties are satisfied:   

 If M is 𝜓 − invariant  

 submanifold 

If M is 𝜓 −anti− invariant 

submanifold 

N = 0 T = 0, 
(∇XT)Y = tσ(X, Y), (∇XN)Y = nσ(X, Y), 

(∇Xn)V = −σ(tV, X) (∇Xt)V = AnVX, 
nσ(X, Y) = σ(X, TY) ANYX = −tσ(X, Y) 

AnVY = AVTY 

 

ANYZ = −ANZY 

 

for all 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇𝑀), for any 𝑉 ∈ 𝛤(𝑇⊥𝑀). 
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4. Pseudo-Slant Submanifolds of a Bronze Riemannian 

Manifold.   

Some characterizations of pseudo-slant submanifolds in a 

Bronze  Riemannian  manifold have been provided. 

Definition 2.  Let (𝑀, 𝑔)  be a submanifold of a Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓). For each  X ≠ 0 tangential to M at 

x, the angle β(x) ∈ [0,
π

2
], between ψX  and   TxM is called the slant 

angle of M. If  this slant is constant, the submanifold is known as a 

slant submanifold. When   β = 0  the submanifold is called an 

invariant submanifold, and when   β =
π

2
 , it is called an anti-

invariant submanifold .  If   the slant angel β(x) ∈ (0,
π

2
)  then the 

submanifold is classified as a  proper-slantsubmanifold (Cabrerizo & 

et al, 2000). 

Theorem 3.  Let (𝑀, 𝑔) be a submanifold of a Bronze 

Riemannian  manifold (M̃, 𝑔, ψ).  M is considered a slant 

submanifold ⟺there exists a constant  ϱ ∈ [0,1] such that:  

𝑇2 = ϱ(3𝜓 + 𝐼),                                                         (4.1) 

and  

𝜓2 =
1

ϱ
𝑇2                                          (4.2) 

furthermore, if 𝛽 slant angel of 𝑀 , then ϱ = 𝑐𝑜𝑠2𝛽 (Cabrerizo & et 

al, 2000). 

Lemma 1. Let (𝑀, 𝑔) be a submanifold of a Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓). Then,  we have 

𝑔(𝑇𝑋, 𝑇𝑌) = 𝑐𝑜𝑠2𝛽{𝑔(𝑋, 𝑌) + 3𝑔(𝑋, 𝑇𝑌)}                        (4.3) 
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and  

𝑔(𝑁𝑋, 𝑁𝑌) = 𝑠𝑖𝑛2𝛽{𝑔(𝑋, 𝑌) + 3𝑔(𝑇𝑋, 𝑌)}.                       (4.4) 

for all X, Y ∈ Γ(TM). 

Proof. From (3.8) and (4.1), we can conclude that 

𝑔(𝑇𝑋, 𝑇𝑌) = 𝑔(𝑋, 𝑇2𝑌) = ϱ𝑔(𝑋, 3𝜓𝑌 + 𝑌

= 𝑐𝑜𝑠2𝛽{𝑔(𝑋, 𝑌) + 3𝑔(𝑋, 𝑇𝑌)} 

The equations in (3.10) and (4.3) result in 

𝑔(𝑁𝑋, 𝑁𝑌) = 𝑔(𝑋, 𝑌) + 3𝑔(𝑋, 𝑇𝑌) − 𝑔(𝑇𝑋, 𝑇𝑌) 

           = 𝑔(𝑋, 𝑌) + 3𝑔(𝑋, 𝑇𝑌) 

                   −𝑐𝑜𝑠2𝛽{𝑔(𝑋, 𝑌) + 3𝑔(𝑋, 𝑇𝑌)} 

             = 𝑠𝑖𝑛2𝛽{𝑔(𝑋, 𝑌) + 3𝑔(𝑇𝑋, 𝑌)}. 

Definition 3 . Let M be a submanifold of a Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓).  𝑀 is pseudo-slant submanifold if 

there exist two orthogonal distributions Dβ and D⊥, exist on M such 

that 

(1) The tangent bundle 𝑇𝑀  has an orthogonal direct sum 

decomposition   expressed as  

                𝑇𝑀 = 𝐷⊥ ⊕ 𝐷𝛽 , 

(2) 𝐷⊥is anti-invariant, which means that   𝜓𝐷⊥ ⊂ 𝑇⊥𝑀,   

(3)  𝐷𝛽 is a slant, 𝛽 ≠
𝜋

2
, implying that the angle between 𝐷𝛽 

and   𝜓(𝐷𝛽) remains constant (Khan & Khan, 2007). 
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Remartk 1. Let us asume  that 𝑀  is a pseudo slant 

submanifold of a Bronze Riemannian  manifold (𝑀̃, 𝑔, 𝜓).   

Let  p =dim(𝐷⊥) and q=dim(𝐷𝛽 ). We can distinguish the 

following six cases: 

(1) When q = 0,  𝑀 is  anti-invariant, 

(2) If 𝑝 = 0 and 𝛽 = 0, then 𝑀  is  invariant. 

(3) If p = 0 and 𝛽 ∈ (0,
𝜋

2
), then 𝑀 is classified as  proper 

slant. 

(4) When 𝛽 =
𝜋

2
 , 𝑀 is anti-invariant. 

(5) If p ≠ 0  and  q≠0  with  𝛽 = 0,  then 𝑀  is a semi-

invariant. 

             (6). If p ≠ 0 and  q≠0 with 𝛽 ∈ (0,
𝜋

2
), then 𝑀 is consi dered  

pseudo-slant. 

Let μ, represent the orthogonal complement of 𝜓𝑇𝑀  in 

𝑇⊥𝑀.  In this case, 𝑇⊥𝑀  can be expressed as the following 

decomposition: 

𝑇⊥𝑀 = 𝜓𝑇𝑀 ⊕ 𝜇 = 𝑁𝐷⊥ ⊕ 𝑁𝐷𝛽 ⊕ 𝜇, 𝑁𝐷𝛽 ⊥ 𝑁𝐷⊥. (4.5) 

Definition 4. Let (𝑀, 𝑔) be a submanifold of a Bronze 

Riemannian  manifold (M̃, 𝑔, ψ). The submanifold is called D𝛽 -

geodesic (or D⊥-geodesic) if σ(X, Y) = 0 for any X, Y ∈ Γ(Dβ) (or 

σ(Z, U) = 0  for any Z, U ∈ Γ(D⊥),  respectively). If for any X ∈

Γ(Dβ)  and U ∈ Γ(D⊥) , σ(X, U) = 0 , then M  is called   𝐷⊥ − 𝐷𝛽 

mixed geodesic submanifold. 

In the following sections, we will use "PS" instead of the 

term "pseudo-slant. 
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Theorem 4. Let M be a PS submanifold of a  locally Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓). The distribution Dβ −integrable, 

and its leaves are  Dβ −geodesic in M if the following condition 

holds:  

g(σ(X, Y), ψU) = 0 

for any X, Y ∈ Γ(Dβ) and Z ∈ Γ(D⊥). 

Proof. Asume that the distribution 𝐷𝛽 is integrable, and each 

leaf of 𝐷𝛽 is 𝐷𝛽- geodesic in 𝑀. Additionally, 𝛻𝑋𝑌 ∈ 𝛤(𝐷𝛽) for all 

𝑋, 𝑌 ∈ 𝛤(𝐷𝛽)  and 𝑈 ∈ 𝛤(𝐷⊥).  Using the result from (3.1), we 

obtain the following: 

 𝑔(𝜎(𝑋, 𝑌), 𝜓𝑈) = 𝑔(𝛻̃𝑋𝑌 − 𝛻𝑋𝑌, 𝜓𝑈) 

                           = 𝑔(𝛻̃𝑋𝑌, 𝜓𝑈) = 𝑔(𝜓𝛻̃𝑋𝑌, 𝑈) 

                               = 𝑔(𝛻̃𝑋𝜓𝑌 − (𝛻̃𝑋𝜓)𝑌, 𝑈). 

Using the result from Theorem 1, we obtain the following: 

𝑔(𝜎(𝑋, 𝑌), 𝜓𝑈) = 𝑔(𝛻̃𝑋𝜓𝑌, 𝑈) 

using equation (3.1), we derive the following:  

𝑔(𝜎(𝑋, 𝑌), 𝜓𝑈) = 𝑔(𝛻𝑋𝜓𝑌 + 𝜎(𝑋, 𝜓𝑌), 𝑈) = 𝑔(𝛻𝑋𝜓𝑌, 𝑈)          

= 𝑔(𝛻𝑋𝑌, 𝜓𝑈) = 0 

for all 𝑋, 𝑌 ∈ 𝛤(𝐷𝜃) and 𝑈 ∈ 𝛤(𝐷⊥).  

Theorem 5. Let M be a PS submanifold of a  locally 

Bronze Riemannian  manifold (M̃, 𝑔, 𝜓).  D𝛽 is integrable if he 

following condition hold: 
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𝑔(𝛻𝑋𝑈, 3𝜓𝑌) − 𝑔(𝛻𝑌𝑈, 3𝜓𝑋

= 𝑔(𝜎(𝑋, 𝜓𝑌), 𝜓𝑈) − 𝑔(𝜎(𝑌, 𝜓𝑋), 𝜓𝑈) 

for any 𝑋, 𝑌 ∈ 𝛤(𝐷𝜃) and 𝑈 ∈ 𝛤(𝐷⊥). ψ 

Proof. From (2.1), (3.1), (3.2) and (3.3), we can conclude the 

following: 

 

𝑔(𝜎(𝑋, 𝜓𝑌), 𝜓𝑈) = 𝑔(𝐴𝜓𝑈𝑋, 𝜓𝑌) 

= 𝑔(𝛻𝑋
⊥𝜓𝑈, 𝜓𝑌) − 𝑔(𝛻̃𝑋𝜓𝑈, 𝜓𝑌) 

     = 𝑔(𝛻𝑋
⊥𝜓𝑈, 𝜓𝑌) − 𝑔 ((𝛻̃𝑋𝜓)𝑈, 𝜓𝑌) 

              −𝑔(𝜓𝛻̃𝑋𝑈, 𝜓𝑌) 

     = −𝑔(𝛻̃𝑋𝑈, 𝜓2𝑌) = −𝑔(𝛻̃𝑋𝑈, (3𝜓 + 𝐼)𝑌)  

= −𝑔(𝛻𝑋𝑈, 3𝜓𝑌) − 𝑔(𝛻𝑋𝑈, 𝑌). 

Thus, 

                𝑔(𝛻𝑋𝑌, 𝑈) = 𝑔(𝜎(𝑋, 𝜓𝑌), 𝜓𝑈) + 𝑔(𝛻𝑋𝑈, 3𝜓𝑌) 

in the equation above, if  we replace 𝑋  with 𝑌, we obtain the 

following: 

𝑔(𝛻𝑌𝑋, 𝑈) = 𝑔(𝜎(𝑌, 𝜓𝑋), 𝜓𝑈) + 𝑔(𝛻𝑌𝑈, 3𝜓𝑋). 

If we subtract the two equations side by side, we get the following: 

𝑔(𝛻𝑋𝑌, 𝑈) − 𝑔(𝛻𝑌𝑋, 𝑈) = 𝑔(𝜎(𝑋, 𝜓𝑌), 𝜓𝑈) + 𝑔(𝛻𝑋𝑈, 3𝜓𝑌) 

                                 −𝑔(𝜎(𝑌, 𝜓𝑋), 𝜑𝑈) −   𝑔(𝛻𝑌𝑈, 3𝜓𝑋), 
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𝑔(𝑈, [𝑋, 𝑌]) = 𝑔(𝛻𝑋𝑈, 3𝜓𝑌) + 𝑔(𝜎(𝑋, 𝜓𝑌), 𝜓𝑈) 

                             −𝑔(𝛻𝑌𝑈, 3𝜓𝑋) − 𝑔(𝜎(𝑌, 𝜓𝑋), 𝜓𝑈). 

Since 𝐷𝛽 is integrable, it follows that: 

𝑔(𝛻𝑋𝑈, 3𝜓𝑌) − 𝑔(𝛻𝑌𝑈, 3𝜓𝑋)

= 𝑔(𝜎(𝑋, 𝜓𝑌), 𝜓𝑈) − 𝑔(𝜎(𝑌, 𝜓𝑋), 𝜓𝑈). 

Theorem 6. Let M be a PS submanifold of a  locally 

Bronze Riemannian  manifold (M̃, 𝑔, 𝜓).  n is parallel ⟺   A V 

satisfies the condition:  

AVtU =  −AUtV 

for any V, U ∈ Γ(T⊥M). 

Proof.  If  𝑛 is parallel, then 𝛻𝑛 = 0. From (3.3) and (3.21) , 

we obtain the following: 

0 = 𝑔(𝜎(𝑡𝑉, 𝑋) + 𝑁𝐴𝑉𝑋, 𝑈) 

                   = 𝑔(𝐴𝑈𝑡𝑉, 𝑋) + 𝑔(  𝐴𝑉𝑋, 𝑡𝑈) 

= 𝑔(𝐴𝑈𝑡𝑉 +  𝐴𝑉𝑡𝑈, 𝑋) 

for any 𝑉, 𝑈 ∈ 𝛤(𝑇⊥𝑀) and for any 𝑋 ∈ 𝛤(𝑇𝑀). 

Theorem 7. Let M be a PS submanifold of a  locally 

Bronze Riemannian  manifold (M̃, 𝑔, 𝜓).  If  N is parallel, In this 

case, M is either  a mixed geodesic  or an anti-invariant   

submanifold.  



 

--67-- 

 

Proof.  𝑡 is parallel ⟺ if 𝑁 is parallel, If 𝑡 is parallel, then 

𝛻𝑡 = 0.   which means 𝑀  is invariant.  For all 𝑋 ∈ 𝛤(𝐷𝛽), 𝑍 ∈

𝛤(𝐷⊥), 𝑉 ∈ 𝛤(𝑇⊥𝑀). We can conclude this from (3.19) and (3.20).  

𝐴𝑛𝑉𝑋 − 𝑇𝐴𝑉𝑋 = 0, 

 0 = 𝑔(𝐴𝑛𝑉𝑋 − 𝑇𝐴𝑉𝑋, 𝑍) 

    = 𝑔(𝜎(𝑋, 𝑍), 𝑛𝑉) − 𝑔(𝑇𝐴𝑉𝑋, 𝑍) 

    = 𝑔(𝜎(𝑋, 𝑍), 𝑛𝑉) − 𝑔(𝜎(𝑋, 𝑇𝑍), 𝑉) 

                = 𝑔(𝑛𝜎(𝑋, 𝑍), 𝑉) − 𝑔(𝜎(𝑋, 𝑇𝑍), 𝑉), 

so 

𝑛𝜎(𝑋, 𝑍) = 𝜎(𝑋, 𝑇𝑍) 

for 𝑍 ∈ 𝛤(𝐷⊥), we have 𝑇𝑍 = 0. Therefore, it follows that:  

𝑛𝜎(𝑋, 𝑍) = 0 

By replacing 𝑋 with 𝑇𝑋 in the above equation, we obtain 

𝑛𝜎(𝑇𝑋, 𝑍) = 0. 

By replacing 𝑋 with 𝑇𝑋 in the above equation and using (4.1) , we 

have 

𝑛𝜎(𝑇2𝑋, 𝑍) = 𝑛𝑐𝑜𝑠2𝛽𝜎((3𝜓 + 𝐼)𝑋, 𝑍) = 0. 

Thus, we conclude that either 𝜎 = 0   ( indicating that 𝑀 is mixed 

geodesic) or 𝑐𝑜𝑠𝛽 = 0 which leads to 𝛽 =   
𝜋

2
 ( indicating 𝑀 is anti-

invariant).  
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Theorem 8 . Let M be a totally umbilical PS submanifold 

of a  locally Bronze Riemannian  manifold (M̃, 𝑔, 𝜓). If N is 

parallel, In this case, M can be classified as either a minimal, an 

anti-invariant submanifold.  

Proof. 𝑁  is parallel ⟺ 𝑡  is parallel, If 𝑡  is parallel, then 

𝛻𝑡 = 0.  which means 𝑀 is invariant.  For all 𝑋 ∈ 𝛤(𝐷𝜃), 𝑌 ∈ 𝐷⊥, 

𝑊 ∈ 𝛤(𝑇⊥𝑀). We can conclude this from (3.19) and (3.20). 

𝐴𝑛𝑊𝑋 − 𝑇𝐴𝑊𝑋 = 0, 

so 

                           0 = 𝑔(𝐴𝑛𝑊𝑋 − 𝑇𝐴𝑊𝑋, 𝑌), 

                              = 𝑔(𝜎(𝑋, 𝑌), 𝑛𝑊) − 𝑔(𝑇𝐴𝑊𝑋, 𝑌) 

        = 𝑔(𝜎(𝑋, 𝑌), 𝑛𝑊) − 𝑔(𝜎(𝑋, 𝑇𝑌), 𝑊) 

              = 𝑔(𝑛𝜎(𝑋, 𝑌), 𝑊) − 𝑔(𝜎(𝑋, 𝑇𝑌), 𝑊) 

for 𝑌 ∈ 𝛤(𝐷⊥), we have 𝑇𝑌 = 0. Therefore, it follows that: 

𝑛𝜎(𝑋, 𝑌) = 0. 

By replacing 𝑋 with 𝑇𝑋 in the above eq.  we obtain 

𝑛𝜎(𝑇𝑋, 𝑌) = 0. 

Therefore, since 𝑀  is totally umbilical submanifold, we can refer to 

the findings in (3.5) 

𝑛𝑔(𝑇𝑋, 𝑌)𝐻 = 0. 

Replacing 𝑋 by 𝑇𝑋 in the above eq. and using (4.1) , we have 
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𝑛𝑔(𝑇2𝑋, 𝑌)𝐻 = 𝑛𝑐𝑜𝑠2𝛽𝑔((3𝜓 + 𝐼)𝑋, 𝑌)𝐻 

                 = 𝑛𝑐𝑜𝑠2𝛽{𝑔(3𝜓𝑋, 𝑌) + 𝑔(𝑋, 𝑌)}𝐻 

                 = 𝑛𝑐𝑜𝑠2𝛽{𝑔(𝑋, 𝑌)}𝐻 = 0. 

Hence we conclude that either 𝐻 = 0 (indicating that 𝑀 is minimal), 

or 𝑐𝑜𝑠𝛽 = 0  which leads to 𝛽 =  
𝜋

2
 (indicating that 𝑀  is anti-

invariant).  

Theorem 9.  Let M be a PS submanifold in a locally 

Bronze Riemannian  manifold (M̃, 𝑔, 𝜓). D⊥ is integrable 

⟺AND⊥D⊥ = 0, 

for all Z, U ∈ Γ(D⊥).  

Proof. If 𝑀  is a pseudo-slant submanifold in a locally Bronze 

Riemannian  manifold (𝑀, 𝑔, 𝜓).  Then, for all 𝑍, 𝑈 ∈ 𝛤(𝐷⊥),  we 

have 𝑇𝑍 = 𝑇𝑈 = 0, which implies 𝛻𝑍𝑇𝑈 = 𝛻𝑈𝑇𝑍 = 0.  

By using (3.14),  we get 𝑇([𝑍, 𝑈]) = 0 if and only if 𝐴𝑁𝑍𝑈 = 𝐴𝑁𝑈𝑍 

holds, for all  𝑈 ∈ 𝛤(𝐷⊥).  From (3.14), for all 𝑋 ∈ 𝛤(𝑇𝑀)  and 

𝑍, 𝑈 ∈ 𝛤(𝐷⊥), we get 

𝑔((𝛻𝑋𝑇)𝑍, 𝑈) = 𝑔(𝐴𝑁𝑍𝑋, 𝑈) + 𝑔(𝑡ℎ(𝑋, 𝑍), 𝑈) = −𝑔(𝛻𝑋𝑍, 𝑇𝑈)

= 0, 

which implies 𝑔(𝐴𝑁𝑍𝑋, 𝑈) = −𝑔(𝑡ℎ(𝑋, 𝑍), 𝑈). From 

𝑔(𝐴𝑁𝑍𝑋, 𝑈) = 𝑔(𝐴𝑁𝑍𝑈, 𝑋) = 𝑔(𝐴𝑁𝑈𝑍, 𝑋) = 𝑔(ℎ(𝑋, 𝑍),

= 𝑔(𝑡ℎ(𝑋, 𝑍), 𝑈), 

we obtain 𝑔(𝐴𝑁𝑍𝑈, 𝑋) = 0  for all 𝑋 ∈ 𝛤(𝑇𝑀)  and 𝑍, 𝑈 ∈

𝛤(𝐷⊥). so, 𝐴𝑁𝑍𝑈 = 0, for all 𝑍, 𝑈 ∈ 𝛤(𝐷⊥). 
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Conversely, if 𝐴𝑁𝑍𝑈 = 0, for all 𝑍, 𝑈 ∈ 𝛤(𝐷⊥) then from 

 𝑔(𝑡ℎ(𝑋, 𝑍), 𝑈) = 𝑔(ℎ(𝑋, 𝑍), 𝑁𝑈) = 𝑔(𝐴𝑁𝑈𝑍, 𝑋) = 0  

 and (3.14), we get  

0 = 𝑔((𝛻𝑍𝑇)𝑈, 𝑋) = −𝑔(𝑇𝛻𝑍𝑈, 𝑋) = −𝑔(𝛻𝑍𝑈, 𝑇𝑋), 

for any 𝑍, 𝑈 ∈ 𝛤(𝐷⊥) , 𝑋 ∈ 𝛤(𝐷𝜃) . From 𝑇(𝐷𝜃) = 𝐷𝜃,  we obtain 

𝛻𝑍𝑈 ∈ 𝛤(𝐷⊥) which implies [𝑍, 𝑈] ∈ 𝛤(𝐷⊥).  

        Theorem 10.  Let M be a PS submanifold in a locally Bronze 

Riemannian  manifold (M̃, 𝑔, 𝜓). In this case, D⊥ is integrable ⟺ 

(∇WT)U = (∇UT)W 

for all W, U ∈ Γ(D⊥).  

Proof.  For all 𝑊, 𝑈 ∈ 𝛤(𝐷⊥). Using (3.18) , we obtain 

        (𝛻𝑊𝑇)𝑈 = 𝐴𝑁𝑈𝑊 + 𝑡𝜎(𝑊, 𝑈)                                    (4.6) 

Replacing 𝑊 by 𝑈 in the above equation, we have 

          (𝛻𝑈𝑇)𝑊 = 𝐴𝑁𝑊𝑈+ 𝑡𝜎(𝑈, 𝑊)                                     (4,7)                                                              

Then, (4.6),   (4.7) and from Theorem 9,  we arrive at the conclusion.  

 Finally, let’s support the topic with an example. 

Example 2 .  To construct a PS submanifold of a Bronze 

Riemannian  manifold based on the provided parametrization 

χ(u, v), we first need to analyze the given mapping and then define 

the associated Riemannian  structure.the  mapping is defined as: 

χ(u, v) = (usinα, −vsinα, (3 − cos 𝛼)u, (3 + cosα)v) 
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this mapping 𝜒: ℝ2 → ℝ4 defines a submanifold 𝑀 in ℝ4. To ensure 

𝑀 is a submanifold of ℝ4,we will consider the tangent vectors and 

the embedding The parametriziation consist of  two parameters 

(𝑢, 𝑣). Next, we calculate the tangent vector of 𝑀  by differentiating  

𝜒 with respect to each parameter: 

 E1 =
∂χ

∂u
= (sinα, 0, 3 − cosα, 0) 

 E2 =
∂χ

∂v
= (0, −cosα, 0, 3 + cosα)  

For the Bronze Riemannian  structure 𝜓 of ℝ4, the coordinat system 

is given by (𝑥1, 𝑦1, 𝑥2, 𝑦2). 

𝜓(
𝜕

𝑥𝑖
) =

𝜕

𝑦𝑖
, 𝜓(

𝜕

𝑦𝑗
) =

𝜕

𝑥𝑗
, 1 ⩽ 𝑖, 𝑗 ⩽ 2 

then we obtain 

𝜓𝐸1 = (0, 𝑠𝑖𝑛𝛼, 0, 3 − 𝑐𝑜𝑠𝛼) 

                 𝜓𝐸2 = (−𝑐𝑜𝑠𝛼, 0, 3 + 𝑐𝑜𝑠𝛼, 0), 

𝑔(𝜓E1, E2) = 𝑔(E1, 𝜓E2), 

    𝑔(𝜓E1, 𝜓E2) = 3𝑔(𝜓E1, E2) + 𝑔(E1, E2). 

Thus, this structure is observed to be a bronze structure. 

Through direct calculations, we determine that D𝛽 = Sp{E1, E2}  

defines a slant distribution with a slant angle of 
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cosβ =
g(E1,φE2)

‖E1,‖‖φE2‖
=

8

√10 − 6cosα. √10 + 6cosα

=
8

√100 − 36𝑐𝑜𝑠α
 

𝛽 = arccos (
8

√100 − 36𝑐𝑜𝑠α
).   

−1 ≤ 𝑐𝑜𝑠α ≤ 1, 64 ≤ 100 − 36𝑐𝑜𝑠α ≤ 136, 

Consequently, 𝑀  is a 2-dinensionel invariant or proper PS 

submanifold of ℝ4  endowed with its standard Bronze Riemannian  

structure.  

Conclusion . In this study of PS submanifolds within the 

framework of a Bronze Riemannian  manifold, we have explored 

their unique geometric properties and the intrinsic connections to 

the Bronze ratio. PS submanifolds reveal fascinating 

characteristics, particularly in how their tangent spaces interact 

with the ambient manifold’s structure. 
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CHAPTER IV 

 

 

Separation Axioms on Fuzzy Parameterized Fuzzy 

Hypersoft Topological Spaces 
 

 

Adem Yolcu1 

Taha Yasin Öztürk 

 

1. Introduction 

In disciplines such as sociology, economics, climate science, 

and engineering, traditional mathematical methods often fail to 

address complex problems due to their inherent intricacies. To 

overcome these challenges, Fuzzy Set Theory, introduced by Zadeh 

(1965), has proven to be a highly effective approach. It provides a 

robust framework for representing vague concepts through partial 

membership. The theory has been extensively explored by both 

mathematicians and computer scientists, leading to the development 
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of fuzzy control systems, fuzzy logic, fuzzy topology, and other 

related fields. Numerous applications of fuzzy set theory have been 

developed over time. In parallel, Probability Theory and Rough Set 

Theory, proposed by Pawlak (1982), also aim to tackle similar 

issues. Molodtsov (1999) introduced Soft Set Theory, offering an 

entirely novel approach to modeling uncertainty, with each of these 

theories carrying its own set of complexities. Molodtsov laid the 

groundwork for Soft Set Theory, applying it in areas such as function 

smoothness, operations analysis, Riemann integration, and game 

theory. The foundational aspects of this theory were further explored 

by Maji et al. (2001), with subsequent developments by Pei and Miao 

(2005), Feng et al. (2008), Chen et al. (2005), Aktaş and Çağman 

(2007), Ali et al. (2009), and Ozturk and Bayramov (2014). The 

exploration of both fuzzy sets and soft sets was initiated by Maji et 

al. (2001). The combination of soft set and fuzzy set structures, 

referred to as fuzzy soft sets, has been widely adopted by researchers, 

contributing significantly to the literature (Maji et al., 2001; Pei, 

2005). Pei (2005) emphasized that scholars from diverse fields have 

studied information systems and highlighted the close relationships 

between soft sets and information systems. Moreover, Pei 

demonstrated that soft sets can be viewed as a class of specialized 

information systems, termed fuzzy information systems, and that 

research on soft sets and information systems can be integrated, 

potentially leading to the discovery of new outcomes and 

methodologies. Kharal and Ahmad (2009) introduced the concept of 

mapping fuzzy soft sets to enhance fuzzy soft theory, focusing on 

the properties of fuzzy soft images and inverse images of fuzzy soft 

sets. Additionally, Çağman et al. (2010) investigated fuzzy 



 

--78-- 

 

parameterized fuzzy soft set theory and its applications. Tanay and 

Kandemir (2011) explored fuzzy soft topology on a given initial 

universe, defining various notions of fuzzy soft topological spaces 

and examining their properties. Roy and Samanta (2012) defined 

fuzzy soft topology over the initial universe, introducing bases and 

subbases for this space and providing characterizations. 

Smarandache (2018) advanced new methods for uncertainty 

management by extending soft set theory to hypersoft sets, which 

involve a transformation into multi-decision methods. The hypersoft 

set structure represents a more generalized form of soft sets, 

consisting of elements selected from different attributes. Due to its 

practical applications, substantial research (Smarandache, 2018; 

Maji et al., 2009; Yolcu & Ozturk, 2021) has emerged in a short time. 

Yolcu and Ozturk (2024) further developed the fuzzy hypersoft set 

structure by merging fuzzy and hypersoft set structures.  

