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FOUNDATIONS OF LARGE LANGUAGE MODELS AND
THEIR EDUCATIONAL POTENTIAL

UMIT MURAT AKKAYA!

Introduction

We are in the midst of a technological shift in education, one
unfolding at a pace that rivals the introduction of the personal
computer or the internet. Large Language Models (LLMs) have
evolved in just a few short years from academic curiosities into
powerful, general-purpose tools. They are capable of generating
nuanced, human-like text, engaging in complex Socratic dialogue,
translating languages with remarkable fluency, and even writing
functional computer code (Wang & ark., 2024). This rapid ascent
from research labs to public-facing tools has profound implications
for the educational landscape.

These models offer the potential to finally deliver on the
long-held promise of scalable, personalized, and universally
accessible learning experiences. They can act as tireless tutors,
available 24/7 to answer questions, explain concepts in different
ways, and adapt to a student's individual pace (Kumar & ark., 2025).
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They can serve as adaptive content generators, creating customized
problem sets or reading materials, and as powerful creative partners
for both students and teachers, brainstorming ideas or drafting lesson
plans (Baidoo-Anu & Ansah, 2023). Simultaneously, their
capabilities present a new and complex set of pedagogical, logistical,
and ethical challenges. These range from the immediate concerns of
academic integrity and the "outsourcing" of critical thinking to the
deeper systemic issues of data privacy, algorithmic bias reinforcing
existing inequities, and the significant environmental and financial
costs of their creation and operation (Farooqi & ark., 2024; Holmes
& Tuomi, 2022).

This chapter lays the foundation for understanding these
remarkable yet challenging systems. We will try to solve the mistery
of what LLMs are, tracing their lineage from the rule-based systems
of traditional natural language processing (NLP) to the revolutionary
architecture that powers them today. We will explore the specific
"emergent" capabilities that make them uniquely suited for
educational applications, compare the ecosystem of models
available, and critically examine their inherent and often
misunderstood limitations. To build effective, safe, and equitable
educational tools, we must first understand the base on which they
stand.

What is a Large Language Model?

At its core, a Large Language Model is a sophisticated
statistical tool. It is a massive neural network, often containing
hundreds of billions or even trillions of "parameters"—the values in
the network that are adjusted during training. These parameters
function as the model's repository of learned knowledge. These
models are trained on vast, petabyte-scale quantities of text and code
scraped from the internet, books, and other sources, a dataset that
represents a significant portion of all human-generated text.
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Its primary function is deceptively simple: to predict the next
word (or, more accurately, a sub-word unit called a "token") in a
sequence, given the words that came before it. Given the prompt
"The capital of France is," the model calculates a probability
distribution over all the words it knows, and "Paris" will have a very
high probability. The model learns the statistical patterns of language
(grammar, syntax, facts, reasoning styles, and even biases) by
repeatedly performing this "next-token-prediction" task. This simple
objective, when applied at an unprecedented scale, gives rise to the
"emergent abilities" we observe, such as translation, summarization,
and question-answering, none of which were explicitly programmed
into the system (Wei & ark., 2022).

From Traditional NLP to the Transformer

For decades, NLP systems were brittle and complex. They
often relied on hand-crafted linguistic rules and grammars, which
required immense domain-specific expertise and would fail when
encountering slang, metaphors, or grammatical structures they hadn't
seen. Later statistical methods, while an improvement, still struggled
with long-range context. The entire field was revolutionized in 2017
(Ladu & ark., 2025).

-6--



Tablo 1 A Comparison of Traditional NLP and Modern LLM

rules (e.g., "If
word X follows
word Y, itis a

human linguists

Approaches
Approach Primary How it Key Limitations
Mechanism Understands
Context
Rule-Based NLP | Hand-crafted Defined Extremely brittle;
grammars and explicitly by fails on novel

language; cannot
scale.

attention
mechanisms.

every word to
every other
word.

verb")

Statistical NLP Methods like Poor. Ignores Lacks
"bag-of-words" word order (e.g., | understanding of
(TF-IDF) that "dog bites man" | syntax, semantics,
count word vs. "man bites or context.
frequencies. dog").

Recurrent/LSTM | Recurrent Neural | Processes text Struggles with
Networks sequentially, long-range
(RNNs) and maintaining a dependencies;
Long Short-Term | "memory" of computationally
Memory (LSTM) | previous words. | slow (cannot be
networks parallelized).
(Hochreiter &
Schmidhuber,
1997).

