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FOUNDATIONS OF LARGE LANGUAGE MODELS AND 

THEIR EDUCATIONAL POTENTIAL 

ÜMİT MURAT AKKAYA1 

Introduction 

We are in the midst of a technological shift in education, one 

unfolding at a pace that rivals the introduction of the personal 

computer or the internet. Large Language Models (LLMs) have 

evolved in just a few short years from academic curiosities into 

powerful, general-purpose tools. They are capable of generating 

nuanced, human-like text, engaging in complex Socratic dialogue, 

translating languages with remarkable fluency, and even writing 

functional computer code (Wang & ark., 2024). This rapid ascent 

from research labs to public-facing tools has profound implications 

for the educational landscape. 

These models offer the potential to finally deliver on the 

long-held promise of scalable, personalized, and universally 

accessible learning experiences. They can act as tireless tutors, 

available 24/7 to answer questions, explain concepts in different 

ways, and adapt to a student's individual pace (Kumar & ark., 2025). 
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They can serve as adaptive content generators, creating customized 

problem sets or reading materials, and as powerful creative partners 

for both students and teachers, brainstorming ideas or drafting lesson 

plans (Baidoo-Anu & Ansah, 2023). Simultaneously, their 

capabilities present a new and complex set of pedagogical, logistical, 

and ethical challenges. These range from the immediate concerns of 

academic integrity and the "outsourcing" of critical thinking to the 

deeper systemic issues of data privacy, algorithmic bias reinforcing 

existing inequities, and the significant environmental and financial 

costs of their creation and operation (Farooqi & ark., 2024; Holmes 

& Tuomi, 2022). 

This chapter lays the foundation for understanding these 

remarkable yet challenging systems. We will try to solve the mistery 

of what LLMs are, tracing their lineage from the rule-based systems 

of traditional natural language processing (NLP) to the revolutionary 

architecture that powers them today. We will explore the specific 

"emergent" capabilities that make them uniquely suited for 

educational applications, compare the ecosystem of models 

available, and critically examine their inherent and often 

misunderstood limitations. To build effective, safe, and equitable 

educational tools, we must first understand the base on which they 

stand. 

What is a Large Language Model? 

At its core, a Large Language Model is a sophisticated 

statistical tool. It is a massive neural network, often containing 

hundreds of billions or even trillions of "parameters"—the values in 

the network that are adjusted during training. These parameters 

function as the model's repository of learned knowledge. These 

models are trained on vast, petabyte-scale quantities of text and code 

scraped from the internet, books, and other sources, a dataset that 

represents a significant portion of all human-generated text. 
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Its primary function is deceptively simple: to predict the next 

word (or, more accurately, a sub-word unit called a "token") in a 

sequence, given the words that came before it. Given the prompt 

"The capital of France is," the model calculates a probability 

distribution over all the words it knows, and "Paris" will have a very 

high probability. The model learns the statistical patterns of language 

(grammar, syntax, facts, reasoning styles, and even biases) by 

repeatedly performing this "next-token-prediction" task. This simple 

objective, when applied at an unprecedented scale, gives rise to the 

"emergent abilities" we observe, such as translation, summarization, 

and question-answering, none of which were explicitly programmed 

into the system (Wei & ark., 2022). 

From Traditional NLP to the Transformer 

For decades, NLP systems were brittle and complex. They 

often relied on hand-crafted linguistic rules and grammars, which 

required immense domain-specific expertise and would fail when 

encountering slang, metaphors, or grammatical structures they hadn't 

seen. Later statistical methods, while an improvement, still struggled 

with long-range context. The entire field was revolutionized in 2017 

(Ladu & ark., 2025). 
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Tablo 1 A Comparison of Traditional NLP and Modern LLM 

Approaches 

Approach Primary 

Mechanism 

How it 

Understands 

Context 

Key Limitations 

Rule-Based NLP Hand-crafted 

grammars and 

rules (e.g., "If 

word X follows 

word Y, it is a 

verb") 

Defined 

explicitly by 

human linguists 

Extremely brittle; 

fails on novel 

language; cannot 

scale. 

Statistical NLP Methods like 

"bag-of-words" 

(TF-IDF) that 

count word 

frequencies. 

Poor. Ignores 

word order (e.g., 

"dog bites man" 

vs. "man bites 

dog"). 

Lacks 

understanding of 

syntax, semantics, 

or context. 

Recurrent/LSTM Recurrent Neural 

Networks 

(RNNs) and 

Long Short-Term 

Memory (LSTM) 

networks 

(Hochreiter & 

Schmidhuber, 

1997). 

Processes text 

sequentially, 

maintaining a 

"memory" of 

previous words. 

Struggles with 

long-range 

dependencies; 

computationally 

slow (cannot be 

parallelized). 

Transformer 

(LLM) 

The Transformer 

architecture 

(Vaswani & ark., 

2017) using self-

attention 

mechanisms. 

Processes all 

words at once, 

weighing the 

importance of 

every word to 

every other 

word. 

Highly scalable; 

captures complex, 

long-range 

context. 

(Limitations are 

cost, bias, etc.) 

Source: Created by the author 

The true breakthrough came with the Google Brain paper 

"Attention Is All You Need" (Vaswani & ark., 2017). This paper 

introduced the Transformer architecture, which completely replaced 

the sequential processing of RNNs with a mechanism called self-

attention. 
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The Transformer's key innovation is its ability to process all 

tokens in a sequence simultaneously and use self-attention to weigh 

the importance of all other words when processing any given word. 

In simple terms, for every word, the model creates a "query," "key," 

and "value" vector. The "query" represents the current word's request 

for information. It compares this query to the "key" of every other 

word in the sequence to determine relevance (the "attention score"). 

It then uses these scores to create a weighted sum of the "values," 

resulting in a new representation of the word that is deeply context-

aware. 

This attention mechanism learns, for example, that in the 

sentence "The student opened the book," the word "book" is highly 

relevant to "opened," but in "The student will book a flight," it is 

highly relevant to "flight." This ability to dynamically model context 

over long distances, and the fact that its computations could be 

massively parallelized on modern GPUs, made the Transformer the 

engine of the new LLM era. 

The GPT Family, Scale, and Emergence 

The Transformer architecture set the stage, but scale provided 

the breakthrough. Researchers discovered predictable "scaling 

laws," which showed that as you predictably increase model size 

(parameters), data volume, and computational budget, the model's 

performance on a wide range of tasks predictably improves (Kaplan 

& ark., 2020). More parameters mean the model has a greater 

capacity to memorize information and, more importantly, to learn 

complex, abstract patterns and relationships within the data. 

Models in the GPT (Generative Pre-trained Transformer) 

family, from GPT-2 to GPT-3 (Brown & ark., 2020) and GPT-4, were 

a direct test of these scaling laws. As these models grew, they began 

to exhibit emergent capabilities, abilities that were not present in 
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smaller models and were not the direct object of training, appearing 

almost spontaneously once a certain threshold of scale was passed. 

The most important of these was "in-context learning". For 

instance, GPT-3 was found to be a "few-shot learner" (Brown & ark., 

2020). Instead of needing to be explicitly re-trained (fine-tuned) for 

a new task, you could simply show it a few examples of the task in 

its prompt, and it would understand and perform that task. This shift 

from a paradigm of task-specific training to one of general-purpose 

prompting is the defining feature of modern foundation models. 

The LLM Training Pipeline: Pre-training, Instruction Tuning, 

and Alignment 

Modern LLMs are not created in a single step. Their 

capabilities are the result of a sophisticated, multi-stage training 

pipeline. 

• Pre-training: This is the foundational and most 

computationally expensive phase. The model is trained on a 

massive, unlabeled dataset (e.g., a large portion of the 

internet and all of Wikipedia) to do next-token prediction. 

The result of this stage is a "base model". This base model is 

a powerful knowledge repository and text completer, but it is 

not "helpful"; it is not trained to follow instructions or hold a 

conversation. If you gave it the prompt "Write a summary of 

Hamlet," it might just complete the sentence with "and 

Macbeth are two of Shakespeare's most famous tragedies". 

• Instruction Fine-Tuning (IFT): To make the base model 

useful, it undergoes "instruction tuning", also called 

Supervised Fine-Tuning (SFT). In this phase, the model is 

fine-tuned on a smaller, high-quality dataset of "instructions" 

and "high-quality answers" (e.g., Prompt: "Summarize 

Hamlet," Answer: "Hamlet is a tragedy about..."). This 

dataset is often curated by human labelers. This teaches the 
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model to follow user commands and behave as a helpful 

assistant. 

• Alignment: This final phase aims to make the model more 

helpful, truthful, and harmless. The most common method is 

Reinforcement Learning from Human Feedback (RLHF) 

(Ouyang & ark., 2022). In this process, several of the model's 

answers to a prompt are shown to human raters, who rank 

them from best to worst. A separate "reward model" is then 

trained to predict these human preferences. Finally, the LLM 

itself is fine-tuned using reinforcement learning to maximize 

the "reward" score, effectively aligning its behavior with 

what human raters preferred. Newer methods, like 

Constitutional AI (Bai & ark., 2022), attempt to achieve the 

same goal using AI-driven feedback based on a written 

constitution of principles, reducing the human labor 

bottleneck. 

Key Capabilities for Education 

The shift from task-specific models to general-purpose 

foundation models, accessed via prompting, is what makes LLMs so 

disruptive for education. A single, powerful model can be prompted 

to perform hundreds of different educational tasks, from tutoring to 

content creation. 

In-Context Learning: Zero-Shot, Few-Shot, and Instruction 

Tuning 

• Zero-Shot Learning: This is the model's ability to perform 

a task without any prior examples, thanks to its instruction-

tuning. It can follow commands it has never seen before. 

Example: "Explain the water cycle to a 5th grader, using an 

analogy. Make sure to define the terms 'evaporation' and 

'condensation'." 
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• Few-Shot Learning: For more complex or nuanced tasks, 

you can provide a few examples directly in the prompt. This 

"primes" the model, demonstrating the pattern or format you 

want it to follow. Example (Few-Shot): 

Prompt: Convert the student's question into a Socratic 

inquiry. 

Student: What's the answer to question 5? Tutor: What do 

you think the first step to finding the answer might be? 

Student: Why is the sky blue? Tutor: That's a great 

question. What have you observed about the sky at different times 

of the day? 

Student: I don't understand why the mitochondrion is called 

the powerhouse of the cell. Tutor: 

The model recognizes the pattern (Student question -> 

Socratic tutor response) and will reliably generate a Socratic 

response, such as: "What part of the "powerhouse" metaphor is 

confusing you?" 

Chain-of-Thought Prompting 

One of the most significant recent discoveries is Chain-of-

Thought (CoT) prompting (Wei & ark., 2022). Researchers found 

that by simply instructing a model to "think step-by-step" before 

giving a final answer, its accuracy on complex reasoning tasks (like 

math word problems or logic puzzles) increased dramatically. This 

simple prompt tweak coaxes the model to generate a "chain of 

thought," breaking down the problem and modeling the intermediate 

reasoning steps. 

• Standard Prompt: "Q: Roger has 5 tennis balls. He buys 2 

more cans of tennis balls. Each can has 3 tennis balls. Then 
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he gives 2 to a friend. How many tennis balls does he have 

left? A: 9." (Correct answer, but no reasoning) 

• CoT Prompt (Example): "Q: Roger has 5 tennis balls. He 

buys 2 more cans of tennis balls. Each can has 3 tennis 

balls. Then he gives 2 to a friend. How many tennis balls 

does he have left? A: Let's think step-by-step. Roger starts 

with 5 balls. He buys 2 cans of 3 balls each, so 2 * 3 = 6 

balls. He now has 5 + 6 = 11 balls. He then gives 2 balls to 

a friend. 11 - 2 = 9 balls. The answer is 9." (Correct answer, 

with reasoning) 

For education, this is revolutionary. It allows the model to not 

only provide an answer but also to model the reasoning process 

itself. It suggests that LLMs may be capable of more than simple 

pattern-matching, perhaps engaging in a form of zero-shot reasoning 

(Kojima & ark., 2022). Advanced techniques, such as self-

consistency, take this further by having the model generate multiple 

reasoning paths and then picking the most consistent answer, which 

further boosts accuracy (Wang & ark., 2022). For a student, this 

means they can see how an answer was derived, making the LLM a 

potential tool for metacognitive instruction. 

Role-Playing and Simulation for Immersive Learning 

A powerful extension of in-context learning is the model's 

ability to adopt a persona or simulate a scenario. By "priming" the 

model with a role, it can create immersive learning experiences that 

were previously impossible to scale. 

• Socratic Tutor: A prompt can instruct the model to act as a 

Socratic tutor, never giving the answer but always 

responding to a student's question with another guiding 

question. 
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• Historical Simulation: A student can "interview" a 

historical figure. (e.g., "You are Julius Caesar. I am a 

reporter. Why did you decide to cross the Rubicon?"). 

• Practice Scenarios: A medical student can practice 

diagnosing a patient, a law student can practice cross-

examining a witness, or a business student can practice a 

difficult negotiation. 

• Language Learning: A student learning French can have a 

full, immersive conversation. (e.g., "You are a French 

baker. I want to buy a croissant. Please respond only in 

French and correct my grammar if I make a mistake."). 

These simulations provide a safe "practice field" for students 

to apply knowledge and develop soft skills. 