In this paper, the concepts of fuzzy parameterized fuzzy 

hypersoft adherent points and fuzzy parameterized fuzzy hypersoft 

interior points are defined within fuzzy parameterized fuzzy 

hypersoft topological spaces. Their relationships with the fuzzy 

parameterized fuzzy hypersoft closure set and the fuzzy 

parameterized fuzzy hypersoft interior set are explored. 

Additionally, hereditary properties are presented, with examples, in 

relation to the separation axioms in fuzzy parameterized fuzzy 

hypersoft topological spaces. 
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2. Preliminaries 

 

Definition 2.1 (Zadeh,1965) Let 𝛱 be a initial universe. A fuzzy set 

𝛬  in 𝛱,  𝛬 = {(𝜋, 𝜇𝛬(𝜋)): 𝜋 ∈ 𝛱},  where 𝜇𝛬: 𝛱 → 0,1]   is the 

membership function of the fuzzy set 𝛬;  𝜇𝛬(𝜋) ∈ 0,1]  is the 

membership 𝜋 ∈ 𝛱  in 𝛬.  The set of all fuzzy sets ove 𝛱  will be 

denoted by 𝐹𝑃(𝛱).  

Definition 2.2 (Molodtsov, 1999) Let 𝛱 be an initial universe and 𝐸 

be a set of parameters. A pair (ℵ, 𝐸) is called a soft set over 𝛱, 

where 𝐹 is a mapping ℵ: 𝐸 → 𝒫(𝛱). In other words, the soft set is a 

parameterized family of subsets of the set 𝛱.  

Definition 2.3 (Maji et.al,2001) Let 𝛱 be a initial universe, 𝐸 be a 

set of parameters  and 𝐹𝑃(𝛱) be the set of all fuzzy sets in 𝛱. Then 

a pair (ℵ, 𝐸) is called a fuzzy soft set over 𝛱, where ℵ: 𝐸 → 𝐹𝑃(𝛱) 

is a mapping.  

Definition 2.4 (Smarandache,2018) Let 𝛱 be the universal set and 

𝑃(𝛱) be the power set of 𝛱. Consider 𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑛 for 𝑛 ≥ 1, be 

𝑛 well-defined attributes, whose corresponding attribute values are 

resspectively the sets 𝐸1, 𝐸2, . . . , 𝐸𝑛  with 𝐸𝑖 ∩ 𝐸𝑗 = ∅, for 𝑖 ≠ 𝑗 and 

𝑖, 𝑗 ∈ {1,2, . . . , 𝑛}, then the pair (ℵ, 𝐸1 × 𝐸2 ×. . .× 𝐸𝑛) is said to be 

Hypersoft set over 𝛱 where ℵ: 𝐸1 × 𝐸2 ×. . .× 𝐸𝑛 → 𝑃(𝛱).  

Definition 2.5 (Rahman et.al.,2022) Let 𝛱 be the universal set and 

𝐹𝑃(𝛱)  be a family of all fuzzy set over 𝛱  and 𝐸1, 𝐸2, . . . , 𝐸𝑛  the 

pairwise disjoint sets of parameters. Let 𝐴𝑖 be the nonempty subset 

of 𝐸𝑖 for each 𝑖 = 1,2, . . . , 𝑛. A fuzzy parameterized fuzzy hypersoft 

set defined as the pair (ℵ, 𝐴1 × 𝐴2 ×. . .× 𝐴𝑛) where; ℵ: 𝐴1 × 𝐴2 ×

. . .× 𝐴𝑛 → 𝐹𝑃(𝛱) and  

ℵ(𝐴1 × 𝐴2 ×. . .× 𝐴𝑛) = {
<

𝛼

𝜇(𝛼)
,

𝜋

ℵ(𝛼)(𝜋)
, >: 𝜋 ∈ Π,

𝛼 ∈ 𝐴1 × 𝐴2 ×. . .× 𝐴𝑛 ⊆ 𝐸1 × 𝐸2 ×. . .× 𝐸𝑛

} 
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For sake of simplicity, we write the symbols Σ for 𝐸1 × 𝐸2 ×. . .× 𝐸𝑛,  

for 𝐴1 × 𝐴2 ×. . .× 𝐴𝑛 and 𝛼 for an element of the set . The set of all 

fuzzy hypersoft sets over Π will be denoted by 𝐹𝑃𝐹𝐻𝑆(Π, Σ). Here 

after, FHS will be used for short instead of fuzzy hypersoft sets.  

Definition 2.6 (Rahman et.al.,2022) Let 𝛱 be the universal set and 

𝐹𝑃(𝛱)  be a family of all fuzzy set over 𝛱  and 𝐸1, 𝐸2, . . . , 𝐸𝑛  the 

pairwise disjoint sets of parameters. Let 𝐴𝑖 be the nonempty subset 

of 𝐸𝑖 for each 𝑖 = 1,2, . . . , 𝑛. A fuzzy parameterized fuzzy hypersoft 

set defined as the pair (ℵ, 𝐴1 × 𝐴2 ×. . .× 𝐴𝑛) where; ℵ: 𝐴1 × 𝐴2 ×

. . .× 𝐴𝑛 → 𝐹𝑃(𝛱) and  

ℵ(𝐴1 × 𝐴2 ×. . .× 𝐴𝑛) = {
<

𝛼

𝜇(𝛼)
,

𝜋

ℵ(𝛼)(𝜋)
, >: 𝜋 ∈ Π,

𝛼 ∈ 𝐴1 × 𝐴2 ×. . .× 𝐴𝑛 ⊆ 𝐸1 × 𝐸2 ×. . .× 𝐸𝑛

} 

Definition 2.7 (Rahman et.al.,2022) 

 i) A fuzzy hypersoft set (ℵ, 𝛥) over the universe 𝛱 is said to be null 

fuzzy parameterized fuzzy hypersoft set and denoted by 0(𝛱𝐹𝐻,𝛥)
𝑓𝑝

 if 

for all 𝜋 ∈ 𝛱 and 𝛼 ∈ 𝛥, ,𝜇(𝛼) = 0, ℵ(𝛼)(𝜋) = 0. 

ii) A fuzzy hypersoft set (ℵ, Δ) over the universe Π is said to be 

absolute fuzzy parameterized fuzzy hypersoft set and denoted by 

1(Π𝐹𝐻,Δ)
𝑓𝑝

 if for all 𝜋 ∈ Π and 𝛼 ∈ Δ, ,𝜇(𝛼) = 1, ℵ(𝛼)(𝜋) = 1.  

Definition 2.8 (Rahman et.al.,2022)  Let 𝛱 be an initial universe set 

(ℵ1,1 ), (ℵ2,2 ) be two fuzzy parameterized fuzzy hypersoft sets over 

the universe 𝛱. We say that (ℵ1,1 ) is a fuzzy parameterized fuzzy 

hypersoft subset of (ℵ2,2 ) and denote (ℵ1,1 ) ⊆̃ (ℵ2,2 ) if 

i)  1 ⊆2 

ii) For any 𝛼 ∈1, ,𝜇1(𝛼) ⊂ 𝜇2(𝛼), ℵ1(𝛼) ⊆ ℵ2(𝛼).  



 

--81-- 

 

Definition 2.9 (Rahman et.al.,2022) The complement of fuzzy 

parameterized fuzzy hypersoft set (ℵ, )  over the universe 𝛱  is 

denoted by (ℵ, )𝑐  and defined as (ℵ, )𝑐 = (ℵ𝑐, ),  where ℵ𝑐(𝑛)  is 

complement of the set ℵ(𝑛), for 𝑛 ∈. 

ℵ(𝐴1 × 𝐴2 ×. . .× 𝐴𝑛)𝑐 = {
<

𝛼

1 − 𝜇(𝛼)
,

𝜋

1 − ℵ(𝛼)(𝜋)
, >: 𝜋 ∈ Π,

𝛼 ∈ 𝐴1 × 𝐴2 ×. . .× 𝐴𝑛 ⊆ 𝐸1 × 𝐸2 ×. . .× 𝐸𝑛

} 

 Definition 2.10 (Rahman et.al.,2022) Let 𝛱 be an initial universe 

set and (ℵ1,1 ), (ℵ2,2 ) be two fuzzy parameterized fuzzy hypersoft 

sets over the universe 𝛱. The union of (ℵ1,1 ) and (ℵ2,2 ) is denoted 

by (ℵ1,1 ) ∪̃ (ℵ2,2 ) = (ℵ3,3 )  where each 𝑛 ∈3, ℵ3(𝑛)(𝜋) =

𝑚𝑎𝑥{  ℵ1(𝑛)(𝜋), ℵ2(𝑛)(𝜋)}, 𝜇3(𝑛) = 𝑚𝑎𝑥{𝜇1(𝑛), 𝜇2(𝑛)}  

Definition 2.11 (Rahman et.al.,2022) Let 𝛱 be an initial universe set 

and (ℵ1,1 ), (ℵ2,2 ) be fuzzy parameterized fuzzy hypersoft sets over 

the universe 𝛱. The intersection of (ℵ1,1 ) and (ℵ2,2 ) is denoted by 

(ℵ1,1 ) ∩̃ (ℵ2,2 ) = (ℵ3,3 )  where  3 =1∩2  and each 

𝑛 ∈3, ℵ3(𝑛)(𝜋) = 𝑚𝑖𝑛{  ℵ1(𝑛)(𝜋), ℵ2(𝑛)(𝜋)}, 𝜇3(𝑛) =

𝑚𝑖𝑛{𝜇1(𝑛), 𝜇2(𝑛)}.  

Definition 2.12 (Yolcu and Ozturk,2024a) Let 𝐹𝑃𝐹𝐻𝑆(𝛱, 𝛥) be the 

set of all fuzzy parameterized fuzzy hypersoft subsets of (𝛱, 𝛥) over 

the universe 𝛱  and 𝜏̃  be a subfamily of 𝐹𝑃𝐹𝐻𝑆(𝛱, 𝛥).  Then 𝜏̃  is 

called a fuzzy parameterized fuzzy hypersoft topology on 𝛱 if the 

following condition are satisfied. 

1.  0(Π𝐹𝐻,Δ)
𝑓𝑝

 and 1(Π𝐹𝐻,Δ)
𝑓𝑝

 belongs to 𝜏̃, 

2.  The union of any number of fuzzy parameterized fuzzy hypersoft 

sets in 𝜏̃ belongs to 𝜏̃, 

3.  The intersection of any two fuzzy parameterized fuzzy hypersoft 

sets in 𝜏̃ belongs to 𝜏̃.  
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The triple (Π, 𝜏̃, Δ) is called a fuzzy parameterized fuzzy hypersoft 

topological space over Π.  Every member of 𝜏̃  is called a fuzzy 

parameterized fuzzy hypersoft open set (FPFHOS) in Π.  

Definition 2.13 (Yolcu and Ozturk,2024a) Let 𝐹𝑃𝐹𝐻𝑆(𝛱, 𝛥) be the 

set of all fuzzy hypersoftsets over the universe 𝛱. Then, 

1.  If 𝜏̃ = {0(Π𝐹𝐻,Δ)
𝑓𝑝

, 1(Π𝐹𝐻,Δ)
𝑓𝑝

},  then 𝜏̃  is called to be fuzzy 

parameterized fuzzy hypersoft indiscrete topology and (Π, 𝜏̃, Δ) is 

called to be fuzzy parameterized fuzzy hypersoft indiscrete 

topological space over the universe Π. 

2.  If 𝜏̃ = 𝐹𝑃𝐹𝐻𝑆(Π, Δ), then 𝜏̃ is called to be fuzzy parameterized 

fuzzy hypersoft discrete topology and (Π, 𝜏̃, Δ) is called to be fuzzy 

parameterized fuzzy hypersoft discrete topological space over the 

universe Π.  

Definition 2.14 (Yolcu and Ozturk,2024a) Let (𝛱, 𝜏̃, 𝛥) be a fuzzy 

parameterized fuzzy hypersoft topological space over 𝛱   and (ℵ, ) 

be a fuzzy parameterized fuzzy hypersoft set over 𝛱. Then (ℵ, ) is 

said to be a fuzzy parameterized fuzzy hypersoft closed set 

(FPFHCS) if its complement (ℵ, )𝑐 belongs to 𝜏̃.  

Definition 2.15 (Yolcu and Ozturk,2024a) Let (𝛱, 𝜏̃, 𝛥) be a fuzzy 

parameterized fuzzy hypersoft topological space over 𝛱   and (ℵ, ) 

be a fuzzy parameterized fuzzy hypersoft set over 𝛱.  The fuzzy 

parameterized fuzzy hypersoft closure of (ℵ, )  denoted by 

𝑐𝑙𝐹𝑃𝐹𝐻(ℵ, )  is the intersection of all fuzzy parameterized fuzzy 

hypersoft closed super sets of (ℵ, ). 

It is clear that 𝑐𝑙𝐹𝑃𝐹𝐻(ℵ, ) is the smallest fuzzy parameterized fuzzy 

hypersoft closed set over Π which contain (ℵ, ).  

Definition 2.16 (Yolcu and Ozturk,2024a) Let (𝛱, 𝜏̃, 𝛥) be a fuzzy 

parameterized fuzzy hypersoft topological space over 𝛱   and (ℵ, ) 
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be a fuzzy parameterized fuzzy hypersoft set over 𝛱.  The fuzzy 

parameterized fuzzy hypersoft interior of (ℵ, )  denoted by 

𝑖𝑛𝑡𝐹𝑃𝐹𝐻(ℵ, ) is the union of all fuzzy parameterized fuzzy hypersoft 

open subsets of (ℵ, ). 

It is clear that 𝑖𝑛𝑡𝐹𝑃𝐹𝐻(ℵ, ) is the largest fuzzy parameterized fuzzy 

hypersoft open set contained in (ℵ, ).  

Definition 2.17 (Yolcu and Ozturk,2024b) Let (𝛱, 𝜏̃, 𝛥) be a fuzzy 

parameterized fuzzy hypersoft topological space over 𝛱 and 𝐵̃ ⊆ 𝜏̃. 

𝐵̃ is called a fuzzy parameterized fuzzy hypersoft basis for the fuzzy 

parameterized fuzzy hypersoft topology 𝜏̃ if every element of 𝜏̃ can 

be written as the fuzzy parameterized fuzzy hypersoft union of 

elements of 𝐵̃.  

 

3.  Fuzzy Parameterized Fuzzy Hypersoft Point 

In this section, we will present the structure on fuzzy 

parameterized fuzzy hypersoft topological (FPFHT) structures such 

as interior, closure by using fuzzy parameterized fuzzy hypersoft 

points (FPFHPs) and their neighbourhoods. 

Definition 3.1  Let ⊂ 𝛥, 𝛼 ∈ and 𝜋 ∈ 𝛱. A FHS (ℵ, ) is said to be a 

fuzzy parameterized fuzzy hypersoft point (briefly, FPFHP) if ℵ(𝛼′) 

is a null fuzzy set for every 𝛼′ ∈\{𝛼} and ℵ(𝛼)(𝑦) = 0 for all 𝑦 ≠

𝜋.  We will denote (ℵ, )  simply by 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and denote all the fuzzy 

parameterized fuzzy hypersoft points over 𝛱  simply by 

𝐹𝑃𝐹𝐻𝑃(𝛱, 𝛥).  

Definition 3.2  A FPFHP 𝑃𝜇(𝛼)
(𝛼,𝜋)

 is said to belong to a FHS (ℵ, ) if 

𝑃𝜇(𝛼)
(𝛼,𝜋)

⊆̃ (ℵ, ). We write it as 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ). 
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It is clear that the fuzzy parameterized fuzzy hypersoft union of 

FPFHPs of a FHS (ℵ, ) returns the FHS (ℵ, ), that is, 

(ℵ, ) =∪̃ {𝑃𝜇(𝛼)
(𝛼,𝜋)

: 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, )}. 

Definition 3.3 Let (𝛱, 𝜏̃, 𝛥) be a fuzzy parameterized fuzzy hypersoft 

topological space over 𝛱 . A FHS (ℵ, )  over 𝛱  is called a fuzzy 

parameterized fuzzy hypersoft neighbouthood of the FPFHP 

𝑃𝜇(𝛼)
(𝛼,𝜋)

⊆̃ (ℵ, ),  if there exist a FHOS (𝛯, 𝛥)  such that 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (𝛯, 𝛥) ⊆̃ (ℵ, ).  The neighbourhood system of a FPFHP 

𝑃𝜇(𝛼)
(𝛼,𝜋)

, denoted by 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), is the family of all its neighbourhoods.  

Theorem 3.1 Let (𝛱, 𝜏̃, 𝛥) be a fuzzy parameterized fuzzy hypersoft 

topological space over 𝛱 and (ℵ, ) be a fuzzy parameterized fuzzy 

hypersoft set over 𝛱.  Then (ℵ, )  is a FHOS iff (ℵ, )  is a fuzzy 

parameterized fuzzy hypersoft neighbourhood of its each FHPs.  

Proof. Suppose that (ℵ, ) be a FHOS over Π and 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ). Then 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ) ⊆̃ (ℵ, ). Hence, (ℵ, ) is a fuzzy parameterized fuzzy 

hypersoft neighbourhood of 𝑃𝜇(𝛼)
(𝛼,𝜋)

. 

Conversely, let (ℵ, )  be a fuzzy parameterized fuzzy hypersoft 

neighbourhood of its each FHPs and 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ). Then, there exist 

(Ξ, Δ) ∈̃ 𝜏̃  such that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ) ⊆̃ (ℵ, ).  Since (ℵ, ) =

∪̃ {𝑃𝜇(𝛼)
(𝛼,𝜋)

: 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, )}, it follows that (ℵ, ) is a union of FPFHOSs 

and hence (ℵ, ) is a FHOS.  

Theorem 3.2 The neighbourhood system 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

) at 𝑃𝜇(𝛼)
(𝛼,𝜋)

 in a 

FPFHTS (𝛱, 𝜏̃, 𝛥) has the following properties: 

1.  If (ℵ, ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), then 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ), 
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2.  If (ℵ, ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

) and (ℵ, ) ⊆̃ (Ξ, Δ), then (Ξ, Δ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), 

3.If (ℵ1,1 ), (ℵ2,2 ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), then (ℵ1,1 ) ∩̃ (ℵ2,2 ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), 

4.  If (ℵ, ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), then there exist a (ℵ1,1 ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

) such 

that (ℵ1,1 ) ∈̃ 𝜗 (𝑃𝐹𝐻
(𝛽,𝑦)

) for every 𝑃𝐹𝐻
(𝛽,𝑦)

∈̃ (ℵ1,1 ).  

Proof. The proof of (1),(2) and (3) is obvious from the Definition 20. 

(4) If (ℵ, ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

)  then there exist a fuzzy 

parameterized fuzzy soft open set (ℵ1,1 )  such that 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 ) ⊆̃ (ℵ, ). Therefore, (ℵ1,1 ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), so for each 

𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ1,1 ), (ℵ1,1 ) ∈̃ 𝜗 (𝑃𝜇(𝛽)
(𝛽,𝑦)

) is obtained.  

Definition 3.4 Let 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

 be two FPFHPs over the 

common universe 𝛱. Then, we say that the FPFHPs are distinct 

FPFHPs if 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ 𝑃𝜇(𝛽)
(𝛽,𝑦)

= 0(𝛱𝐹𝐻,𝛥). 

It is clear that 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

 are dinstinct FPFHPs if and only if 

𝜋 ≠ 𝑦 or 𝛼 ≠ 𝛽.  

Definition 3.5 Let (𝛱, 𝜏̃, 𝛥) be a fuzzy parameterized fuzzy hypersoft 

topological space over 𝛱. Let (ℵ, ) be a FHS over 𝛱 and 𝑃𝜇(𝛼)
(𝛼,𝜋)

 be a 

FPFHP over 𝛱. 

1.  𝑃𝜇(𝛼)
(𝛼,𝜋)

 is a fuzzy parameterized fuzzy hypersoft interior point of 

(ℵ, ), if (Ξ, Δ) ⊆̃ (ℵ, ) for some (Ξ, Δ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

), 

2.  𝑃𝜇(𝛼)
(𝛼,𝜋)

 is a fuzzy parameterized fuzzy hypersoft adherent point of 

(ℵ, ), if (Ξ, Δ) ∩̃ (ℵ, ) ≠ 0(Π𝐹𝐻,Δ) for any (Ξ, Δ) ∈̃ 𝜗 (𝑃𝜇(𝛼)
(𝛼,𝜋)

).  
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Theorem 3.3 Let (𝛱, 𝜏̃, 𝛥) be a fuzzy parameterized fuzzy hypersoft 

topological space over 𝛱 and (ℵ, ) be a FPFHS over 𝛱 . 

1.  𝑖𝑛𝑡𝐹𝐻(ℵ, ) =∪̃ {𝑃𝜇(𝛼)
(𝛼,𝜋)

: 𝑃𝜇(𝛼)
(𝛼,𝜋)

  is a fuzzy parameterized fuzzy 

hypersoft interior point of (ℵ, )}, 

2.  𝑐𝑙𝐹𝐻(ℵ, ) =∪̃ {𝑃𝜇(𝛼)
(𝛼,𝜋)

: 𝑃𝜇(𝛼)
(𝛼,𝜋)

  is a fuzzy parameterized fuzzy 

hypersoft adherent point of (ℵ, )}.  

Proof. Straightforward.  

Theorem 3.4 Let (𝛱, 𝜏̃, 𝛥) be a fuzzy parameterized fuzzy hypersoft 

topological space over 𝛱 , (ℵ, ) be a FPFHS over 𝛱   and 𝐵̃  be a 

basis for (𝛱, 𝜏̃, 𝛥). Then, 

(ℵ, ) ∈̃ 𝜏̃

⇔ ∀𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ 𝐹𝑃𝐹𝐻𝑃(Π, Δ), ∃(Ξ, Δ) ∈̃ 𝐵̃suchthat𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ) ⊆̃ (ℵ, ). 

 Proof. (⇒)  Suppose that (ℵ, ) ∈̃ 𝜏̃  and 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ 𝐹𝑃𝐹𝐻𝑃(Π, Δ). 

Since 𝐵̃ is a basis for (Π, 𝜏̃, Δ), there exists 𝐵̃′ ⊆̃ 𝐵̃ such that (ℵ, ) =

∪̃ {(Ξ, Δ): (Ξ, Δ) ∈ 𝐵̃′}. Moreover, there exists (Ξ, Δ) ∈ 𝐵̃′ such that 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ) for 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ). Hence 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ) ⊆̃ (ℵ, ). 

(⇐) Assume that sufficient conditions of the theorem are 

provided. So,  

(ℵ, )

=∪̃ {𝑃𝜇(𝛼)
(𝛼,𝜋)

: 𝑃𝜇(𝛼)
(𝛼,𝜋)

  ⊆̃ (ℵ, )} ⊆̃∪̃ {(Ξ, Δ): 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ) ⊆̃ (ℵ, )} ⊆̃∪̃ (ℵ, ). 

Thus, (ℵ, ) ∈̃ 𝜏̃.  

 

4.  Fuzzy Parameterized Fuzzy Hypersoft Separation Axioms 
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Definition 4.1 a) Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS over 𝛱 and 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 

𝑃𝜇(𝛽)
(𝛽,𝑦)

 be two distinct FPFHPs over the common universe 𝛱. If there 

exist FPFHOSs (ℵ1,1 ) and (ℵ2,2 ) such that  

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 )    and  𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (ℵ2,2 ) = 0(Π𝐹𝐻,Δ)or 

𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ2,2 )    and  𝑃𝜇(𝛽)
(𝛽,𝑦)

∩̃ (ℵ1,1 ) = 0(Π𝐹𝐻,Δ) 

then (Π, 𝜏̃, Δ)  is called a fuzzy parameterized fuzzy hypersoft 

𝑇0 −spaces. 

b)  

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 )    and  𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (ℵ2,2 ) = 0(Π𝐹𝐻,Δ)and 

𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ2,2 )    and  𝑃𝜇(𝛽)
(𝛽,𝑦)

∩̃ (ℵ1,1 ) = 0(Π𝐹𝐻,Δ) 

then (Π, 𝜏̃, Δ)  is called a fuzzy parameterized fuzzy hypersoft 

𝑇1 −spaces. 

c) If there exist FPFHOSs (ℵ1,1 )  and (ℵ2,2 )  such that 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 ),  𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ2,2 )  and (ℵ1,1 ) ∩̃ (ℵ2,2 ) = 0(Π𝐹𝐻,Δ) 

then (Π, 𝜏̃, Δ)  is called a fuzzy parameterized fuzzy hypersoft 

𝑇2 −spaces.  

 

Example 4.1 Let {𝜋1, 𝜋2} be a universe set, 𝐸1 = {𝑙1, 𝑙2} and 𝐸2 =
{𝑙3, 𝑙4} be two attributes set. Suppose that 

 𝑃0.2
(𝛼1,𝜋1)

= {<
(𝑙1,𝑙3)=𝛼1

0.2
, {

𝜋1

0,1
} >}, 

 𝑃0.2
(𝛼1,𝜋2)

= {<
(𝑙1,𝑙3)=𝛼1

0.2
, {

𝜋2

0,3
} >}, 
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 𝑃0.3
(𝛼2,𝜋1)

= {<
(𝑙1,𝑙4)=𝛼2

0.3
, {

𝜋1

0,4
} >}, 

 𝑃0.3
(𝛼2,𝜋2)

= {<
(𝑙1,𝑙4)=𝛼2

0.3
, {

𝜋2

0,2
} >}, 

 𝑃0.4
(𝛼3,𝜋1)

= {<
(𝑙2,𝑙3)=𝛼3

0.4
, {

𝜋1

0,6
} >}, 

 𝑃0.4
(𝛼3,𝜋2)

= {<
(𝑙2,𝑙3)=𝛼3

0.4
, {

𝜋2

0,4
} >}, 

 𝑃0.6
(𝛼4,𝜋1)

= {<
(𝑙2,𝑙4)=𝛼4

0.6
, {

𝜋1

0,8
} >}, 

 𝑃0.6
(𝛼4,𝜋2)

= {<
(𝑙2,𝑙4)=𝛼4

0.6
, {

𝜋2

0,7
} >} 

such that 𝛼1 = (𝑙1, 𝑙3), 𝛼2 = (𝑙1, 𝑙4), 𝛼3 = (𝑙2, 𝑙3), 𝛼4 = (𝑙2, 𝑙4)  for 

𝛼𝑖 ∈ 𝐸1 × 𝐸2 = Δ.  The fuzzy parameterized fuzzy hypersoft 

topology that accepts the family 𝐵̃,  

𝐵̃ = {𝑃0.2
(𝛼1,𝜋1)

, 𝑃0.2
(𝛼1,𝜋2)

, 𝑃0.3
(𝛼2,𝜋1)

, 𝑃0.3
(𝛼2,𝜋2)

, 𝑃0.4
(𝛼3,𝜋1)

, 𝑃0.4
(𝛼3,𝜋2)

, 𝑃0.6
(𝛼4,𝜋1)

}, 

as the basis is  

𝜏̃ = {0(Π𝐹𝐻,Δ), 1(Π𝐹𝐻,Δ), (ℵ1, Δ), (ℵ2, Δ), (ℵ3, Δ), . . . , (ℵ128, Δ)} 

where (ℵ1, Δ) = {𝑃0.2
(𝛼1,𝜋1)

} , (ℵ2, Δ) = {𝑃0.2
(𝛼1,𝜋2)

} , (ℵ3, Δ) =

{𝑃0.3
(𝛼2,𝜋1)

} , (ℵ4, Δ) = 𝑃0.3
(𝛼2,𝜋2)

} , (ℵ5, Δ) = {𝑃0.4
(𝛼3,𝜋1)

} , (ℵ6, Δ) =

{𝑃0.4
(𝛼3,𝜋2)

}, (ℵ7, Δ) = {𝑃0.6
(𝛼4,𝜋1)

},  

(ℵ8, Δ) = (ℵ1, Δ) ∪̃ (ℵ1, Δ), . . . , (ℵ128, Δ) =

(ℵ1, Δ) ∪̃ (ℵ2, Δ) ∪̃. . .∪̃ (ℵ7, Δ). Then 𝜏̃ is a FHT over Π. It is clear 

that (Π, 𝜏̃, Δ) is fuzzy parameterized fuzzy hypersoft 𝑇0 −space but 

not a fuzzy parameterized fuzzy hypersoft 𝑇1 −space. Because there 

does not exist each FPFHOSs consisting 𝑃0.6
(𝛼4,𝜋2)

 and other FPFHPs.  
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Example 4.2 Let 𝛱 = ℕ be a natural numbers set and 𝐸1 = {𝑙1}, 

𝐸2 = {𝑙2} be two attribute sets. Then 𝑃𝐹𝐻
(𝛼,𝑛)

 are FPFHPs for 𝑛 ∈ ℕ, 

𝛼 = (𝑙1, 𝑙2).  Hence, the FPFHPs 𝑃𝐹𝐻
(𝛼,𝑛)

 and 𝑃𝐹𝐻
(𝛼,𝑚)

 are distinct 

FPFHPs iff 𝑛 ≠ 𝑚. Obvious that there is one to one compatibility 

between the seet of natural numbers and the set of FPFHPs. Then 

we give cofinite topology on this set. Then FPFHS (ℵ, 𝛥) is a FHOS 

iff the finite FPFHP is discorded from the set of FPFHPs. Therefore, 

(𝛱, 𝜏̃, 𝛥) is a fuzzy parameterized fuzzy hypersoft 𝑇1 −space but not 

a fuzzy parameterized fuzzy hypersoft 𝑇2 −space. 