Transformer The Transformer | Processes all Highly scalable;

(LLM) architecture words at once, captures complex,
(Vaswani & ark., | weighing the long-range
2017) using self- | importance of context.

(Limitations are
cost, bias, etc.)

Source: Created by the author

The true breakthrough came with the Google Brain paper
"Attention Is All You Need" (Vaswani & ark., 2017). This paper
introduced the Transformer architecture, which completely replaced
the sequential processing of RNNs with a mechanism called self-

attention.
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The Transformer's key innovation is its ability to process all
tokens in a sequence simultaneously and use self-attention to weigh
the importance of all other words when processing any given word.
In simple terms, for every word, the model creates a "query," "key,"
and "value" vector. The "query" represents the current word's request
for information. It compares this query to the "key" of every other
word in the sequence to determine relevance (the "attention score").
It then uses these scores to create a weighted sum of the "values,"
resulting in a new representation of the word that is deeply context-
aware.

This attention mechanism learns, for example, that in the
sentence "The student opened the book," the word "book" is highly
relevant to "opened," but in "The student will book a flight," it is
highly relevant to "flight." This ability to dynamically model context
over long distances, and the fact that its computations could be
massively parallelized on modern GPUs, made the Transformer the
engine of the new LLM era.

The GPT Family, Scale, and Emergence

The Transformer architecture set the stage, but scale provided
the breakthrough. Researchers discovered predictable "scaling
laws," which showed that as you predictably increase model size
(parameters), data volume, and computational budget, the model's
performance on a wide range of tasks predictably improves (Kaplan
& ark., 2020). More parameters mean the model has a greater
capacity to memorize information and, more importantly, to learn
complex, abstract patterns and relationships within the data.

Models in the GPT (Generative Pre-trained Transformer)
family, from GPT-2 to GPT-3 (Brown & ark., 2020) and GPT-4, were
a direct test of these scaling laws. As these models grew, they began
to exhibit emergent capabilities, abilities that were not present in
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smaller models and were not the direct object of training, appearing
almost spontaneously once a certain threshold of scale was passed.

The most important of these was "in-context learning". For
instance, GPT-3 was found to be a "few-shot learner" (Brown & ark.,
2020). Instead of needing to be explicitly re-trained (fine-tuned) for
a new task, you could simply show it a few examples of the task in
its prompt, and it would understand and perform that task. This shift
from a paradigm of task-specific training to one of general-purpose
prompting is the defining feature of modern foundation models.

The LLM Training Pipeline: Pre-training, Instruction Tuning,
and Alignment

Modern LLMs are not created in a single step. Their
capabilities are the result of a sophisticated, multi-stage training
pipeline.

e Pre-training: This 1is the foundational and most
computationally expensive phase. The model is trained on a
massive, unlabeled dataset (e.g., a large portion of the
internet and all of Wikipedia) to do next-token prediction.
The result of this stage is a "base model". This base model is
a powerful knowledge repository and text completer, but it is
not "helpful"; it is not trained to follow instructions or hold a
conversation. If you gave it the prompt "Write a summary of
Hamlet," it might just complete the sentence with "and
Macbeth are two of Shakespeare's most famous tragedies".

e Instruction Fine-Tuning (IFT): To make the base model
useful, it undergoes '"instruction tuning", also called
Supervised Fine-Tuning (SFT). In this phase, the model is
fine-tuned on a smaller, high-quality dataset of "instructions"
and "high-quality answers" (e.g., Prompt: "Summarize
Hamlet," Answer: "Hamlet is a tragedy about..."). This

dataset is often curated by human labelers. This teaches the
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model to follow user commands and behave as a helpful
assistant.

e Alignment: This final phase aims to make the model more
helpful, truthful, and harmless. The most common method is
Reinforcement Learning from Human Feedback (RLHF)
(Ouyang & ark., 2022). In this process, several of the model's
answers to a prompt are shown to human raters, who rank
them from best to worst. A separate "reward model" is then
trained to predict these human preferences. Finally, the LLM
itself is fine-tuned using reinforcement learning to maximize
the "reward" score, effectively aligning its behavior with
what human raters preferred. Newer methods, like
Constitutional Al (Bai & ark., 2022), attempt to achieve the
same goal using Al-driven feedback based on a written
constitution of principles, reducing the human Ilabor
bottleneck.