Content Generation and Augmentation 

Perhaps the most immediate use case for educators is the 

model's ability to generate and augment content. This can 

significantly reduce teacher workload and provide differentiated 

materials. 

• Assessment Creation: "Generate 10 multiple-choice 

questions about the causes of the American Civil War, 

suitable for a 10th-grade history class. Include an answer 

key." 

• Rubric Design: "Create a detailed 6-point rubric for a 

persuasive essay on renewable energy, with criteria for 

'Thesis,' 'Evidence,' and 'Clarity'." 

• Lesson Planning: "Generate a 50-minute lesson plan for 

introducing Python 'for loops' to high school students, 

including a warm-up activity and a short homework 

assignment." 



--14-- 

• Differentiated Texts: "Take this news article about a new 

scientific discovery and rewrite it at a 5th-grade reading 

level." 

This capability positions the LLM as a "co-pilot" for 

teachers, freeing them from administrative tasks to focus on high-

touch student interaction. 

Model Types: Open-Source vs. Proprietary 

As LLMs become critical infrastructure, it's important to 

understand the landscape. The models available today fall broadly 

into two categories, each with critical trade-offs for educational 

institutions. 

Tablo 2 Strategic Comparison of Proprietary vs. Open-Source 

Models 

Feature Proprietary (Closed) Models Open-Source Models 

Examples GPT-4 (OpenAI), Claude 3 

(Anthropic), Gemini (Google) 

LLaMA 3 (Meta), Mistral 

(Mistral AI), BLOOM 

(BigScience) (Kojima & ark., 

2022) 

Access Paid API (e.g., $ per 1,000 

tokens) 

Downloadable weights (e.g., from 

Hugging Face) 

Performance Pro: Generally state-of-the-art; 

highest performance. 

Con: Often lag 6-12 months 

behind the best proprietary 

models. 

Ease of Use Pro: Very easy; no 

infrastructure to manage. 

Con: Requires significant 

MLOps, hardware, and technical 

expertise to host. 

Data Privacy Con: Major risk. Data is sent to 

a third party. 

Pro: Fully customizable; can be 

deeply fine-tuned on custom data. 

Customization Con: Limited to provider's API 

(e.g., basic fine-tuning). 

Pro: Fully customizable; can be 

deeply fine-tuned on custom data. 

Cost Con: Ongoing, variable "per-

use" cost. Can become very 

expensive at scale. 

Pro: No "per-use" cost. Con: High 

upfront and maintenance 

(hardware, talent). 

Transparency Con: "Black box." Training data 

and architecture are secret. 

Pro: Auditable. Researchers can 

inspect weights and (often) data. 

Source: Created by the author 
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Proprietary (Closed) Models 

These are the most powerful, state-of-the-art models, 

developed and controlled by large corporations. They are accessed 

via an API, which integrates into the "API economy." Their primary 

benefits are their unmatched performance and ease of use. Their 

primary drawbacks are the lack of control, vendor lock-in, and 

significant data privacy risks (La Malfa & ark., 2024). 

Open-Source Models 

These models are released publicly (or "open-weighted"), 

allowing anyone to download, inspect, modify, and run them. Their 

primary benefits are data sovereignty (critical for student data), 

customizability, and lack of ongoing per-use costs. Their drawbacks 

are the high technical and hardware overhead required to run them 

effectively (Lin & ark., 2024; Touvron & ark., 2023). 

The Strategic Choice for Education 

This "open vs. proprietary" split presents a fundamental 

strategic choice for education. An individual teacher might leverage 

a proprietary API for its convenience and power in creating 

classroom materials. A school district or university, however, must 

heavily weigh the data privacy risks of sending sensitive student data 

to a third party. 

Regulations like the Family Educational Rights and Privacy 

Act (FERPA) in the United States and the General Data Protection 

Regulation (GDPR) in Europe impose strict rules on how student 

data (personally identifiable information) is collected, stored, and 

used (Emon & Chowdhury, 2025). Sending prompts that contain 

student names, writing, or learning analytics to a third-party API 

provider may violate these regulations unless a very specific, and 

often expensive, data-processing agreement is in place. For many 

public institutions, investing in self-hosted, open-source models may 
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be the only long-term, legally-compliant path to providing custom 

AI tools to their students. 

Critical Limitations and Common Misconceptions 

Despite their power, LLMs are not magical. They are tools 

with fundamental, deep-seated limitations. Understanding these 

limitations is the non-negotiable first step toward responsible 

implementation in education. 

The "Stochastic Parrot": Understanding vs. Prediction 

The most common misconception is that LLMs "understand" 

the world. This is a topic of intense debate. The "Stochastic Parrot" 

critique argues that LLMs are masters of statistical pattern-matching 

(Bender & ark., 2021). They have learned the relationships between 

words and concepts from their training data, but they lack true 

human-like comprehension, consciousness, grounding in reality, or 

intent. An LLM knows the word "apple" is statistically associated 

with "red," "fruit," and "pie," but it has never seen an apple, tasted 

one, or felt its weight. 

This is a modern version of the "grounding problem" in AI 

(Harnad, 1990). The model's "understanding" is ungrounded from 

physical reality, sensory experience, or social interaction. This is 

why it can make errors of common sense that no human child would. 

A counter-argument, highlighted by recent research, is that 

the "sparks" of general intelligence seen in models like GPT-4 are so 

advanced that the distinction between "real" understanding and 

"mere" complex pattern-matching becomes philosophically and 

practically blurred (Bubeck & ark., 2023). Regardless of this debate, 

it is safest to assume that models do not "know" or "believe" 

anything; they generate text based on learned probabilities. 
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Confident Plausibility: Why LLMs "Sound Right but Are 

Wrong" 

The primary limitation of an LLM, and its greatest danger in 

an educational context, is the hallucination. A hallucination is when 

the model generates a response that is nonsensical, factually 

incorrect, or untethered from reality, but presents it with the same 

confident, plausible-sounding, and grammatically perfect language 

it uses for correct information (Ji & ark., 2023). 

Example: A student asking for sources for a paper on the 

American Revolution might receive a list of five perfectly formatted 

APA citations, complete with authors, titles, and journal names. 

However, upon inspection, three of the five articles, and perhaps 

even one of the cited authors, do not exist. 

This happens because the model's objective is not to be 

truthful; it is to be statistically likely. If a factual error is a "likely" 

sequence of words based on its training, it will generate it. It has no 

internal "truth-checker" or world model to cross-reference. This is 

why a student's reliance on an LLM as a sole source of truth is so 

dangerous. 

Knowledge Cutoffs and Embedded Bias 

LLMs suffer from two other major content flaws: 

• Static Knowledge: Most LLMs are "frozen in time." Their 

knowledge is limited to the data they were trained on and 

ends at a specific "cutoff date" (e.g., "knowledge cutoff 

April 2023"). They are not aware of current events. 

• Embedded Bias: LLMs are trained on a snapshot of the 

internet, which is replete with human biases. Models have 

been shown to reproduce and even amplify societal biases 

related to gender, race, and culture (Bolukbasi & ark., 

2016). For example, a model might consistently generate 
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text associating "doctor" with male pronouns and "nurse" 

with female pronouns, or produce more negative text when 

discussing certain demographic groups, or associate "inner-

city" with crime. 

Data Privacy and Security Risks 

When using a proprietary API, all data including potentially 

sensitive student questions, essays, and personal reflections is sent 

to a third-party server. This raises critical privacy concerns: 

• Data Use for Training: Does the API provider have the right 

to use this data to train its future models? 

• Compliance: Does this data transfer comply with stringent 

educational privacy laws like FERPA or GDPR? (Emon & 

Chowdhury, 2025) 

• Data Breaches: The API provider becomes a high-value 

target for data breaches, potentially exposing student 

information. 

These risks are a primary driver for institutions to consider 

open-source, self-hosted alternatives. 

Environmental and Financial Costs 

The "large" in Large Language Model has significant real-

world costs. 

• Environmental Cost: Training a single large foundation 

model requires an immense amount of computational 

power, consuming vast quantities of electricity and 

generating a significant carbon footprint, comparable to the 

annual emissions of hundreds of cars (Strubell, Ganesh & 

McCallum, 2020). 
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• Financial Cost: The hardware required for this training 

(thousands of specialized GPUs) costs tens or even 

hundreds of millions of dollars. This cost creates a high 

barrier to entry, concentrating power in the hands of a few 

large tech companies and making it difficult for academic 

or public-sector institutions to build their own models from 

scratch. 

These costs are a crucial, if often invisible, limitation that 

shapes the entire field, driving the "open vs. closed" debate and the 

economics of API access. 

The Context Window Limitation 

A key technical limitation with major practical consequences 

is the "context window." This is the fixed amount of text (measured 

in tokens) that a model can "see" or process at one time. For older 

models, this was very small (e.g., 2,000 tokens, or ~1,500 words). 

Newer models have much larger windows (100,000 tokens or more), 

but they are still finite. 

This has direct implications for education: 

• A model with a small context window cannot read an entire 

textbook chapter, a long research paper, or even a full 

student essay before commenting on it. 

• In a long tutoring conversation, the model will eventually 

"forget" what was said at the beginning. 

This limitation is the primary motivation for techniques like 

Retrieval-Augmented Generation (RAG). RAG is a method for 

"feeding" the model relevant information just-in-time from an 

external knowledge base (like a textbook) so it can answer questions 

without having to fit the entire book into its context window. 
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Conclusion: 

Large Language Models represent a new type of foundational 

infrastructure. They are not just another ed-tech "app" but a new 

utility, much like a search engine or a word processor, upon which a 

new generation of tools will be built. We have seen that they are built 

on the Transformer architecture, powered by scaling laws, and made 

usable through a complex pipeline of pre-training and alignment. 

Their capabilities, from zero-shot learning to chain-of-thought, 

simulation, and content generation, open up new pedagogical 

frontiers. 

We have also seen that they are a double-edged sword. The 

"open vs. proprietary" models that define the market represent a 

crucial choice between power and privacy. Their fundamental 

limitations their nature as pattern predictors, not truth-tellers; their 

capacity for confident hallucination; their embedded biases; their 

finite context windows; and their significant privacy and 

environmental costs are the central challenges we must address. 

The potential for these models to "sound right but be wrong" 

and to perpetuate hidden biases requires us to move forward with a 

mindset of critical, informed, and cautious optimism. With this 

foundation established, we are ready to move from the what to the 

how. 
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CUSTOMIZATION AND DEPLOYMENT OF LLMS 

FOR EDUCATION 

İLHAN AYTUTULDU1 

Introduction 

Large Language Models (LLMs) such as GPT-4, Claude, 

Gemini, and LLaMA 3 have rapidly evolved from research 

curiosities into indispensable tools across domains. Yet, their 

adoption in education introduces a distinctive set of opportunities 

and constraints. Unlike general-purpose deployments, educational 

settings require models that are not only accurate but also 

pedagogically aligned, transparent in reasoning, and safe for learners 

(Xu et al., 2024: 7; Zhao & Wan, 2025: 22). Off-the-shelf LLMs are 

typically trained on heterogeneous internet text, which means that 

their linguistic richness and reasoning power come without 

guarantees of curricular coherence or age-appropriate instruction. As 

a result, direct use of generic models can lead to inconsistent learning 

outcomes, factual drift, or even unintentional bias in student 

interactions (Lee et al., 2024; Delikoura & Hui, 2025). 

 
1 Res. Assist. Dr., Gebze Technical University, Department of Computer 

Engineering, Orcid: 0000-0003-4237-8442 
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Customization bridges this gap between general intelligence 

and domain-specific pedagogy. By shaping the model’s inputs, 

outputs, and underlying parameters, educators and developers can 

tailor LLM behavior to reflect curriculum standards, disciplinary 

depth, and cultural context (Beale, 2025: 8; Zhang et al., 2025: 12; 

Wang et al., 2023: 6). Techniques such as prompt engineering, 

retrieval-augmented generation (RAG), and parameter-efficient 

fine-tuning enable this adaptation at varying levels of complexity 

and cost. At the same time, effective deployment demands careful 

attention to data governance, privacy, and sustainability—issues 

particularly sensitive when dealing with minors or institutional 

learning data (Dong & Xie, 2024: 5; Shan, 2025: 3; Zhao et al., 2024: 

11). 

This chapter explores the continuum between customization 

and deployment of LLMs for education. It begins by examining why 

educational domains necessitate specialized adaptation strategies 

and how pedagogical theories inform technical design. It then details 

practical customization approaches—from lightweight prompting 

frameworks to full fine-tuning pipelines—and demonstrates how 

these can be operationalized through scalable deployment 

architectures. Real-world case studies highlight systems for tutoring, 

assessment, and curriculum alignment. The discussion concludes 

with best practices for privacy, transparency, and sustainability, as 

well as a forward-looking perspective on personalized and 

multimodal educational AI. 

Ultimately, the chapter argues that the educational value of 

large language models lies not in their generative power alone but in 

degree of alignment between computational design and human 

teaching principles. When properly customized and responsibly 

deployed, LLMs can act as adaptive, inclusive, and context-aware 

partners that extend—not replace—the expertise of human 

educators.  
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Understanding Customization Needs in Education 

Adapting large language models to educational contexts is 

fundamentally a domain adaptation problem. Educational discourse 

differs sharply from the open-domain data on which LLMs are 

trained: it is goal-oriented, hierarchical, and evaluation-driven (Ke, 

Ming & Joty, 2025: 6; Afzal et al., 2024: 9; Sonkar et al., 2024: 4). 