Definition 4.2 We consider Example-4.1. The fuzzy parameterized 

fuzzy hypersoft topology that accepts the family 𝐵̃,  

𝐵̃ = {𝑃0.2
(𝛼1,𝜋1)

, 𝑃0.2
(𝛼1,𝜋2)

, 𝑃0.3
(𝛼2,𝜋1)

, 𝑃0.3
(𝛼2,𝜋2)

, 𝑃0.4
(𝛼3,𝜋1)

, 𝑃0.4
(𝛼3,𝜋2)

, 𝑃0.6
(𝛼4,𝜋1)

, 𝑃0.6
(𝛼4,𝜋2)

}, 

as the basis is  

𝜏̃ = {0(Π𝐹𝐻,Δ), 1(Π𝐹𝐻,Δ), (ℵ1, Δ), (ℵ2, Δ), (ℵ3, Δ), . . . , (ℵ256, Δ)} 

where (ℵ1, Δ) = {𝑃0.2
(𝛼1,𝜋1)

} , (ℵ2, Δ) = {𝑃0.2
(𝛼1,𝜋2)

} , (ℵ3, Δ) =

{𝑃0.3
(𝛼2,𝜋1)

} , (ℵ4, Δ) = 𝑃0.3
(𝛼2,𝜋2)

} , (ℵ5, Δ) = {𝑃0.4
(𝛼3,𝜋1)

} , (ℵ6, Δ) =

{𝑃0.4
(𝛼3,𝜋2)

}, (ℵ7, Δ) = {𝑃0.6
(𝛼4,𝜋1)

},  

(ℵ8, Δ) = {𝑃0.6
(𝛼4,𝜋2)

}, (ℵ9, Δ) = (ℵ1, Δ) ∪̃ (ℵ1, Δ), . . . , (ℵ256, Δ) =

(ℵ1, Δ) ∪̃ (ℵ2, Δ) ∪̃. . .∪̃ (ℵ8, Δ). Then 𝜏̃ is a FHT over Π. It is clear 

that (Π, 𝜏̃, Δ) is fuzzy parameterized fuzzy hypersoft 𝑇2 −space.  

Theorem 4.1 Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS over 𝛱. Then (𝛱, 𝜏̃, 𝛥) is a 

fuzzy parameterized fuzzy hypersoft 𝑇1 −space iff each FPFHP is a 

FHCS.  

Proof. Suppose that (Π, 𝜏̃, Δ)  is a fuzzy parameterized fuzzy 

hypersoft 𝑇1 −space and 𝑃𝜇(𝛼)
(𝛼,𝜋)

 be an arbitrary FPFHP over Π. We 

should show that (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

 is a FHOS. For 𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

; then 



 

--90-- 

 

𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

 are distinct FPFHPs. Therefore 𝜋 ≠ 𝑦 or 𝛼 ≠ 𝛽. 

Since (Π, 𝜏̃, Δ) is a fuzzy parameterized fuzzy hypersoft 𝑇1 −space, 

there exists a FHOS (ℵ, ) such that  

𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ, )and𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (ℵ, ) = 0(Π𝐹𝐻,Δ) 

Then 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (ℵ, ) = 0(Π𝐹𝐻,Δ). We have 𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ, ) ⊆ (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

. 

Therefore, (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

 is a FHOS, i.e. 𝑃𝜇(𝛼)
(𝛼,𝜋)

 is a FHCS. 

Conversely, let each FPFHP 𝑃𝜇(𝛼)
(𝛼,𝜋)

 is a FHCS. Then (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

 is a 

FHOS. Suppose that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ 𝑃𝜇(𝛽)
(𝛽,𝑦)

= 0(Π𝐹𝐻,Δ), then 

𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

 and 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (𝑃𝜇(𝛼)
(𝛼,𝜋)

)
𝑐

= 0(Π𝐹𝐻,Δ).  So, (Π, 𝜏̃, Δ) 

is a fuzzy parameterized fuzzy hypersoft 𝑇1 −space over Π.  

Theorem 4.2 Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS over 𝛱. (𝛱, 𝜏̃, 𝛥) is a fuzzy 

parameterized fuzzy hypersoft 𝑇2 −space iff for distinct FPFHPs 

𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

, there exists a FHOS (ℵ, ) containing 𝑃𝜇(𝛼)
(𝛼,𝜋)

 but 

not 𝑃𝜇(𝛽)
(𝛽,𝑦)

 such that 𝑃𝜇(𝛽)
(𝛽,𝑦)

∉ 𝑐𝑙𝐹𝐻(ℵ, ).  

Proof. Let 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

 be two FPFHPs in fuzzy parameterized 

fuzzy hypersoft 𝑇2 − space (Π, 𝜏̃, Δ).  Then there exist disjoint 

FPFHOSs (ℵ1,1 )  and (ℵ2,2 )  such that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 )  and 

𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ2,2 ).  Since 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ 𝑃𝜇(𝛽)
(𝛽,𝑦)

= 0(Π𝐹𝐻,Δ)  and 

(ℵ1,1 ) ∩̃ (ℵ2,2 ) = 0(Π𝐹𝐻,Δ),  𝑃𝜇(𝛽)
(𝛽,𝑦)

∉ (ℵ1,1 ).  It implies that 

𝑃𝜇(𝛽)
(𝛽,𝑦)

∉ 𝑐𝑙𝐹𝐻(ℵ, ). 

Conversely, Suppose that for distinct FPFHPs 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

, 

there exists a FHOS (ℵ, ) containing 𝑃𝜇(𝛼)
(𝛼,𝜋)

 but not 𝑃𝜇(𝛽)
(𝛽,𝑦)

 such that 
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𝑃𝜇(𝛽)
(𝛽,𝑦)

∉ 𝑐𝑙𝐹𝐻(ℵ, ).  Then  𝐹𝐻
(𝛽,𝑦)

∈̃ (𝑐𝑙𝐹𝐻(ℵ, ))𝑐 , i.e. (ℵ, )  and 

(𝑐𝑙𝐹𝐻(ℵ, ))𝑐  are disjoint FPFHOSs containing 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

, 

respectively.  

Theorem 4.3 Let (𝛱, 𝜏̃, 𝛥) be a fuzzy parameterized fuzzy hypersoft 

𝑇1 −space for every FPFHP 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 ) ∈̃ 𝜏̃.  If there exist a 

FHOS (ℵ2,2 ) on (𝛱, 𝜏̃, 𝛥) such that  

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ2,2 ) ⊆̃ 𝑐𝑙𝐹𝐻(ℵ2,2 ) ⊆̃ (ℵ1,1 ) 

then (Π, 𝜏̃, Δ) is a fuzzy parameterized fuzzy hypersoft 𝑇2 −space.  

Proof. Assume that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ 𝑃𝜇(𝛽)
(𝛽,𝑦)

= 0(Π𝐹𝐻,Δ). Since (Π, 𝜏̃, Δ) is a 

fuzzy parameterized fuzzy hypersoft 𝑇1 −space, 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 𝑃𝜇(𝛽)
(𝛽,𝑦)

 

are FPFHCSs on (Π, 𝜏̃, Δ). Thus 𝑃𝜇(𝛼)
(𝛼,𝜋)

 ∈̃ (𝑃𝜇(𝛽)
(𝛽,𝑦)

)
𝑐

∈̃ 𝜏̃. Then ehere 

exist a FHOS (ℵ2,2 ) ∈̃ 𝜏̃ such that  

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ2,2 ) ⊆̃ 𝑐𝑙𝐹𝐻(ℵ2,2 ) ⊆̃ (𝑃𝜇(𝛽)
(𝛽,𝑦)

)
𝑐

 

So, we have 𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (𝑐𝑙𝐹𝐻(ℵ2,2 ))𝑐,  𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ2,2 )  and 

(ℵ2,2 ) ∩̃ (𝑐𝑙𝐹𝐻(ℵ2,2 ))𝑐 = 0(Π𝐹𝐻,Δ),  i.e. (Π, 𝜏̃, Δ)  is a fuzzy 

parameterized fuzzy hypersoft 𝑇2 −space.  

Definition 4.3 Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS over 𝛱, (ℵ, ) be a FHCS 

on (𝛱, 𝜏̃, 𝛥) and 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (ℵ, ) = 0(𝛱𝐹𝐻,𝛥). If there exist FPFHOSs 

(𝛯1, 𝛥1)  and (𝛯2, 𝛥2)  such that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (𝛯1, 𝛥1),  (ℵ, ) ⊆̃ (𝛯2, 𝛥2) 

and (𝛯1, 𝛥1) ∩̃ (𝛯2, 𝛥2) = 0(𝛱𝐹𝐻,𝛥), then (𝛱, 𝜏̃, 𝛥) is called a fuzzy 

parameterized fuzzy hypersoft regular space. (𝛱, 𝜏̃, 𝛥) is said to be 

a fuzzy parameterized fuzzy hypersoft 𝑇3 −space if it is both fuzzy 

parameterized fuzzy hypersoft regular and fuzzy parameterized fuzzy 

hypersoft 𝑇1 −space.  
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Theorem 4.4 Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS over 𝛱. (𝛱, 𝜏̃, 𝛥) is a fuzzy 

parameterized fuzzy hypersoft 𝑇3 − space iff for every 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ) ∈̃ 𝜏̃,  there exists (𝛯, 𝛥) ∈̃ 𝜏̃  such that 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (𝛯, 𝛥) ⊆̃ 𝑐𝑙𝐹𝐻(𝛯, 𝛥) ⊆̃ (ℵ, ).  

Proof. Let (Π, 𝜏̃, Δ)  be a fuzzy parameterized fuzzy hypersoft 

𝑇3 − space and 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ, ) ∈̃ 𝜏̃.  Since (Π, 𝜏̃, Δ)  is a fuzzy 

parameterized fuzzy hypersoft 𝑇3 −space for the FPFHP 𝑃𝜇(𝛼)
(𝛼,𝜋)

 and 

FHCS (ℵ, )𝑐,  there exist (Ξ1, Δ1), (Ξ2, Δ2) ∈̃ 𝜏̃  such that 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ1, Δ1), (ℵ, )𝑐 ⊆̃ (Ξ2, Δ2)  and (Ξ1, Δ1) ∩̃ (Ξ2, Δ2) =

0(Π𝐹𝐻,Δ).  Thus, we have 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ1, Δ1) ⊆̃ (Ξ2, Δ2)𝑐 ⊆̃ (ℵ, ). 

Since (Ξ2, Δ2)𝑐 is a FHCS, so 𝑐𝑙𝐹𝐻(Ξ1, Δ1) ⊆̃ (Ξ2, Δ2)𝑐. 

Conversely, suppose that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ (Υ, Ω) = 0(Π𝐹𝐻,Δ) and (Υ, Ω) is a 

FHCS on (Π, 𝜏̃, Δ). Thus 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Υ, Ω)𝑐 and from the condition of 

the theorem, we have 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ) ⊆̃ 𝑐𝑙𝐹𝐻(Ξ, Δ) ⊆̃ (Υ, Ω)𝑐. Then 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (Ξ, Δ),  (Υ, Ω) ⊆̃ (𝑐𝑙𝐹𝐻(Ξ, Δ))𝑐  and (Ξ, Δ) ∩

(𝑐𝑙𝐹𝐻(Ξ, Δ))𝑐 = 0(Π𝐹𝐻,Δ)  are satisfied, i.e., (Π, 𝜏̃, Δ)  is a fuzzy 

parameterized fuzzy hypersoft 𝑇3 −space.  

 

Definition 4.4 A FPFHTS (𝛱, 𝜏̃, 𝛥)  over 𝛱  is called a fuzzy 

parameterized fuzzy hypersoft normal space if for every pair of 

disjoint FPFHCSs (ℵ1,1 )  and (ℵ2,2 ),  there exists disjoint 

FPFHOSs (𝛯1, 𝛥1)  and (𝛯2, 𝛥2)  such that (ℵ1,1 ) ⊆̃ (𝛯1, 𝛥1)  and 

(ℵ2,2 ) ⊆̃ (𝛯2, 𝛥2). (𝛱, 𝜏̃, 𝛥) is said to be a fuzzy parameterized fuzzy 

hypersoft 𝑇4 − space if it is both a fuzzy parameterized fuzzy 

hypersoft normal and fuzzy parameterized fuzzy hypersoft 𝑇1 −

𝑠𝑝𝑎𝑐𝑒.  
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Theorem 4.5 Let (𝛱, 𝜏̃, 𝛥) be a FPFPFHTS over 𝛱. Then (𝛱, 𝜏̃, 𝛥) 

is a fuzzy parameterized fuzzy hypersoft 𝑇4 −space iff for each FHCS 

(ℵ, )  and FHOS (𝛯, 𝛥)  with (ℵ, ) ⊆̃ (𝛯, 𝛥),  there exists a FHOS 

(𝛶, 𝛺) such that  

(ℵ, ) ⊆̃ (Υ, Ω) ⊆̃ 𝑐𝑙𝐹𝐻(Υ, Ω) ⊆̃ (Ξ, Δ). 

 Proof. Let (Π, 𝜏̃, Δ)  be a fuzzy parameterized fuzzy hypersoft 

𝑇4 − space, (ℵ, )  be a FHCS on (Π, 𝜏̃, Δ)  and (ℵ, ) ⊆̃ (Ξ, Δ) ∈̃ 𝜏̃. 

Then (Ξ, Δ)𝑐  is a FHCS and (ℵ, ) ∩̃ (Ξ, Δ)𝑐 = 0(Π𝐹𝐻,Δ).  Since 

(Π, 𝜏̃, Δ) is a fuzzy parameterized fuzzy hypersoft 𝑇4 −space, there 

exists FPFHOSs (Υ1, Ω1)  and (Υ2, Ω2)  such that (ℵ, ) ⊆̃ (Υ1, Ω1), 

(Ξ, Δ)𝑐 ⊆̃ (Υ2, Ω2) and (Υ1, Ω1) ∩̃ (Υ2, Ω2) = 0(Π𝐹𝐻,Δ). This implies 

that  

(ℵ, ) ⊆̃ (Υ1, Ω1) ⊆̃ (Υ2, Ω2)𝑐 ⊆̃ (Ξ, Δ). 

(Υ2, Ω2)𝑐 is a FHCS and 𝑐𝑙𝐹𝐻(Υ1, Ω1) ⊆̃ (Υ2, Ω2)𝑐 is satisfied. Thus, 

(ℵ, ) ⊆̃ (Υ, Ω) ⊆̃ 𝑐𝑙𝐹𝐻(Υ, Ω) ⊆̃ (Ξ, Δ) 

is obtained. 

Conversely, suppose that (ℵ1,1 )  and (ℵ2,2 )  be two disjoint 

FPFHCSs on (Π, 𝜏̃, Δ). Then (ℵ1,1 ) ⊆̃ (ℵ2,2 ).  From the condition 

of theorem, the exists a FHOS (Υ, Ω) such that  

(ℵ1,1 ) ⊆̃ (Υ, Ω) ⊆̃ 𝑐𝑙𝐹𝐻(Υ, Ω) ⊆̃ (ℵ2,2 )𝑐. 

Therefore, (Υ, Ω), (𝑐𝑙𝐹𝐻(Υ, Ω))𝑐 are FPFHOSs and (ℵ1,1 ) ⊆̃ (Υ, Ω), 

(ℵ2,2 ) ⊆̃ (𝑐𝑙𝐹𝐻(Υ, Ω))𝑐  and (Υ, Ω) ∩̃ (𝑐𝑙𝐹𝐻(Υ, Ω))𝑐 = 0(Π𝐹𝐻,Δ)  are 

obtained. So, (Π, 𝜏̃, Δ)  is a fuzzy parameterized fuzzy hypersoft 

𝑇4 −space.  

In the following theorems, the hereditary properties of separation 

axioms on FPFHTS are investigated. 
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Theorem 4.6 Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS and (ℵ, ) be a FPFHS over 

𝛱. If (𝛱, 𝜏̃, 𝛥) is a fuzzy parameterized fuzzy hypersoft 𝑇𝑖 −spaces, 

then the fuzzy parameterized fuzzy hypersoft topological subspace 

((ℵ, ), 𝜏̃(ℵ,), ) is a fuzzy parameterized fuzzy hypersoft 𝑇𝑖 −space for 

𝑖 = 0,1,2,3.  

Proof. Let 𝑃𝜇(𝛼)
(𝛼,𝜋)

, 𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ ((ℵ, ), 𝜏̃(ℵ,), ) such that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∩̃ 𝑃𝜇(𝛽)
(𝛽,𝑦)

=

0(Π𝐹𝐻,Δ). Hence, there exists FPFHOSs (ℵ1,1 ) and (ℵ2,2 ) satisfying 

the conditions of fuzzy parameterized fuzzy hypersoft 𝑇𝑖 −spaces 

such that 𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 )  and 𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ2,2 ).  Then 

𝑃𝜇(𝛼)
(𝛼,𝜋)

∈̃ (ℵ1,1 ) ∩̃ (ℵ, ) and 𝑃𝜇(𝛽)
(𝛽,𝑦)

∈̃ (ℵ2,2 ) ∩̃ (ℵ, ). Also, FPFHOSs 

(ℵ1,1 ) ∩̃ (ℵ, ) and (ℵ2,2 ) ∩̃ (ℵ, ) in 𝜏̃(ℵ,) satisfying the conditions of 

fuzzy parameterized fuzzy hypersoft 𝑇𝑖 −space for 𝑖 = 0,1,2,3.  

Theorem 4.7 Let (𝛱, 𝜏̃, 𝛥) be a FPFHTS over 𝛱. If (𝛱, 𝜏̃, 𝛥) is a 

fuzzy parameterized fuzzy hypersoft 𝑇4 −space and (ℵ, ) is a FHCS 

on (𝛱, 𝜏̃, 𝛥),  then ((ℵ, ), 𝜏̃(ℵ,), )  is a fuzzy parameterized fuzzy 

hypersoft 𝑇4 −space.  

Proof. Let (Π, 𝜏̃, Δ)  be a fuzzy parameterized fuzzy hypersoft 

𝑇4 −space and (ℵ, ) be a FHCS on (Π, 𝜏̃, Δ). Let (ℵ1,1 ) and (ℵ2,2 ) 

be two FPFHCSs on ((ℵ, ), 𝜏̃(ℵ,), )  such that (ℵ1,1 ) ∩̃ (ℵ2,2 ) =

0(Π𝐹𝐻,Δ). When (ℵ, ) is a FHCS on (Π, 𝜏̃, Δ), (ℵ1,1 ) and (ℵ2,2 ) are 

FPFHCSs on (Π, 𝜏̃, Δ).  Since (Π, 𝜏̃, Δ)  is a fuzzy parameterized 

fuzzy hypersoft 𝑇4 − space, there exist FPFHOSs (Ξ1, Δ1)  and 

(Ξ2, Δ2)  such that (ℵ1,1 ) ⊆̃ (Ξ1, Δ1) , (ℵ2,2 ) ⊆̃ (Ξ2, Δ2)    and 

(Ξ1, Δ1) ∩̃ (Ξ2, Δ2) = 0(Π𝐹𝐻,Δ).  Then (ℵ1,1 ) = (Ξ1, Δ1) ∩̃ (ℵ, ), 

(ℵ2,2 ) = (Ξ2, Δ2) ∩̃ (ℵ, )  and 

[(Ξ1, Δ1) ∩̃ (ℵ, )] ∩̃ [(Ξ2, Δ2) ∩̃ (ℵ, )] = 0(Π𝐹𝐻,Δ).  This implies that 

((ℵ, ), 𝜏̃(ℵ,), ) is fuzzy parameterized fuzzy hypersoft 𝑇4 −space.  
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5.  Conclusion 

Separation axioms are fundamental, widely used, and 

intriguing concepts in topology, essential for constructing more 

specialized topological spaces. Motivated by this, the current paper 

investigates the separation axioms within fuzzy parameterized fuzzy 

hypersoft topologies. Initially, the study presents some basic 

properties of the fuzzy parameterized fuzzy hypersoft point concept. 

Next, we define the notion of fuzzy parameterized fuzzy hypersoft 

Ti-spaces (i=0,1,2,3,4). We then explore key properties of the newly 

introduced fuzzy parameterized fuzzy hypersoft separation axioms. 

In future research, concepts like fuzzy parameterized fuzzy 

hypersoft compactness and connectedness will be further examined. 

Ultimately, we anticipate that the concepts introduced in this paper 

will have broad applications in various fields. 
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Some Notes On Locally Symmetric Almost 𝜶-

Kenmotsu Pseudo-Metric Manifolds  
 

 

Hakan ÖZTÜRK1 

Sermin ÖZTÜRK2 

 

Introduction 

Local symmetry refers to a property of a mathematical 

object, such as a manifold or a space, where symmetry exists at each 

point locally. Namely, a transformation or symmetry operation 

presents for every point in the object that leaves the object invariant 

and acts transitively on a small neighborhood around that point. 

Local symmetry can be declared in different ways depending on the 

type of object under consideration. For instance, in a locally 

symmetric space, such as a locally symmetric Riemannian or a 
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pseudo-Riemannian manifold, the isometries move transitively on 

the entire space, not just locally around each point.  Local symmetry 

has essential applications in various fields of mathematics and 

physics. It provides insights into the geometric properties of 

manifolds, helps classify and understand different types of spaces, 

and plays a crucial role in formulating physical theories (Duggal, 

1990), (O’Neill, 1983). 

Almost Kenmotsu structures are a special class of almost 

contact metric structures, recently studied in (Kim & Pak, 2005), 

(Öztürk et al., 2017-2021), (Dileo & Pastore, 2009), (Naik et al., 

2020), (Venkatesha et al., 2021), (Jun et al., 2005). An almost 

contact metric manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  is said to be an almost 

Kenmotsu manifold if 𝑑𝜂 = 0 and 𝑑𝛷 = 2(𝜂 ∧ 𝛷), where 𝛷 is the 

fundamental 2-form endowed with the structure. A normal almost 

Kenmotsu manifold is known as Kenmotsu manifold defined by 

𝛻𝑋𝜉 = 𝑋 − 𝜂(𝑋)𝜉  and (𝛻𝑋𝜙)𝑌 = 𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋 

(Kenmotsu, 1972). Also, the Kenmotsu manifold is not compact 

since 𝑑𝑖𝑣𝜉 = 2𝑛 and has a structure closely related to the warped 

product. A (2𝑛 + 1)-dimensional Kenmotsu manifold 𝑀 is locally a 

warped product 𝑀 = (−𝜀, +𝜀) ×𝑓 𝑁²ⁿ, where (−𝜀, +𝜀) is an open 

interval, 𝑁²ⁿ is a Kaehler manifold and 𝑓(𝑡) = 𝑐𝑒𝑡 such that 𝑐 is a 

positive constant. Furthermore, a locally symmetric Kenmotsu 

manifold is a manifold of constant sectional curvature −1. In other 

words, local symmetry is a substantial restriction for Kenmotsu 

manifolds. Dileo and Pastore studied locally symmetric almost 

Kenmotsu manifolds (Dileo & Pastore, 2007). Let 𝑀 be a locally 

symmetric almost Kenmotsu manifold with dimension (2𝑛 + 1). 

Then, the Lie derivative holds 𝑅(𝑋, 𝑌)𝜉 = 0 for any 𝑋, 𝑌 ∈ 𝐷, and 



 

--102-- 

 

the Lie derivative does not vanish. So, such a manifold is locally 

isometric to the Riemannian product of an (𝑛 + 1) -dimensional 

manifold of constant curvature −4  and a flat 𝑛 -dimensional 

manifold. 

A Riemannian manifold 𝑀 is said to be locally symmetric if 

its curvature tensor 𝑅  is parallel, i.e., 𝛻𝑅 = 0.  Boeckx and Cho 

obtained that a locally symmetric contact metric space is either 

Sasakian with constant curvature 1 or locally isometric to the unit 

tangent bundle of a Euclidean space (Boeckx & Cho, 2006). For a 

(2𝑛 + 1) -dimensional Kenmotsu manifold 𝑀 , if 𝑀  is locally 

symmetric, then 𝑀 is semi-symmetric, i.e., 𝑅. 𝑅 = 0. Thus, locally 

symmetric spaces are semi-symmetric, but the converse is not 

necessarily true. Besides, Wang and Liu studied a locally symmetric 

almost Kenmotsu manifold of dimension (2𝑛 + 1), (𝑛 > 1) with a 

CR-integrable structure (Wang & Liu, 2015). They proved that such 

a manifold is locally isometric to either the hyperbolic space of 

constant sectional curvature −1 or the Riemannian product of an 

(𝑛 + 1)-dimensional manifold of constant sectional curvature −4 

and a flat 𝑛-dimensional manifold. 

Calvaruso and Perrone introduced a systematic study of 

contact structures with associated pseudo-Riemannian metrics 

(Calvaruso & Perrone, 2010). Then, some authors studied contact 

pseudo-metric manifolds (Calvaruso, 2011), (Perrone, 2014). 

Following these studies, many authors focused on almost contact 

pseudo-metric manifolds (Venkatesha et al., 2019), (Naik et al., 

2019). The relevance of the physics of contact pseudo-metric 

structures is indicated in (Bejancu et al., 1993), (Duggal, 1986, 

1989). The help of the contact pseudo-metric structure gives more 
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insight into the geometry of space-time, which is necessary for 

physical problems in relativity (Duggal, 1990). 

Wang and Liu introduced the geometry of almost Kenmotsu 

pseudo metric manifolds and investigated the analogies and 

differences connected with the Riemannian metric tensor (Wang & 

Liu, 2016). Also, they showed some results related to local 

symmetry and nullity conditions. Then Öztürk considered almost 𝛼-

Kenmotsu pseudo-metric structures and their basic properties 

(Öztürk, 2020-2023). Mainly, some results related to the 𝜂 -

parallelity of ℎ,  𝜙ℎ,  and 𝜏  were obtained. Furthermore, some 

classification results on such manifolds with CR-integrable 

structures were given. 

In this study, we consider almost 𝛼-Kenmotsu pseudo-metric 

manifolds. First, we recall the concept of almost 𝛼 -Kenmotsu 

pseudo-metric structure and its basic curvature properties. Then, we 

investigate locally symmetric almost 𝛼 -Kenmotsu pseudo-metric 

manifolds. We obtained some results related to the local symmetry. 

Finally, two illustrative examples of locally symmetric almost 𝛼-

Kenmotsu pseudo-metric manifolds are constructed. 

 

Preliminaries 

An almost contact structure on a (2𝑛 + 1) -dimensional 

smooth manifold 𝑀  endowed with a triple (𝜙, 𝜉, 𝜂), where 𝜙 is a 

(1,1)-type tensor field, 𝜉 is an characteristic vector field, and 𝜂 is a 

1-form which defines 

𝜂(𝜉) = 1,    𝜙2 = −𝐼 + 𝜂 ⊗ 𝜉                                             (1) 

𝜙𝜉 = 0,    𝜂 ∘ 𝜙 = 0,    𝑟𝑎𝑛𝑘𝜙 = 2𝑛                                         (2) 
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(Yano & Kon, 1984). A pseudo-Riemannian metric 𝑔 on 𝑀 is said to 

be compatible with the almost contact structure (𝜙, 𝜉, 𝜂) if  

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜀𝜂(𝑋)𝜂(𝑌)                                          (3) 

for any vector fields 𝑋, 𝑌 ∈ Γ(𝑇𝑀). Throughout the study, we shall 

denote by 𝛤(𝑇𝑀), 𝛻, and 𝐷 the Lie algebra of all tangent vector fields 

on 𝑀, the Levi Civita connection of pseudo-Riemannian metric 𝑔, and 

the distribution orthogonal to 𝜉 called the contact distribution, i.e., 

𝐷 = 𝐾𝑒𝑟(𝜂) = {𝑋:    𝜂(𝑋) = 0}                                                  (4) 

(Blair, 2002). Also, we notice that 

  𝜂(𝑋) = 𝜀𝑔(𝑋, 𝜉), 𝑔(𝜉, 𝜉) = 𝜀,  𝜀 = ±1.                                        (5) 

An almost contact manifold 𝑀 endowed with a compatible pseudo-
metric (pseudo-Riemannian metric) is called an almost contact pseudo-

metric manifold and the fundamental 2-form 𝛷  of 𝑀  is defined as 

𝛷(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌)  for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀)  on 𝑀  (O’Neill, 1983). 