Key Capabilities for Education

The shift from task-specific models to general-purpose
foundation models, accessed via prompting, is what makes LLMs so
disruptive for education. A single, powerful model can be prompted
to perform hundreds of different educational tasks, from tutoring to
content creation.

In-Context Learning: Zero-Shot, Few-Shot, and Instruction
Tuning

e Zero-Shot Learning: This is the model's ability to perform
a task without any prior examples, thanks to its instruction-
tuning. It can follow commands it has never seen before.
Example: "Explain the water cycle to a 5th grader, using an
analogy. Make sure to define the terms 'evaporation' and

'condensation'.
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e Few-Shot Learning: For more complex or nuanced tasks,
you can provide a few examples directly in the prompt. This
"primes" the model, demonstrating the pattern or format you
want it to follow. Example (Few-Shot):

Prompt: Convert the student's question into a Socratic

inquiry.
Student: What's the answer to question 5? Tutor: What do
you think the first step to finding the answer might be?

Student: Why is the sky blue? Tutor: That's a great
question. What have you observed about the sky at different times
of the day?

Student: I don't understand why the mitochondrion is called
the powerhouse of the cell. Tutor:

The model recognizes the pattern (Student question ->
Socratic tutor response) and will reliably generate a Socratic
response, such as: "What part of the "powerhouse" metaphor is
confusing you?"

Chain-of-Thought Prompting

One of the most significant recent discoveries is Chain-of-
Thought (CoT) prompting (Wei & ark., 2022). Researchers found
that by simply instructing a model to "think step-by-step" before
giving a final answer, its accuracy on complex reasoning tasks (like
math word problems or logic puzzles) increased dramatically. This
simple prompt tweak coaxes the model to generate a "chain of
thought," breaking down the problem and modeling the intermediate
reasoning steps.

e Standard Prompt: "Q: Roger has 5 tennis balls. He buys 2
more cans of tennis balls. Each can has 3 tennis balls. Then
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he gives 2 to a friend. How many tennis balls does he have
left? A: 9." (Correct answer, but no reasoning)

e CoT Prompt (Example): "Q: Roger has 5 tennis balls. He
buys 2 more cans of tennis balls. Each can has 3 tennis
balls. Then he gives 2 to a friend. How many tennis balls
does he have left? A: Let's think step-by-step. Roger starts
with 5 balls. He buys 2 cans of 3 balls each, so2 *3 =6
balls. He now has 5 + 6 = 11 balls. He then gives 2 balls to
a friend. 11 - 2 = 9 balls. The answer is 9." (Correct answer,
with reasoning)

For education, this is revolutionary. It allows the model to not
only provide an answer but also to model the reasoning process
itself. It suggests that LLMs may be capable of more than simple
pattern-matching, perhaps engaging in a form of zero-shot reasoning
(Kojima & ark., 2022). Advanced techniques, such as self-
consistency, take this further by having the model generate multiple
reasoning paths and then picking the most consistent answer, which
further boosts accuracy (Wang & ark., 2022). For a student, this
means they can see how an answer was derived, making the LLM a
potential tool for metacognitive instruction.

Role-Playing and Simulation for Immersive Learning

A powerful extension of in-context learning is the model's
ability to adopt a persona or simulate a scenario. By "priming" the
model with a role, it can create immersive learning experiences that
were previously impossible to scale.

e Socratic Tutor: A prompt can instruct the model to act as a
Socratic tutor, never giving the answer but always
responding to a student's question with another guiding
question.
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o Historical Simulation: A student can "interview" a
historical figure. (e.g., "You are Julius Caesar. [ am a
reporter. Why did you decide to cross the Rubicon?").

e Practice Scenarios: A medical student can practice
diagnosing a patient, a law student can practice cross-
examining a witness, or a business student can practice a
difficult negotiation.

o Language Learning: A student learning French can have a
full, immersive conversation. (e.g., "You are a French
baker. I want to buy a croissant. Please respond only in
French and correct my grammar if [ make a mistake.").

These simulations provide a safe "practice field" for students
to apply knowledge and develop soft skills.

Content Generation and Augmentation

Perhaps the most immediate use case for educators is the
model's ability to generate and augment content. This can
significantly reduce teacher workload and provide differentiated
materials.

o Assessment Creation: "Generate 10 multiple-choice
questions about the causes of the American Civil War,
suitable for a 10th-grade history class. Include an answer
key."