Tasks such as question generation, automated grading, and concept 

explanation impose structured reasoning constraints that require the 

model to control both content scope and reasoning style. From a 

technical perspective, customization therefore involves three 

interrelated goals: (1) domain conditioning, to align model 

embeddings with curriculum-specific terminology and knowledge 

hierarchies; (2) didactic alignment, to model reasoning transparency 

and stepwise feedback patterns; and (3) controlled variability, to 

balance consistency and creativity in generated outputs (Liu et al., 

2025: 8; Imperial et al., 2024: 5; Jiao et al., 2023: 480; Bhat et al., 

2022: 3). 

These objectives extend beyond surface fine-tuning. They 

require combining retrieval-grounded inference, parameter-efficient 

tuning, and prompt-level control to ensure factual accuracy, 

reproducibility, and cultural localization. In multilingual or region-

specific deployments, additional layers such as bilingual adapters or 

localized tokenizers maintain linguistic fidelity and contextual 

relevance. Consequently, educational customization is not merely an 

interface problem but a multi-layered optimization process that 

integrates representation learning, controlled generation, and policy-

based interaction—laying the technical foundation for the 

customization and deployment strategies detailed in the following 

sections. 
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Approaches to Customizing LLMs for Education 

Once the need for adaptation is established, the next 

challenge is to determine how large language models can be 

effectively customized for educational applications. The available 

methods span a continuum of technical depth—from lightweight 

prompt engineering to parameter-efficient fine-tuning and retrieval-

augmented generation (RAG). Each approach represents a different 

trade-off between controllability, cost, latency, and generalization 

capability (Pan et al., 2025: 805; Jain et al., 2025: 7; Ye, 2025: 192). 

Prompt Engineering and Template Control 

Prompt engineering is the most accessible and cost-effective 

approach to controlling LLM behavior without retraining. It is 

conceptually analogous to programming through natural language 

instructions—where the prompt defines both the task and the desired 

response structure. Within educational contexts, prompt engineering 

governs pedagogical tone, reasoning depth, and structural 

consistency in generated responses. 

At its core, a prompt can be decomposed into three layers of 

control: 

1. Role Definition – specifying the model’s instructional 

persona (e.g., “You are a high-school mathematics tutor”). 

2. Task Framing – defining goals, reasoning constraints, and 

expected outputs (e.g., “Explain in steps before revealing the 

answer”). 

3. Output Structuring – ensuring responses conform to 

predictable formats (JSON, Markdown, or class-based 

schemas). 
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Instructional Role Control 

By assigning system-level instructions, developers can 

enforce behavioral constraints that shape the model’s response 

distribution. This mechanism, known as role conditioning, modifies 

the model’s latent state before token generation—effectively biasing 

it toward a desired conversational style or reasoning depth. 

For example, specifying the system message as “Act as a Socratic 

question generator” guides the model to prioritize interrogative 

patterns and withhold final answers until reasoning steps are 

complete.  

system_prompt = """ You are an AI teaching assistant for 

undergraduate Operating Systems. Adopt a supportive tone, explain 

concepts step by step, and encourage reasoning before providing 

final answers.""" 

user_prompt  = "Explain how semaphores prevent race 

conditions." 

Explanation: 

This prompt enforces persona persistence and pedagogical 

consistency. By explicitly defining role and response behavior, the 

model internalizes a constrained discourse pattern, improving 

reproducibility across sessions. 

Template Design and Structured Prompts 

Templates extend role prompting by adding modular control. 

Each educational task—question generation, feedback generation, 

grading—can have a standardized template. This creates a 

reproducible pattern that enforces uniform style and evaluation 

logic. 

TEMPLATE = """ 

### Learning Objective 
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{objective} 

### Explanation 

{explanation} 

### Example Question 

{example} 

### Common Mistakes 

{mistakes} 

""" 

Developers can instantiate this template dynamically with 

programmatic variables: 

filled_prompt = TEMPLATE.format(objective= 

"Understand the concept of deadlock in operating systems.", 

explanation="A deadlock occurs when two or more processes wait 

for resources held by each other.", example="Describe a real-world 

analogy for deadlock.", mistakes="Forgetting to mention mutual 

exclusion condition. Confusing deadlock with starvation.") 

Structured Output and Typed Schema Control 

Free-form outputs limit integration with downstream 

analytics systems. To make results machine-readable, models can be 

instructed to produce structured JSON or class-based outputs 

validated by Python’s data classes or pydantic models. This design 

pattern—typed response control—bridges prompt engineering and 

software engineering. 

from pydantic import BaseModel 

class LessonOutput(BaseModel): 

    learning_objective: str 

    hints: list[str] 
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    solution_steps: list[str] 

    evaluation_criteria: str 

This schema-driven method transforms generative models 

into deterministic components that emit predictable objects. 

The same principle scales to grading pipelines and dashboards where 

each field corresponds to rubric items or assessment criteria. 

Chaining and Multi-Stage Prompt Composition 

Complex educational workflows, such as question generation 

followed by rubric evaluation, can be realized through prompt 

chaining. Here, outputs from one model call become inputs to 

another—forming a directed sequence of reasoning tasks. 

Libraries such as LangChain or LlamaIndex support these pipelines. 

This models modular reasoning. Each prompt has a well-defined 

contract and output type, mirroring software modularization 

principles. 

def generate_question(concept): 

    return f"Generate a multiple-choice question about 

{concept}." 

def grade_response(question, answer): 

    return f"Evaluate the following answer using Bloom’s 

taxonomy.\nQuestion: {question}\nAnswer: {answer}" 

question = generate_question("Virtual Memory") 

evaluation = grade_response(question, "It allows more 

processes to be executed using disk as RAM.") 

One-Shot and Few-Shot Prompting 

Another dimension of prompt engineering concerns the 

number of exemplars provided within the input context. 

Modern LLMs can perform in-context learning, adapting to a task 
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by observing examples embedded directly in the prompt rather than 

through gradient updates or fine-tuning. 

When a single demonstration is included, the configuration 

is termed one-shot prompting; when several demonstrations are 

supplied, it becomes few-shot prompting. In both cases, the model 

implicitly constructs a task representation from these exemplars, 

conditioning its token-level probability distribution to mirror the 

structure and reasoning patterns present in the examples. This 

mechanism allows developers to approximate small-scale 

supervised learning purely through context manipulation, providing 

an efficient alternative to parameter training. 

In educational applications, few-shot prompting is highly 

effective for rubric-based grading, question generation, and concept 

explanation tasks. Each embedded exemplar defines both the 

expected reasoning depth and the output format, enabling consistent 

behavior without modifying model weights. One-shot setups are 

useful for simple classification or scoring tasks; few-shot 

configurations provide stronger generalization and stability by 

exposing the model to intra-task variation. 

few_shot_prompt = """ 

Evaluate student answers according to the rubric. 

Example 1 

Q: Define an operating system. 

A: Software that manages hardware and resources → Grade: 

10 

Example 2 

Q: What is a race condition? 

A: Two processes accessing shared data simultaneously → 

Grade: 8 
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Now evaluate: 

Q: Explain the purpose of semaphores. 

A: They synchronize process access to shared memory.""" 

In this prompt, the model infers grading criteria from the in-

context examples and applies the learned structure to the new query, 

performing few-shot inference without retraining. The approach 

combines the interpretability of explicit exemplars with the 

flexibility of generative reasoning, making it especially suitable for 

prototype systems where labeled data are limited. 

Automatic Prompt Optimization 

After designing a base prompt or few-shot template, the next 

step is to automatically improve it using measurable feedback. 

This process, called Automatic Prompt Optimization (APO), treats 

the prompt itself as a variable that can be optimized without 

changing the model’s parameters. The goal is to find a prompt that 

produces the best results for a given task—such as grading accuracy, 

factual correctness, or rubric alignment. 

In simple terms, APO runs a search loop: 

1. Start with an initial prompt. 

2. Generate small variations (called mutations) by rewording, 

adding examples, or changing structure. 

3. Test each new version on a small evaluation dataset. 

4. Keep the version that performs best and repeat. 

In educational systems, automatic prompt optimization can 

fine-tune grading templates, tutoring responses, or feedback 

structures based on teacher evaluations or real student data. It 

provides a practical way to adapt LLM behavior to institutional goals 

without retraining or fine-tuning the underlying model. 
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Retrieval-Augmented Generation (RAG) for Educational 

Systems 

While prompt engineering governs how a model reasons 

within its internal knowledge, it cannot compensate for factual gaps 

or curriculum-specific data that were absent from pretraining. RAG 

addresses this limitation by coupling the generative power of large 

language models with a dedicated knowledge retrieval component. 

In educational contexts, RAG enables models to ground their outputs 

in authoritative sources such as textbooks, course notes, learning 

management systems (LMS), and institutional repositories, thereby 

improving factual accuracy, curricular alignment, and explainability. 

RAG Architecture and Components 

A standard RAG pipeline consists of three interconnected 

modules: 

1. Retriever – converts a learner query into an embedding 

vector and retrieves semantically related documents from a 

knowledge store using dense or hybrid search techniques 

(e.g., FAISS, ColBERT, BM25). 

2. Reader / Generator – conditions the LLM on the retrieved 

passages and synthesizes a response grounded in that 

evidence. 

3. Indexer – periodically encodes and updates the knowledge 

base to reflect syllabus revisions or new teaching materials. 

This modular structure allows continual improvement 

without retraining the underlying model. Educators can simply 

update course documents in the knowledge base to refresh the 

system’s knowledge. 

Educational Use Cases 
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By integrating syllabus documents and textbooks into the 

retrieval layer, RAG systems can ensure that tutoring responses 

remain consistent with officially approved content. For instance, 

LearnRAG demonstrated that retrieval from structured course 

outlines improved factual grounding and reduced hallucinations in 

adaptive learning systems by more than 20 percent (Shan, 2025: 3).  

 

RAG can align automated grading with institutional rubrics 

by retrieving exemplar answers, grading criteria, or annotated 

feedback examples. The generator then uses this evidence to justify 

grades with transparent rationale, producing explainable assessment 

artifacts that teachers can audit. 

Frameworks such as EduPlanner employ multi-agent RAG 

pipelines where one agent retrieves learning objectives and another 

synthesizes lesson materials tailored to those objectives (Zhang et 

al., 2025: 3). This division of labor enables large-scale curriculum 

mapping while preserving instructional coherence. 

Techniques for Enhanced Educational Grounding 

Several retrieval enhancements are particularly beneficial for 

education: 

• Hierarchical Retrieval. Index both course-level and topic-

level materials to support multi-granular queries—from 

“Explain recursion” to “Give an example from Unit 3.” 

• Citation Grounding. Append references or URLs of 

retrieved passages to each response, improving academic 

traceability and deterring hallucination. 

• Query Expansion. Reformulate learner questions using 

pedagogical taxonomies (e.g., Bloom’s verbs: define, 

analyze, evaluate) to retrieve materials at the appropriate 

cognitive level (Imperial et al., 2024: 6). 
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• Dynamic Context Windows. Allocate retrieval context 

proportionally to question complexity, optimizing latency for 

real-time tutoring. 

• Multilingual Retrieval. Deploy bilingual encoders or 

translation-aware retrievers to serve linguistically diverse 

classrooms while maintaining content fidelity. 

Integration with Learning Ecosystems 

Modern educational infrastructure facilitates seamless RAG 

deployment. Vector databases such as Milvus or Pinecone can store 

encoded curriculum content, while connectors allow integration with 

LMS platforms like Moodle or Canvas. Teachers can upload new 

materials directly, triggering automatic re-indexing. Through APIs, 

the same retrieval layer can feed both chat-based tutors and analytic 

dashboards, ensuring consistent pedagogical grounding across 

institutional tools. 

Challenges and Considerations 

Despite its promise, RAG introduces challenges related to 

content quality, retrieval bias, and scalability. Poorly curated or 

outdated materials can propagate misconceptions, and unbalanced 

retrieval may over-represent certain topics. Continuous evaluation 

pipelines that log retrieval coverage and response fidelity are 

therefore essential. Furthermore, as educational datasets expand, 

maintaining low-latency retrieval requires efficient vector 

compression and adaptive caching. 

Parameter-Efficient Fine-Tuning (PEFT) for Educational 

LLMs 

Prompting and retrieval ground an LLM’s behavior 

externally, yet some educational uses—such as consistent grading, 

tone control, or curriculum-specific reasoning—require internal 

adaptation. Parameter-Efficient Fine-Tuning (PEFT) offers this 
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alignment by updating only a small fraction of model weights 

(usually < 5 %) while keeping the pretrained backbone frozen (Ke et 

al., 2025; Afzal et al., 2024). It therefore bridges full fine-tuning and 

zero-shot prompting in cost, stability, and pedagogical control. 

Tablo 1 Summary of major PEFT methods and their educational 

benefits 

Method Mechanism Educational Benefit 

LoRA 

Adds low-rank 

trainable matrices 

inside attention layers. 

Domain-specific reasoning (e.g., 

physics explanations) with minimal 

compute. 