Let 𝑀  be an almost contact pseudo-metric manifold with structure 

(𝜙, 𝜉, 𝜂, 𝑔). If the following conditions are held, then 𝑀 is said to be 

an almost 𝛼-Kenmotsu pseudo-metric manifold 

 𝑑𝜂 = 0,   𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)                                                          (6) 

for 𝛼 ≠ 0, 𝛼 ∈ 𝑅  (Öztürk, 2021). The identically vanishing of the 
following tensor defined by 

𝑁𝜙 = [𝜙, 𝜙] + 2𝑑𝜂 ⊗ 𝜉                                                            (7) 

which expresses the normality of almost contact pseudo-metric 

structure, where [𝜙, 𝜙] is the Nijenhuis tensor of 𝜙. The normality of 

an almost 𝛼-Kenmotsu pseudo-metric manifold can be given by 

(∇𝑋𝜙)𝑌 = −𝛼[𝜀𝑔(𝑋, 𝜙𝑌)𝜉 + 𝜂(𝑌)𝜙𝑋]                                      (8) 

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀). A normal almost 𝛼-Kenmotsu pseudo-metric 

manifold is said to be an 𝛼 -Kenmotsu pseudo-metric manifold 
(Öztürk, 2021). 
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Basic Curvature Properties 

This section will recall the basic formula and some curvature 

properties of almost 𝛼-Kenmotsu pseudo-metric manifolds for later 

usage. The framework that supports the proof of the following 

propositions on almost Kenmotsu pseudo-metric manifolds is 

investigated in detail by Öztürk (2021-2023): 

Proposition 1. Let 𝑀 be an almost contact metric manifold and 

𝛻 be the Riemannian connection. Then, we have 

(𝛻𝑋𝛷)(𝑌, 𝑍) = 𝑔(𝑌, (𝛻𝑋𝜙)𝑍)                                            (9) 

(𝛻𝑋𝜂)𝑌 = 𝑔(𝑌, 𝛻𝑋𝜉) = (𝛻𝑋𝛷)(𝜉, 𝜙𝑌)                                    (10) 

(𝛻𝑋𝛷)(𝑌, 𝑍) + (𝛻𝑋𝛷)(𝜙𝑌, 𝜙𝑍) = 𝜂(𝑍)(𝛻𝑋𝜂)𝜙𝑌 −
𝜂(𝑌)(𝛻𝑋𝜂)𝜙𝑍                  (11) 

2𝑑𝜂(𝑋, 𝑌) = (𝛻𝑋𝜂)𝑌 − (𝛻𝑌𝜂)𝑋                                         (12) 

3𝑑𝛷(𝑋, 𝑌, 𝑍) =⊕𝑋,𝑌,𝑍 (𝛻𝑋𝛷)(𝑌, 𝑍)                                   (13) 

Here, ⊕𝑋,𝑌,𝑍 denotes the cyclic sum over the vector fields 𝑋, 𝑌 and 𝑍 

(Chinea & Gonzalez, 1990). 

Proposition 2. Let 𝑀  be an almost contact pseudo-metric 
manifold. Then, the following equation can be written as 

2𝑔((𝛻𝑋𝜙)𝑌, 𝑍) = 3𝑑𝛷(𝑋, 𝜙𝑌, 𝜙𝑍) − 3𝑑𝛷(𝑋, 𝑌, 𝑍)                  (14) 

+𝑔(𝑁⁽⁰⁾(𝑌, 𝑍), 𝜙𝑋) + 𝜀𝑁⁽¹⁾(𝑌, 𝑍)𝜂(𝑋) 

+2𝜀𝑑𝜂(𝜙𝑌, 𝑋)𝜂(𝑍) − 2𝜀𝑑𝜂(𝜙𝑍, 𝑋)𝜂(𝑌) 

for any 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇𝑀), where 𝑁⁽⁰⁾, 𝑁⁽¹⁾ is defined by: 

𝑁⁽⁰⁾(𝑋, 𝑌) = 𝑁𝜙(𝑋, 𝑌) + 2𝑑𝜂(𝑋, 𝑌)𝜉                                   (15) 

and 

𝑁⁽¹⁾(𝑋, 𝑌) = (𝐿𝜙𝑋𝜂)𝑌 − (𝐿𝜙𝑌𝜂)𝑋                                     (16) 
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respectively. Here, 𝐿𝑋 denotes the Lie derivative in the direction of 𝑋 
(Wang & Liu, 2016). 

Proposition 3. Let 𝑀 be an almost 𝛼-Kenmotsu pseudo-metric 
manifold. Then, we have 

ℎ(𝑋) = 1

2
(𝐿𝜉𝜙)𝑋,    ℎ(𝜉) = 0                                            (17) 

𝛻𝑋𝜉 = −𝛼𝜙2𝑋 − 𝜙ℎ𝑋                                                   (18) 

𝛻𝜉𝜉 = 0,   𝛻𝜉𝜙 = 0                                                       (19) 

(𝜙 ∘ ℎ)𝑋 = −(ℎ ∘ 𝜙)𝑋                                                    (20) 

(𝛻𝑋𝜂)𝑌 = 𝛼[𝜀𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)] + 𝜀𝑔(𝜙𝑌, ℎ𝑋)                              
(21) 

for any 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇𝑀) (Öztürk, 2021). 

Proposition 4. Let 𝑀 be an almost 𝛼-Kenmotsu pseudo-metric 

manifold. For any 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑇𝑀), we have 

2𝑔((𝛻𝑋𝜙)𝑌, 𝑍)  =  −2𝑔𝛼(𝜀𝑔(𝑋, 𝜙𝑌)𝜉 + 𝜂(𝑌)𝜙𝑋, 𝑍)       (22) 

+𝑔(𝑁(0)(𝑌, 𝑍), 𝜙𝑋) 

(Öztürk, 2021). 

Proposition 5. Let 𝑀 be an almost 𝛼-Kenmotsu pseudo-metric 
manifold. Then, the following curvature conditions are satisfied: 

𝑅(𝑋, 𝑌)𝜉 =  𝛼2[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋] − 𝛼[𝜂(𝑋)𝜙ℎ𝑌 − 𝜂(𝑌)𝜙ℎ𝑋](23) 

+(𝛻𝑌𝜙ℎ)𝑋 − (𝛻𝑋𝜙ℎ)𝑌 

𝑅(𝑋, 𝜉)𝜉 = 𝛼2𝜙2𝑋 + 2𝛼𝜙ℎ𝑋 − ℎ2𝑋 + 𝜙(∇𝜉ℎ)𝑋              (24) 

(𝛻𝜉ℎ)𝑋 = −𝜙𝑅(𝑋, 𝜉)𝜉 − 𝛼2𝜙𝑋 − 2𝛼ℎ𝑋 − 𝜙ℎ2𝑋             (25) 

𝑅(𝑋, 𝜉)𝜉 − 𝜙𝑅(𝜙𝑋, 𝜉)𝜉 = 2[𝛼2𝜙2𝑋 − ℎ2𝑋]                      (26) 

       𝑆(𝑋, 𝜉) = −2𝑛𝛼2𝜂(𝑋) − (𝑑𝑖𝑣(𝜙ℎ))𝑋                         (27) 

    𝑆(𝜉, 𝜉) = −[2𝑛𝛼2 + 𝑡𝑟(ℎ2)]                                           (28) 
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    𝑑𝑖𝑣𝜉 = 2𝛼𝑛, 𝑑𝑖𝑣𝜂 = −2𝛼𝑛𝜀                                          (29) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀) (Öztürk, 2021). 

 

Main Results 

In this section, we consider an almost 𝛼-Kenmotsu pseudo-

metric manifold (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  of dimension (2𝑛 + 1)  which is 

locally symmetric, that is, ∇𝑅 = 0 . Thus we state the following 

results: 

Theorem 1. Let 𝑀  be a (2𝑛 + 1) -dimensional almost 𝛼 -

Kenmotsu pseudo-metric manifold. Then 𝑀  is an 𝛼 -Kenmotsu 

pseudo-metric manifold if and only if Eq. (8) holds for any 𝑋, 𝑌 ∈
𝛤(𝑇𝑀). 

Proof. According to the hypothesis, we assume 𝑀  is an 𝛼 -
Kenmotsu pseudo-metric manifold. In this case, the proof is clear from 

Eq. (22) and 𝑁⁽⁰⁾(𝑌, 𝑍) = 0. Contrarily, suppose that 𝑀 is an almost 

𝛼-Kenmotsu pseudo-metric manifold. In view of Eq. (8) for 𝑌 = 𝜉, it 
follows that 

∇𝑋𝜉 = −𝛼𝜙²𝑋. 

A straightforward computation gives 

𝑑𝜂(𝑋, 𝑌) = 𝜀𝛼𝑔(𝑋, 𝜙²𝑌) − 𝜀𝛼𝑔(𝑌, 𝜙²𝑋) = 0                      (30) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀). On the other hand, taking into account of 
Eqs. (8) and (13), we observe that 

𝑑𝛷(𝑋, 𝑌, 𝑍) = 2𝛼𝜂(𝑍)𝑔(𝑋, 𝜙𝑌) + 2𝛼𝜂(𝑋)𝑔(𝑌, 𝜙𝑍) −
2𝛼𝜂(𝑌)𝑔(𝑋, 𝜙𝑍).         (31) 

Then, Eq. (31) gives 

𝑔((𝛻𝑋ℎ)𝑌, −𝜙2𝑍) − 𝜂(𝑋)𝑔 ((𝛻𝜉ℎ)𝑌, 𝑍) − 𝜂(𝑌)𝑔((𝛻𝑋ℎ)𝜉, 𝑍) = 0 (32) 

such that 
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𝑑𝛷(𝑋, 𝑌, 𝑍) = 2𝛼(𝜂 ∧ 𝛷)(𝑋, 𝑌, 𝑍). 

Eventually, putting ℎ′ = −𝜙ℎ in Eq. (22) and considering  𝛻𝜉 =
−𝛼𝜙², we deduce 

ℎ′ = ℎ = 0.                                                                  (33) 

Finally, in view of Eqs. (7) and (8), we have 

 𝑁𝜙(𝑋, 𝑌) = −𝜙(𝛻𝑋𝜙𝑌) + 𝜙²(𝛻𝑌𝑋) + 𝜙(𝛻𝑌𝜙𝑋) − 𝜙²(𝛻𝑌𝑋)   (34) 

+𝛻𝜙𝑋𝜙𝑌 − 𝜙(𝛻𝜙𝑋𝑌) + 𝜙(𝛻𝜙𝑌𝑋) − 𝛻𝜙𝑌𝜙𝑋 

= −𝛼𝜙(𝜀𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋) + 𝛼𝜙(𝜀𝑔(𝜙𝑌, 𝑋)𝜉 − 𝜂(𝑋)𝜙𝑌) 

−𝛼(𝜀𝑔(𝜙²𝑌, 𝑋)𝜉 − 𝜂(𝑋)𝜙²𝑌) + 𝛼(𝜀𝑔(𝜙²𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙²𝑋) = 0 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀). Thus the proof ends by using Eqs. (33) and 
(34). 

Theorem 2. Let 𝑀 be a (2𝑛 + 1)-dimensional locally symmetric 

almost 𝛼-Kenmotsu pseudo-metric manifold. Then we have 𝛻𝜉ℎ = 0. 

Proof. The proof is similar to the case, which can be seen in (Wang 
& Liu, 2016). The proof of this proposition is inspired by Dileo and 

Pastore using ℎ′ = −𝜙ℎ, Eqs. (25) and (26) (Dileo &  Pastore, 2007). 

The result does not change whether the 𝜉 characteristic vector field is 

time-like or space-like for almost 𝛼 -Kenmotsu pseudo-metric case. 

Because Eqs. (25) and (26) are independent of 𝜀. 

Theorem 3. Let 𝑀  be a (2𝑛 + 1) -dimensional almost 𝛼 -
Kenmotsu pseudo-metric manifold. Then the following conditions are 
held: 

(i) The integral submanifold of 𝐷 is almost Kaehler manifold, 

(ii) The integral submanifold of 𝐷 is totally umbilical if and only if 

ℎ = 0. 

Proof. Analogously, by using Proposition 3.1 in (Kim & Pak, 
2005), we complete the proof for the pseudo-metric case. 
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Theorem 4. Let 𝑀 be a (2𝑛 + 1)-dimensional locally symmetric 

almost 𝛼 -Kenmotsu pseudo-metric manifold. Then the following 
conditions are equivalent: 

(i) ℎ = 0, 

(ii) 𝑀 is an 𝛼-Kenmotsu pseudo-metric manifold. 

Also, when the above conditions are provided, 𝑀 has constant 

sectional curvature with 𝐾 = −𝜀𝛼². 

Proof. (𝑖) ⇒ (𝑖𝑖)  Suppose thay 𝑀  is an almost 𝛼 -Kenmotsu 

pseudo-metric manifold and ℎ = 0. Then follows from Eq. (23) we 
have 

𝑅(𝑋, 𝑌)𝜉 = 𝛼²[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋].                                       (35) 

For any 𝑋, 𝑌, 𝑊 ∈ 𝛤(𝑇𝑀), Eq. (35) takes the form 

(𝛻𝑊𝑅)(𝑋, 𝑌)𝜉 = (𝛻𝑊𝑅)(𝑋, 𝑌)𝜉 − 𝑅(𝛻𝑊𝑋, 𝑌)𝜉                         (36) 

−𝑅(𝑋, 𝛻𝑊𝑌)𝜉 − 𝑅(𝑋, 𝑌)𝛻𝑊𝜉 

                  = −𝛼𝑅(𝑋, 𝑌)𝑊 + 𝜀𝛼3[𝑔(𝑋, 𝑊)𝑌 − 𝑔(𝑌, 𝑊)𝑋]. 

Since 𝑀 is locally symmetric, Eq. (36) becomes 

𝑅(𝑋, 𝑌)𝑊 = −𝛼2𝜀[𝑔(𝑌, 𝑊)𝑋 − 𝑔(𝑋, 𝑊)𝑌].                            (37) 

By the help of Eq. (37), the sectional curvature of 𝑀 defined by 𝐾 =

−𝛼²𝜀. Here, it is noted that 𝛼 ≠ 0. Moreover, denoting by 𝑀̃ and 𝛻̃ 

the integral manifold of the contact distribution 𝐷 and the Levi-Civita 

connection of 𝑀̃ , let us consider the pseudo-metric (pseudo 

Riemannian) immersion such that 𝑀̃  → 𝑀. We remark that the second 
fundamental form of a pseudo-metric immersion defined by 

𝐵(𝑋, 𝑌) = −𝜀𝛼𝑔(𝑌, 𝑋)𝜉.                                                        (38) 

In other words, the totally umbilical submanifold of 𝑀̃ holds Eq. (38) 

on 𝑀. Let 𝑅̃ be a Riemannian curvature tensor of 𝑀̃. Then we have 
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𝑅(𝑋, 𝑌)𝑊 = 𝑅̃ (𝑋, 𝑌)𝑊 − 𝛼²𝜀[𝑔(𝑌, 𝑊)𝑋 − 𝑔(𝑋, 𝑊)𝑌]          (39) 

for 𝑋, 𝑌, 𝑊 ∈ 𝐷. Taking into account of Eqs. (37) and (38) we have 

easily seen that 𝑅̃ vanishes. Hence, 𝑀 is flat and Kaehler. Therefore, 
using Theorem 3, the first side of the proof is completed. 

(𝑖𝑖) ⇒ (𝑖)  Suppose that 𝑀  is an 𝛼 -Kenmotsu pseudo-metric 

manifold. With the help of Eq. (8), we get 𝛻𝜉 = −𝛼𝜙². So it is obvious 
that 

ℎ′ = −𝜙ℎ = 0 ⇔ ℎ = 0.                                                   (40) 

Thus the above relation makes the proof complete. 

Theorem 5. Let 𝑀  be a (2𝑛 + 1) -dimensional almost 𝛼 -

Kenmotsu pseudo-metric manifold of constant curvature 𝐾. Then 𝑀 

is an 𝛼-Kenmotsu pseudo-metric manifold such that 𝐾 = −𝜀𝛼². 

Proof. By the hypothesis, we assume 𝑀 is an almost 𝛼-Kenmotsu 

pseudo-metric manifold with constant curvature 𝐾. It follows that 𝑀 

is locally symmetric. According to Theorem 2, we can write 𝛻𝜉ℎ = 0. 
Moreover, we have 

𝑅(𝑋, 𝑌)𝜉 = 𝜀𝐾[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌].                                    (41) 

Follows from Eqs. (23) and (41), we obtain 

0 = (𝜀𝐾 + 𝛼2)(𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋) + 𝛼𝜂(𝑋)ℎ′𝑌                         (42) 

−𝛼𝜂(𝑌)ℎ′𝑋 − (𝛻𝑌ℎ′)𝑋 + (𝛻𝑋ℎ′)𝑌. 

Then putting 𝑌 = 𝜉 in Eq. (42), we get 

0 = (𝜀𝐾 + 𝛼2)(𝜂(𝑋)𝜉 − 𝑋) − ℎ2𝑋 − 2𝛼ℎ′𝑋                             (43) 

where (𝛻𝜉ℎ′)𝑋 = 0.  For 𝑋 ∈ 𝐷 , if 𝑋  is an eigenvector of ℎ  with 

eigenvalue of 𝜁, then we deduce 

0 = (𝜀𝐾 + 𝛼2 + 𝜁2)𝑋 − 2𝛼𝜁𝜙𝑋.                                               (44) 
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Since 𝑋 and 𝜙𝑋 are linearly independent, Eq. (44) reduces to 

𝜀𝐾 + 𝛼² + 𝜁² = 2𝛼𝜁 = 0.                                                     (45) 

Hence, Eq. (45) implies that 𝜁 = 0 and 𝐾 = −𝜀𝛼². Thus, the proof is 
then completed by the application of Theorem 4. 

Corollary 1. Let 𝑀  be a (2𝑛 + 1) -dimensional almost 𝛼 -
Kenmotsu pseudo-metric manifold. Suppose the rank of the locally 

symmetric almost 𝛼-Kenmotsu pseudo-metric manifold 𝑀 equals 1. 

In that case, 𝑀 has constant curvature 𝐾. It is 𝛼-Kenmotsu pseudo-

metric with 𝐾 = −𝜀𝛼2  and ℎ = 0.  If there exists no constant 

curvature of 𝑀, then the rank of 𝑀 must be greater than 1 and ℎ ≠ 0. 

Examples 

Example 1. Let us denote 𝐼𝑅³(𝑥, 𝑦, 𝑧) the standart coordinates 
and consider the manifold  

𝑀 = {(𝑥, 𝑦, 𝑧) ∈ 𝐼𝑅3, 𝑧 ≠ 0}. 

Then the vector fields with respect to the local pseudo 𝜙-basis are as 
follows: 

𝑒1 = 𝑒𝑧5
(

𝜕

𝜕𝑥
) ,  𝑒2 = 𝑒𝑧5

(
𝜕

𝜕𝑦
) ,  𝑒3 = (

𝜕

𝜕𝑧
) 

where the pseudo-Riemannian metric tensor product is defined as: 

𝑔 = (𝑒−2𝑧5
)(𝑑𝑥2 + 𝑑𝑦2) + 𝜀𝑑𝑧2. 

Moreover, 𝜙 is a (1,1)-type tensor defined by: 

𝜙(𝑒₁) = 𝑒₂, 𝜙(𝑒₂) = −𝑒1, 𝜙(𝑒₃) = 0 

and 𝜂 is an 1-form given by 𝜂(𝑋) = 𝜀𝑔(𝑋, 𝑒₃). Using the linearity of 

𝑔 and 𝜙, we have 

𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝑒₃,   𝑔(𝑒₃, 𝑒₃) = 𝜀. 

Then the Levi-Civita connection 𝛻 gives 
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[𝑒₁, 𝑒3] = −5𝜀𝑧3𝑒₁,   [𝑒₂, 𝑒3] = −5𝜀𝑧3𝑒₂,   [𝑒₁, 𝑒₂] = 0. 

So, the almost contact metric structure yields 

𝛷 (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
) = −𝑒−2𝑧5

. 

Since 𝜂 = 𝑑𝑧, we deduce 

𝑑𝛷 = −10𝑧3(𝜂 ∧ 𝛷), 

with 𝛼(𝑧) = −5𝑧3. We note that 𝑁𝜙 identically vanishes, and then the 

manifold is an 𝛼-Kenmotsu pseudo-metric. Follows from the non-zero 

components of the curvature tensor 𝑅 , we discover that 𝑀  is a 

manifold of constant sectional curvature 𝐾 = −𝜀𝛼2. Thus, Theorem 4 
and Theorem 5 are valid. 

Example 2. We provide an example of almost 𝛼 -Kenmotsu 
pseudo-metric manifold which is locally symmetric. Let us consider the 

𝑀 ⊂ 𝐼𝑅3 manifold such that 

𝑀 = {(𝑥, 𝑦, 𝑧) ∈ 𝐼𝑅3  }. 

Here, (𝑥, 𝑦, 𝑧) are the standart coordinates in 𝐼𝑅3. The vector fields 
are as follows: 

𝑒1 = 𝛾₂𝑒−𝛼𝑧 (
𝜕

𝜕𝑥
) + 𝛾₁𝑒−𝛼𝑧 (

𝜕

𝜕𝑦
) , 𝑒2

= −𝛾₁𝑒−𝛼𝑧 (
𝜕

𝜕𝑥
) + 𝛾₂𝑒−𝛼𝑧 (

𝜕

𝜕𝑦
) , 𝑒3 = (

𝜕

𝜕𝑧
). 

Let 𝑔 be the pseudo-metric tensor product given by: 

𝑔 = (𝑘₁² + 𝑘₂²)⁻¹(𝑑𝑥2 + 𝑑𝑦2) + 𝜀𝑑𝑧2 

where 𝑘₁, 𝑘₂  are defined by 𝑘₁(𝑧) = 𝛾₂𝑒−𝛼𝑧, 𝑘₂(𝑧) = 𝛾₁𝑒−𝛼𝑧  with 

𝛾₁² + 𝛾₂² ≠ 0, 𝛼 ≠ 0 for constants 𝛾₁, 𝛾₂  and 𝛼.  It is clear that 

{𝑒₁, 𝑒₂, 𝑒₃} are linearly independent at each point of 𝑀. Moreover, we 
can write the following equations: 
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𝜙(𝑒₃) = 0, 𝜙(𝑒₁) = 𝑒₂, 𝜙(𝑒₂) = −𝑒₁, 

𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝑒3, 𝜂(𝑋) = 𝜀𝑔(𝑒3, 𝑋), 𝜂(𝑒3) = 𝑔(𝑒3, 𝑒3) = 𝜀, 

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜀𝜂(𝑋)𝜂(𝑌) 

for any 𝑋, 𝑌 ∈ 𝛤(𝑇𝑀).  

According to the above equations, we can say that there exists an 

almost contact pseudo-metric structure (𝜙, 𝜉, 𝜂, 𝑔) on 𝑀. In order to 

check, whether it is almost 𝛼-Kenmotsu pseudo metric or not, we 

verify the condition 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷). Hence, we obtain 

𝛷 ((
𝜕

𝜕𝑥
) , (

𝜕

𝜕𝑦
)) = −(𝑘₁² + 𝑘₂²)⁻¹ = −(𝛾₁² + 𝛾₂²)⁻¹𝑒2𝛼𝑧. 

Since 𝜂 = 𝑑𝑧,  we observe that 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷)  on 𝑀.  Here, we 

remark that 𝑁𝜙 = 0.  Thus 𝑀  is an 𝛼 -Kenmotsu pseudo-metric 

manifold and ℎ = 0.  Then using the non-zero components of the 

curvature tensor 𝑅, we obtain that 𝑀 has constant sectional curvature 

𝐾 = −𝜀𝛼2. As a result, Theorem 4 and Theorem 5 are verified. 

Discussion and Conclusion 

Almost Kenmotsu manifolds have been studied extensively 

in Riemannian geometry and have applications in various fields, 

including theoretical physics and mathematical biology, which 

provide a geometric framework for exploring the interplay between 

contact geometry, Riemannian geometry, and symmetries on 

manifolds. While almost Kenmotsu manifolds and local symmetry 

are essential in the theory of manifolds, there is no inherent 

connection between almost Kenmotsu manifolds and local 

symmetry. An almost Kenmotsu manifold may or may not possess 

local symmetry, depending on its specific geometric properties. 

Moreover, it is well known that the existence of the characteristic 



 

--114-- 

 

vector field in a Kenmotsu manifold establishes the connection 

between Kenmotsu manifolds and local symmetry. 

In light of these explanations, this study deals with almost 𝛼-

Kenmotsu pseudo-metric manifolds, which are locally symmetric. 

We present some results about locally symmetric almost 𝛼 -

Kenmotsu pseudo-metric manifolds. Our future works aim to 

investigate semi-symmetric and locally symmetric almost 𝛼 -

Kenmotsu or (pseudo-metric) manifolds on soliton theory. 
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CHAPTER VI 

 

 

Some Results on 𝜶-Kenmotsu Manifolds Admitting 

Ricci Solitons 
 

 

Hakan ÖZTÜRK1 

 

Introduction 

Almost contact structures were discussed by Gray on single 

dimensional spaces with the reduction of the structural group (Gray, 

1959). Later, almost contact metric structures were constructed by 

using the metric tensor (Sasaki & Hatakeyama, 1962). Following 

this work, the same authors presented the normality condition on 

almost contact metric structures.  This condition, which satisfies the 

𝐽² = −𝐼  equation, means that the 𝐽  complex structure can be 

integrable. Cosymplectic manifolds, characterized as a subclass of 

almost contact metric structures, were first studied by Goldberg and 

Yano (Goldberg & Yano, 1969). After this pioneering study, Olszak 
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carried out valuable works on cosymplectic manifolds (Olszak, 

1981, 1989). 

The history of Kenmotsu manifolds begins with their 

introduction by Katsuei Kenmotsu in the early 1970s (Kenmotsu, 

1972). These manifolds were defined as a natural generalization of 

Sasakian manifolds, which are closely related to contact geometry 

and almost Hermitian geometry. The author aimed to describe a 

broader class of manifolds that extend the properties of Sasakian 

manifolds while maintaining certain structural conditions. 

Specifically, Kenmotsu manifolds arise as a generalization of almost 

contact metric structures, where the condition on the derivative of 

the 1-form 𝜂  is modified. Kenmotsu manifolds often appear 

naturally as warped product manifolds. These constructions were 

important in understanding their geometric properties and curvature. 

Whether a Kenmotsu manifold is compact depends on the global 

topology of the manifold. The defining equations of the Kenmotsu 

structure do not guarantee compactness. Also, Kenmotsu warped 

products are a well-studied generalization within the broader family 

of warped product manifolds. They provide a rich field of 

exploration in differential geometry, especially in studying 

curvature, topology, and unique metrics. An almost Kenmotsu 

manifold is not guaranteed to be normal. However, a Kenmotsu 

manifold, a special case of an almost Kenmotsu manifold, is always 

normal. By requiring only the equation 𝑑𝜂 = 𝜂 ∧ Φ , almost 

Kenmotsu manifolds provide more flexibility in constructing 

examples. This equation makes them more adaptable for 

applications in theoretical physics, cosmology, and other fields 
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where less restrictive geometric structures may better model certain 

phenomena. 

Furthermore, by generalizing almost Kenmotsu structures, 

almost 𝛼-Kenmotsu manifolds were defined (Janssens & Vanhecke, 

1981). Later, almost 𝛼 -Kenmotsu and almost cosymplectic 

structures were combined to define almost 𝛼 -cosymplectic 

manifolds, a subclass of almost contact metric manifolds (Kim & 

Pak, 2005). 

Nowadays, the study of Kenmotsu manifolds under specific 

geometric flows (e.g., Ricci flow) has produced interesting results. 

For almost Kenmotsu structures, the relaxed conditions allow for a 

more diverse range of curvature properties to be studied, including 

Ricci solitons, Einstein metrics, and specific curvature constraints 

related to almost contact structures. An important tool in differential 

geometry and general relativity, the Ricci flow describes the time 

evolution of the metric tensor field on a manifold. It was first 

introduced by Hamilton (Hamilton, 1982). Hamilton introduced the 

most significant step in proving the Poincaré hypothesis. 

Subsequently, Hamilton carried out a study of Ricci flow on surfaces 

(Hamilton, 1988). However, the metric could generate ‘singularities’ 

during the Ricci flow. For example, the curvature of a region could 

approach infinity. Understanding and managing such situations is an 

important part of the mathematical theory of Ricci flow. Specialized 

methods called ‘surgery’ have been developed to resolve these 

singularities, which causes the flow to stop. To solve this problem, 

Perelman went to a classification of 3-dimensional manifolds. In 

other words, Perelman used a new method to free the flow from 
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singularities (Perelman, 2002). As a result, the Poincaré hypothesis 

was eventually solved. 