¢ Rubric Design: "Create a detailed 6-point rubric for a
persuasive essay on renewable energy, with criteria for

"

'"Thesis,' 'Evidence,' and 'Clarity'.

e Lesson Planning: "Generate a 50-minute lesson plan for
introducing Python 'for loops' to high school students,
including a warm-up activity and a short homework
assignment."
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o Differentiated Texts: "Take this news article about a new
scientific discovery and rewrite it at a Sth-grade reading

level."

This capability positions the LLM as a "co-pilot" for
teachers, freeing them from administrative tasks to focus on high-
touch student interaction.

Model Types: Open-Source vs. Proprietary

As LLMs become critical infrastructure, it's important to
understand the landscape. The models available today fall broadly
into two categories, each with critical trade-offs for educational

institutions.

Tablo 2 Strategic Comparison of Proprietary vs. Open-Source

infrastructure to manage.

Models
Feature Proprietary (Closed) Models Open-Source Models
Examples GPT-4 (OpenAl), Claude 3 LLaMA 3 (Meta), Mistral
(Anthropic), Gemini (Google) (Mistral AI), BLOOM
(BigScience) (Kojima & ark.,
2022)
Access Paid API (e.g., $ per 1,000 Downloadable weights (e.g., from
tokens) Hugging Face)
Performance Pro: Generally state-of-the-art; Con: Often lag 6-12 months
highest performance. behind the best proprietary
models.
Ease of Use Pro: Very easy; no Con: Requires significant

MLOps, hardware, and technical
expertise to host.

Data Privacy

Con: Major risk. Data is sent to
a third party.

Pro: Fully customizable; can be
deeply fine-tuned on custom data.

and architecture are secret.

Customization | Con: Limited to provider's API | Pro: Fully customizable; can be
(e.g., basic fine-tuning). deeply fine-tuned on custom data.

Cost Con: Ongoing, variable "per- Pro: No "per-use" cost. Con: High
use" cost. Can become very upfront and maintenance
expensive at scale. (hardware, talent).

Transparency | Con: "Black box." Training data | Pro: Auditable. Researchers can

inspect weights and (often) data.

Source: Created by the author
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Proprietary (Closed) Models

These are the most powerful, state-of-the-art models,
developed and controlled by large corporations. They are accessed
via an API, which integrates into the "API economy." Their primary
benefits are their unmatched performance and ease of use. Their
primary drawbacks are the lack of control, vendor lock-in, and
significant data privacy risks (La Malfa & ark., 2024).

Open-Source Models

These models are released publicly (or "open-weighted"),
allowing anyone to download, inspect, modify, and run them. Their
primary benefits are data sovereignty (critical for student data),
customizability, and lack of ongoing per-use costs. Their drawbacks
are the high technical and hardware overhead required to run them
effectively (Lin & ark., 2024; Touvron & ark., 2023).

The Strategic Choice for Education

This "open vs. proprietary" split presents a fundamental
strategic choice for education. An individual teacher might leverage
a proprietary API for its convenience and power in creating
classroom materials. A school district or university, however, must
heavily weigh the data privacy risks of sending sensitive student data
to a third party.

Regulations like the Family Educational Rights and Privacy
Act (FERPA) in the United States and the General Data Protection
Regulation (GDPR) in Europe impose strict rules on how student
data (personally identifiable information) is collected, stored, and
used (Emon & Chowdhury, 2025). Sending prompts that contain
student names, writing, or learning analytics to a third-party API
provider may violate these regulations unless a very specific, and
often expensive, data-processing agreement is in place. For many
public institutions, investing in self-hosted, open-source models may

-15--



be the only long-term, legally-compliant path to providing custom
Al tools to their students.

Critical Limitations and Common Misconceptions

Despite their power, LLMs are not magical. They are tools
with fundamental, deep-seated limitations. Understanding these
limitations is the non-negotiable first step toward responsible
implementation in education.

The "Stochastic Parrot": Understanding vs. Prediction

The most common misconception is that LLMs "understand"
the world. This is a topic of intense debate. The "Stochastic Parrot"
critique argues that LLMs are masters of statistical pattern-matching
(Bender & ark., 2021). They have learned the relationships between
words and concepts from their training data, but they lack true
human-like comprehension, consciousness, grounding in reality, or
intent. An LLM knows the word "apple" is statistically associated
with "red," "fruit," and "pie," but it has never seen an apple, tasted
one, or felt its weight.

This is a modern version of the "grounding problem" in Al
(Harnad, 1990). The model's "understanding" is ungrounded from
physical reality, sensory experience, or social interaction. This is
why it can make errors of common sense that no human child would.