Prefix / Prompt-

Tuning 

Learns “soft prompts’’ 

prepended to 

embeddings. 

Personalizes tutor persona or 

classroom language style. 

Adapters / 

BitFit 

Inserts or lightly 

updates small modules. 

Modular subject updates 

(MathAdapter, HistoryAdapter). 

QLoRA 

Quantized LoRA for 

memory-limited 

devices. 

Enables on-device fine-tuning in 

classrooms. 

Fine-tuning data should mirror curriculum objectives, age 

level, and feedback style. Even small, high-quality sets of exam 

items or annotated answers can teach models rubric awareness. 

Evaluation must test pedagogical alignment (tone, reasoning steps) 

as well as factual accuracy—often through expert rubrics rather than 

generic text metrics (Imperial et al., 2024). 

PEFT modules are lightweight and portable: institutions can 

host a single base model and load course-specific adapters as needed. 

This enables privacy-preserving, sustainable customization 

compliant with FERPA/GDPR (Dong & Xie, 2024). Combined with 

RAG, PEFT yields dual-layer alignment—stable pedagogical logic 

from fine-tuning plus dynamic factual grounding from retrieval. 
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Deployment Strategies and Infrastructure  

Deploying educational language models requires 

infrastructures that balance privacy, scalability, latency, and 

sustainability. Once customization is complete, deployment 

determines how effectively models support classrooms and 

institutional workflows. 

On-premise deployments ensure full data control and are 

preferred in K–12 or research settings requiring privacy and 

reproducibility. These setups, hosted within university or school data 

centers, guarantee compliance with regulations such as FERPA and 

GDPR while supporting integration with internal databases and 

analytics systems. 

Cloud deployments offer elasticity and easier maintenance, 

providing scalable access for large user bases or multilingual 

courses. Such configurations enable continuous model updates but 

require governance over data residency, cost, and third-party API 

reliance. 

A hybrid architecture combines both approaches—

performing sensitive inference locally while using secure cloud 

services for retrieval, analytics, or load balancing (Dong & Xie, 

2024). This design optimizes both privacy and accessibility, 

supporting continuous model updates without compromising 

institutional control. 

To ensure reproducibility and scalability, containerized 

deployments are commonly employed. Tools such as Docker and 

Kubernetes enable modular orchestration of model components—

fine-tuned adapters, retrieval indexes, and tutoring interfaces—

within isolated microservices. This approach simplifies updates, 

improves fault tolerance, and allows institutions to scale individual 

components independently. 
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For resource-limited or offline classrooms, lightweight and 

quantized models can be deployed on edge servers or local 

gateways. This supports equitable access and sustainability while 

enabling real-time inference without internet dependency. 

Integration with Learning Management Systems (LMS) 

such as Moodle or Canvas can be achieved through REST or 

GraphQL APIs, embedding tutoring and feedback tools directly into 

existing teaching platforms. Continuous monitoring pipelines 

further track model performance, bias drift, and retrieval quality over 

time, ensuring both pedagogical reliability and system transparency. 

In essence, effective deployment transforms customized 

models into operational educational ecosystems—secure, 

modular, and accountable—capable of augmenting human teaching 

through scalable yet ethically governed AI infrastructure. 

Privacy, Ethics, and Governance in Educational LLM 

Deployment 

As LLMs enter classrooms, privacy and governance 

become central to responsible deployment. Educational data often 

include personally identifiable information, performance metrics, or 

behavioral traces that demand strict compliance with FERPA, 

GDPR, and regional data-protection acts. Systems must ensure that 

no raw student data are transmitted or stored beyond institutional 

control (Dong & Xie, 2024). 

Key safeguards include: 

• Data Minimization: Retain only essential inputs and 

anonymize stored transcripts. 

• Local Processing: Prefer on-premise or edge inference for 

sensitive age groups. 
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• Access Transparency: Provide audit logs detailing how and 

when model outputs are generated. 

• Bias and Fairness Auditing: Periodically test responses for 

cultural, gender, or linguistic bias using standardized 

benchmarks. 

• Explainability Tools: Offer teachers visibility into reasoning 

chains or retrieval citations to support instructional oversight. 

Governance frameworks should combine technical controls 

(secure APIs, encrypted storage) with institutional policies defining 

model versioning, retraining intervals, and ethical review 

procedures. Transparent documentation—model cards describing 

datasets, limitations, and pedagogical scope—builds trust among 

educators and learners (Zhao & Wan, 2025). 

Case Studies and Framework Comparison 

Practical implementations illustrate how customization and 

deployment strategies converge in real educational ecosystems. 
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System / 

Study 

Customization 

Method 

Deployment 

Mode 

Educational 

Function 

Reported 

Outcome 

LearnRAG 

(Shan, 

2025) 

Retrieval-

Augmented 

Generation 

Hybrid 

cloud 

Adaptive 

tutoring using 

syllabus 

documents 

+20 % factual 

accuracy, 

reduced 

hallucination 

EduPlanner 

(Zhang et 

al., 2025) 

Multi-agent RAG 

+ Prompt 

Templates 

Cloud 

Curriculum 

design and 

lesson synthesis 

Coherent 

cross-topic 

planning 

Adapteval 

(Afzal et al., 

2024) 

PEFT (LoRA, 

Adapters) 
On-premise 

Automated 

summarization 

and grading 

Higher rubric 

alignment 

Standardize 

(Imperial et 

al., 2024) 

Prompt + RAG 

alignment to 

expert standards 

Cloud 

QA generation 

with curriculum 

citation 

Improved 

explainability 

and 

compliance 

COGENT 

(Liu et al., 

2025) 

Curriculum-

oriented 

prompting 

framework 

Edge / Local 

Grade-

appropriate 

content 

generation 

Increased age-

specific 

relevance 

Future Directions and Research Outlook 

Educational LLMs are evolving beyond text generation 

toward multimodal, lifelong learning companions. Several 

research frontiers define the next phase: 

1. Multimodal Integration: Incorporating speech, 

handwriting, and gesture analysis for richer learner 

modeling. 

2. Continual and Federated Learning: Allowing models to 

update from distributed classrooms without sharing raw data, 

supporting global yet privacy-preserving improvement. 

3. Pedagogical Explainability: Embedding reasoning paths 

aligned with Bloom’s Taxonomy to reveal cognitive levels 

of generated content. 
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4. Cross-Institutional Interoperability: Developing open-

standard adapters so universities can share educational 

modules without exposing proprietary data. 

5. Sustainable AI Practices: Using quantized inference, 

renewable-energy data centers, and adapter reuse to reduce 

carbon cost. 

Ultimately, the value of educational LLMs will depend not 

merely on generative power but on alignment with human learning 

principles—transparency, adaptivity, and inclusiveness. When 

coupled with responsible deployment, these systems can transform 

instruction into an interactive dialogue between pedagogy and 

computation. 
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LLM-SUPPORTED EDUCATIONAL 

APPLICATIONS: DESIGN, INTEGRATION, AND 

EVALUATION 

SİNEM MİZANALI1 

Introduction 

Large Language Model (LLM)-based artificial intelligence 

tools have become a central focus for schools, teachers, and virtually 

every discipline related to learning. Accordingly, LLM-based 

artificial intelligence tools have assumed a central position in 

research and application areas (Giannakos et al., 2025). As the 

theoretical foundations of LLMs (see Chapter 1) and customization 

strategies (see Chapter 2) mature, the integration of these 

technologies into educational ecosystems has the potential to 

redefine teaching and learning processes. 

This section addresses how LLM-based applications are 

designed, integrated, and evaluated in education. Within this scope, 

the section has three main objectives: conceptualizing examples of 

LLM-based applications used in education, outlining the technical 

and user-centric design principles of these applications, and 
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presenting practical insights through performance and quality 

evaluation methods and case studies. In line with these objectives, 

the areas of application for LLM-based applications in education 

(quiz generation, essay evaluation, language learning support, 

coding assistants, etc.) will first be addressed, followed by blueprints 

for the architectural design of these applications. Subsequently, the 

user experience and interface dimension will be evaluated. The 

section will conclude with selected case studies and the results 

obtained from these studies. 

Use Cases of LLMs in Education 

The integration of artificial intelligence into educational 

environments has given rise to new approaches that transform the 

practices of both students and educators. Among the various 

technologies driving this transformation, Large Language Models 

(LLMs) are powerful tools that influence learning and teaching 

(Biancini, Ferrato, & Limongelli, 2025).  LLMs' abilities to generate 

text, classify, summarize, translate, and make logical inferences 

make them usable in many stages of the learning process  (Kasneci 

et al., 2023). Giannakos et al. (2025) emphasize that generative AI 

tools, such as LLMs, offer new opportunities for automatic content 

generation, formative feedback, and assessment in educational 

contexts; however, the pedagogical robustness of these tools has not 

yet been sufficiently examined. Studies on the use of LLM in 

education show that these systems can function not only as tools for 

transferring knowledge but also as tools that provide cognitive 

support and generate feedback. (Kasneci et al., 2023). 

LLMs offer advantages in automating repetitive tasks and 

providing feedback when human resources are insufficient. In this 

context, LLM-based educational applications can be categorized into 

two main groups: 
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• Student-Focused Applications: These applications can be 

considered tools that directly support learning processes. 

• Teacher and institution-focused applications: These can 

be considered tools that assist in planning, evaluating, and 

managing learning processes. 

Student-Focused Applications 

From the student perspective, LLMs can be used in various 

functions to support the learning process. Student-centered 

applications related to the use of LLMs in education are summarized 

below by reviewing the literature under the following subheadings. 

Automatic Quiz Generation 

In the field of education, Large Language Models are 

increasingly being used in automated question generation to simplify 

time-consuming assessment and evaluation processes for teachers 

(Biancini et al., 2025). Quiz Generation applications can generate 

questions tailored to the subject matter, difficulty level, and target 

learning outcomes based on a specific text. However, despite its 

potential to simplify teachers' assessment processes, automated 

question generation still requires human oversight for content 

accuracy, semantic coherence, and question variety (Azzi, Erdős, 

Németh, Varadarajan, & Afrifa, 2025). Therefore, LLM-based quiz 

tools are typically designed with the human-in-the-loop principle. In 

this context, Biancini et al. (2025) compared multiple-choice 

question generation using GPT-3.5, LlaMA 2, and Mistral and 

demonstrated that GPT 3.5 was significantly superior in terms of 

clarity and alignment with the source text under the knowledge 

injection strategy. The findings support the practical value of human-

in-the-loop designs in measurement and assessment. As a more 

specific example, in a study by Dijkstra, Genc, Kayal, and Kamps 

(2022) GPT-3 was used to generate multiple-choice questions and 
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answers for reading comprehension tasks. The researchers argued 

that automated exam creation not only reduces the burden of manual 

exam design for teachers but, above all, provides a useful tool that 

makes it easier for students to practice and test their knowledge while 

learning from textbooks and preparing for exams. Such applications 

encourage students to practice regularly while also enabling teachers 

to produce more systematic, measurable, and learning-goal-aligned 

assessment materials.    

Automated Essay Scoring and Written Feedback 

Traditional forms of measurement and assessment processes 

in education are quite time-consuming and labor-intensive. Although 

providing feedback is critically important in education, evaluating 

open-ended responses and creating personalized feedback for each 

student are quite difficult and time-consuming processes (Xavier et 

al., 2025). Large Language Models have become the center of 

academic discussions in recent years with their potential to transform 

these processes. Recent research on this topic shows that LLMs can 

not only automate grading but also generate meaningful and 

personalized feedback that supports students' cognitive development 

(Fagbohun, Iduwe, Abdullahi, Ifaturoti, & Nwanna, 2024; Maity & 

Deroy, 2024). 

LLM-based automatic essay scoring (AES) systems are one 

of the earliest and most widespread applications in education. These 

systems can holistically analyze features such as text length, 

consistency, vocabulary diversity, and linguistic accuracy. Fagbohun 

et al. (2024) emphasized in their study that models can evaluate 

student responses across a wide range, from short answers to long 

essays, in terms of content, structure, grammar, and conceptual 

accuracy, while also providing detailed, explanatory, and 

constructive feedback. Thanks to this approach, the assessment 

process moves beyond the concept of grading and becomes a 
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feedback loop that guides learning. Although studies show that LLM 

models perform assessments at a level of reliability similar to that of 

real human evaluators, the importance of human oversight should 

not be overlooked. Even if LLMs score and/or provide feedback with 

high accuracy, issues such as model bias, data privacy, and ethical 

accountability necessitate human oversight. In this regard, Fagbohun 

et al. (2024) suggest that LLMs should be designed as tools that 

support teachers' decision-making processes rather than replace 

them.  

In addition to generating questions, LLMs show significant 

potential in response evaluation (Fagbohun et al., 2024). The ability 

to accurately evaluate student responses and provide feedback is a 

critical component of the educational process. Traditionally, this task 

has been performed by educators who must carefully evaluate the 

content and context of each response (Balfour, 2013). Consequently, 

LLMs have the potential to revolutionize education through response 

evaluation and written feedback. With their ability to understand, 

generate, and evaluate text, these models can help guide students on 

their educational journey through their capabilities in automatic 

assessment and constructive feedback (Maity & Deroy, 2024).  

Language Learning and Personal Learning Assistants  

LLM-based chat assistants offer revolutionary innovations in 

helping students learn a second language.  A study by Kasneci et al. 