The Ricci flow is used to ‘flatten’ the curvature structure of 

a manifold. The time-dependent metric tensor modulates the 

curvature distribution and, in some cases, gives information about 

the topological structure of the manifold. This process can be 

analogized with the heat equation. Just as the heat equation smooths 

the temperature differences with time, the Ricci flow stabilizes the 

curvature differences of the manifold with time. Ricci solitons arise 

from the Ricci flow throughout the process. Ricci solitons show the 

formation of singularities in the Ricci flow and appear as self-similar 

solutions. When we look at the literature, we see that Riemannian 

manifolds with Einstein-like structures are investigated to find 

examples of Ricci solitons. Ricci solitons have an important place, 

especially in physics. They are usually expressed as quasi Einstein. 

Thus, the subject of Ricci solitons has become an important research 

area (Tripathi, 2008), (Yadav & Öztürk, 2019), (Öztürk & Yadav, 

2023), (Öztürk & Bektaş, 2023). 

In this study, Ricci solitons on 𝛼-Kenmotsu manifolds are 

investigated. In particular, some results are obtained for 𝛼 -

Kenmotsu manifolds admitting Ricci solitons with 𝜂-Einstein, Ricci 

recurrent, generalized Ricci recurrent, and generalized recurrent 

conditions.  

 

Preliminaries 

An almost contact manifold is an odd-dimensional manifold 𝑀 

which carries a field 𝜙 of endomorphisms of the tangent spaces, a 

vector field 𝜉, called characteristic or Reeb vector field, and a 1-form 𝜂 
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satisfying 𝜙² = −𝐼 + 𝜂 ⊗ 𝜉  and 𝜂(𝜉) = 1,  where 𝐼: 𝑇𝑀 → 𝑇𝑀  is 

the identity mapping. From the definition it follows also that 𝜙𝜉 = 0,
𝜂 ∘ 𝜙 = 0 and that the (1,1)-tensor field 𝜙 has constant rank 2𝑛 (Blair, 

1976). An almost contact manifold (𝑀, 𝜙, 𝜉, 𝜂) is said to be normal 

when the tensor field 𝑁 

𝑁 = [𝜙, 𝜙] + 2𝑑𝜂 ⊗ 𝜉                                                                 (1) 

vanishes identically, [𝜙, 𝜙] denoting the Nijenhuis tensor of 𝜙. It is 

well known that any almost contact manifold (𝑀, 𝜙, 𝜉, 𝜂) admits a 

Riemannian metric 𝑔 such that 

 𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)                                              (2) 

for any vector fields 𝑋, 𝑌 on 𝑀. This metric 𝑔 is called a compatible 

metric and the manifold 𝑀 together with the structure (𝑀, 𝜙, 𝜉, 𝜂) is 
said to be an almost contact metric manifold. As an immediate 
consequence of Eq. (2), one has 

𝜂(𝑋) = 𝑔(𝑋, 𝜉).                                                                     (3) 

The 2-form 𝛷 of 𝑀 defined by  

Φ(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌)                                                              (4) 

is called the fundamental 2-form of the almost contact metric manifold 

𝑀. Almost contact metric manifolds such that both 𝜂 and 𝛷 are closed 
are called almost cosymplectic manifolds. Also, an almost contact 

metric manifolds such that 𝑑𝜂 = 0  and 𝑑𝛷 = 2𝜂 ∧ 𝛷  are almost 
Kenmotsu manifolds (Kenmotsu, 1972). A normal almost 
cosymplectic manifold is a cosymplectic manifold, and a normal almost 
Kenmotsu manifold is a Kenmotsu manifold. Moreover, an almost 

contact metric manifold 𝑀 is said to be an almost 𝛼-Kenmotsu if  

𝑑𝜂 = 0, 𝑑𝛷 = 2𝛼(𝜂 ∧ 𝛷).                                                                 
(5) 

Here, 𝛼 is a non-zero real constant. In a special case, for 𝛼 = 1, 𝑀 is 

an almost Kenmotsu manifold. The normal almost 𝛼 -Kenmotsu 

manifold is also called an 𝛼 -Kenmotsu manifold. Geometrical 
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properties and examples of almost 𝛼-Kenmotsu manifolds are studied 
by many authors (Jensens & Vanhecke, 1981), (Olszak, 1981), (Kim & 
Pak, 2005).  

Proposition 1. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  a (2𝑛 + 1) -dimensional 

almost 𝛼-Kenmotsu manifold. 𝑀 is 𝛼-Kenmotsu manifold if and only 
if 

    (𝛻𝑋𝜙)𝑌 = 𝛼[𝑔(𝜙𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝜙𝑋]                                           (6) 

for any 𝑋, 𝑌 ∈ 𝜒(𝑀) (Öztürk, 2021). 

      Proposition 2. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  a (2𝑛 + 1) -dimensional 𝛼 -

Kenmotsu manifold. Then the following curvature properties are 

satisfied: 

      𝛻𝑋𝜉 = 𝛼𝑋 − 𝛼𝜂(𝑋)𝜉                                                           (7) 

(𝛻𝑋𝜂)𝑌 = 𝛼[𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)]                                               (8) 

 𝑅(𝑋, 𝑌)𝜉 = −(𝛼² + 𝜉(𝛼))[𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]                  (9) 

𝑅(𝑋, 𝜉)𝑌 = (𝛼² + 𝜉(𝛼))[𝑔(𝑌, 𝑋)𝜉 − 𝜂(𝑌)𝑋]                (10) 

   𝑅(𝑋, 𝜉)𝜉 = (𝛼² + 𝜉(𝛼))𝜙²𝑋                                        (11) 

              𝜂(𝑅(𝑋, 𝑌)𝑍) = (𝛼² + 𝜉(𝛼))[−𝜂(𝑋)𝑔(𝑌, 𝑍) +

𝜂(𝑌)𝑔(𝑋, 𝑍)]                          (12) 

𝑆(𝑋, 𝜉) = −2(𝛼² + 𝜉(𝛼))𝑛𝜂(𝑋)                                     (13) 

  𝑄𝜉 = −2(𝛼² + 𝜉(𝛼))𝑛𝜉                                                (14)  

𝑆(𝜙𝑋, 𝜙𝑌) = (𝛼2 + 𝜉(𝛼))𝑆(𝑋, 𝑌) + 2𝑛(𝛼2 + 𝜉(𝛼))𝜂(𝑋)𝜂(𝑌)  (15) 

for any 𝑋, 𝑌 ∈ 𝜒(𝑀).  

Here 𝛼 is a differentiable function such that 𝑑𝛼 ∧ 𝜂 = 0 (Öztürk et 

al., 2017). 
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      Definition 1. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  a (2𝑛 + 1) -dimensional 𝛼 -

Kenmotsu manifold. For any  𝑋, 𝑌 ∈ 𝜒(𝑀), if the following condition 

holds 

 𝑆(𝑋, 𝑌) = 𝜇₁𝑔(𝑋, 𝑌) + 𝜇₂𝜂(𝑋)𝜂(𝑌)                                           (16) 

then 𝑀 is an 𝜂-Einstein manifold, where 𝜇₁ and 𝜇₂ are functions on 

𝑀 . In special case, when 𝜇₂ = 0, 𝑀  is an Einstein manifold (Blair, 

1976). 

      Proposition 3. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  a (2𝑛 + 1) -dimensional 𝛼 -

Kenmotsu manifold. Then we have, 

   𝜇₁ + 𝜇₂ = −2𝑛𝛼²                                                                  (17) 

    𝑟 = 𝜇₁(2𝑛 + 1) + 𝜇₂                                                           (18) 

      𝜇₁ =
𝑟+2𝑛𝛼²

(2𝑛+1)−1
                                                                     (19) 

    𝜇₂ = [
2𝑛(𝛼2+𝑟)+𝑟

(2𝑛+1)−1
]                                                               (20) 

for any 𝑋, 𝑌 ∈ 𝜒(𝑀). Here, 𝑟 is scalar curvature on 𝑀 and 𝛼 is parallel 

along the characteristic vector field 𝜉 (Öztürk & Bektaş, 2023). 

 

𝜶-Kenmotsu Structures Admitting Ricci Solitons 

Definition 2. (𝑀, 𝑔₀) be an 𝑛-dimensional Riemannian manifold. 
The following partial differential equation is said to be a Ricci flow 

which modifies the metric tensor 𝑔: 

       
𝜕

𝜕𝑠
(𝑔(𝑠)) + 2𝑆(𝑔(𝑠)) = 0, 𝑔(0) = 𝑔₀                  (21) 

 (Hamilton, 1982). 

Definition 3. (𝑀, 𝑔) be an n-dimensional Riemannian manifold. 
If the following equation  



 

--126-- 

 

    (𝐿𝑉 𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌) + 2𝜆𝑔(𝑋, 𝑌) = 0                            (22) 

holds, then (𝑀, 𝑔) is said to be a Ricci soliton for arbitrary vector fields 

𝑋, 𝑌, 𝑉 on 𝑀. Here, 𝜆 is a real scalar, the vector field 𝑉 is the potential 

vector field of the Ricci soliton, and 𝐿𝑉𝑔 is the Lie derivative of the 𝑔 

metric in the 𝑉 direction. In this case, the Ricci soliton is denoted by 

(𝑀, 𝑔, 𝑉, 𝜆).  The Ricci soliton (𝑀, 𝑔, 𝑉, 𝜆)  is called the shrinking, 

steady and expanding Ricci soliton for the cases 𝜆 < 0, 𝜆 = 0 and  

𝜆 > 0, respectively (Hamilton, 1988). 

Definition 4. Let (𝑀, 𝑔)  be an 𝑛 -dimensional Riemannian 

manifold and 𝐿𝑉𝑔 be the Lie derivative of the metric 𝑔 in the direction 

𝑉. Then, we have     

   (𝐿𝑉𝑔)(𝑋, 𝑌) = 𝑔(∇𝑋𝑉, 𝑌) + 𝑔(𝑋, 𝛻𝑌𝑉)                                  (23) 

(Yano & Kon, 1984). 

Definition 5. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional 𝛼-

Kenmotsu manifold.  If there exists a Ricci soliton (𝑔, 𝑉, 𝜆) on 𝑀 , 

(𝑀, 𝑔, 𝑉, 𝜆)  is called an 𝛼 -Kenmotsu manifold admitting a Ricci 
soliton (Hamilton, 1988), (Kenmotsu, 1972). 

       

Proposition 4. Let (𝑀, 𝑔, 𝑉, 𝜆)  be a (2𝑛 + 1)-dimensional 𝛼 -
Kenmotsu manifold admitting a Ricci soliton. If the potential vector 

field 𝑉  is given as the characteristic vector field 𝜉 , then the Ricci 
curvature tensor field holds                                                

  𝑆(𝑋, 𝑌) = −(𝛼 + 𝜆)𝑔(𝑋, 𝑌) + 𝛼𝜂(𝑋)𝜂(𝑌).                      (24) 

Here, 𝛼  is parallel along the characteristic vector field 𝜉  (Öztürk & 
Bektaş, 2023). 

 

Proposition 5. Let (𝑀, 𝑔, 𝑉, 𝜆)  be a (2𝑛 + 1)-dimensional 𝛼 -
Kenmotsu manifold admitting a Ricci soliton.  If the potential vector 

field 𝑉 is given as the characteristic vector field 𝜉, then the curvature 

properties of 𝑀  are held:                                              
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𝑆(𝑋, 𝜉) = −𝜆𝜂(𝑋)                                                            (25) 

𝑄𝑋 = 𝛼𝜂(𝑋)𝜉 − (𝛼 + 𝜆)𝑋                                                      (26) 

       𝑄𝜉 = −𝜆𝜉,                                                                      (27) 

  𝑆(𝜉, 𝜉) = −𝜆                                                                        (28) 

   𝑟 = 𝛼 − (2𝑛 + 1)(𝛼 + 𝜆).                                                 (29) 

Here, 𝛼  is parallel along the characteristic vector field 𝜉  (Öztürk & 
Bektaş, 2023). 

Theorem 1. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  a (2𝑛 + 1) -dimensional 𝜂 -

Einstein 𝛼-Kenmotsu manifold. Then, we have 

𝑆(𝑋, 𝑌) = (𝛼² + 𝑟/2𝑛)𝑔(𝑋, 𝑌) − [𝑟/2𝑛 + 𝛼²(2𝑛 + 1)]𝜂(𝑋)𝜂(𝑌)      (30) 

(Öztürk, 2022). 

Main Results 

In this chapter, Ricci solitons on 𝛼-Kenmotsu manifolds are 

studied. Some results are obtained for 𝛼 -Kenmotsu manifolds 

admitting Ricci solitons using 𝜂 -Einstein, Ricci recurrent, 

generalized Ricci recurrent, and generalized recurrent conditions. 

Theorem 2. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  be a (2𝑛 + 1) -dimensional  𝛼 -

Kenmotsu manifold. If, for 𝑛 ≥ 1, 𝑀 has 𝜂-Einstein structure, then 

the Ricci soliton (𝑔, 𝜉, 𝜆), which is given by varying scalar curvature, is 

everywhere expanding. Here, 𝛼  is parallel along the characteristic 

vector field 𝜉. 

Proof. From Eq. (30), we note that 𝑀 is an 𝜂 -Einstein 𝛼 -

Kenmotsu manifold. Let us show that the Ricci soliton structure on 𝑀 
has a varying scalar curvature. A symmetric parallel covariant tensor 

field ℎ(𝑋, 𝑌) on 𝑀, for  𝑉 = 𝜉, we have 

 ℎ(𝑋, 𝑌) = (𝐿𝜉𝑔)(𝑋, 𝑌) + 2𝑆(𝑋, 𝑌).                                    (31) 

By using Eqs. (23) and (30), Eq. (31) takes the form 
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ℎ(𝑋, 𝑌)   =  2[𝑟/2𝑛 + 𝛼(𝛼 + 1)]𝑔(𝑋, 𝑌)                                (32) 

  −2[𝑟/2𝑛 + 𝛼(1 + (2𝑛 + 1)𝛼)]𝜂(𝑋)𝜂(𝑌). 

Then taking the covariant derivative of both sides of Eq. (32) with 

respect to the vector field 𝑊, for 𝑊 = 𝜉, 𝑋, 𝑌 ∈ {𝑆𝑝}⊥, and 𝛻ℎ = 0, 
we get 

𝛻𝜉𝑟 + 2𝑛𝛻𝜉(𝛼² + 𝛼) = 0                                                   (33) 

where  𝛻𝜉𝛼 = 0. If we integrate both sides of  Eq. (33) with respect 

to 𝜉, we deduce 

𝑟 = 𝑐.                                                                           (34) 

Here, 𝑐  is an integral constant. Therefore, Ricci solitons exist with 

scalar curvature on 𝑀. We shall finally investigate the (𝑔, 𝜉, 𝜆) Ricci 
soliton. With the help of Eq. (22), it can be written as 

ℎ(𝑋, 𝑌) = −2𝜆𝑔(𝑋, 𝑌).                                                       (35) 

If we replace 𝑋 and 𝑌 by 𝜉 in Eq. (35), it follows that 

ℎ(𝜉, 𝜉) = −4𝑛𝛼2.                                                               (36) 

Then taking into account of Eqs. (35) and (36), we obtain 

𝜆 = 2𝑛𝛼².                                                                      (37) 

Since 𝛼 is parallel along the characteristic vector field 𝜉, 𝛼 is constant 

along 𝜉. Therefore, 𝜆 will be positive which completes the proof. 

Corollary 1. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔) be a 3-dimensional 𝛼-Kenmotsu 

manifold. If 𝑀  has 𝜂 -Einstein structure, then the Ricci soliton 

(𝑔, 𝜉, 𝜆),  which is given by varying scalar curvature, is everywhere 

expanding. Here, 𝛼 is parallel along the characteristic vector field 𝜉. 

İspat. Let us assume that 𝑀 is a 3-dimensional 𝛼 -Kenmotsu 

manifold. Then, we have 

𝑅(𝑋, 𝑌)𝑍  =  −𝑔(𝑋, 𝑍)𝑄𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋 + 𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌(38) 
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  +(𝑟/2)[𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋]  

(De & Pathak, 2004). If 𝜉 is replaced by 𝑍 in Eq. (38) and then the 

required arrangements are carried out, it yields 

𝜂(𝑌)𝑄𝑋 − 𝜂(𝑋)𝑄𝑌 + (2𝛼2 +
𝑟

2
) [𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]                  (39) 

= 𝛼²[𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]. 

Again, if 𝜉 replaces 𝑌 in Eq. (39), we have 

𝑄𝑋 = (
𝑟

2
+ 𝛼2) 𝑋 − (

𝑟

2
+ 3𝛼2) 𝜂(𝑋)𝜉.                                  (40) 

If the inner product of both sides of Eq. (40) with respect to the vector 

field 𝑊, Eq. (40) reduces to 

𝑆(𝑋, 𝑊) = (
𝑟

2
+ 𝛼2) 𝑔(𝑋, 𝑊) − (

𝑟

2
+ 3𝛼2) 𝜂(𝑋)𝜂(𝑊).     (41) 

In this case, the 3 -dimensional 𝛼 -Kenmotsu manifold has an 𝜂 -

Einstein structure. Using the methodology in Theorem 2, we shall 

prove that the Ricci soliton has a varying scalar curvature. So then, we 

deduce 

 ℎ(𝑋, 𝑊) = 2 [
𝑟

2
+ 𝛼2 + 𝛼] 𝑔(𝑋, 𝑊) − 2 [

𝑟

2
+ 3𝛼2 + 𝛼] 𝜂(𝑋)𝜂(𝑊).(42) 

Taking the covariant derivative of both sides of Eq. (42) with respect 

to the vector field 𝑊 = 𝜉, for 𝑊 = 𝜉 and 𝛻ℎ = 0, we find 

𝛻𝜉𝑟 + 2𝛻𝜉(𝛼² + 𝛼) = 0.                                                  (43) 

Here, due to the hypothesis, we note that 𝛻𝜉𝛼 = 0. If both sides of Eq. 

(43) can be integrated with respect to 𝜉, one can see that 𝑟 = 𝑐. This 

means that the (𝑔, 𝜉, 𝜆)  Ricci soliton on the 3 -dimensional 𝛼 -

Kenmotsu manifold has a scalar varying curvature. This ends the proof. 
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Definition 6. Let (𝑀, 𝑔)  be an 𝑛 -dimensional Riemannian 

manifold and 𝛻 be a Levi-Civita connection on 𝑀. Then, we have     

 (𝛻𝑍𝑆)(𝑌, 𝜉) = 𝛻𝑍𝑆(𝑌, 𝜉) − 𝑆(𝛻𝑍𝑌, 𝜉) − 𝑆(𝑌, 𝛻𝑍𝜉)                  (44) 

(Blair, 1976). 

Lemma 1. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  be a (2𝑛 + 1) -dimensional 

recurrent or 𝜙-recurrent Kenmotsu manifold. The characteristic vector 

field 𝜉 and the 𝐵 1-form associated with an arbitrary vector field 𝜌 are 

co-directional. Also, 𝐵 is defined by 

𝐵(𝑍) = 𝜂(𝜌)𝜂(𝑍).                                                                 (45) 

Here, when 𝑍 replaces 𝜉, we have 

𝐵(𝜉) = 𝜂(𝜌)                                                                (46) 

(De et al., 2009). 

Definition 7. Let (𝑀, 𝑔) be an 𝑛-dimensional Riemannian 

manifold. If there exists a non-zero 1-form 𝐵 on 𝑀 such that 

(𝛻𝑍𝑆)(𝑋, 𝑌) = 𝐵(𝑍)𝑆(𝑋, 𝑌)                                                  (47) 

then 𝑀 is said to be a Ricci-recurrent manifold (De et al., 2009). 

Theorem 3. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  be a (2𝑛 + 1) -dimensional 𝛼 -

Kenmotsu manifold with 1 -form 𝐵 . If 𝑀  is a Ricci-recurrent 𝛼 -

Kenmotsu manifold for 𝑛 ≥ 1, then the (𝑔, 𝜉, 𝜆) Ricci soliton on 𝑀 

satisfies the following conditions: 

    (i) expanding if 𝛼 > 0 and 𝐵(𝜉) < 𝛼 , or 𝛼 < 0 and 𝐵(𝜉) >

𝛼, 

    (ii) shrinking if 𝛼 > 0 and 𝐵(𝜉) > 𝛼, or 𝛼 < 0 and 𝐵(𝜉) < 𝛼, 

    (iii) steady if 𝐵(𝜉) = 𝛼. 
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Here, 𝛼 is parallel along the characteristic vector field 𝜉. 

Proof. Let 𝑀 be a Ricci-recurrent 𝛼-Kenmotsu manifold. Then 

Eqs. (45) and (46) holds.  If 𝑌 replaces 𝜉 in Eq. (47) and makes use of 

Eq. (13), we have 

(𝛻𝑍𝑆)(𝑋, 𝜉) = 𝐵(𝑍)𝑆(𝑋, 𝜉)                                                        (48) 

and 

  (𝛻𝑍𝑆)(𝑋, 𝜉) = −2𝑛𝛼²𝐵(𝑍)𝜂(𝑋)                                               (49) 

such that 𝛻𝜉𝛼 = 0. With the help of Eqs. (7), (25), and (44), the left 

side of Eq. (49) takes the form 

−𝛻𝑍𝜆𝜂(𝑋) − 𝑆(𝛻𝑍𝑋, 𝜉) − 𝛼𝑆(𝑋, 𝑍) − 𝛼𝜆𝜂(𝑋)𝜂(𝑍). 

By arranging the last formula, it follows that 

(𝛻𝑍𝑆)(𝑋, 𝜉)   =  −𝜆𝑔(𝛼𝑍 − 𝛼𝜂(𝑍)𝜉, 𝑋) 

  −𝛼𝑆(𝑋, 𝑍) − 𝛼𝜆𝜂(𝑋)𝜂(𝑍) 

and(𝛻𝑍𝑆)(𝑋, 𝜉) = −𝛼[2𝑛𝛼²𝑔(𝑋, 𝑍) + 𝑆(𝑋, 𝑍)]                                  (50) 

If the Eqs. (49) and (50) are to be taken into account, we obtain 

−2𝑛𝛼2𝐵(𝑍)𝜂(𝑋) + 𝛼𝜆𝑔(𝑋, 𝑍) + 𝛼𝑆(𝑋, 𝑍) = 0.                      (51) 

Since 𝛼 is constant along 𝜉 and 𝛼 ≠ 0, Eq. (51) yields 

𝑆(𝑋, 𝑍) = −2𝑛𝛼[𝛼𝑔(𝑋, 𝑍) − 𝐵(𝑍)𝜂(𝑋)].                                  (52) 

Putting 𝑋 = 𝜉 in Eq. (52), we have 

𝑆(𝑍, 𝜉) = 2𝑛𝛼𝐵(𝑍) − 2𝑛𝛼2𝜂(𝑍).                                              (53) 

Using Lemma 1 for 𝑋 = 𝜉, Eq. (53) can be written as 

𝑆(𝜉, 𝜉) = −2𝑛𝛼𝜂(𝜉)[𝛼 − 𝜂(𝜌)].                                                 (54) 
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In view of Eq. (46), Eq. (54) becomes 

𝑆(𝜉, 𝜉) = −2𝑛𝛼[𝛼 − 𝐵(𝜉)].                                                       (55) 

Taking into account of Eq. (28) in Eq. (55), we get 

𝜆 = 2𝑛𝛼(𝛼 − 𝐵(𝜉)).                                                          (56) 

Thus, since 𝛼 ≠ 0 and 𝑛 ≥ 1, the proof of all cases is clear using Eq. 

(56). It completes the proof. 

Definition 8. Let (𝑀, 𝑔) be an 𝑛-dimensional Riemannian 

manifold. If there exist non-zero 1-forms 𝐴 and 𝐵 on 𝑀 such that 

(𝛻𝑍𝑅)(𝑋, 𝑌)𝑊 = 𝐴(𝑍)𝑅)(𝑋, 𝑌)𝑊 + 𝐵(𝑍)[𝑔(𝑌, 𝑊)𝑋 − 𝑔(𝑋, 𝑊)𝑌]  (57) 

then 𝑀 is said to be a generalized recurrent manifold. Here, there 

exist vector fields 𝑈 and 𝑉 such that 

𝐴(𝑍) = 𝑔(𝑍, 𝑈), 𝐵(𝑍) = 𝑔(𝑍, 𝑉)                                           (58) 

 (De & Guha, 1991). 

Theorem 4. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  be a (2𝑛 + 1) -dimensional 𝛼 -

Kenmotsu manifold with 1 -forms 𝐴  and 𝐵 . If 𝑀  is a generalized 

recurrent 𝛼 -Kenmotsu manifold for 𝑛 ≥ 1 , then the (𝑔, 𝜉, 𝜆) Ricci 

soliton on 𝑀 satisfies the following conditions: 

    (i) expanding if 𝛼 > 0 and 𝐵(𝜉) < (
2𝑛−1

2𝑛+1
) 𝛼𝐴(𝜉), 

    (ii) shrinking if 𝛼 < 0 and 𝐵(𝜉) > (
2𝑛−1

2𝑛+1
) 𝛼𝐴(𝜉), 

    (iii) steady if 𝛼 > 0 and 𝐵(𝜉) = (
2𝑛−1

2𝑛+1
) 𝛼𝐴(𝜉). 

Here, 𝛼 is parallel along the characteristic vector field 𝜉. 
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Proof. By the hypothesis, we assume that 𝑀  is a generalized 

recurrent 𝛼-Kenmotsu manifold. Then, by the second Bianchi identity 

for arbitrary vector fields on 𝑀, we get 

𝐴(𝑍)𝑅(𝑋, 𝑌)𝑊 + 𝐵(𝑍)[𝑔(𝑌, 𝑊)𝑋 − 𝑔(𝑋, 𝑊)𝑌]                      (59) 

𝐴(𝑋)𝑅(𝑌, 𝑍)𝑊 + 𝐵(𝑋)[𝑔(𝑍, 𝑊)𝑌 − 𝑔(𝑌, 𝑊)𝑍] 

+𝐴(𝑌)𝑅(𝑍, 𝑋)𝑊 + 𝐵(𝑌)[𝑔(𝑋, 𝑊)𝑍 − 𝑔(𝑍, 𝑊)𝑋] = 0. 

Contracting Eq. (59) with 𝑋, we obtain 

𝐴(𝑍)𝑆(𝑌, 𝑊) + (2𝑛 + 1)𝐵(𝑍)𝑔(𝑌, 𝑊) + 𝑅(𝑌, 𝑍, 𝑊, 𝑈)          (60) 

+𝐵(𝑌)𝑔(𝑍, 𝑊) − 𝐵(𝑍)𝑔(𝑌, 𝑊) − 𝐴(𝑌)𝑆(𝑍, 𝑊)
− (2𝑛 + 1)𝐵(𝑌)𝑔(𝑍, 𝑊) = 0. 

Again, by contracting Eq. (60) with 𝑌 and 𝑊, we have 

𝑟𝐴(𝑍) + 2𝑛(2𝑛 + 1)𝐵(𝑍) − 2𝑆(𝑍, 𝑈) = 0.                            (61) 

Replacing 𝑍 by 𝜉 in (61), Eq. (61) becomes 

𝑟𝜂(𝑈) + 2𝑛(2𝑛 + 1)𝜂(𝑉) − 2𝑆(𝑈, 𝜉) = 0.                               (62) 

Make use of Eqs. (25) and (29) in Eq. (62), it follows that 

[𝛼 − (2𝑛 + 1)(𝛼 + 𝜆)]𝜂(𝑈) − 2𝑛(2𝑛 + 1)𝜂(𝑉) + 2𝜆𝜂(𝑈) = 0. (63) 

Arranging the last equation, Eq. (63) turns into 

𝜆 = −
2𝑛(2𝑛+1)𝜂(𝑉)

(2𝑛−1)𝜂(𝑈)
+ 2𝑛𝛼.                                           (64) 

Applying Lemma 1 for 𝑈 = 𝑉 = 𝜉, we have 

𝜆 = −
2𝑛(2𝑛+1)𝐵(𝜉)

(2𝑛−1)𝐴(𝜉)
+ 2𝑛𝛼.                                           (65) 

Here, 𝛼 is constant along 𝜉 and 𝛼 ≠ 0. When 𝜆 <  0, Eq. (65) holds  

𝐵(𝜉) > (
2𝑛−1

2𝑛+1
) 𝛼𝐴(𝜉)                                                  (66) 
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for 𝛼 <  0, such that 𝐴(𝜉) ≠ 0. Also, when 𝜆 >  0, Eq. (65) holds 

𝐵(𝜉) < (
2𝑛−1

2𝑛+1
) 𝛼𝐴(𝜉)                                                  (67) 

where 𝛼 > 0. Finally, in the case 𝜆 =  0, we obtain 

𝐵(𝜉) = (
2𝑛−1

2𝑛+1
) 𝛼𝐴(𝜉)                                                 (68) 

where 𝛼 > 0. This conclusion completes the proof. 