A counter-argument, highlighted by recent research, is that
the "sparks" of general intelligence seen in models like GPT-4 are so
advanced that the distinction between "real" understanding and
"mere" complex pattern-matching becomes philosophically and
practically blurred (Bubeck & ark., 2023). Regardless of this debate,
it is safest to assume that models do not "know" or "believe"
anything; they generate text based on learned probabilities.

—-16--



Confident Plausibility: Why LLMs "Sound Right but Are
Wrong"

The primary limitation of an LLM, and its greatest danger in
an educational context, is the hallucination. A hallucination is when
the model generates a response that is nonsensical, factually
incorrect, or untethered from reality, but presents it with the same
confident, plausible-sounding, and grammatically perfect language
it uses for correct information (Ji & ark., 2023).

Example: A student asking for sources for a paper on the
American Revolution might receive a list of five perfectly formatted
APA citations, complete with authors, titles, and journal names.
However, upon inspection, three of the five articles, and perhaps
even one of the cited authors, do not exist.

This happens because the model's objective is not to be
truthful; it is to be statistically likely. If a factual error is a "likely"
sequence of words based on its training, it will generate it. It has no
internal "truth-checker" or world model to cross-reference. This is
why a student's reliance on an LLM as a sole source of truth is so
dangerous.

Knowledge Cutoffs and Embedded Bias

LLMs suffer from two other major content flaws:

o Static Knowledge: Most LLMs are "frozen in time." Their
knowledge is limited to the data they were trained on and
ends at a specific "cutoff date" (e.g., "knowledge cutoff
April 2023"). They are not aware of current events.

e Embedded Bias: LLMs are trained on a snapshot of the
internet, which is replete with human biases. Models have
been shown to reproduce and even amplify societal biases
related to gender, race, and culture (Bolukbasi & ark.,

2016). For example, a model might consistently generate
-17--



text associating "doctor” with male pronouns and "nurse”
with female pronouns, or produce more negative text when
discussing certain demographic groups, or associate "inner-
city" with crime.

Data Privacy and Security Risks

When using a proprietary API, all data including potentially

sensitive student questions, essays, and personal reflections is sent

to a third-party server. This raises critical privacy concerns:

Data Use for Training: Does the API provider have the right
to use this data to train its future models?

Compliance: Does this data transfer comply with stringent
educational privacy laws like FERPA or GDPR? (Emon &
Chowdhury, 2025)

Data Breaches: The API provider becomes a high-value
target for data breaches, potentially exposing student
information.

These risks are a primary driver for institutions to consider

open-source, self-hosted alternatives.

Environmental and Financial Costs

The "large" in Large Language Model has significant real-

world costs.

Environmental Cost: Training a single large foundation
model requires an immense amount of computational
power, consuming vast quantities of electricity and
generating a significant carbon footprint, comparable to the
annual emissions of hundreds of cars (Strubell, Ganesh &
McCallum, 2020).
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o Financial Cost: The hardware required for this training
(thousands of specialized GPUs) costs tens or even
hundreds of millions of dollars. This cost creates a high
barrier to entry, concentrating power in the hands of a few
large tech companies and making it difficult for academic
or public-sector institutions to build their own models from
scratch.

These costs are a crucial, if often invisible, limitation that
shapes the entire field, driving the "open vs. closed" debate and the
economics of API access.

The Context Window Limitation

A key technical limitation with major practical consequences
is the "context window." This is the fixed amount of text (measured
in tokens) that a model can "see" or process at one time. For older
models, this was very small (e.g., 2,000 tokens, or ~1,500 words).
Newer models have much larger windows (100,000 tokens or more),
but they are still finite.

This has direct implications for education:

e A model with a small context window cannot read an entire
textbook chapter, a long research paper, or even a full
student essay before commenting on it.

e In along tutoring conversation, the model will eventually
"forget” what was said at the beginning.

This limitation is the primary motivation for techniques like
Retrieval-Augmented Generation (RAG). RAG is a method for
"feeding" the model relevant information just-in-time from an
external knowledge base (like a textbook) so it can answer questions
without having to fit the entire book into its context window.
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Conclusion:

Large Language Models represent a new type of foundational
infrastructure. They are not just another ed-tech "app" but a new
utility, much like a search engine or a word processor, upon which a
new generation of tools will be built. We have seen that they are built
on the Transformer architecture, powered by scaling laws, and made
usable through a complex pipeline of pre-training and alignment.
Their capabilities, from zero-shot learning to chain-of-thought,
simulation, and content generation, open up new pedagogical
frontiers.