(2023) shows that ChatGPT and similar models interact with 

students in natural language, instantly correcting their mistakes, 

providing example sentences, and offering comments aimed at 

increasing learning motivation. In this context, students can practice 

using LLM models as tutors when learning a new language. In 

addition, LLMs can provide content according to the student's level 

and create personalized learning paths. Furthermore, they act as 
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partners in continuous interaction, complementing the traditional 

student-teacher interaction in language learning.  

LLMs' ability to provide real-time feedback in areas such as 

pronunciation and speaking practice creates an accessible support 

mechanism for students with different profiles (El Shazly, 2021). 

Findings in the literature indicate that these approaches have a 

positive effect on language development (Kasneci et al., 2023). 

However, as mentioned in the previous subheadings, issues 

such as pedagogical accuracy and cultural bias must be carefully 

monitored at this point. Therefore, teacher guidance and the human-

in-the-loop principle are essential in the use of LLMs in the context 

of language learning. 

Coding, creating/generating code columns 

Large Language Models offer promising solutions for 

automatic code generation by leveraging extensive training on 

various code bases. Unlike traditional methods, LLMs can generate 

code in a wide variety of programming languages with minimal user 

effort (Eagal, Stolee, & Ore, 2025). Coding assistants can review the 

code written by students, explain error messages, offer solutions, and 

suggest alternative coding approaches. This allows students to 

receive immediate and contextual support in both debugging and 

design/refactoring processes. 

Studies in the literature indicate that LLM-powered coding 

assistants reduce students' problem-solving time but may sometimes 

weaken the student's critical thinking process by creating 

overconfidence (Akçapınar & Sidan, 2024; Groothuijsen, Beemt, 

Remmers, & Meeuwen, 2024). Therefore, it is important that these 

tools are used under teacher guidance. Furthermore, while it is 

technically possible to design a website or mobile application using 

only LLMs, principles such as verification, security, and 
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explainability must be observed throughout the process in such 

applications.  

Another study in computer education was contributed to the 

literature by MacNeil et al. (2022). In this study, GPT-3 was used to 

generate code explanations. This study successfully demonstrated 

GPT-3's potential to support learning by explaining the aspects of a 

specific piece of code. 

In this context, when combined with appropriate pedagogical 

design and supervision, LLM-based coding assistants have the 

potential to enhance students' debugging skills, conceptual 

understanding, and productivity. However, they should be supported 

by instructional safeguards to mitigate the risks of dependency and 

overconfidence. 

Teacher and institution-focused applications 

Large language models have become an indispensable 

opportunity to enhance learning and teaching experiences for 

individuals at all educational levels, including elementary school, 

middle school, high school, and university, due to the diverse 

applications they offer. They possess features that can be beneficial 

to individuals at every level of education. In addition, they offer 

opportunities for students with special needs. In line with the 

principle of equal opportunity in education, every individual has the 

right to education regardless of religion, language, or race. In this 

regard, LLMs provide benefits to individuals when used for the right 

purposes. 

Curriculum and Course Design Support 

LLMs can be used to create lesson plans, learning outcomes, 

and activity suggestions for teachers. For example, a teacher can 

quickly obtain a customized lesson flow tailored to their goals by 
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using an English prompt such as “generate a weekly lesson plan on 

Newton's Laws for 10th grade students.”  

Furthermore, these systems can assess learning outcomes 

based on students' previous performance data and adapt learning 

goals. In addition, they can generate improvement plans related to 

learning outcomes. Such tools provide information support, 

especially for teachers new to the field. However, the suggestions 

obtained should be reviewed by the teacher to ensure they are used 

safely in the classroom context.  

Feedback, Measurement, and Analytical Reporting 

LLMs can automatically analyze student performance as 

powerful text classifiers and provide teachers with summary and 

actionable reports. For example, within a writing course, students' 

texts can be summarized by the LLM and classified according to 

error types. Another alternative is to classify them according to 

subject matter. This allows teachers to quickly analyze which topics 

need improvement at the individual or class level and take action 

accordingly. Such systems serve as a decision support mechanism 

that accelerates and enriches decision-making processes rather than 

replacing teachers. Having teachers review reports for pedagogical 

appropriateness and contextual accuracy enhances the quality of 

feedback and strengthens the consistency of classroom practices. 

Hybrid and system-level applications 

The most effective scenarios in education frequently 

manifest in hybrid systems where student- and teacher-focused 

functions operate in an integrated manner. For instance, in a 

language learning platform, a large language model (LLM) assesses 

student text via the student module and offers immediate feedback, 

while the analytics module supplies the teacher with class-wide error 

statistics. Such systems can be designed utilizing a dual-agent 
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architecture approach: the primary agent engages with the student, 

whereas the secondary agent informs the teacher or generates 

systemic reports. 

In pilot systems implemented at select universities (Kasneci 

et al., 2023) large language models (LLMs) have been integrated into 

various educational contexts, including student advising, homework 

oversight, and in-course assistance. The findings suggest an 

enhancement in student motivation; however, educators remain 

apprehensive regarding the reliability of the systems and the 

transparency of assessments.  

Applications based on LLMs present considerable 

opportunities within the educational landscape, particularly 

concerning personalized learning, equitable access, and scalability. 

Nonetheless, challenges such as hallucination (the generation of 

incorrect information), bias, data privacy, and pedagogical 

appropriateness represent substantial limitations. The management 

of these risks will be addressed comprehensively in subsequent 

chapters of the book (see Chapter 4). 

The effective implementation of these use cases depends on 

robust technical architecture. In this context, the next section will 

examine in detail the architectural design, technical integration, and 

performance evaluation strategies for these applications. 

Architectural Blueprints 

This section details how the applications described in the use 

cases section are built, which technical components they combine, 

and how LLM architectures can be integrated into education 

systems. 

The most critical step in developing applications based on 

large language models in education is to correctly design the 

technical architecture of these systems. In this context, the success 
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of the application depends not only on the accuracy of the model but 

also on the system's design, integration, reliability, and measurability 

qualities. An LLM-based educational application should be built on 

an architectural structure where the data flow is defined and user 

interaction is modeled to evaluate outputs. 

The design of LLM-supported education systems requires an 

architectural framework based on solid pedagogical foundations. In 

this regard, the architectural plan must be aligned not only with 

technological capabilities but also with educational objectives. Thus, 

automation supports meaningful learning experiences rather than 

replacing them. Accordingly, the architectural plan can be structured 

in three layers. 

• Interaction Layer (User Interface); the layer where students 

and educators interact with the system. 

• Cognitive Processing Layer (LLM Core + Middleware); 

where inputs are interpreted, transformed, and 

contextualized. 

• Learning Analytics and Assessment Layer; the layer where 

the pedagogical quality, reliability, and learning impact of 

outputs are evaluated. 

Figure 1 shows the Architectural Blueprint. 
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Figure 1. Architectural Blueprint Structure 

 

The Interaction Layer represents the user-centric interface 

that facilitates educational dialogue between humans and LLM. The 

core design principles can be listed as multi-modal interaction, 

adaptive interfaces, and transparency. Multi-modal interaction refers 

to text, voice, or visual inputs to support different learners. React or 

other modern user interface frameworks can be used to create 

accessible and inclusive user experiences.  

At the heart of the architecture lies the Cognitive Processing 

Layer, which functions as the bridge between the user interface and 

the model’s reasoning capability. It typically includes: 

• Prompt Orchestration Engine: dynamically constructs 

prompts using contextual and pedagogical metadata (e.g., 

learning goals, student history). 

• LLM Interface: a standardized API gateway (e.g., OpenAI, 

Anthropic, or open-source models) that handles requests, 

responses, and model selection. 
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• Knowledge Integration Subsystem: optional retrieval-

augmented generation (RAG) modules or educational 

databases to provide grounded, domain-specific responses. 

• Session Memory: to maintain pedagogical coherence over 

multi-turn interactions. 

This layer embodies the system’s cognitive logic, aligning 

model reasoning with instructional design principles. 

The Learning Analytics Layer monitors the model’s outputs, 

user engagement, and learning effectiveness. It may include: 

• Automated feedback engines that map model outputs to 

rubric-based assessment frameworks. 

• Human-in-the-loop evaluation workflows that enable 

educators to verify or adjust model-generated feedback. 

• Learning analytics dashboards for visualizing progress, 

misconceptions, or engagement patterns. The goal is to 

ensure that AI outputs are pedagogically valid, not just 

technically fluent. 

Figure 2 shows the system architecture for the AI-supported 

learning platform. 
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Figure 2. Systems Architecture for AI Driven Learning Platform 

 

User Interface and User Experience Considerations 

Providing clear and reliable feedback in systems used by 

students and developing data-driven dashboards for teachers are of 

critical importance. Educational applications built on Large 

Language Models require not only powerful artificial intelligence 

models but also interaction designs that put the user at the center. An 

effective user experience directly determines the success of the 

model. In a pedagogical context, a good LLM application is a system 

that not only produces accurate information but also facilitates 

student understanding and gives teachers a sense of control (Holmes, 

Bialik, & Fadel, 2019).  

The study by Giannakos et al. (2025) reveals that LLM-

supported educational tools require the adoption of a human-

centered design in which teachers and students have initiative, 

control, and interpretive control over outputs generated by artificial 
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intelligence. This section will examine user experience in LLM-

based education systems from both a student-centered and teacher-

centered perspective. 

Student-Centered Interaction Design 

In education, the interaction between LLMs and students 

goes beyond the traditional “question-answer” format. The goal here 

is to transform the student from merely a recipient of information 

into an active co-learner. Therefore, the interface and interaction 

design should reduce the student's cognitive load, facilitate 

guidance, and increase motivation. 

The most common form of student interaction is dialogue-

based systems. An LLM-based educational chatbot not only corrects 

the student's mistakes but also guides the thinking process. For 

example: 

Student: “I goed to the park yesterday.” 

Assistant: “You almost got it! The correct past tense of ‘go’ 

is ‘went’. So the sentence should be “I went to the park yesterday.” 

This type of feedback provides positive reinforcement while 

correcting errors (scaffolded feedback). Research (Kasneci et al., 

2023) shows that this type of interaction increases students' 

confidence and retention of information, especially in language 

learning. 

For students with a visual learning style, graphical 

explanations or diagrams can be added alongside text-based outputs. 

Thanks to multimodal LLMs such as GPT-4V and Gemini, students 

can see the solution steps to a math problem through shapes rather 

than text. Such multiple representations support deep comprehension 

in learning theories. In addition, multimodal chat interfaces can 

support students with dyslexia or limited reading fluency. In other 
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words, multimodal LLMs are also highly beneficial for individuals 

with special needs who have temporary or permanent disabilities. 

LLMs can generate responses based on the student's past 

performance or preferences. For example, the system learns concepts 

that the student struggled with from previous responses and 

reinforces them in subsequent tasks. LLM-based systems are 

evolving from neutral information providers into supportive tools 

that also consider the student's emotional state. Even in simple 

examples, systems that detect student reluctance (“Don't worry, let's 

try this step by step”) increase cognitive resilience. 

Teacher-Centered Interaction Design 

User experience in education is not limited to students alone. 

Control panels and analytics screens designed for teachers are 

elements that determine the pedagogical value of the system. 

Teachers need transparency, traceability, and customization features 

to trust LLM-based applications. LLM-based education systems are 

evaluated not only for technical accuracy but also for ethical 

interaction principles. One of the fundamental components of user 

experience is the concept of trust. If a student or teacher can partially 

understand how the system works, they can more easily trust it. 

Providing the rationale behind the model's response increases 

user confidence. For example, if a quiz assessment tool clearly 

explains why an answer is incorrect, the model's explanatory nature 

makes the response instructive for the student. Similarly, the 

response will be traceable for the teacher. 

Some systems increase transparency by showing which 

information source the answer was generated from (source 

attribution). However, teacher control is still important at this stage. 

Retrieval Augmented Generation (RAG)-based structures 

technically support this type of traceability (Gao et al., 2024). LLM-
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based interfaces used in education must be grounded in pedagogical 

theories, unlike traditional software systems. In this context, the use 

of large language models (LLMs) in education requires a human-

centered approach that goes beyond traditional user experience 

principles. The following principles are recommended in this context 

(Shneiderman, 2020); 

• Cognitive Load Management: The interface should be free 

of unnecessary information and understandable in a single 

step. It should be designed to be instructive and reduce 

cognitive load. This will increase the student's attention and 

focus. 

• Scaffolded Interaction: The model guides the student to the 

goal step by step, not all at once. This allows the student to 

participate in the process. 

• Dialogic Feedback: Explanatory feedback is preferred over 

one-sentence responses.  

• Transparency by Design: The model's resources, 

limitations, and confidence level should be made visible. 

• Inclusivity and Accessibility: Interfaces should be 

accessible to different age, language, and cultural groups. In 

line with inclusive education, everyone should benefit from 

equal learning opportunities. 