Definition 9. Let (𝑀, 𝑔)  be an 𝑛 -dimensional Riemannian 

manifold. If there exist non-zero 1-forms 𝐴 and 𝐵 on 𝑀 such that 

(𝛻𝑍𝑆)(𝑌, 𝑊) = 𝐴(𝑍)𝑆(𝑌, 𝑊) + 2𝑛𝐵(𝑍)𝑔(𝑌, 𝑊)                      (69)                                

then 𝑀 is said to be a generalized recurrent manifold. Here, there exist 

vector fields 𝑌 and 𝑊 such that 

 𝐴(𝑍) = 𝑔(𝑍, 𝑌), 𝐵(𝑍) = 𝑔(𝑍, 𝑊)                                  (70) 

 (De & Guha, 1991). 

Theorem 5. Let (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  be a (2𝑛 + 1) -dimensional 𝛼 -

Kenmotsu manifold with 1-forms A and 𝐵. If 𝑀 is a generalized Ricci-

recurrent 𝛼 -Kenmotsu manifold for 𝑛 ≥ 1 , then the (𝑔, 𝜉, 𝜆) Ricci 

soliton on 𝑀 satisfies the following conditions:  

    (i) expanding if 𝛼 > 0 and 𝐵(𝜉) > 𝛼²(𝐴(𝜉) − 𝛼) , or 𝛼 < 0  and 

𝐵(𝜉) < 𝛼²(𝐴(𝜉) − 𝛼), 

    (ii) shrinking if 𝛼 > 0  and 𝐵(𝜉) < 𝛼²(𝐴(𝜉) − 𝛼) , or 𝛼 < 0  and 

𝐵(𝜉) > 𝛼²(𝐴(𝜉) − 𝛼), 

    (iii) steady if 𝐵(𝜉) = 𝛼2(𝐴(𝜉) − 𝛼). 

Here, 𝛼 is parallel along the characteristic vector field 𝜉. 
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Proof. Let us assume that 𝑀  is a generalized Ricci-recurrent 𝛼 -

Kenmotsu manifold and 𝛻𝜉𝛼 = 0.   Replacing 𝑊 = 𝜉 in Eq. (69), we 

have 

(𝛻𝑍𝑆)(𝑌, 𝜉) = 𝐴(𝑍)𝑆(𝑌, 𝜉) + 2𝑛𝐵(𝑍)𝜂(𝑌).                               (71) 

Follows from Eq. (71), we get 

(𝛻𝑍𝑆)(𝑌, 𝜉) =  −2𝑛𝜂(𝑌)[𝛼2𝐴(𝑍) − 𝐵(𝑍)].                               (72) 

Moreover, using Eqs. (7), (13) and (44), we deduce 

   (𝛻𝑍𝑆)(𝑌, 𝜉) = −𝛼[𝑆(𝑌, 𝑍) + 2𝑛𝛼2𝑔(𝑌, 𝑍)].                            (73) 

According to Eqs. (72) and (73), we obtain 

𝑆(𝑌, 𝑍) = −2𝑛𝛼2𝑔(𝑌, 𝑍) + 2𝑛 [𝛼𝐴(𝑍) − (
1

𝛼
) 𝐵(𝑍)] 𝜂(𝑌).        (74) 

Putting 𝑌 = 𝑍 = 𝜉 in Eq. (74), Eq. (74) becomes 

𝑆(𝜉, 𝜉) = −2𝑛𝛼2 + 2𝑛 [𝛼𝐴(𝜉) − (
1

𝛼
) 𝐵(𝜉)].                             (75) 

Using Eq. (28) in Eq. (75),  we get 

𝜆 = 2𝑛[𝛼² − 𝛼𝐴(𝜉) + (1/𝛼)𝐵(𝜉)].                                            (76) 

Here, 𝑛 ≥ 1 and 𝛼 ≠ 0. Considering Eq. (76), in order to  𝜆 vanishes, 
the following condition is held: 

𝛼² − 𝛼𝐴(𝜉) + (1/𝛼)𝐵(𝜉) = 0.                                             (77) 

This means that 

𝐵(𝜉) = −𝛼²(𝛼 − 𝐴(𝜉)).                                                      (78) 

Therefore, the case (iii) is obvious from Eq. (78). Finally, for the other 
two cases, we have the following inequalites as follows: 

(
1

𝛼
) 𝐵(𝜉) > −𝛼2 + 𝛼𝐴(𝜉), (

1

𝛼
) 𝐵(𝜉) < −𝛼2 + 𝛼𝐴(𝜉) 
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where 𝛼 ≠ 0. This ends the proof. 

Discussion and Conclusion 

Ricci solitons and Einstein manifolds are two important 

concepts in Riemannian geometry defined based on the Ricci tensor. 

These two structures have an important relationship because Ricci 

solitons can be seen as a generalized form of Einstein manifolds. If 

𝑉 = 0, the Ricci soliton coincides with the Einstein metric. In this 

case, 𝑆 = 𝜆𝑔, , where 𝜆 is an Einstein constant. That is, Einstein 

manifolds are a special subclass of Ricci solitons. Ricci solitons offer 

more general geometric structures by relaxing the constant curvature 

condition of the Einstein metric. Here, the vector field 𝑉 can be seen 

as a ‘deformation’ of the metric. Ricci solitons are stable point 

solutions of the Ricci flow (solutions that change with measure or 

transformation). On the other hand, Einstein manifolds represent a 

more remarkable case of the Ricci flow since these solutions have 

fixed points that do not change with time. Ricci solitons have a wider 

range of behavior due to the vector field 𝑉. For example; a manifold 

can shrink, expand, or be steady under Ricci flow differently than 

Einstein manifolds. Hence, Ricci solitons are a fundamental 

construction stone of geometric analysis and offer a broader 

perspective on the way to Einstein manifolds. 

In Kenmotsu manifolds, the Reeb vector field 𝜉 may have a 

special relationship with the potential vector field 𝑉  of the Ricci 

soliton. For example, when 𝑉 = 𝜉,  the Ricci soliton equation is 

compatible with the curvature conditions on the Kenmotsu manifold. 

The existence of Ricci solitons can topologically classify some 

special subclasses of Kenmotsu manifolds. Moreover, Ricci solitons 
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provide a more flexible framework for studying the relation of 

Kenmotsu manifolds with Einstein structures. 

Recurrent manifolds have a special recurrence structure of 

the Riemannian tensor. Since the Ricci tensor is obtained from a 

trace derivative of the Riemannian tensor, a direct relation between 

the Ricci soliton equation and the properties of recurrent manifolds 

can be established. If the Riemannian tensor on a recurrent manifold 

is repeated with a constant coefficient (𝑐(𝑥) is constant), this can 

lead to the Ricci tensor having a similar recurrent structure. This case 

may produce a structure compatible with the Ricci soliton on the 

manifold. If a recurrent manifold is compatible with the Ricci soliton 

equation with constants 𝑐(𝑥) and 𝜆, then this manifold displays a 

measured deformation under the Ricci flow. In particular, it is 

noticed that recurrent manifolds on constant Ricci solitons (𝜆 =  0) 

offer a more natural structure. Symmetric and semi-symmetric 

manifolds, a special subclass of recurrent manifolds, may offer a 

more appropriate framework for Ricci solitons. Here, the Lie 

derivative becomes compatible with the symmetry conditions of the 

manifold. Recurrent manifolds refer to a special behavior of the 

curvature tensor and the Ricci tensor. At the same time, Ricci 

solitons are used to investigate these tensors' dynamical and time-

varying structures. Together, these two concepts provide a broader 

understanding of the curvature properties of manifolds. 

In light of this knowledge, this study is dedicated to obtaining 

results on 𝛼 -Kenmotsu manifolds admitting Ricci solitons with 

some tensor conditions. Our further studies aim to obtain results on 

almost 𝛼-Kenmotsu manifolds under semi-symmetric spaces, local 
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symmetry, and 𝐷 -homothetic deformation on different Ricci 

solitons.   
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CHAPTER VII 

 

 

Bijective Soft Rough Sets 

 

 

Nurettin BAĞIRMAZ1 
 

1  Introduction 

More sophisticated and effective mathematical methods are 

needed to find solutions to some uncertain situations in real life. A 

variety of imperfect knowledge types are evident in the data 

pertaining to complex problems in engineering, marketing, and other 

fields. Therefore, various mathematical tools have emerged to 

explain uncertain situations and to determine useful information, 

such as fuzzy set theory (Zadeh, 1965) and rough set theory (Pawlak, 

1982). While all of these theories are useful ways of describing 

imprecision, each of them has its own complexities, as Molodtsov  

(1999) points out. 
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Soft set theory, given by Molodtsov ( 1999), is a rising tool 

to deal with vague events. Soft set theory in recent years has 

improved a lot both theoretically and practically. After that, Maji et 

al (2003) presented various algebraic manipulations in soft set theory 

and conducted a comprehensive theoretical work on soft sets. Aktas 

and Çağman ( 2007) give the concept of soft group. In (Feng et al., 

2008), introduction of the notions of soft semirings is given. Acar et 

al. (2010) introduced initial concepts of soft rings. Maji et al. (2002) 

examined the applications of soft set theory to a decision making 

problem. Zou and Xiao (2008) studied the soft set data analysis 

approach under imperfect information. Gong et al. (2010) put forth 

the concept of bijective soft sets and delineated some of its 

fundamental operations.  

The rough sets, initiated in (Pawlak, 1982), are effective 

mathematical tools to deal with impreciseness and granularity in 

information systems. The fundamental tenet of rough set theory 

pertain to the approximation of an arbitrary subset within a given 

universe, which is described by two definable subsets: an upper 

approximation and a lower approximation. The approach of rough 

set seems to be of essential importance in many fields for example 

in data analysis, image processing, intelligent systems knowledge 

discovery in database (Peters et al. 2010; Pawlak and Skowron, 

2007; Pawlak, 2002). Lately, a great deal of research has been done 

by many scientists analysing the algebraic structure of rough sets 

(Bonikowaski, 1995; Bağırmaz and Özcan, 2015; Kuroki and Wang, 

1996 ).  

No theory mentioned above may give the best result alone. 

So some researchers have combined these theories. In fact, a soft set 
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in place of an equivalence relation in Pawlak’s rough sets is used to 

decompose the universe of discourse. Feng et al. (2011) explored the 

concept of soft rough set, which is a combination of rough and soft 

sets. Shabir et al. (2013) proposed an alternative approach to soft 

rough sets known as MSR sets. The aforementioned sets address the 

shortcomings identified in (Feng et al., 2011), specifically the 

potential for upper approximations of a subset of the discourse 

universe to lack a set that does not appear in Pawlak's rough sets.  

Let us now introduce the basic terms such as rough sets, soft 

sets ve bijective soft sets that we will refer to in the following 

sections. 

 

1.1  Rough sets 

Definition 1  Let’s take a non-empty set 𝑈 and an equivalence 

relation 𝜎 on the set 𝑈. In this case, the pair (𝑈, 𝜎) is called the 

approximation space.The equivalence class of 𝑎 ∈ 𝑈 is denoted by 

𝜎(𝑎). For a subset 𝑋 ⊆ 𝑈 ,  
 

 

 𝑋 = ∪
𝑎∈𝑈

{𝜎(𝑎): 𝜎(𝑎) ⊆ 𝑋}, 

  

 𝑋 = ∪
𝑎∈𝑈

{𝜎(𝑎): 𝜎(𝑎) ∩ 𝑋 ≠ ∅}. 

The sets 𝑋, 𝑋  are referred to as the lower and upper approximations 

of X with respect to  (𝑈, σ) respectively (Pawlak, 1982). 

 

Example 1 Let 𝑈 = {𝑚, 𝑛, 𝑟, 𝑠} and the equivalence relation 𝜎 

over 𝑈, defined by 𝜎(m) = {m}, 𝜎(n) = {n} and 𝜎(𝑟) = {r, s}. Let 

𝑋 = {𝑚, 𝑛, 𝑠} . Then 𝑋 = {𝑚, 𝑛} and 𝑋 = {𝑚, 𝑛, 𝑟, 𝑠}.  
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1.2  Soft sets 

Definition 2 (Molodtsov, 1999) Let 𝑈 is a certain set, called the 

universe, and 𝐸 is a set of parameters representing the properties 

of the elements in 𝑈. If 𝐴 ⊆ 𝐸 and 𝑓: 𝐴 → 𝑃(𝑈) is a set-valued 

mapping, a pair 𝑆 = (𝑓, 𝐴) is called a soft set on 𝑈.  

 

An example illustrating the above definition is included below. 

 

Example 2 Let 𝑈 = {𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5} and 𝐴 = {𝑒1, 𝑒2} ⊆ 𝐸 =
{𝑒1, 𝑒2, 𝑒3} denote a universe set and a set of parameters, 

respectively. Let 𝐴 = 𝑒1, 𝑒2. Consider the set-valued mapping 

𝑓: 𝐴 → 𝑃(𝑈), where 𝑓(𝑒1) = {𝑘1} and 𝑓(𝑒2) = {𝑘3, 𝑘4}.Thus, we 

have (𝑓, 𝐴) = {(𝑒1, {𝑘1}), (𝑒2, {𝑘3, 𝑘4})} as a soft set.  

 

 

Definition 3  (Maji et al., 2002) Let (𝑓, 𝐴) and (𝑔, 𝐵) be two soft 

sets over 𝑈. Then (𝑓, 𝐴) is considered a soft subset of (𝑔, 𝐵), 

denoted by (𝑓, 𝐴) ⊂
∼

(𝑔, 𝐵), if 𝐴 ⊆ 𝐵 and ∀ 𝑒 ∈ 𝐴, 𝑓(𝑒) and 𝑔(𝑒) 

have the same approximations.  

 

 

Definition 4 (Maji et al., 2002) Let (𝑓, 𝐴) and (𝑔, 𝐵) be two soft 

sets over 𝑈. The union of (𝑓, 𝐴) and (𝑔, 𝐵) is defined as (ℎ, 𝐶), 
where 𝐶 = 𝐴 ∪ 𝐵 and for all 𝑒 ∈ 𝐶, 

 ℎ(𝑒) = {

𝑓(𝑒), 𝑖𝑓𝑒 ∈ 𝐴\𝐵,
𝑔(𝑒), 𝑖𝑓𝑒 ∈ 𝐵\𝐴,
𝑓(𝑒) ∪ 𝑔(𝑒), 𝑖𝑓  𝑒 ∈ 𝐴 ∩ 𝐵.

 

This is denoted by (𝑓, 𝐴) ∪
∼

(𝑔, 𝐵) = (ℎ, 𝐶).  
 

 

Definition 5 (Maji et al., 2002) (AND operation on two soft sets). If 

(𝑓, 𝐴) and (𝑔, 𝐵) are two soft sets then “(𝑓, 𝐴) AND (𝑔, 𝐵)” (also 

denoted as (𝑓, 𝐴) ∧ (𝑓, 𝐵)) is defined by (𝑓, 𝐴) ∧ (𝑓, 𝐵) =
(ℎ, 𝐴 × 𝐵), where ℎ(𝛼, 𝛽) = 𝑓(𝛼) ∩ 𝑔(𝛽) for all (𝛼, 𝛽) ∈ 𝐴 × 𝐵.  
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Definition 6 (Gong et al., 2010) (Bijective soft sets) Let (𝑓, 𝐴) be a 

soft set on 𝑈, where 𝑓 is a set-valued mapping 𝑓: 𝐴 → 𝑃(𝑈) and 𝐴 

is a non-empty set of parameters. (𝑓, 𝐴) is called a bijective soft set 

if it satisfies the following conditions: 

  

    1.  ∪𝑒∈𝐴 𝑓(𝑒) = 𝑈, 
 

    2.  For two arbitrary parameters 𝑒𝑖, 𝑒𝑗 ∈ 𝐴, 𝑒𝑖 ≠ 𝑒𝑗, 𝑓(𝑒𝑖) ∩

𝑓(𝑒𝑗) = ∅.  

  

 

In simpler terms, let ℭ   be a subset of 𝑃(𝑈)  such that ℭ =
{𝑓(𝑒1), 𝑓(𝑒2), . . . , 𝑓(𝑒𝑛)}, where 𝑒1, 𝑒2, . . . , 𝑒𝑛  ∈ 𝐴.  According to 

Definition 6, the set-valued mapping 𝑓: 𝐴 → 𝑃(𝑈) can be converted 

to a bijective function 𝑓: 𝐴 → ℭ. This means that for every 𝑘 in ℭ 

there is precisely one parameter 𝑒 in 𝐴 such that 𝑓(𝑒) = 𝑘 and there 

are no unmapped elements in either 𝐴  or ℭ . In summary, each 

element of a bijective soft set over 𝑈 can only be mapped to one 

parameter. 

 The following gives an example of Definition 6. 

 

Example 3 Let (𝑓, 𝐸) be a soft set over the set 𝑈 =
{𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6} and set of parameters is 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. Let 

𝐴 = {𝑒1, 𝑒2, 𝑒3}, 𝐵 = {𝑒2, 𝑒4} and 𝐶 = {𝑒2, 𝑒3}. Let the mapping 

(𝑓, 𝐸) be given by  

 𝑓(𝑒1) = {𝑙1}, 𝑓(𝑒2) = {𝑙2, 𝑙3}, 𝑓(𝑒3) = {𝑙4, 𝑙5, 𝑙6}, 𝑓(𝑒4) =
{𝑙1, 𝑙4, 𝑙5, 𝑙6}. 
From Definition 6, (𝑓, 𝐴) and (𝑓, 𝐵) are bijective soft sets. Whereas 
(𝑓, 𝐶) is not bijective soft set.  

 

 

Proposition 1 (Gong et al., 2010) If (𝑓, 𝐴) and (𝑔, 𝐵) are two 

bijective soft sets over 𝑈, then (ℎ, 𝐶) = (𝑓, 𝐴) ∧ (𝑔, 𝐵) is a 

bijective soft set.  
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Definition 7 (Feng et al.,2011) (Soft rough sets) Let 𝑆 = (𝑓, 𝐴) 

represent a soft set on 𝑈. In this case, the pair (𝑈, 𝑆) is called a 

soft approximation space. Depending on (𝑈, 𝑆), for any subset 𝑋 of 

𝑈, following two operators are defined 

 𝑋 = {𝑥 ∈ 𝑈: ∃𝑒 ∈ 𝐴[𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋]}, 

 𝑋 = {𝑥 ∈ 𝑈: ∃𝑒 ∈ 𝐴[𝑥 ∈ 𝑓(𝑒), 𝑓(𝑒) ∩ 𝑋 ≠ ∅]}. 

 The subsets 𝑋  and 𝑋  are called the lower and upper soft rough 

approximations of 𝑋 on (𝑈, 𝑆), respectively.  

 

2  Bijective soft rough sets 

This section describes rough approximations of bijective soft 

sets and introduces a hybrid notion called bijective soft rough sets. 

In the classic Pawlak approach, the rough sets are defined as 

an approximation space consisting of a universe U and an 

equivalence relation σ ⊆ U × U.  In the context of the concept of a 

bijective soft set, each element is mapped to a single parameter. The 

union of the discrete partitions formed according to the parameter set 

constitutes the universe of discourse. By Definition 6, given that ℭ =

{𝑓(𝑒1), 𝑓(𝑒2), . . . , 𝑓(𝑒𝑛)},  𝑤𝑖𝑡ℎ 𝑒1, 𝑒2, . . . , 𝑒𝑛  ∈ 𝐴,  constitutes a 

partition and a covering of the universe of discourse, it is possible to 

consider f(e) as a basic granule of the universe of discourse, whereby 

the granular structure of the universe can be represented using a 

bijective soft set. 

Let 𝑆 = (𝑓, 𝐴)  be a bijective soft set on 𝑈  and the the 

corresponding pair 𝔅 = (𝑈, 𝑆)  is called a bijective soft 

approximation space. Then, the set ℭ = {𝑓(𝑒1), 𝑓(𝑒2), . . . , 𝑓(𝑒𝑛)}, 

where 𝑒1, 𝑒2, . . . , 𝑒𝑛 are elements of 𝐴, will be called a class of values 
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and can be defined by the equivalence relation 𝜎 ⊆ 𝑈 × 𝑈, defined 

as follows  

 (𝑥, 𝑦) ∈ 𝜎 ⇔ 𝑥, 𝑦 ∈ 𝑓(𝑒) 

for all 𝑥, 𝑦 ∈ 𝑈  and only one 𝑒 ∈ 𝐴. Thus 𝜎(𝑥) = 𝑓(𝑒) ⇔ 

𝑥 ∈ 𝑓(𝑒). It can thus be demonstrated that the class of values ℭ𝐴 of 

the bijective soft set (𝑓, 𝐴) and the quotient set 𝑈 ∕ 𝜎 in 𝔅 = (𝑈, 𝑆) 

can be identified. 

 

Definition 8 Let 𝑆 = (𝑓, 𝐴) be a bijective soft set over 𝑈 and 𝔅 =
(𝑈, 𝑆) be a bijective soft approximation space. Let 𝑋 be a 

nonempty subset of 𝑈. Then the sets 

 𝐴𝔅(𝑋) = ∪
𝑒∈𝐴

{𝑓(𝑒): 𝑓(𝑒) ⊆ 𝑋}and  𝐴𝔅(𝑋) = ∪
𝑒∈𝐴

{𝑓(𝑒): 𝑓(𝑒) ∩ 𝑋 ≠

∅} 

are called, respectively, lower and upper bijective soft rough 

approximations of 𝑋 based on 𝔅 = (𝑈, 𝑆). Moreover, 𝐵𝑛𝑑𝔅(𝑋) =

𝐴 𝔅
(𝑋) − 𝐴 𝔅

(𝑋) is called bijective soft rough boundary regions of 

𝑋. If 𝐵𝑛𝑑𝔅(𝑋) = ∅; 𝑋 is said to be bijective soft rough definable; 

otherwise 𝑋 is called a bijective soft rough set.  

 

From this point on, throughout this paper, we will accept each 

bijective soft rough set 𝑆 over the set 𝑈 with the bijective soft rough 

approximation space 𝔅 = (𝑈, 𝑆) and all bijective soft rough sets on 

𝔅 = (𝑈, 𝑆) will be denoted 𝔅𝒮(𝑈). 
For the purpose of exemplifying this definition an example is given 

below. 

 

Example 4 Let the soft set (𝑓, 𝐸) be defined on the set 𝑈 =
{𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6} with parameters 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}. The 

mapping of (𝑓, 𝐸) is as follows: 𝑓(𝑒1) = {𝑙1, 𝑙2}, 𝑓(𝑒2) =
{𝑙3, 𝑙4, 𝑙5, 𝑙6}, 𝑓(𝑒3) = {𝑙1, 𝑙2, 𝑙3}, 𝑓(𝑒4) = {𝑙4, 𝑙5} and 𝑓(𝑒5) = {𝑙6}. 
We can tabulate this soft set as shown in Table 1. If 𝑙𝑖 ∈ 𝑓(𝑒) then 
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𝑙𝑖𝑗 = 1, otherwise 𝑙𝑖𝑗 = 0, where 𝑙𝑖𝑗 are the entries Table 1.  

 
  𝑒1   𝑒2   𝑒3  𝑒4 𝑒5 

𝑙1

𝑙2

𝑙3

𝑙4

𝑙5

𝑙6

 

1
1
0
0
0
0

 

0
0
1
1
1
1

 

1
1
1
0
0
0

 

0
0
0
1
1
0

 

0
0
0
0
0
1

 

 

  

Table  1:  Soft set (𝑓, 𝐸). 

 

Let 𝐴 = {𝑒1, 𝑒2} ⊆ 𝐸,  𝐵 = {𝑒3, 𝑒4, 𝑒5} ⊆ 𝐸.  From Definition 6, 
(𝑓, 𝐴) and (𝑓, 𝐵) are bijective soft sets. 

Then 

 ℭ𝐴 = {𝑓(𝑒1), 𝑓(𝑒2)} = {{𝑙1, 𝑙2}, {𝑙3, 𝑙4, 𝑙5, 𝑙6}}, 

 ℭ𝐵 = {𝑓(𝑒3), 𝑓(𝑒4), 𝑓(𝑒5)} =
{{𝑙1, 𝑙2, 𝑙3}, {𝑙4, 𝑙5}, {𝑙6}}. 
 

For 𝑋 = {𝑙1, 𝑙2, 𝑙3} ⊆ 𝑈 and 𝑌 = {𝑙4, 𝑙6} ⊆ 𝑈 we can write 

 𝐴𝔅(𝑋) = {𝑙1, 𝑙2}, 𝐴𝔅(𝑋) = 𝑈 

and 

 𝐵𝔅(𝑌) = {𝑙6}, 𝐵𝔅(𝑌) = {𝑙4, 𝑙5, 𝑙6}. 

Thus, by Definition 8, 𝑋 and 𝑌 are bijective soft rough sets.  

 

The following proposition is due to subsection 2.3 of [30], we will 

briefly show that these features are provided in the bijective soft 

rough sets. 

 

Proposition 2 Let 𝑆 = (𝑓, 𝐴) ∈ 𝔅𝒮(𝑈). Then, for every 𝑋, 𝑌 ⊆ 𝑈 

following properties hold: 

  

    1.  𝐴𝔅(𝑋) ⊂ 𝑋 ⊂ 𝐴𝔅(𝑋), 
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    2.  𝐴𝔅(∅) = 𝐴𝔅(∅) = ∅, 
 

    3.  𝐴𝔅(𝑈) = 𝐴𝔅(𝑈) = 𝑈, 
 

    4.  𝐴𝔅(𝑋 ∩ 𝑌) = 𝐴𝔅(𝑋) ∩ 𝐴𝔅(𝑌), 
 

    5.  𝐴𝔅(𝑋 ∪ 𝑌) = 𝐴𝔅(𝑋) ∪ 𝐴𝔅(𝑌), 
 

    6.  𝑋 ⊂ 𝑌 ⇒ 𝐴𝔅(𝑋) ⊂ 𝐴𝔅(𝑌), 
 

    7.  𝑋 ⊂ 𝑌 ⇒ 𝐴𝔅(𝑋) ⊂ 𝐴𝔅(𝑌), 
 

    8.  𝐴𝔅(𝑋 ∩ 𝑌) ⊆ 𝐴𝔅(𝑋) ∩ 𝐴𝔅(𝑌), 
 

    9.  𝐴𝔅(𝑋 ∪ 𝑌) ⊇ 𝐴𝔅(𝑋) ∪ 𝐴𝔅(𝑌), 
 

    10.  𝐴𝔅 (𝐴𝔅(𝑋)) = 𝐴𝔅(𝑋), 

 

    11.  𝐴𝔅 (𝐴𝔅(𝑋)) = 𝐴𝔅(𝑋).  

  

 

 

Proof. (1)  If 𝑥 ∈ 𝐴𝔅(𝑋),  then 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋  for only one 𝑒 ∈ 𝐴 . 

Hence 𝐴𝔅(𝑋) ⊂ 𝑋. Next, if 𝑥 ∈ 𝑋, then, 𝑥 ∈ 𝑓(𝑒) for only one 𝑒 ∈

𝐴, we have 𝑓(𝑒) ∩ 𝑋 ≠ ∅, and so 𝑥 ∈ 𝐴𝔅(𝑋). Thus 𝑋 ⊆ 𝐴𝔅(𝑋). 
(2) and (3) directly follows from Definition 6 and Definition 8. 
(4) Let 𝑥 ∈ 𝐴𝔅(𝑋) ∩ 𝐴𝔅(𝑌). Then  

 ⇔ 𝑥 ∈ 𝐴𝔅(𝑋) 𝑎𝑛𝑑 𝑥 ∈ 𝐴𝔅(𝑌) 

 ⇔ 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋 𝑎𝑛𝑑 𝑥 ∈ 𝑓(𝑒) ⊆
𝑌 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇔ 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋 ∩ 𝑌 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇔ 𝑥 ∈ 𝐴𝔅(𝑋 ∩ 𝑌). 
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Hence 𝐴𝔅(𝑋 ∩ 𝑌) = 𝐴𝔅(𝑋) ∩ 𝐴𝔅(𝑌). 

(5) Let 𝑥 ∈ 𝐴𝔅(𝑋 ∪ 𝑌). Then  

 ⇔ 𝑥 ∈ 𝑓(𝑒) ∩ (𝑋 ∪ 𝑌) ≠ ∅ 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇔ 𝑥 ∈ (𝑓(𝑒) ∩ 𝑋) ∪ (𝑓(𝑒) ∩ 𝑌) ≠
∅ 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇔ 𝑥 ∈ (𝑓(𝑒) ∩ 𝑋) ≠ ∅ 𝑜𝑟 𝑥 ∈ (𝑓(𝑒) ∩ 𝑌) ≠
∅ 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇔ 𝑥 ∈   𝐴𝔅(𝑋) 𝑜𝑟 𝑥 ∈  𝐴𝔅(𝑌) 

 ⇔ 𝑥 ∈  𝐴𝔅(𝑋) ∪  𝐴𝔅(𝑌). 
 
(6) Let 𝑋 ⊂ 𝑌, then 𝑋 ∩ 𝑌 = 𝑋. By (4) we have  

 𝐴𝔅(𝑋) = 𝐴𝔅(𝑋 ∩ 𝑌) = 𝐴𝔅(𝑋) ∩ 𝐴𝔅(𝑌). 
This implies that 𝐴𝔅(𝑋) ⊆ 𝐴𝔅(𝑌). 
(7) Let 𝑋 ⊂ 𝑌, then 𝑋 ∪ 𝑌 = 𝑌. By (5) we have  

     𝐴𝔅(𝑌) =   𝐴𝔅(𝑋 ∪ 𝑌) =  𝐴𝔅(𝑋) ∪  𝐴𝔅(𝑌). 

This implies that  𝐴𝔅(𝑋) ⊂ 𝐴𝔅(𝑌). 

(8) Let 𝑥 ∈ 𝐴𝔅(𝑋 ∩ 𝑌). Then  

 ⇒ 𝑥 ∈ 𝑓(𝑒) ∩ (𝑋 ∩ 𝑌) ≠ ∅ 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇒ 𝑥 ∈ (𝑓(𝑒) ∩ 𝑋) ∩ (𝑓(𝑒) ∩ 𝑌) ≠
∅ 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇒ 𝑥 ∈ (𝑓(𝑒) ∩ 𝑋) ≠ ∅ 𝑎𝑛𝑑 𝑥 ∈ (𝑓(𝑒) ∩ 𝑌) ≠
∅ 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇒ 𝑥 ∈   𝐴𝔅(𝑋) 𝑎𝑛𝑑 𝑥 ∈  𝐴𝔅(𝑌) 

 ⇒ 𝑥 ∈   𝐴𝔅(𝑋) ∩  𝐴𝔅(𝑌). 
 

Hence   𝐴𝔅(𝑋 ∩ 𝑌) ⊆  𝐴𝔅(𝑋) ∩ 𝐴𝔅(𝑌). 
(9) Let 𝑥 ∈ 𝐴𝔅(𝑋) ∪ 𝐴𝔅(𝑌). Then  

 ⇒ 𝑥 ∈ 𝐴𝔅(𝑋) 𝑜𝑟 𝑥 ∈ 𝐴𝔅(𝑌) 

 ⇒ 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋𝑜𝑟𝑥 ∈ 𝑓(𝑒) ⊆ 𝑌 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈
𝐴 

 ⇒ 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋 ∪ 𝑌 𝑓𝑜𝑟 𝑜𝑛𝑙𝑦 𝑜𝑛𝑒 𝑒 ∈ 𝐴 

 ⇒ 𝑥 ∈ 𝐴𝔅(𝑋 ∪ 𝑌). 
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Hence 𝐴𝔅(𝑋 ∪ 𝑌) ⊇ 𝐴𝔅(𝑋) ∪ 𝐴𝔅(𝑌). 
(10)  Let 𝑌 = 𝐴𝔅(𝑋).  By (1)  we have 𝐴𝔅(𝑌) ⊂ 𝑌.  Thus 

𝐴𝔅 (𝐴𝔅(𝑋)) = 𝐴𝔅(𝑋). 

Conversely, Let 𝑌 = 𝐴𝔅(𝑋)  and 𝑥 ∈ 𝑌.  Then 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑋  for 

only one 𝑒 ∈ 𝐴. By Definition 8 we have 𝑥 ∈ 𝑓(𝑒) ⊆ 𝑌 for only one 

𝑒 ∈ 𝐴,  and so 𝑥 ∈ 𝐴𝔅(𝑌).  Thus 𝑌 ⊆ 𝐴𝔅(𝑌),  and so 𝐴𝔅(𝑋) ⊆

𝐴𝔅 (𝐴𝔅(𝑋)). 

Hence 𝐴𝔅 (𝐴𝔅(𝑋)) = 𝐴𝔅(𝑋). 

(11)  Let 𝑌 =  𝐴𝔅(𝑋).  By (1)  we have 𝐴𝔅(𝑌) ⊂ 𝑌.  Thus  

𝐴𝔅 (  𝐴𝔅(𝑋)) ⊆ 𝐴𝔅(𝑋). 

Conversely, Let 𝑌 = 𝐴𝔅(𝑋) and 𝑥 ∈ 𝑌. Then 𝑥 ∈ 𝑓(𝑒) ∩ 𝑋 ≠ ∅ for 

only one 𝑒 ∈ 𝐴. By Definition 8 we have 𝑥 ∈ 𝑓(𝑒) ∩ 𝑌 ≠ ∅ for only 

one 𝑒 ∈ 𝐴,  and so 𝑥 ∈  𝐴𝔅(𝑌).  Thus 𝑌 ⊆  𝐴𝔅(𝑌),  and so  

𝐴𝔅 (  𝐴𝔅(𝑋)) = 𝐴𝔅(𝑋). 

Hence  𝐴𝔅 (  𝐴𝔅(𝑋)) = 𝐴𝔅(𝑋).  

Remark 1 We should note that in [10], some properties are not 

valid as in rough sets and some properties are also valid under 

strong conditions but for example in the Proposition 2 of the 

current paper items (1) and (4) are satisfied without extra 

conditions. In the context of a bijective soft rough set, the 

aforementioned restrictions are lifted. Consequently, the bijective 

soft rough set concept offers a superior integration of roughness 

and parameterisation. 

 

Definition 9 ( Approximations for AND Operation of two Bijective 

Soft Rough Sets ) Let (𝑓, 𝐴), (𝑔, 𝐵) ∈ 𝔅𝒮(𝑈). Then we can define 

the following two operations on bijective soft set   (ℎ, 𝐶) = (𝑓, 𝐴) ∧
(𝑔, 𝐵); for every subset 𝑋 ⊆ 𝑈 

 𝐶𝔅(𝑋) = ∪
𝑒∈𝐶

{ℎ(𝑒): ℎ(𝑒) ⊆ 𝑋}, 
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   𝐶𝔅(𝑋) = ∪
𝑒∈𝐶

{ℎ(𝑒): ℎ(𝑒) ∩ 𝑋 ≠ ∅} 

 where ℎ(𝑒) = 𝑓(𝛼) ∩ 𝑔(𝛽), ∀𝑒 = (𝛼, 𝛽) ∈ 𝐴 × 𝐵.  
 

 

Proposition 3 Let (𝑓, 𝐴), (𝑔, 𝐵) ∈ 𝔅𝒮(𝑈). Then approximation on 

(ℎ, 𝐶) = (𝑓, 𝐴) ∧ (𝑔, 𝐵), for every 𝑋 ⊆ 𝑈 following properties 

hold: 

  

    1.  𝐶𝔅(𝑋) ⊇ 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋), 
 

    2.  𝐶𝔅(𝑋) ⊆ 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋).  
  

 

 

Proof. (1)  Let 𝑥 ∈ 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋).  Then 𝑥 ∈ 𝐴𝔅(𝑋)  and 𝑥 ∈

𝐵𝔅(𝑋).  Thus, since (𝑓, 𝐴)  and (𝑔, 𝐵)  are two bijective soft sets, 

there are only one (𝛼, 𝛽) ∈ 𝐴 × 𝐵  that is 𝑥 ∈ 𝑓(𝛼) ⊆ 𝑋  and 𝑥 ∈
𝑔(𝛽) ⊆ 𝑋. Thus there is only one 𝑒 ∈ 𝐶 that is 𝑥 ∈ ℎ(𝑒) = 𝑓(𝛼) ∩
𝑔(𝛽) ⊆ 𝑋. Hence 𝑥 ∈ 𝐶𝔅(𝑋). 

(2)  Let 𝑥 ∈ 𝐶𝔅(𝑋).  Then 𝑥 ∈ ℎ(𝑒) ∩ 𝑋 ≠ ∅ , for only one 𝑒 ∈ 𝐶, 
where ℎ(𝑒) = 𝑓(𝛼) ∩ 𝑔(𝛽) , 𝑒 = (𝛼, 𝛽) ∈ 𝐴 × 𝐵.  Thus 𝑥 ∈
(𝑓(𝛼) ∩ 𝑋) ∩ (𝑔(𝛽) ∩ 𝑋) ≠ ∅, and so 𝑥 ∈ 𝑓(𝛼) ∩ 𝑋 ≠ ∅ and 𝑥 ∈

𝑔(𝛽) ∩ 𝑋 ≠ ∅, for only one (𝛼, 𝛽) ∈ 𝐴 × 𝐵. Therefore 𝑥 ∈ 𝐴𝔅(𝑋) 

and 𝑥 ∈ 𝐵𝔅(𝑋). Hence 𝐶𝔅(𝑋) ⊆ 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑌).  
 

We can exemplify Proposition 3 as follows: 

 

Example 5 We reconsider the bijective soft sets (𝑓, 𝐴) and (𝑓, 𝐵) 

given in Example 4. For 𝑋 = {𝑥1, 𝑥2, 𝑥4} ⊆ 𝑈, we obtain  

 𝐴𝔅(𝑋) = {𝑥1, 𝑥2}, 𝐴𝔅(𝑋) = 𝑈 

and 

 𝐵𝔅(𝑋) = ∅, 𝐵𝔅(𝑋) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}. 
Also 
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 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋) = ∅ 

and 

 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}. 
Now taking (ℎ, 𝐶) = (𝑓, 𝐴) ∧ (𝑓, 𝐵), ℎ(𝑒) = 𝑓(𝛼) ∩ 𝑓(𝛽), ∀𝑒 =
(𝛼, 𝛽) ∈ 𝐴 × 𝐵. Then we obtain  

 ℭ𝐶 = {𝑓(𝑒1), 𝑓(𝑒2), 𝑓(𝑒3), 𝑓(𝑒4)} = {{𝑥1, 𝑥2}, {𝑥3}, {𝑥4, 𝑥5}, {𝑥6}} 

and 

 𝐶𝔅(𝑋) = {𝑥1, 𝑥2}, 𝐶𝔅(𝑋) = {𝑥1, 𝑥2, 𝑥4, 𝑥5}. 
Thus  

 𝐶𝔅(𝑋) ⊈ 𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋)and𝐴𝔅(𝑋) ∩ 𝐵𝔅(𝑋) ⊈ 𝐶𝔅(𝑋) 

 

 

Proposition 3 directly implies Corollary 1. 

 

Corollary 1 Let (𝑓𝑖 , 𝐴𝑖) ∈ 𝔅𝒮(𝑈), where (𝑖 = 1,2,3, . . . , 𝑛). Then 

approximations on (ℎ𝑛, 𝐶𝑛) =∧𝑖=1
𝑛 (𝑓𝑖, 𝐴𝑖), for every 𝑋 ⊆ 𝑈 

following properties hold: 

  

    1.  (𝐶𝑛)
𝔅

(𝑋) ⊇∩𝑖=1
𝑛 (𝐴𝑖)

𝔅
(𝑋), 

 

    2.  (𝐶𝑛)
𝔅

(𝑋) ⊆∩𝑖=1
𝑛 (𝐴𝑖)𝔅

(𝑋).  

  

 

 

Proposition 4 Let (𝑓𝑖 , 𝐴𝑖) ∈ 𝔅𝒮(𝑈), where (𝑖 = 1,2,3, . . . , 𝑛). Then 

approximations on (ℎ𝑛, 𝐶𝑛) =∧𝑖=1
𝑛 (𝑓𝑖, 𝐴𝑖), for every 𝑋 ⊆ 𝑈 

following properties hold: 

  

    1.  (𝐶𝑛)
𝔅

(𝑋) ⊇ (𝐶𝑚)
𝔅

(𝑋), 

 

    2.  (𝐶𝑛)
𝔅

(𝑋) ⊆ (𝐶𝑚)
𝔅

(𝑋),  
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where 𝑚 ≤ 𝑛.  
 

 

Proof. (1)  Let 𝑚 = 2, 𝑛 = 3  and 𝑥 ∈ (𝐶2)
𝔅

(𝑋) . Then 𝑥 ∈

ℎ2(𝑒) ⊆ 𝑋 , for only one 𝑒 ∈ 𝐶2, where ℎ2(𝑒) = 𝑓1(𝑎1) ∩ 𝑓2(𝑎 2), 

𝑒 = (𝑎1, 𝑎 2) ∈ 𝐴1 × 𝐴2 . On the other hand, since (𝑓3, 𝐴3)  is a 

bijective soft sets over 𝑈  there is only one 𝑎3 ∈ 𝐴3  that is 𝑥 ∈
𝑓3(𝑎3). Thus 𝑥 ∈ 𝑓1(𝑎1) ∩ 𝑓2(𝑎 2) ∩ 𝑓3(𝑎3) ⊆ 𝑓1(𝑎1) ∩ 𝑓2(𝑎 2) ⊆

𝑋 , and so 𝑥 ∈ ℎ3(𝑒) ⊆ ℎ2(𝑒) ⊆ 𝑋 , for only one 𝑒 ∈ 𝐶3,  where 

ℎ3(𝑒) = 𝑓1(𝑎1) ∩ 𝑓2(𝑎 2) ∩ 𝑓3(𝑎3) , 𝑒 = (𝑎1, 𝑎 2 , 𝑎3) ∈ 𝐴1 × 𝐴2 ×

𝐴3. Therefore 𝑥 ∈ (𝐶3)
𝔅

(𝑋). Hence (𝐶2)
𝔅

(𝑋) ⊆ (𝐶3)
𝔅

(𝑋). 

(2) Let 𝑥 ∈ (𝐶3)
𝔅

(𝑋). Then 𝑥 ∈ ℎ3(𝑒) ∩ 𝑋 ≠ ∅, for only one 𝑒 ∈

𝐶3,  where ℎ3(𝑒) = 𝑓1(𝑎1) ∩ 𝑓2(𝑎 2) ∩ 𝑓3(𝑎3) , 𝑒 = (𝑎1, 𝑎 2 , 𝑎3) ∈

𝐴1 × 𝐴2 × 𝐴3.  Thus 𝑥 ∈ (𝑓1(𝑎1) ∩ 𝑓2(𝑎 2)) ∩ 𝑋 ≠ ∅ , and so 𝑥 ∈

ℎ2(𝑒) ∩ 𝑋 ≠ ∅  for only one 𝑒 ∈ 𝐶2,  where ℎ2(𝑒) = 𝑓1(𝑎1) ∩

𝑓2(𝑎 2) , 𝑒 = (𝑎1, 𝑎 2) ∈ 𝐴1 × 𝐴2.  Therefore 𝑥 ∈ (𝐶2)
𝔅

(𝑋).  Hence 

(𝐶3)
𝔅

(𝑋) ⊆ (𝐶2)
𝔅

(𝑋).  

 

3  Bijective soft rough equality of sets 

In [30], the concept of rough equality of sets is examined. 

This section demonstrates that bijective soft rough sets also manifest 

similar properties. 

 

Definition 10 Let (𝑓, 𝐴) ∈ 𝔅𝒮(𝑈). Then, for every 𝑋, 𝑌 ⊆ 𝑈 we 

can define: 

  

    1.  𝑋 ≃𝔅 𝑌 if and only if 𝐴𝔅(𝑋) = 𝐴𝔅(𝑌), 
 

    2.  𝑋 ≂𝔅 𝑌 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴𝔅(𝑋) = 𝐴𝔅(𝑌), 
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    3.  𝑋 ≈𝔅 𝑌 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐴𝔅(𝑋) = 𝐴𝔅(𝑌), 𝐴𝔅(𝑋) = 𝐴𝔅(𝑌).  
These relations can be referred to as lower bijective soft rough 

relations, upper bijective soft rough relations, and bijective soft 

rough relations, respectively. 

It is simple to check that ≃𝔅, ≂𝔅 𝑎𝑛𝑑 ≈𝔅 are equivalence relations 

on 𝑃(𝑈). 
Proposition 5 follows directly from Definition 10 and Proposition 2. 

 

Proposition 5 Let (𝑓, 𝐴) ∈ 𝔅𝒮(𝑈). Then, for every 𝑋, 𝑌, 𝑋1, 𝑌1 ⊆ 𝑈 

following properties hold: 

  

    1.  If 𝑋 ≃𝔅 𝑌, then 𝑋 ≃𝔅 (𝑋 ∩ 𝑌) ≃𝔅 𝑌, 
 

    2.  If 𝑋 ≂𝔅 𝑌, then 𝑋 ≃𝔅 (𝑋 ∪ 𝑌) ≃𝔅 𝑌, 
 

    3.  If 𝑋 ≃𝔅 𝑋1 and 𝑌 ≃𝔅 𝑌1, then 𝑋 ∩ 𝑌 ≃𝔅 𝑋1 ∩ 𝑌1 

 

    4.  If 𝑋 ≂𝔅 𝑋1 and 𝑌 ≂𝔅 𝑌1, then 𝑋 ∪ 𝑌 ≂𝔅 𝑋1 ∪ 𝑌1, 
 

    5.  If 𝑋 ≃𝔅 𝑌, then 𝑋 ∩ (−𝑌) ≃𝔅 ∅, 
 

    6.  If 𝑋 ≂𝔅 𝑌, then 𝑋 ∪ (−𝑌) ≃𝔅 𝑈, 
 

    7.  If 𝑋 ⊆ 𝑌 and 𝑌 ≂𝔅 ∅, then 𝑋 ≂𝔅 ∅, 
 

    8.  If 𝑋 ⊆ 𝑌 and 𝑋 ≂𝔅 𝑈, then 𝑌 ≂𝔅 𝑈, 
 

    9.  If 𝑋 ⊆ 𝑌 and 𝑌 ≃𝔅 ∅, then 𝑋 ≃𝔅 ∅, 
 

    10.  If 𝑋 ⊆ 𝑌 and 𝑋 ≃𝔅 𝑈, then 𝑌 ≃𝔅 𝑈,  
 

where −𝑋 is an abbreviation for 𝑈 − 𝑋.  
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4  Accuracy of bijective soft rough approximations 

 

 In this section, an accuracy measure for bijective soft rough sets is 

introduced. 

 

Definition 11 Let (𝑓, 𝐴) ∈ 𝔅𝒮(𝑈). The accuracy measure of any 

subset 𝑋 ⊆ 𝑈 with respect to 𝐴 is defined as  

 𝛽𝔅
𝐴(𝑋) =

|𝐴𝔅(𝑋)|

|𝐴𝔅(𝑋)|
 

Obviously 0 ≤ 𝛽𝔅
𝐴(𝑋) ≤ 1. If 𝛽𝔅

𝐴(𝑋) = 1, 𝑋 is crisp with respect to 

𝐴,  and otherwise, if 𝛽𝔅
𝐴(𝑋) < 1,  𝑋  is bijective soft rough with 

respect to 𝐴.  
 

Let us depict above definition by examples referring to Example 5. 

For 𝑋 = {𝑥1, 𝑥2, 𝑥4} ⊆ 𝑈  and 𝐴 ⊆ 𝐸  we have 𝐴𝔅(𝑋) =

{𝑥1, 𝑥2}, 𝐴𝔅(𝑋) = 𝑈.  For this case 𝛽𝔅
𝐴(𝑋) =

|𝐴𝔅(𝑋)|

|𝐴𝔅(𝑋)|
=

2

6
.  It means 

that the parameter set 𝐴 is less characteristic for 𝑋. 

For 𝑋 = {𝑥1, 𝑥2, 𝑥4} ⊆ 𝑈 and 𝐵 ⊆ 𝐸 we have 𝐵𝔅(𝑋) = ∅, 𝐵𝔅(𝑋) =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}. For this case 𝛽𝔅
𝐵(𝑋) =

|𝐵𝔅(𝑋)|

|𝐵𝔅(𝑋)|
=

0

5
. It means that 

this parameter set 𝐵 𝑖s not characteristic for 𝑋. 
For 𝑋 = {𝑥1, 𝑥2, 𝑥4} ⊆ 𝑈  and 𝐶 ⊆ 𝐸  we have 𝐶𝔅(𝑋) =

{𝑥1, 𝑥2}, 𝐶𝔅(𝑋) = {𝑥1, 𝑥2, 𝑥4, 𝑥5}. For this case 𝛽𝔅
𝐶(𝑋) =

|𝐶𝔅(𝑋)|

|𝐶𝔅(𝑋)|
=

2

4
. 

It means that the set   𝑋 can be characterized partially by parameter 

sets 𝐴 and 𝐵. 
From our observations above we can give Proposition 6. 

 

Proposition 6 Let (𝑓𝑖 , 𝐴𝑖) ∈ 𝔅𝒮(𝑈), where (𝑖 = 1,2,3, . . . , 𝑛). Let 

(ℎ𝑛, 𝐶𝑛) =∧𝑖=1
𝑛 (𝑓𝑖, 𝐴𝑖). Then, for every 𝑋 ⊆ 𝑈 and 𝑚 ≤ 𝑛,   

 𝛽𝔅
𝐶𝑚(𝑋) ≤ 𝛽𝔅

𝐶𝑛(𝑋). 

 

Proof. Follows directly from Definition 11 and Proposition 4.  
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5  Conclusion 

Bu çalışma hem teorik hem de pratik özelliklere sahiptir. Bu 

çalışmada bijective yumuşak kaba kümeler tanımlanmış ve önemli 

özellikleri verilmiştir. 
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CHAPTER VIII 

 

 

The Narayana-Pell Sequence in Finite Groups 

 

 

Özgür ERDAĞ 1 

 

1 Introduction and Preliminaries  

If n  is the year, then the Narayana problem can be modelled 

by the recurrence relation: 

3 2=n n nN N N+ + +  

for 0n   and with initial values 0 1 2 1N N N= = = . This sequence is 

called the Narayana sequence (also called the Fibonacci-Narayana 

sequence or Narayana’s cows sequence). (Allouche & Johnson, 

1996) 

The well-known Pell sequence  nP  is defined by the 

following recurrence relation: 

1 1= 2n n nP P P+ −+  

 
1 Asst. Prof. Dr., Kafkas University, Faculty of Science and Letters, Department of Mathematics, 

Kars/Turkey, Orcid: 0000-0001-8071-6794, ozgur_erdag@hotmail.com 
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for 1n  , with initial conditions 0 = 0P  and 1 = 1P . 

Deveci and Erdag (Deveci & Erdag, 2022) defined the 

Narayana-Pell sequence  Pkn  by the following homogeneous linear 

recurrence relation: 

                                5 4 3 13 2P P P P P

k k k k kn n n n n+ + + += − − −                         

(1.1) 

for 0k  , with initial conditions 0 4= = = 0P Pn n  and 5 = 1Pn . 

By the recurrence relation (1.1), we have 

5 4

4 3

3 2

2 1

1

3 1 0 2 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

P P

k k

P P

k k

P P

k k

P P

k k

P P

k k

n n

n n

n n

n n

n n

+ +

+ +

+ +

+ +

+

   − − − 
    
    
    =
    
    
        

 

for the Narayana-Pell sequence  Pkn . Letting  

.

3 1 0 2 1

1 0 0 0 0

= 0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

PN

− − − 
 
 
 
 
 
  

 

The companion matrix 
5 5

=P

ijN n


    is called to be the 

Narayana-Pell matrix. It can be readily established by mathematical 

induction that for 4   



 

--164-- 

 

( )

4 3 1 2 1 3 2 3

3 2 1 1 2 1 2

2 1 1 2 1 1 1

1 2 3 1 2

2 2 2

2 2 2

= 2 2 2

2 2 2

P P P P P P P P P

P P P P P P P P P

P P P P P P P P P P

P P P P P P

n n n n n n n n n

n n n n n n n n n

N n n n n n n n n n

n n n n n n n

        

        


        

     

+ + + + + + + +

+ + − + + + +

+ + − − − + +

+ − − − −

− − − − − − − −

− − − − − − − −

− − − − − − − −

− − − − − − 1

1 3 4 2 3 1 2 1 .
2 2 2

P P P

P P P P P P P P P

n n

n n n n n n n n n

  

        

−

− − − − − − − −

 
 
 
 
 

− − 
 − − − − − − − − 

 

We easily derive that det = 1PN − . 

Definition 1.1 A sequence is periodic if, after a certain point, it 

consists only of repetitions of a fixed subsequence. The number of 

terms in the shortest repeating subsequence is called the period of 

the sequence. In addition, if the first k  terms in the sequence form a 

repeating subsequence then the sequence is simply periodic with 

period k . For example, the sequence  , , , , , , , , , ,a b c d b c d b c d  is 

periodic after the initial term a  and has period 3 and also the 

sequence  , , , , , , , , , , , ,a b c d a b c d a b c d  is simply periodic with 

period 4. 

The study of the linear recurrence sequences in groups began 

with the earlier work of Wall (Wall, 1960) where the ordinary 

Fibonacci sequences in cyclic groups were investigated. Other work 

on the Fibonacci sequences in cyclic groups is discussed in, see, for 

example, (Chang, 1986; Lü & Wang, 2006; Renault, 2013; Shah, 

1968; Vinson, 1963). In the mid-eighties, Wilcox studied the 

Fibonacci sequences in abelian groups in (Wilcox, 1986). In 

(Campbell, Doostie, & Robertson, 1990), the theory was expanded 

to non-abelian groups by Campbell et al. There, they defined the 

Fibonacci orbit and the basic Fibonacci orbit of a 2 -generator group. 

We also have the following definition of Fibonacci orbit for a finitely 

generated group =G A , where  1 2= , , nA a a a : 
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Definition 1.2 The Fibonacci orbit of  with respect to the generating 

set ,A  written ( ) ,AF G  is the sequence 1= ,i ix a +  0 1,i n  −  

1

1

=
n

i n i j

j

x x+ + −

=

  for 0i  .  

If the sequence ( )AF G  is periodic, then the length of the period is 

called the Fibonacci lenght of G  with respect to the generetaing set 

A , written ( )ALEN G  ((Campbell, 2003; Campbell & Campbell, 

2009) 

Let G  be a 2 -generator group and let 

( )   1 2 1 2= , | , = .X x x G G x x G     

The notation ( )1 2,x x  is said to be a generating pair for G . If G  is a 

2 -generator group and ( )1 2,x x  is a generating pair of G , then every 

element of G  can be written as a word 

( ) ( ) ( ) ( ) ( )1 2 3 1
1 2 1 1 2

n nx x x x x
    

−  

where i Z , 1 i n  . 

The concept of the Fibonacci length for two or more 

generators has also been considered; see, for example, (Aydin & 

Dikici, 1998; Campbell, Campbell, Doostie, & Robertson, 2004; 

Doostie & Golamie, 2000; Karaduman & Aydın, 2003; Knox, 1992). 

In next process, some special linear recurrence sequences defined by 

the aid of group elements have been studied by many authors; see, 

for example, (Akuzum, 2020; Akuzum & Deveci, 2020; Akuzum, 

Deveci & Rashedi, 2022; Campbell & Robertson, 1976; Deveci, 

Akdeniz & Akuzum, 2017; Deveci, Akuzum & Karaduman, 2015; 

Deveci, Artun & Akuzum, 2017; Deveci & Karaduman, 2015; 

Hulku, Erdag & Deveci, 2023; Kuloglu, Ozkan & Shannon, 2022; 

Mehraban & Hashemi, 2023). 
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Definition 1.3 The semidihedral group 
2m

SD , ( )4m   is defined by 

the presentation 

1 12 2 1 2 1

2
, : ,

m m

mSD x y x y e y xy x
− −− −= = = =  

Note that 
1

2
2 , 2m

m mSD x −= =  and 2y = . 

In this study, we consider the Narayana-Pell sequence in 

groups and then we define the Narayana-Pell orbit. Finally, we 

obtain the lengths of the periods of the Narayana-Pell orbit in the 

semidihedral group 
2m

SD , ( )4m 
 
as applications of the results 

obtained. 

 

2 Main Results 

Let G  be a finite j-generator group and let X  be the subset 

of 
j

G G G G    such that ( )0 1 1, , , jx x x X−   if and only if G  is 

generated by 
0 1 1, , , .jx x x −

 We call ( )0 1 1, , , jx x x −
 a generating 

j -tuple for G . 

Definition 2.1. For a generating j -tuple ( )0 1 1, , , ,jx x x X−   we 

define the Narayana-Pell orbit as shown:  

( ) ( )( ) ( )( ) ( )( ) ( )( )
1 2 1 3

5 1 3 4P P P P P

N N N N Nx n x n x n x n x n
− − −

+ = + + +  

for 0n  , with initial conditions 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
0 1 1

0 1 2 3 4

0 , 1 , , 1 , , , 4 if 4,

0 , 1 , 2 , 3 , 4 , if 4.