These principles integrate Shneiderman (2020) foundations 

of “human responsibility, high reliability, and enhanced creativity” 

into educational design. LLM-based systems in education thus 

become not only technically functional but also ethical, explainable, 

and pedagogically meaningful. Shneiderman (2020) emphasizes that 

human control and high automation are not opposing but 

complementary design goals. In educational user experience, this 

principle means leveraging automation for efficiency while 

preserving teacher expertise.  
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Performance and Quality Evaluation 

Evaluation is central to the sustainability and reliability of 

LLM-based educational applications. A system must not only 

function correctly, but also demonstrate compliance with learning 

outcomes, pedagogical values, and ethical standards. Therefore, the 

performance of LLMs in education should be assessed not only by 

technical criteria, but also in terms of pedagogical effectiveness, user 

trust, and contribution to the learning experience (Giannakos et al., 

2025; Kasneci et al., 2023). 

Language generation quality, consistency, and error rate are 

traditional technical indicators for LLM-based systems. Metrics such 

as BLEU, ROUGE, and METEOR can be used in generation tasks; 

however, in an educational context, these metrics must be supported 

by pedagogical meaningfulness. For example, a quiz generation tool 

receiving a high BLEU score does not guarantee the conceptual 

accuracy of the questions or their suitability for the student's 

cognitive level. Therefore, hybrid evaluation frameworks have been 

proposed in recent years. First, the model's outputs can be scored 

both by automatic metrics and by expert teachers in the field. 

Another alternative is to analyze model errors in categories such as 

“factual errors,” “instruction violations,” and “pedagogical 

mismatch.” Finally, the same input can be tested with different 

models and consistency analysis can be performed (Kasneci et al., 

2023).  

Another element in educational applications could be 

considered hallucination. Misinformation carries the risk of direct 

learning loss and the formation of incorrect concepts in education. A 

three-tiered safeguard can be proposed for this risk. To prevent this, 

the response is based on the relevant information source, and if the 

reference is missing, a warning is returned. Another alternative is for 

the model to indicate its own confidence level. For example, it could 
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return a response such as “I am 70% confident about this answer.” 

Finally, an independent verification model can check the LLM 

output. These methods affect not only technical accuracy but also the 

student's confidence in the information. Justified explanations of 

responses support the student's critical thinking skills. 

Performance should also be evaluated in terms of time, cost, 

and system stability. In educational environments, low latency, high 

uptime, and scalable architecture directly impact the user experience. 

In RAG (Retrieval-Augmented Generation)-based systems, 

techniques such as cache optimization and embedding-based query 

matching increase this efficiency (Gao et al., 2024). However, more 

importantly, these metrics must be balanced with pedagogical value: 

a meaningful explanation produced in a slightly longer time should 

be preferred over a fast but superficial response (Holmes et al., 

2019). 

Another dimension that is as important as technical accuracy 

is the pedagogical suitability of model outputs and their contribution 

to the learning process. The concept of pedagogical alignment is 

used to assess whether LLM-based tools are compatible with 

learning objectives (Giannakos et al., 2025). An application should 

not only provide accurate information but also support the learner's 

learning objectives. The most direct way to measure pedagogical 

quality is to track changes in student learning outcomes. This is 

evaluated using both quantitative (test scores, number of tasks 

completed) and qualitative (student self-reflection, perceived 

benefit) data. 

The success of LLMs can be measured by their impact on 

student engagement and motivation. For example, Kasneci et al. 

(2023) showed that ChatGPT can increase children's curiosity and 

questioning behavior. In addition, the lack of sufficient digital and 

artificial intelligence literacy among teachers and students using 
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LLMs is considered one of the challenges in LLM usage. It is evident 

that trust and transparency mechanisms are necessary for user 

experience (Kasneci et al., 2023). 

Although Large Language Models offer opportunities in 

learning design processes in terms of speed and creativity, automatic 

content, feedback, and assessment generation, and supporting 

students' self-regulation skills; they also bring many challenges such 

as model biases, ethical issues, data privacy deficiencies, the blurring 

of the definition of the human role, and the risk of rapid integration 

being pedagogically inadequate (Giannakos et al., 2025).  

The sustainable integration of LLMs into education must be 

balanced with responsibility. While these systems can personalize 

learning and reduce teachers' workload, their uncritical adoption 

carries the risk of undermining ethical transparency. This tension 

between opportunity and oversight will form the basis of the ethical 

discussions addressed in Chapter 4. 

Case Studies 

Under this heading, both success indicators and limitations 

will be discussed based on LLM applications tested in different 

learning environments. 

In this context, a study conducted by El Shazly (2021) 

examined ChatGPT's contribution to students' language learning 

process. In the study, students received written and verbal feedback 

while practicing conversation with ChatGPT. The model also 

instantly suggested corrections for spelling mistakes, grammar 

errors, and stylistic improvements. Among the results obtained in 

this study, it was observed that students' language anxiety decreased 

by 40% and that students showed more courage while practicing 

speaking. However, it was also seen that most students began to trust 
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the accuracy of the grammar corrections provided by the model, 

which led to a weakening of their critical thinking skills. 

The study conducted by Akçapınar and Sidan (2024) 

examined the effect of an AI programming assistant on students' 

exam scores and their tendency to accept misinformation generated 

by AI. The authors developed a customized AI programming 

assistant using a GPT-based LLM. In the study, which used 

experimental design, students were asked to take a programming 

exam once with AI assistance and once without AI assistance. The 

results of the exam taken with AI assistance showed a significant 

increase. However, when examining the student-AI interaction logs 

for a specific question, it was found that the AI generated incorrect 

answers for that question for 36 students, and 33 of the 36 students 

who received the incorrect answer provided the wrong response to 

that question. Despite the obvious error in the AI-generated answer, 

22 students directly copied and pasted the AI response. Only 3 

students recognized the incorrect answer generated by the AI and 

answered the question correctly. The fact that a significant portion of 

the students accepted the incorrect answer provided by the AI 

without questioning clearly demonstrates how carefully AI tools 

must be used in learning environments.  

Xavier et al. (2025) present a controlled experiment 

comparing traditional teacher feedback with LLM-supported 

feedback via a platform among 60 middle school students in Brazil. 

The results of the experiment showed no significant difference in 

students' perceptions of feedback quality. In other words, the vast 

majority of students could not distinguish feedback generated by 

LLM from teacher feedback. The study found that LLM assistance 

produced longer feedback messages without significantly increasing 

grading time. 
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The study by Biancini et al. (2025) experimentally examined 

the role of LLMs in assessment processes. The research 

comparatively evaluated the performance of GPT-3.5, LLaMA 2, 

and Mistral models in generating multiple-choice questions. One of 

the most significant contributions of the study is the knowledge 

injection approach, whereby test data is transferred to the model 

externally, independent of the model's internal knowledge. This 

enables teachers to have full control over the source text. This 

approach emphasizes the necessity of developing LLM-based 

systems in educational settings according to the “human in the loop” 

design principle. The experimental findings were obtained from 21 

educators. According to the results of the study, GPT-3.5 showed 

statistically significant superior performance compared to the 

LLaMA 2 and Mistral models in all criteria. In particular, the 

difference was significant in the criteria of clarity and alignment with 

the source text. This study demonstrates that LLMs are not only 

linguistic production tools but can also be effective partners in 

designing assessment and evaluation in education. However, 

researchers emphasize that human expertise should not be 

completely eliminated. Although the questions generated by LLMs 

have high accuracy rates, they still require expert oversight in terms 

of content diversity, cognitive level (e.g., Bloom's Taxonomy), and 

contextual appropriateness. In this context, the fundamental 

approach in designing LLM-supported educational applications 

should be to keep the teacher at the center of the process, using the 

model's automation capacity as an auxiliary design element 

(Biancini et al., 2025). Additionally, researchers emphasize that 

future studies should expand LLM-based question generation not 

only in terms of linguistic accuracy but also in terms of cognitive 

level classification based on learning objectives and personalized 

assessment designs. Models to be developed could enable the 

measurement of learning outcomes at different cognitive levels 
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among students. This approach paves the way for LLM-supported 

educational applications to be integrated not only into content 

production but also into learning analytics and adaptive assessment 

processes. Thus, LLM-based assessment systems, integrated with 

teacher-centered design principles, lay the groundwork for an 

ethical, reliable, and pedagogically meaningful AI integration 

(UNESCO, 2023). 
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CHAPTER 4:  ETHICAL CHALLENGES, 

HALLUCINATION RISKS, AND RESPONSIBLE AI 

IN EDUCATION 

BAŞAK BULUZ KÖMEÇOĞLU1 

Introduction 

Artificial Intelligence (AI) has emerged as a constitutive 

process in the present educational culture, and not merely as a mere 

form of technology, but as an epistemic and moral actor, which 

increasingly steers teaching, assessment and policy-making in 

education (Jose et al., 2025). Large language models (LLMs) and 

other generative AI systems have reconfigured the way knowledge 

is constructed, represented, and verified in a pedagogical setting. In 

this process of transformation, education is confronted with two 

tasks - how to leverage AI’s personalization and efficiency, and how 

to protect basic academic and ethical imperatives such as fairness, 

integrity, and accountability (Sharma, et al., 2025; Memarian & 

Doleck, 2023).  

As recent scholarship points out, the inclusion of AI at the 

centre of education is fraught with both opportunities and structural 
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vulnerabilities. First, adaptive learning systems and automated 

feedback tools offer inclusivity, prompt assessment, and data-driven 

teaching. On the other hand, they introduce new mechanisms of 

asymmetrical human judgment versus algorithmic inference, 

generating moral questions about transparency, bias, and epistemic 

dependence (Klimova & Henriksen, 2024). The normative codes that 

historically shaped educational practice—autonomy of the learner, 

validity of the measurements used and the status of the educator as 

moral agent— now face opaque algorithmic systems whose 

workings are neither fully explainable nor contestable (Bittle et al., 

2025).  

Among the new anxieties, hallucination — the construction 

of linguistically consistent but factually inconsistent output by 

generative AI — is an especially critical epistemic concern. In these 

educational contexts of factual reliability and conceptual precision 

which are foundational to learning, such artificial content threatens 

the integrity of knowledge and evaluation procedures (Elsayed, 

2024)  Hallucination is an example of ‘systemic epistemic 

instability,’ which creates a gap between fluent language production 

and reliability based on facts (Cao, 2025). This phenomenon, 

emerging as a co-author of the artificial intelligence education 

discourse, provides a perspective for some critical discussions on the 

reconstruction of trust, authority, and verification. This phenomenon 

provides a perspective for some critical discussion of rebuilding 

trust, authority, and verification when AI emerges as a co-author of 

educational discourse.  

In addition, the pedagogical implications are not just about 

content authority, but also about academic truth and human agency. 

Generative AI platforms challenge both help and authorship as well 

as the accepted views of originality, effort and evaluative fairness 

(Mouta et al, 2025). AI’s ability to replicate reasoning and produce 

assessments threatens to displace the teacher’s evaluative role, 
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increase dependence and reduce students’ critical independence 

(Pratiwi et al.,2025). Ethical AI in education requires “human-in-the-

loop” oversight to ensure reflective judgment remains embedded in 

pedagogy as an end in itself (López-Meneses et al., 2025; Fajardo-

Ramos et al., 2025) 

These developments have provided a stimulus for the 

development of Responsible AI in Education (AIEd) frameworks, 

which aim to harmonise technological innovation with ethical 

governance. Research published today highlights the need for multi-

stakeholder accountability: developers to provide fairness and 

explainability, institutions to embed governance systems, educators 

to ensure that educators choose the appropriate use, and learners to 

acquire AI literacy skills (Fu & Weng, 2024; Zhuang et al., 2025). 

The aim is not just risk mitigation, but to build ethically sustainable 

learning environments in which automation does not replace human 

judgment, but rather serves human judgment.  

Thus, it is the purpose of this chapter to achieve three 

objectives. It firstly describes the pedagogical reweavings and 

tensions introduced by AI in education through the use of the 

artificial intelligence with respect to the pedagogical transformation 

and conflicts. Second, it studies four core ethical dilemmas -data 

ethics, bias, transparency and accountability -which it builds on 

recent empirical data. Third, it discusses hallucination as an 

epistemic phenomenon and conceptualizes governance under 

Responsible AI principles. The chapter concludes with policy-

oriented reflections on balancing innovation with responsibility and 

on nurturing a human-centred AI pedagogy. By locating ethical 

reflection within the realm of grounded educational practice, the 

chapter contends that responsible AI is not a technical add-on, but a 

moral and epistemological precondition for the sustainability of 

truth, justice, and trust in a technology-mediated education. 



--75-- 

The Rise of AI in Education: Opportunities and Tensions 

Evolution of AI Tools in Education 

The integration of AI into educational environments has 

evolved from an experimental phase to a systemic one. Early 

machine learning applications focused on adaptive testing and 

automatic grading. However, advancements in natural language 

processing have enabled large-scale interactions with intelligent 

tutoring systems and generative assistants (Chandrakant, 2025). 

These developments represent a paradigm shift from rule-based 

automation to probabilistic reasoning. AI now models learning 

trajectories, predicts potential performance, and co-produces 

instructional materials. 

AI-powered tools, such as writing support systems, 

conversational tutors, and personalized analytics dashboards, are 

increasingly integrated into both formal and informal learning 

settings (Zhai et al., 2021; Chu et al., 2025) . Applications of LLM-

based platforms synthesize course content, offer tailored feedback, 

and facilitate peer collaboration (Zhang et al, 2025; Guo et al., 2024; 

Naie et al., 2024; Shahzad et al., 2025;  Abu-Rasheed et al., 2024). 

Concurrently, these AI technologies are becoming integral to 

administrative decision-making, including admissions screening, 

early warning systems, and curriculum optimization, extending their 

influence beyond pedagogy to the governance of educational 

organizations (Zhao et al., 2025; Hu et al., 2024; Chu et al., 2025). 

This growth has blurred the line between human and computational 

authority in the learning process. While traditional educational 

technologies acted as mediating resources, AI systems now assume 

interpretative and evaluative roles previously held by educators. The 

transition from "supporting cognition" to "substituting cognition"  

necessitates a rethinking of the epistemic division of labor in 

learning (Grinschgl & Neubauer, 2022; Zhuang et al., 2025) 
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Pedagogical Transformations 

The pedagogical implications of the adoption of AI systems 

are not just in terms of the efficiency gains. Recent academia also 

focuses on the way AI systems disrupt epistemological 

underpinnings of the teaching and learner context by mediating 

access to, representation and legitimacy of knowledge (Creely & 

Carabott, 2025; Marshall et al., 2024 ). Adaptive learning 

environments change the pace and sequencing of teaching, and 

generative AI tools also change the way students think about 

authorship, originality, and reflective thinking (Li et al.,2024; Martin 

et al.,2020; Baidoo-Anu & Ansah, 2023). Teachers are increasingly 

seen as curators of AI-generated information, helping their students 

process information with interpretive evaluation, not direct 

instruction. This shift accords with post-human pedagogy: learning 

emerges through interaction between human and non-human agents 

(Katsenou et al., 2025). And yet, it also spawns tensions around 

control, reliability, and the decline in professional competence. An 

expanding body of academic evidence indicates that AI-enhanced 

pedagogy has the capacity to promote engagement as well as 

formative feedback, but also to create a passive reliance on 

algorithm-mediated recommendations (Pitts et al., 2025). In other 

words, AI’s transformative pedagogy is dialectical: while it increases 

human capability, it also restricts it within algorithmic boundaries. 

Ethical Tensions 

AI’s advent as a tool to educate holds pedagogical potential, 

but it also breeds enduring ethical friction in education. Three 

issues—epistemic dependence, assessment fairness, and human 

agency—remain especially pertinent in present scholarly research. 

1.Epistemic Dependence 
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Epistemic dependence is the extent to which learners (and 

educators) look to AI systems as authoritative sources of knowledge 

(Kahl, 2025). When LLM-driven systems produce fluent yet 

unverifiable outputs, it may be easier to embrace these outputs with 

little critical examination of what is generated. 

This dependency undermines students’ epistemic agency — 

their ability to assess and justify belief — and has the power to 

supplant critical reasoning with algorithmic trust. Empirical 

evidence indicates that extended exposure to AI explanations leads 

to lower metacognitive awareness and higher acceptance of 

inaccurate claims (Yeh & Siah, 2025). The educational task is, then, 

to build learning environments in which AI literacy — the capacity 

to interpret, question, and verify machine outputs rather than 

uncritical consumption — is engendered (Ng et al., 2024; Daher, 

2025; Southworth et al., 2023). 

2.Assessment Fairness 

While AI-driven assessment systems promise objectivity, 

they can duplicate hidden biases inherent in their training data. 

Automated essay scoring, speech recognition, and predictive 

analytics have been shown to discriminate against students because 

of linguistic variation, accent, or socioeconomic background (Baker 

& Hawn, 2022; Jones-Jang et al. (2025) emphasize that perceptions 

of fairness are crucial to AI-driven grading as a matter of legitimacy: 

even statistically credible models can damage trust if learners 

consider decision-making opaque as well as culturally insensitive. 

Consequently, fairness in assessment must be understood as both an 

algorithmic and a relational construct—requiring scoring criteria to 

be transparent and opportunities for human appeal, according to Fu 

and Weng (2024). Institutional policies should aim to have AI 

systems that complement, rather than displace, educators’ evaluative 

judgment, striking a balance between efficiency and equity. 
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3.Human Agency 

In the context of artificial intelligence (AI), human agency 

refers to individuals’ capacity to act and make choices independently 

in accordance with their own beliefs, values, and goals. It 

encompasses multiple dimensions, including intentionality (acting 

with purpose), autonomy, adaptability, and responsibility (ethical 

accountability) (Holmes, 2024). In education, the evolution of AI 

reflects a shift toward Paradigm Three (AI-empowered, learner-as-

leader), in which learners are seen not as passive recipients but as 

active participants with autonomy to define their own academic 

goals (Ouyang & Jiao, 2021). AI offers potential to enhance human 

capabilities by providing personalized learning experiences, 

increasing efficiency, and supporting decision-making—an 

augmentation-oriented approach that envisions a hybrid model 

where technology amplifies human potential (Sethuraman, 2025; 

Roe & Perkins, 2024). However, the use of AI in education also 

carries risks of diminishing agency. One of the most prominent risks 

is cognitive offloading, where students overly rely on technology 

instead of developing their own mental strategies—thereby 

weakening critical thinking, self-reflection, and independent 

problem-solving skills (Shum, 2024; Holmes, 2024).  As seen in 

early AI approaches (Paradigm One: AI-directed, learner-as-

recipient), AI systems may predetermine learning paths, restricting 

learners’ autonomy (Ouyang & Jiao, 2021). AI can also steer student 

preferences toward narrow algorithmic defaults, increasing the risk 

of modal collapse and creating an algorithmic panopticon that limits 

meaningful choice (Bozkurt, 2025). To preserve human agency, it is 

essential that educators maintain control over core pedagogical 

decisions (human oversight) and employ AI in ways that support 

distinctly human capacities such as critical thinking, creativity, and 

ethical judgment (Mouta, Pinto-Llorente & Torrecilla-Sánchez, 
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2025; Sethuraman, 2025). AI should augment, not replace, human 

intelligence (Shum, 2024). 

Ethical Challenges of AI in Educational Contexts 

 The ethical use of AI in education is about how to keep alive 

basic values – autonomy, justice, privacy, and accountability – in 

environments increasingly mediated by data and algorithms. While 

AI systems have the capacity of enhancing learning contexts, they 

also serve to instantiate new asymmetries of knowledge and power, 

especially when learners become data subjects and educators are 

subsumed under algorithmic decision-making (Nguyen et al., 2023; 

Adams et al., 2023 ). This section analyses four interrelated domains 

that structure current ethical debates in educational AI: data ethics 

and privacy, algorithmic bias and fairness, transparency and 

explainability, and accountability and governance. 

1.Data Ethics and Privacy 

Data ethics and privacy poses among the most significant 

ethical problems to be resolved today within educational institutions 

(Mienye and Swart, 2025; Akgun and Greenhow, 2022). Student and 

teacher privacy abuses have heightened due to the growing use of AI 

systems. Privacy violations are situations where people disclose an 

excessive amount of personal information (including metadata) on 

the internet; such metadata may include linguistic features, racial 

identity, biographical information, and geolocation information 

(Regan and Jesse, 2019;  Remian, 2019). Laws to protect sensitive 

data do exist, though violations of data access and security by big 

tech companies employing AI technologies have exacerbated 

privacy fears (Stockman and Nottingham, 2022). Although AI 

systems frequently ask users for permission to access their personal 

data, many users give it without understanding, and without having 

the chance to think first and foremost, about what they are revealing 

to others. Such unreflective data sharing infringes upon personal 
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autonomy (i.e., human agency) and control over their own privacy 

(Nguyen et al., 2023).  Indeed, in the case that it is a school that 

requires such systems, students and parents become implicated in the 

question of ethics: “even if they explicitly consent to participate, 

they are being forced to take part in it, since they can no longer opt 

out” (Turner, Pothong & Livingstone, 2022). 

Yet another major ethical question brought up with the 

incorporation of AI in education is surveillance. These systems 

utilize algorithms and machine learning models to harvest granular 

data collected on the actions and preferences of students and 

teachers. AI-based surveillance doesn’t just keep an eye on what 

people do; it also monitors and predicts what its users will do next 

(Charteris, 2022; Ryymin, 2021; Dai, Thomas and Rawolle, 2025). 

For example, these monitoring technologies can be embedded as 

predictive systems designed to forecast learners’ learning 

performance, strengths, weaknesses, and behavioral patterns 

(Alamri & Alharbi, 2021; Almalawi, Soh and Samra, 2024). Issues 

arise when such predictors do end up challenging the autonomy of 

the individual, the ability to act on what is to one’s liking or on an 

even-valued basis. Algorithmic predictions threaten that autonomy 

and freedom, which both students and educators require, for 

information. Once students know that their thoughts and behaviours 

are tracked by the AI systems, they become restricted in the extent 

of their learning engagement and lose confidence in the degree to 

which their ideas are their own (Lo Piano, 2020; Regan & Jesse, 

2019; Akgun & Greenhow, 2022). We can mitigate these safety and 

privacy issues by educating both teachers and learners at a better 

level about the ethical nature of AI. For this reason, the MIT Media 

Lab and others have launched a series of "AI and Data Privacy" 

workshops on the topic, which engage students ages 7–14 years old 

in critical reflection (Akgun & Greenhow, 2022). They encourage 

learners to examine how algorithms interpret human behavior and 
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also how a child's choices with regard to online consent and the legal 

principles of the Children’s Online Privacy Protection Act (COPPA) 

are an issue for them (Anderson, 2024).  

Additionally, regions like the European Union (EU) have 

published guidelines addressing ethical responsibilities, such as the 

Assessment List for Trustworthy AI (ALTAI) (Hleg, 2020). Its 

guidelines emphasize privacy, preventing surveillance, and 

eliminating discrimination as matters of utmost importance. As the 

role of AI in education continues to expand, what practitioners need 

to know about potential dangers and ethical aspects is the biggest 

challenge. 

2.Algorithmic Bias and Fairness 

Algorithmic bias is one of the most clearly documented 

ethical challenges in educational AI. Systems trained on historical 

data reproduce existing inequalities and encode cultural, linguistic, 

or gendered biases (Baker & Hawn, 2022) For example, automated 

essay scoring models have been found to favour academic writing 

styles that conform to the norms of the dominant linguistic culture, 

which, in some cases, has led to the exclusion of minority language 

learners (Matta, Mercer & Keller-Margulis, 2023 ). This aligns 

predictive analytics used for at-risk identification — predictive 

models often link socio-economic characteristics to performance, 

exacerbating structural disadvantage (Almalawi, Soh & Samra, 

2024). Fairness in education includes perceived justice, beyond 

statistical inequities, — the extent to which students and teachers see 

algorithmic decisions as legitimate (Lünich, Keller & 

Marcinkowski, 2024). Jones-Jang et al. (2025) emphasize that 

fairness perception is determined by transparency, feedback 

mechanisms, and the ability to question AI outputs. Without them, 

even technically correct systems undermine institutional trust. It 

takes multi-level intervention to mitigate algorithmic bias: inclusive 
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sampling of data, bias auditing, explainable decision-path 

visualization, and a hybrid evaluation using human & machine 

judgment. Fairness, cannot be completely automated, but must be 

“co-produced through human oversight and algorithmic 

accountability” (Kyriakou & Otterbacher, 2023). 

3.Transparency and Explainability 

Transparency and explainability are two epistemic 

preconditions of ethical AI for education (Contreras & Jaimes, 

2024). When users cannot see what any given output from a system 

means—as a score, as a recommendation, or as feedback—the 

validity of such a decision vanishes. But most of these educational 

AI solutions are black boxes, especially the deep neural network 

ones, which are not subject to pedagogical scrutiny (Yue, Jong & 

Dai, 2022; Balasubramaniam et al., 2023). The difficulty of 

interpreting the decisions of complex AI models—such as Large 

Language Models (LLMs)—undermines trust among educators, 

students, and other stakeholders (Geethanjali & Umashankar, 2025). 

For this reason, transparency and explainability are emphasized as 

essential quality requirements in ethical guidelines for AI systems 

and are considered fundamental prerequisites for the successful 

integration of AI into educational environments (Balasubramaniam 

et al., 2023; Raza et al., 2024). Nearly all organizations examined 

highlight the importance of transparency and regard explainability 

as an integral component of it. The primary purpose of incorporating 

transparency and explainability is to build and maintain trust. In 

high-stakes contexts such as education, AI systems must be 

transparent, auditable, and aligned with human values 

(Balasubramaniam et al., 2023). 

To address this transparency challenge, Explainable 

Artificial Intelligence (XAI) has emerged as a critical paradigm 

aimed at reducing opacity in educational AI applications (Ali & 
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Husain, 2015; Geethanjali & Umashankar, 2025). XAI seeks to make 

AI models understandable to humans by providing clear and justified 

explanations for their decisions—for example, in automated grading, 

personalized learning pathways, or virtual tutor recommendations 

(Rachha & Seyam, 2023). Such explanations may be produced 

through inherently interpretable models, such as decision trees or 

rule-based systems, or through post-hoc techniques like SHAP and 

LIME (Raza  et al., 2024). 

XAI fosters deeper learning by enabling students not only to 

see what they should improve, but also to understand why these 

improvements are necessary (Singh, 2025). Furthermore, 

transparency and explainability are essential for ensuring fairness, as 

they help identify and mitigate algorithmic bias and ethical concerns 

during system development and deployment (Akinrinola et al., 2024; 

Johnson & Zhang, 2024). In this way, XAI supports the adoption of 

AI systems as trustworthy and responsible partners that reinforce 

educational goals (Rachha & Seyam, 2023). 