P P P P P

N N N j N N

P P P P P

N N N N N

x x x x x j x x j e x e j

x x x x x x x x x x j

−
 = = − = = = 


= = = = = =
 

For a generating j-tuple ( )0 1 1, , , ,jx x x X−   the Narayana-

Pell orbit is denoted by ( )0 1 1: , , ,P

N jx G x x x − . 
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Theorem 2.1. If G  is a finite group, then a Narayana-Pell orbit of 

G  is simply periodic. 

Proof.  Suppose that   is the order of the group G . Since there are 
5  distinct 5-tuples of elements of G , at least one of the 5-tuples 

appears twice in the Narayana-Pell orbit. Thus, consider the 

subsequence following this 5-tuple. Because of the repeating, the 

Narayana-Pell orbit of the group G  is periodic. Since the Narayana-

Pell orbit is periodic, there exist natural number i  and j  with 

( )mod5i j , such that 

( ) ( ) ( ) ( ) ( ) ( ), 1 1 , , 5 5P P P P P P

N N N N N Nx i x j x i x j x i x j= + = + + = + . 

By the definition relation of the Narayana-Pell orbit 

( )0 1 1: , , ,P

N jx G x x x − , we can easily derive 

( ) ( )( ) ( )( ) ( )( ) ( )( )
2 1 3 1

1 3 4 5P P P P P

N N N N Nx n x n x n x n x n
− − −

= + + + + . 

Therefore, we obtain ( ) ( )P P

N Nx i x j= , and it then follows that 

( ) ( ) ( ) ( ) ( ) ( )0 , 1 1 , , 5 5P P P P P P

N N N N N Nx i j x x i j x x i j x− = − + = − + = . 

which implies that the Narayana-Pell orbit ( )0 1 1: , , ,P

N jx G x x x −  is 

simply periodic.                                                                                  □ 

We denote that the length of the period of the Narayana-Pell 

orbit ( )0 1 1: , , ,P

N jx G x x x −  by ( )0 1 1: , , ,P

N jLx G x x x − . 

In (Erdag & Deveci, 2022), Deveci and Erdağ denoted the 

period of the sequence ( ) P

kn m , when read modulo m  by ( )
P
knl m . 

Now we give the lenght of the periods of the Narayana-Pell orbit of 

the semidihedral group 
2m

SD  as applications of the results obtained. 
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Theorem 2.2. For generating pair ( ),x y , the length of the period of 

the Narayana-Pell orbit in the semidihedral group 
2m

SD  is 

( )22 2
P
knm l−  . 

Proof. We consider the lenght of the period of the Narayana-Pell 

orbit in the semidihedral group by the aid of the period ( )
P
knl m . We 

obtain Narayana-Pell orbit in the following form: 

( ) ( ) ( ) ( ) ( )0 , 1 , 2 , 3 , 4 , ,P P P P P

N N N N Nx x x y x e x e x e= = = = =  

( )( ) ( )( ) ( )( )
( )( ) ( )( )

1

2

4

4

2 2 , 2 2 1 , 2 2 2 ,

2 2 3 , 2 2 4 , ,

P P P
k k k

P P
k k

n n nP P P

N N N

n nP P

N N

x l x x l x y x l e

x l e x l x





−

−

 =  + =  + =

 + =  + =
 

where 1  and 2  are positive integers such that ( )1 2gcd , 1  = . 

Thus, for Using the above, the sequence becomes: 

( ) ( ) ( ) ( ) ( )0 , 1 , 2 , 3 , 4 , ,P P P P P

N N N N Nx x x y x e x e x e= = = = =  

( )( ) ( )( ) ( )( )
( )( ) ( )( )

1

2

4

4

2 2 , 2 2 1 , 2 2 2 ,

2 2 3 , 2 2 4 , ,

P P P
k k k

P P
k k

n n nP P P

N N N

n nP P

N N

x l x x l x y x l e

x l e x l x





  

 

−

−

 =  + =  + =

 + =  + =
 

where 1 2,   . So we need the smallest integer   such that 

12 4m  −  = , ( )   for 4m  . If we choose 
32m −= , we obtain  

( )( ) ( )( ) ( )( )
( )( ) ( )( )

2 2 2

2 2

2 2 , 2 2 1 , 2 2 2 ,

2 2 3 , 2 2 4 , .

P P P
k k k

P P
k k

n n nP m P m P m

N N N

n nP m P m

N N

x l x x l y x l e

x l e x l e

− − −

− −

 =  + =  + =

 + =  + =

 

Since the elements succeeding ( )( )22 2 ,
P
knP m

Nx l−   

( )( )22 2 1 ,
P
knP m

Nx l−  +  ( )( )22 2 2
P
knP m

Nx l−  + , ( )( )22 2 3
P
knP m

Nx l−  +  and 
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( )( )22 2 4
P
knP m

Nx l−  +  depend on ,x y  and e  for their values, the cycle 

begins again with the ( )( )22 2 nd
P
knm l−   element. Thus it is verifed 

that the lenght of the period of the Narayana-Pell orbit in the 

semidihedral group 
2m

SD  is ( )22 2
P
knm l−  .                                                □ 

 

Example 2.1. For 5m = , we consider the length of the period of the 

Narayana-Pell orbit in the semidihedral group 32SD . Using the 

relations of the semidihedral group 32SD , we have the sequence 

1 5 4 1 3 3 4 6

5 4 4 4 7 5 5 5 3 7 4 6

8 8 7 3 4 7 3 5 4 2

5 4 4 4 3 3 5 3 1 4 2

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

x y e e e x x y x y x xy x y x y x y x

x x y x e x x x y y x x y x y x y x y x

x x y e e x x x y x y x xy x y x y x y x

x x y x e x x x y y x x y x y x y x y x

x

− − − − −

− − − − − −

−

− − − − − − − − −

, , , , , .y e e e

 

Since ( ) ( )0 56 ,P P

N Nx x x= =  ( ) ( )1 57 ,P P

N Nx x y= =  

( ) ( )2 58P P

N Nx x e= = , ( ) ( )3 59P P

N Nx x e= = , ( ) ( )4 60P P

N Nx x e= = , the 

length of the period of the Narayana-Pell orbit is

( )32 : , 56P

NLx SD x y = . 

 

3. CONCLUSION 

In this study, we examined the Narayana-Pell sequence in 

groups. Firstly, we redefined the Narayana-Pell sequence by means 

of the elements of groups and call the Narayana-Pell orbit to this 

relation redefined. Then, we show that this orbit is simply periodic. 

In addition, we investigated the Narayana-Pell orbit in the 

semidihedral group 
2m

SD . Finally, we obtained the lengths of the 
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periods of the Narayana-Pell orbit in the semidihedral group 
2m

SD
 

as applications of the results obtained. 
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CHAPTER IX 

 

 

The Complex-Type Narayana-Jacobsthal Numbers 

 

 

Yeşim AKÜZÜM1 

 

1. Introduction 

It is well known that reduced sequences (El Naschie, 2005; 

Fraenkel & Klein, 1996; Kirchoof & Rutishauser, 1990; 

Mandelbaum, 1972; Spinadel, 2002; Stein, 1993) are often 

discovered at the intersection of interdisciplinary relationships. 

Numerous features of algebraic reduction sequences, such as their 

generating function and exponential, permanental, and 

combinatorial representations, have been investigated by numerous 

researchers and continue to be investigated. (Akuzum & Deveci, 

2021; Deveci, Akuzum, & Karaduman, 2015; Erdag & Deveci, 

2019; Erdag & Deveci, 2022) (Erdag, Shannon, & Deveci, 2018; 

Gogin & Myllari, 2007; Horadam , 1961; Horadam , 1963; Ozkan, 

2007; Stakhov & Rozin, 2006; Tasci & Firengiz, 2010).  Many of 

 
1 Asst. Prof. Dr., Kafkas University, Faculty of Science and Letters, Department of 
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ysmakuzum89@gmail.com 
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these investigations have yielded different results by using matrices 

that correspond to reduced sequences. In (Deveci & Shannon, 2021; 

Deveci & Shannon, 2018), the authors defined the new sequences 

using quaternions and complex numbers, and then they gave various 

features. Some reduced sequences are redefined using complex 

numbers and adapted to a new approach to number theory (Deveci 

& Shannon, 2021; Deveci, Erdag, & Gungoz, 2023; Erdag, Halıcı, 

& Deveci , 2022; Horadam , 1963; Hulku, Erdag, & Deveci, 2023). 

In this study, a new reduction relation called the complex-type 

Narayana-Jacobsthal numbers was defined. By considering the 

generating matrices of these numbers in the form of companion 

matrices, super-diagonal matrices were defined, enabling the 

derivation of permanental representations of these numbers through 

the permanent values of these matrices. Generating functions were 

derived by examining the structural properties of the defined 

numbers, and their exponential and combinatorial representations 

were established using series and binomial expansions based on 

these generating functions. 

 

2. Preliminaries 

Deveci and Akuzum, (Deveci & Akuzum, 2022)defined the 

Narayana-Jacobsthal sequence as shown: 

 

5 4 3 2 12 2J J J J J J

k k k k k kn n n n n n+ + + + += + − − −  

for the integers 0k  ,with the initial conditions 

0 1 2 3 0J J J Jn n n n= = = =  and 
4 1Jn = . 
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Suppose the ( )n k+ th term of a sequence is defined recursively as a 

linear combination of the preceding k  terms. Then, it can be 

represented as: 

0 1 1 1 1=n k n n k n ka c a c a c a+ + − + −+ + +  

where 0 1 1, , , kc c c −  are constans. 

Kalman (Kalman, 1982)established that number sequences can be 

formulated through matrix representations. By applying the 

companion matrix method, he derived explicit closed-form 

expressions for generalized sequences. The companion matrix kA  is 

constructed as follows: 

0 1 2 2 1 .

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0
=

0 0 0 0 1

k

k k

A

c c c c c− −

 
 
 
 
 
 
 
 
  

 

Also, he proved that 

( )

0

1 1

1 1 .

=

n

n n

k

k n k

a a

a a
A

a a

+

− + −

   
   
   
   
   
   

 

 

3. Main Results 

We next define the complex-type Narayana-Jacobsthal numbers by 

integer constants 
, , , ,

0 1 2 3 0c J c J c J c Jn n n n= = = =  and ,

4 1c Jn = and the 

recurrence relation: 
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                           , , , , , ,

5 4 3 2 12 . . 2 .c J c J c J c J c J c J

k k k k k kn i n n i n n i n+ + + + += − + − −                       (3.1) 

for 0n  . 

By (3.1), we can construct a generating matrix G  for the complex-

type Narayana-Jacobsthal numbers as follows: 

5 5

2 1 1 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

i i i

G



− − − 
 
 
 =
 
 
  

 

The companion matrix is referred to as the complex-type Narayana-

Jacobsthal matrix. 

Using induction on  , we derive: 

( )

, , , , , , , , ,

4 5 4 3 2 1 3 2 3

, , , , , , , , ,

3 4 3 2 1 2 1 2

, , , ,

2 3 2 1

2 . . 2 . 2 . 2 .

2 . . 2 . 2 . 2 .

2 . .

c J c J c J c J c J c J c J c J c J

c J c J c J c J c J c J c J c J c J

c J c J c J c

n n i n i n n i n n i n i n

n n i n i n n i n n i n i n

G n n i n i n

        

        


   

+ + + + + + + + +

+ + + + + + + +

+ + + +

− − − − − −

− − − − − −

= − , , ,

1 1 1

, , , , , , , , ,

1 2 1 1 2 1

, , , , , , , , ,

1 1 2 3 1 2 1

2 2 . 2 .

2 . . 2 . 2 . 2 .

2 . . 2 . 2 . 2 .

J J J c J c J c J

c J c J c J c J c J c J c J c J c J

c J c J c J c J c J c J c J c J c J

n n n i n i n

n n i n i n n i n n i n i n

n n i n i n n i n n i n i n

    

        

        

− + +

+ + + − − −

+ − − − − − −





− − − − −

− − − − − −

− − − − − −





 
 
 
 



 

for 3  . Also, it is clear that det 2G i= − . 

Definition 3.1. A u v  real matrix 
,= i jM m    is referred to as a 

contractible matrix in the thk  column (or row) if the thk  column (or 

row) contains exactly two non-zero entries.  

Suppose that 1 2, , , ux x x  are row vectors of the matrix M . If M  is 

contractible in the thk  column such that 
, 0i km  ,

, 0j km   and i j

, then the ( ) ( )1 1u v−  −  matrix 
:ij kM  obtained from M  by 

replacing the thi  row with 
, ,i k j j k im x m x+  and deleting the 

thj  row. 
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The thk  column is called the contraction in the thk  column relative 

to the thi  row and the 
thj  row. 

In (Brualdi & Gibson, 1977), Brualdi and Gibson showed that 

( ) ( )=per M per N  if M  is a real matrix of order > 1  and N  is a 

contraction of M . 

Let 5r   be a positive integer and let 
,= r

r k jS s   is the r r  super-

diagonal matrix defined such that: 

2 1       1 2   0     0   0   0

1 2   1   1 2   0     0   0

0 1     2 1   1 2   0     0

                     

0     0    1  2  1   1 2   0

0 0        0   1    2 1   1 2

0 0    0      0    1  2 1   

r

i i i

i i i

i i i

i i i
S

i i i

i

− − −

− − −

− − −

− − −
=

− − −

− 1

0 0    0   0      0   1  2 1   

0 0     0   0   0      0   1  2 1

0 0     0   0   0    0     0  1  2

i

i i

i

i

 
 
 
 
 
 
 
 
 
 −
 

− 
 −
 
  

. 

Theorem 3.1. For 5r  , 

,

4= .c J

r rperS n +
 

Proof. Assume that the equation holds for 5r  . We now prove it 

for 1r + . By expanding the permanent rperS  using the Laplace 

expansion with respect to the first row, we obtain: 

1 1 2 3 42 . . 2 .r r r r r rperS i perS perS i perS perS i perS+ − − − −= − + − −  
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Given that ,

4= c J

r rperS n +
, ,

1 3= c J

r rperS n− −
, ,

2 2= c J

r rperS n− −
, 

,

3 4= c J

r rperS n− +
 and ,

4 = c J

r rperS n−
, which follow from the definition 

of the complex-type Narayana-Jacobsthal number, we conclude: 

,

1 5= .c J

r rperS n+ +
 

Hence, the proof is concluded. 

Let  
,= r

r k jD d   be the r r  matrix defined as: 

,

2 if    and  for 1 2,

1 if   and 1 for 1 1,

                    and

 and 2 for 1 3,

    if   and 2 for 1 2,
=

2 if   and 4 for 1 4,

   1 if   an

r

k j

i k t j t t r

k t j t t r

k t j t t r

i k t j t t r
d

i k t j t t r

k t

= =   −

− = = +   −

= = +   −

= = +   −

− = = +   −

= d 1 for 2 2,

                    and

 and  for 1 ,

   0 otherwise.

j t t r

k t j t r t r










 = −   −


 = = −  



 

Now, we introduce the r r  matrix 
,= r

r k jP p    in the following 

form: 

( )

1

                    2 th

                       

1 1 0

        for  51

0

0

r r

r

r

P D −

−



 
  
 
 =
 
 
  

. 
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Theorem 3.2. Let ,c J

rn  be the r th the complex-type Narayana-

Jacobsthal number. Then 

i. For 5r  , 

,

2= .c J

r rperD n +
 

ii. For 5r  , 

1
,

=0

= .
r

c J

r y

y

perP n
+

  

Proof. We apply the method of induction on r . 

i. Assume that ,

2= .c J

r rperD n +
 for 5r  . Now consider the case 1r + . 

By expanding the permanent rperD  using the Laplace expansion 

along the first row and using the definition of the matrix rD , we get: 

1 1 2 3 42 . . 2 .r r r r r rperD i perD perD i perD perD i perD+ − − − −= − + − −  

Substituting the assumed values, this becomes: 

, , , , ,

1 2 1 1 22 . . 2 .c J c J c J c J c J

r r r r r rperD i n n i n n i n+ + + − −= − + − −  

Thus, the result holds. 

ii. Next, we expand rperP  using the Laplace expansion along the 

first row. We obtain: 

1 1= .r r rperP perP perD− −+  

By applying the result from part (i) in Theorem 3.2 and the inductive 

argument, the proof follows directly. 

A matrix M  is called convertible if there is an n n  (1, 1)− -matrix 

K  such that ( )= detperM M K , where M K  denotes the 

Hadamard product of M  and K . 
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Let 5r  , and let H  be the r r  matrix, defined by 

.

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1
=

1 1 1 1 1

1 1 1 1 1

H

 
 
−
 
 −
 
 
 −
 

− 

 

Corollary 3.1. For 5r  , 

( ) ,

4det = ,c J

r rS H n +  

            ( ) ,

2det = ,c J

r rD H n +  

and 

                 ( )
1

,

=0

det = .
r

c J

r y

y

P H n
+

  

 Proof. Since  

( ) ,

4= det = c J

r r rperS S H n + , 

( ) ,

2= det = ,c J

r r rperD D H n +   

and  

( )
1

,

=0

= det =
r

c J

r r y

y

perP P H n
+

 ,  

By Theorem 3.1 and Theorem 3.2, the results follow immediately. 

Let ( )1 2, , , vC c c c  be a v v  companion matrix as follows: 
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( )

1 2

1 2

.

1 0 0
, , , =

0 1 0

v

v

c c c

C c c c

 
 
 
 
 
 

 

Theorem 3.3. (Chen & Louck, 1996).The ( ),k j  entry 

( ) ( ), 1 2, , ,
n

k j vc c c c  in the matrix ( )1 2, , ,n

vC c c c  is given by the 

following formula: 

( ) ( )
( )

1 1 1
, 1 2 1

11 2, , ,
1 2

, , , =
, ,

ttj j vn v v
k j v v

vvt t t
v

t t t t t
c c c c c c

t tt t t

++ + + + + 
 

+ + +  
      (3.2) 

where the summation is over nonnegative integers satisfying 

1 22 =vt t vt n k j+ + + − + , 
( )1 1

1 1

!
=

, , ! !

v v

v v

t t t t

t t t t

+ + + + 
 
 

 is a 

multinomial coefficient, and the coefficients in (3.2) are defined to 

be 1 if =n k j− .  

Here, we explore a combinatorial representation for the complex-

type Narayana-Jacobsthal numbers. 

Corollary 3.2. Suppose that ,c Jn  be the   the complex-type Narayana-

Jacobsthal number. Then 

i.  

( )

( ) ( )2 4 531

1 2 5

1 2 5,

, , , 1 2 5

2 1 2
, , ,

t t tttc J

t t t

t t t
n i i i

t t t


++ + + 
= − − 

 
  

where the summation is over nonnegative integers satisfying 

1 2 52 5 4t t t + + + = −  

ii.  
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( )

( ) ( )2 4 531

1 2 5

1 2 5, 5

, , , 1 2 51 2 5

1
2 1 2

, , ,2

t t tttc J

t t t

t t tt
n i i i

t t ti t t t


++ + + 
= − − − 

+ + +  
  

where the summation is over nonnegative integers satisfying 

1 2 52 5 1t t t + + + = +   

Proof. In Theorem 2.3, if we chose = 5k , = 1j , 

1 2 4 3= 2 , = = 1, = ,c i c c c i−  and 5 = 2c i−  for the case i., = 4k , = 5j , 

1 2 4 3= 2 , = = 1, = ,c i c c c i−  and 5 = 2c i− for the case ii., then we can 

directly see the conclusions from ( )G


. 

It can be easily proven that the generating function for complex-type 

Narayana-Jacobsthal numbers is as follows: 

( )
4

2 3 4 51 2 2
j

x
g x

ix x ix x ix
=

− + − + +
. 

Theorem 3.4. The exponential representation of the complex-type 

Narayana-Jacobsthal numbers is given as follows: 

( ) ( )4 2 3 4

1

1
= exp 2 2 .jg x x x i x ix x ix




 



=

 
− + − − 

 
  

 Proof. It is evident that 

( )
( )2 3 4 5

4
ln = ln 1 2 2 .

jg x
ix x ix x ix

x
− − + − + +  

Using the function ln x , we derive the following relation 

( ) ( )

( )

2 3 4 5 2 3 4

2 2 3 4

2 3

ln 1 2 2 = 2 2

1
                                                          2 2

2

1
                                                          2

ix x ix x ix x i x ix x ix

x i x ix x ix

x i x ix x



− − + − + + − − − + − − −


− + − − − −

− + −( )42 .ix


− − 

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As a result, we obtain 

( )
( )2 3 4

4
1

1
ln = exp 2 2 .

jg x
x i x ix x ix

x




 



=

 
− + − − 

 
  

Thus, we reach the conclusion.  

We now focus on the sums of the complex-type Narayana-Jacobsthal 

numbers.  

Let 

,

=1

= c J

t

t

W n


   

for 1  , let Q  be the 6 6  matrix as follows: 

.

1 0 0

1

= 0

0

Q G

 
 
 
 
 
 
  

 

Then, it follows by induction that 

( ) ( )

3

2

1 .

1 0 0

=

W

Q W G

W



 





+

+

−

 
 
 
 
 
 
 
 

 

4. Conclusion 

In this study, we introduce the complex-type Narayana-

Jacobsthal numbers. Subsequently, we establish the determinantal 
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and permanental representations of these numbers using specific 

matrices obtained from the generating matrix of the complex-type 

Narayana-Jacobsthal numbers. Moreover, we derive their 

combinatorial and exponential representations, as well as their sums, 

with the help of the generating function and the generating matrix 

associated with these numbers. 
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Simulation in Statistics 

 

 

Levent ÖZBEK1 

 

1. Introduction 

 

A certain expression of a real-world event, process or a system 

consisting of units and operating according to the internal relations 

between the units as well as the external relations with the 

environment is called a model. Although the expression can be done 

verbally, by drawing, by creating a physical similarity at a certain 

scale or in another way, the most valid expression is made with 

mathematics, the common language of science. 

A model is the expression of the structure and operation of a 

phenomenon or system in the real world, depending on the concepts 

and laws of the scientific field it is related to (physics, chemistry, 

biology, geology, astronomy, economy, sociology, etc.). A model is 

an expression, a representation of a phenomenon in the real world. 
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Since the real world is very complex, models simplify the 

phenomena and systems they want to explain and address them 

under certain assumptions. Models are not the reality themselves and 

no matter how complex they seem, they are an incomplete 

expression of the reality. In short, what is called a model is a product 

of the model builder's "understanding" of the reality. 

Every model-building process is an abstraction process. The 

abstraction process is the transfer of images of the phenomena in the 

real world, free of details, to human thought. In order to establish 

and select a model, it is necessary to know the basic characteristics 

of the phenomenon or system in question, its internal relations 

between its units and its external relations with the environment. The 

success of the model, its practical and scientific usefulness, depends 

on the degree of accuracy in abstracting the essence of the 

phenomenon or system and how basic the characteristics taken into 

account are. 

The observation of a feature or behavior related to an event, process 

or system on a model is called simulation. "Simulation" is a word 

that means imitation, resemblance. Let us remind you that in 

mathematical models, simulation is used when an analytical or 

numerical solution cannot be found, and instead of an optimal result, 

a set of "observation" results are obtained by experiments under 

different conditions. 

Probability theory, when considered as an abstract mathematical 

discipline, is a part of Measure Theory, and when considered as an 

applied discipline in modeling the phenomenon of randomness, it is 

a part of Statistical Theory. Statistics is a branch of science that 

provides the necessary information and methods for establishing 

mathematical models about events, processes, and systems that 

contain "randomness", especially for testing the validity of these 

models and for drawing conclusions from these models. 

Randomness is a distinct characteristic of our environment. It would 

not be wrong to call Probability and Statistics Theory the science of 

randomness. 
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2. The Possibility of Meeting Layla and Majnun 

Leyla and Mecnun decide to meet in front of a store in Kızılay 

between 17:00 and 18:00 on a weekend. The first one to arrive will 

wait for the other for 10 minutes and if they don't arrive, they will 

leave. What are the chances of Leyla and Mecnun meeting, assuming 

they act independently of each other? 

 

Model : 

If it is considered that Leyla and Mecnun will meet in a 60-minute 

period, we can express the experimental result with 

 2 2( , )   : 0 60,  0 60x y R x y =        

where x: Leyla's and y: Mecnun's arrival times are. If the Borel 

algebra in 
2 is restricted to   and 

B  is taken as the probability  

"Area measure of "
( )

"Area measure of "

A
P A =


 

measure for 
 BA , the experiment is modeled (described) with the 

( )PB ,,   probability space. 

 

Let A: be the event of Leyla and Mecnun meeting. 

 2( , )   : !x-y! 10A x y R=    

is found as 

305.0
36

11
)( ==AP   
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When it is desired to simulate the experiment on this model, the 

algorithm steps related to this are as follows. 

 

A1. The experiment is performed once by generating numbers from 

the distribution with RND and calculating the values 

X=60*RND 

Y=60*RND 

A2. It is checked whether the event has occurred or not. 

A3. The experiment is repeated n times. 

A4. The number of occurrences of the event is counted. The number 

of occurrences is proportional to the number of experiments. 

The program for this is written as follows. 

INPUT " Enter the number of experiments =", n 

FOR i = 1 TO n 

    x = RND * 60 

    y = RND * 60 

    PSET (600 - (100 + x * 5), (100 + y * 5)), 5 

    IF ABS(x - y) <= 10 THEN 

        PSET (600 - (100 + x * 5), (100 + y * 5)), 10 

        met = met + 1 

    END IF 

NEXT i 

PRINT " Probability found by simulation ="; met / n; 11 / 36 
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When the program is run, an image like the one below will appear. 

 

Figure 1. Output image of the program. 

3. Calculating   Number Using Random Numbers 

 

Let's consider the unit circle in the ( , )x y  coordinate system. 

 2 2( , )   : -1 1,  -1 1x y R x y =        

Let's deal with the event  

 2 2 2( , )   : x +y 1A x y R=    
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where the ( , )x y  point randomly selected from   falls inside the 

unit circle. If the Borel algebra in 
2  is restricted to  and 

B  is 

taken as the probability measure for 
 BA , the experiment is 

modeled with the ( )PB ,,   probability space and the sought 

probability is found as  

"Area measure of "
( )

"Area measure of "

A
P A =


 

from here ( )
4

P A


=  can be written. The ( )P A  probability can be 

found by simulation, if this probability value is multiplied by 4, this 

result will give us an estimate for 4. ( )P A = . The algorithm steps 

are as follows. 

A1. The experiment is performed once by generating numbers 

from the RND and U(0,1) distribution and calculating the values 

X=2*RND-1 

Y=2*RND-1. 

A2. If X^2+Y^2<=1, the event has occurred. 

A3. The experiment is repeated n times. 

A4. The number of occurrences of the event is counted.  

The number of occurrences is proportional to the number of 

experiments. 

The program for this is written as follows. 

INPUT " Enter the number of experiments =", n 

FOR i = 1 TO n 

    x = 2 * RND - 1 
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    y = 2 * RND - 1 

    PSET (600 - (300 + x * 150), (210 + y * 150)), 5 

    IF x ^ 2 + y ^ 2 <= 1 THEN 

        PSET (600 - (300 + x * 150), (210 + y * 150)), 10 

        ok = ok + 1 

    END IF 

NEXT i 

PRINT "Probability="; ok / n 

PRINT "Eestimated pi value ="; 4 * ok / n 

 

When the program is run, an image like the one below will appear. 

 

Figure 2. Output image of the program. 
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4. Marley Problem: What is the probability that a backgammon 

chip with a radius of 2 br. will not intersect the edges of the marley 

when it is randomly thrown onto the floor of a room paved with 

square marleys with side lengths of 20 br.? 

 

Model: As a result of the experiment, let's observe the position of the 

center point of the coin on the marley where it falls (is located). The 

observation process can be done by shifting the marley where the 

center point of the coin is located to the starting point of a coordinate 

system as in Figure 3. The experiment can be thought of as if it were 

being done on a single marley. The set of possible outcomes for the 

coordinates of the center point of the coin to be ( , )x y  is 

 

 

  =       ( , ) ,x y R x y2 20 20 0 20  :    

 

A

x

y

0 20

20

2 18

18

2

 
 

Figure 3. Sample space 

 

If the restriction of the Borel algebra in 2  to   is taken as the 

probability measure for A B  , with B  as the B , we will have 

modeled (explained) the experiment with the ( ) , ,B P  probability 

space. 

 

"Area measure of "
( )

"Area measure of "

A
P A =


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A: Let the event be that the thrown chip does not intersect the edges 

of the marley. 

 

 A x y R x y=     ( , ) ,2 2 18 18  :   2  

is found as 

P A( ) .= =16

20

2

2
0 64  

The algorithm steps are as follows. 

 

A1. The experiment is performed once by generating numbers 

from the RND and U(0,1) distribution and calculating the values 

X=20*RND 

Y=20*RND 

A2. If  2<x<18 and 2<y<18, the event has occurred. 

A3. The experiment is repeated n times. 

A4. The number of occurrences of the event is counted.  

The number of occurrences is proportional to the number of 

experiments. 
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