4.Accountability and Governance 

The widespread adoption of artificial intelligence (AI) 

systems in education has created an ethical dilemma centered on the 

question of who should be held responsible in high-stakes 

scenarios involving algorithmically mediated decisions—for 

example, exam scoring or vocational guidance systems (Herrera-

Poyatos et al., 2025; Ramnani, 2024). Accountability refers to being 

answerable for the consequences of one’s actions or decisions, and 

it is regarded as a foundational component of a democratic, tolerant, 

and inclusive society (Porayska-Pomsta & Rajendran, 2019). In 

education, accountability is closely tied to internal performance 

monitoring, which ensures that institutional decisions align with 

intended outcomes (Algazo & Ibrahim, 2024). However, the 

tendency of digital governance systems to rely on standardized and 
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quantifiable data may conflict with educators’ professional 

autonomy by constraining their discretion and their ability to adapt 

decisions to local contexts. This risks limiting phronesis—the 

capacity for context-informed practical judgment (Larsen, 2025).. 

Because the complexity and opacity of AI systems may obscure 

decision-making processes, the absence of clear accountability 

mechanisms risks turning ethical failures into technological 

inevitabilities. In Responsible AI (RAI) systems, auditability is an 

ex ante requirement ensuring that decisions and processes are 

traceable and verifiable, while accountability pertains to post hoc 

evaluation of whether the system has performed as intended 

(Herrera-Poyatos et al., 2025). 

The responsible integration of AI applications in education 

requires a holistic governance framework that addresses ethical, 

legal, and social dimensions. Governance defines how power is 

distributed, how resources are managed, and how complex systems 

are directed. In higher education, AI integration has the potential to 

enhance decision-making and operational efficiency through data-

driven insights and automation (Herrera-Poyatos et al., 2025; Algazo 

& Ibrahim, 2024; Mariam, Adil & Zakaria, 2024). Yet this also 

introduces challenges related to data privacy, ethical concerns, and 

institutional power dynamics. Proposed frameworks such as the AI 

Ecological Education Policy Framework aim to address these 

challenges across three main dimensions: governance, pedagogy, 

and operations. Within this framework, the Governance 

Dimension, initiated by institutional leadership, bears primary 

responsibility for addressing ethical concerns such as academic 

integrity, data privacy, transparency, accountability, and security 

(Chan, 2023).. Institutions must be transparent about the algorithms 

they use, their functions, and their potential biases or limitations—

an essential step in building trust among students and staff regarding 

the use of AI technologies. Ultimately, governance for responsible 
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AI systems should focus on ethical and lawful use, encouraging 

policymakers and administrators to develop frameworks that ensure 

processes remain transparent, inclusive, and aligned with 

educational values (Mariam, Adil & Zakaria, 2024). 

Hallucination and the Epistemic Integrity of AI Systems 

The rapid integration of Artificial Intelligence (AI) 

systems—particularly Large Language Models (LLMs)—into 

critical domains such as education and science introduces significant 

challenges to epistemic integrity (Chen, 2025). Hallucinations occur 

when an AI system produces information that is fabricated, 

nonsensical, or factually incorrect, even though it appears fluent, 

syntactically coherent, and persuasive (Wachter, Mittelstadt & 

Russell, 2024; Li, Yi & Chen, 2025). This phenomenon stems from 

the foundational architecture of such models: LLMs operate not 

through conceptual understanding or causal reasoning, but by 

predicting the next token in a sequence based on statistical patterns 

within vast datasets. This probabilistic nature is the core reason why 

hallucination is an inherent feature of LLM outputs (Yingzhe, 2025; 

Li, 2023).  Hallucinations may take the form of factual 

inconsistencies, invented references, or subtler distortions such as 

consensus illusion or oversimplification (Li, Yi & Chen, 2025; 

Yingzhe, 2025). The polished and authoritative style in which such 

inaccuracies are presented can diminish users’—especially 

students’—capacity for critical evaluation. Hallucinatory content 

can disrupt students’ conceptual scaffolding, increasing the risk of 

developing ingrained misconceptions that are difficult to correct in 

the long term (Elsayed, 2024; Yingzhe, 2025; Ayeni et al.,2024) . 

This threat to epistemic integrity is not merely a technical flaw but 

points toward a deeper philosophical issue known as the “Accuracy 

Paradox”. The paradox suggests that excessive optimization for 

accuracy, intended to reduce hallucinations, may cause greater harm 

by generating an illusion of epistemic certainty and fostering 
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uncritical user trust. While accuracy typically denotes statistical 

consistency with existing “ground truth” datasets, epistemic truth is 

more complex and requires contextualization, justification, and 

robustness against error (Li, Yi & Chen, 2025; Laux, Wachter & 

Mittelstadt). Since LLMs are often optimized for fluency and 

rhetorical persuasiveness, they may convince users of their 

reliability even when their outputs lack epistemic validity. The 

portrayal of AI systems as “knowing agents” and the attribution of 

human-like cognitive status to them (anthropomorphism) blur the 

boundaries between human and machine epistemic processes, 

leading users to overestimate AI capabilities. This dynamic can 

constrain human epistemic agency, the essential ethical capacity of 

individuals to maintain control over their own processes of 

knowledge formation—crucial in educational contexts (Chen, 

2025). 

To safeguard epistemic integrity and overcome the Accuracy 

Paradox, regulatory frameworks and system designs must shift away 

from narrow accuracy metrics toward epistemic reliability (Li, Yi & 

Chen, 2025). In scientific domains, ensuring that LLMs make 

reliable contributions requires embedding them into rigorous 

workflows. Systems such as AlphaFold and GenCast employ 

strategies like theory-guided training (encoding physical and 

chemical laws to guide learning) and confidence-based error 

screening (e.g., the ensemble of probabilistic predictions in GenCast 

or the pLDDT scores in AlphaFold) to flag potential errors 

(Rathkopf, 2025).. In education, however, the primary challenge is 

resisting the development of passive dependency habits that may 

arise from the convenience and speed of AI tools (Chen, 2025). 

Therefore, it is essential to equip students to become critical 

evaluators of AI-generated content (Yingzhe, 2025). Pedagogical 

strategies should explicitly teach verification techniques such as 

lateral reading and aim to cultivate epistemic sensitivity—the ability 
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to recognize when critical scrutiny is necessary (Elsayed, 2024). 

Ultimately, overcoming these challenges requires an approach to AI 

integration that leverages the power of such systems while upholding 

core educational values and aligning with human expertise and 

epistemic agency (Chen, 2025). 

Responsible AI Frameworks for Educational Practice 

The rapid integration of Artificial Intelligence (AI) 

systems—especially generative AI models such as Large Language 

Models (LLMs)—into educational environments offers 

unprecedented opportunities for personalizing learning experiences, 

optimizing administrative processes, and enhancing instructional 

quality (Nguyen & Nguyen, 2025; Chan et al., 2025; Bearman, Ryan 

& Ajjawi, 2023). However, this technological expansion also brings 

complex ethical challenges and risks, including issues related to 

academic integrity (plagiarism, overreliance), data privacy and 

security, and algorithmic bias (Chan et al., 2025; Tirado, Mulholland 

& Fernandez, 2024; Zhu, Sun & Yang, 2025 ).  To address these 

challenges and ensure the equitable distribution of AI’s benefits, 

Responsible and Trustworthy AI (RAI) frameworks have become 

essential. These frameworks aim to ensure that AI systems are 

designed and deployed in ways that minimize potential harm and 

maximize societal benefit (Tirado, Mulholland & Fernandez, 2024). 

Core principles of Responsible AI include fairness and bias 

mitigation, transparency, accountability, safety, and explainability. 

International organizations (such as UNESCO) and industry 

initiatives converge around these foundational values (Nguyen & 

Nguyen, 2025; Tirado, Mulholland & Fernandez, 2024). 

Applying Responsible AI frameworks in educational practice 

requires translating abstract ethical principles into concrete, 

actionable strategies. To this end, models tailored to specific 

contexts—such as Learning Analytics (LA)—have been developed 
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(Tirado, Mulholland & Fernandez, 2024). For example, an integrated 

responsible and trustworthy AI framework has been created to 

analyze and support students’ learning engagement, implemented 

across five stages and encompassing three modules: Explainable AI 

(XAI), Safeguard and Auditing, and Adversarial Training. XAI 

models provide interpretable information—such as decision rules or 

variable importance rankings—to evaluate learning performance. 

Safeguard and Auditing modules provide complementary 

predictions to prevent students with poor learning performance from 

being misidentified as normal learners and to issue early warnings 

for at-risk students. Another structural model, the Integrity AI 

Model, guides ethical AI integration by focusing on three levels: 

guiding principles, educational activities, and impact/empowerment. 

Additionally, the GAIDL Framework, designed to offer practical 

guidance for Higher Education Institutions (HEIs), aligns ethical AI 

considerations with the stages of the software development life cycle 

(requirements and data collection, design, development, testing, 

deployment, and monitoring) (Chou, 2023). 

The success of Responsible AI frameworks depends on how 

much stakeholders—especially teachers and students—value ethical 

priorities. Studies involving K-12 teachers show that fairness and 

safety consistently emerge as the highest priority values across 

different scenarios. Fairness requires that AI systems do not 

perpetuate existing inequities and ensure equitable outcomes for all 

learners. Safety encompasses the accuracy, reliability, and 

robustness of AI systems, while also aiming to minimize 

psychological, emotional, or academic harm to staff and students. 

Transparency, on the other hand, is critical for building trust by 

enabling users to understand the reasons behind algorithmic 

decisions and for strengthening students’ capacity for critical 

thinking (Yin, Karumbaiah & Acquaye, 2025). However, the lack of 

interpretability mechanisms in most models (88.1%) creates a 
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significant transparency gap—one that conflicts with regulatory 

frameworks such as the EU AI Act, which mandates transparency in 

high-risk AI applications (Floridi et al., 2018). Effective RAI 

integration requires continuous AI literacy and ethics education for 

both teachers and students (Nofirman et al., 2025; Smith et al., 2025;  

Chan et al., 2025). Such training should prepare students to critically 

evaluate AI’s limitations, bias potentials, and the trustworthiness of 

its outputs (Watson, 2025). This multidimensional approach is 

essential to ensure that AI functions as a responsible and ethical ally 

in education (Nguyen & Nguyen, 2025). 

Conclusion and Policy Recommendations 

 Artificial Intelligence (AI) has shifted from its technical 

utility to an epistemic and moral actor that profoundly changes the 

ways we teach, learn and assess. With educational systems becoming 

weighted toward computational judgment, the historically normative 

foundations of education—including learner autonomy (which is 

central to many types of pedagogic practice), evidential rigor (and 

thus to pedagogical legitimacy), epistemic trust, and the moral 

agency exercised by the educator themselves—are at odds with 

inscrutable algorithmic architectures that are neither fully questioned 

nor contested. This shift compels education to face a difficult trade-

off between two imperatives: to seize personalization, scalability, 

and efficiency from AI, while at the same time safeguarding fairness, 

academic integrity, transparency, and accountability as non-

negotiable ethical commitments. 

 Among the most significant tensions unveiled in this chapter 

are those of epistemic dependence and hallucination. Epistemic 

dependence arises when fluent algorithmic outputs replace the 

critical reasoning of students and educators, thereby progressively 

making deference to machine-generated knowledge the new normal. 

Hallucination is, on the other hand, a case of deeper epistemic 
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instability—the generation of linguistically consistent but factually 

incorrect content, that undermines the very scaffolding of conceptual 

understanding. These risks taken together highlight a wider 

accountability gap: the opacity of AI decision-making can turn 

ethical failures into apparently unavoidable technological results. 

 In this regard, Responsible AI (RAI) should not be 

considered an extension of technology, but must be understood as 

the epistemological and moral prerequisite to maintaining truth, 

justice, and trust in digitally mediated education. To ensure 

successful implementation of RAI, they need a governance approach 

that combines innovation, as well as ethical stewardship. This new 

model must ensure multi-stakeholder accountability (developer vs. 

institution vs. educator vs. learner) while also ensuring that AI does 

not substitute for, but rather augments, human judgment. 

 Human-in-the-loop oversight is important in pedagogical 

decision-making, allowing reflective judgment to remain an 

educational value, as opposed to an operational constraint. 

Explainable AI (XAI) paradigms are the key to this, they offer the 

understanding when reasoning becomes interpretable algorithm, 

letting students understand not just what to do better but why. At the 

same time, AI literacy – the ability to discern, verify, and question 

AI outputs without simply consuming them — needs to be a core 

part of modern education. Educators, for their part, need to be 

prepared to use AI in ways that reinforce human capabilities such as 

critical thinking, creativity, ethical reasoning and contextual 

judgment. 

 If educational systems are to cultivate a future shaped by AI 

in ethically and epistemically robust ways, the primary challenge 

resides not in resisting technological transformation, but in 

designing and governing AI systems that expand rather than 

diminish human agency. Embedding ethical, legal, pedagogical, and 
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epistemological principles across all stages of institutional AI 

development and deployment will enable the emergence of learning 

environments that are technologically sophisticated, equitable, 

transparent, and resilient in their epistemic foundations. 
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