We have also seen that they are a double-edged sword. The
"open vs. proprietary" models that define the market represent a
crucial choice between power and privacy. Their fundamental
limitations their nature as pattern predictors, not truth-tellers; their
capacity for confident hallucination; their embedded biases; their
finite context windows; and their significant privacy and
environmental costs are the central challenges we must address.

The potential for these models to "sound right but be wrong"
and to perpetuate hidden biases requires us to move forward with a
mindset of critical, informed, and cautious optimism. With this
foundation established, we are ready to move from the what to the
how.
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CUSTOMIZATION AND DEPLOYMENT OF LLMS
FOR EDUCATION

ILHAN AYTUTULDU!

Introduction

Large Language Models (LLMs) such as GPT-4, Claude,
Gemini, and LLaMA 3 have rapidly evolved from research
curiosities into indispensable tools across domains. Yet, their
adoption in education introduces a distinctive set of opportunities
and constraints. Unlike general-purpose deployments, educational
settings require models that are not only accurate but also
pedagogically aligned, transparent in reasoning, and safe for learners
(Xu et al., 2024: 7; Zhao & Wan, 2025: 22). Off-the-shelf LLMs are
typically trained on heterogeneous internet text, which means that
their linguistic richness and reasoning power come without
guarantees of curricular coherence or age-appropriate instruction. As
aresult, direct use of generic models can lead to inconsistent learning
outcomes, factual drift, or even unintentional bias in student
interactions (Lee et al., 2024; Delikoura & Hui, 2025).

! Res. Assist. Dr., Gebze Technical University, Department of Computer
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Customization bridges this gap between general intelligence
and domain-specific pedagogy. By shaping the model’s inputs,
outputs, and underlying parameters, educators and developers can
tailor LLM behavior to reflect curriculum standards, disciplinary
depth, and cultural context (Beale, 2025: 8; Zhang et al., 2025: 12;
Wang et al., 2023: 6). Techniques such as prompt engineering,
retrieval-augmented generation (RAG), and parameter-efficient
fine-tuning enable this adaptation at varying levels of complexity
and cost. At the same time, effective deployment demands careful
attention to data governance, privacy, and sustainability—issues
particularly sensitive when dealing with minors or institutional
learning data (Dong & Xie, 2024: 5; Shan, 2025: 3; Zhao et al., 2024:
11).

This chapter explores the continuum between customization
and deployment of LLMs for education. It begins by examining why
educational domains necessitate specialized adaptation strategies
and how pedagogical theories inform technical design. It then details
practical customization approaches—from lightweight prompting
frameworks to full fine-tuning pipelines—and demonstrates how
these can be operationalized through scalable deployment
architectures. Real-world case studies highlight systems for tutoring,
assessment, and curriculum alignment. The discussion concludes
with best practices for privacy, transparency, and sustainability, as
well as a forward-looking perspective on personalized and
multimodal educational Al

Ultimately, the chapter argues that the educational value of
large language models lies not in their generative power alone but in
degree of alignment between computational design and human
teaching principles. When properly customized and responsibly
deployed, LLMs can act as adaptive, inclusive, and context-aware
partners that extend—not replace—the expertise of human

educators.
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Understanding Customization Needs in Education

Adapting large language models to educational contexts is
fundamentally a domain adaptation problem. Educational discourse
differs sharply from the open-domain data on which LLMs are
trained: it is goal-oriented, hierarchical, and evaluation-driven (Ke,
Ming & Joty, 2025: 6; Afzal et al., 2024: 9; Sonkar et al., 2024: 4).
Tasks such as question generation, automated grading, and concept
explanation impose structured reasoning constraints that require the
model to control both content scope and reasoning style. From a
technical perspective, customization therefore involves three
interrelated goals: (1) domain conditioning, to align model
embeddings with curriculum-specific terminology and knowledge
hierarchies; (2) didactic alignment, to model reasoning transparency
and stepwise feedback patterns; and (3) controlled variability, to
balance consistency and creativity in generated outputs (Liu et al.,
2025: 8; Imperial et al., 2024: 5; Jiao et al., 2023: 480; Bhat et al.,
2022: 3).

These objectives extend beyond surface fine-tuning. They
require combining retrieval-grounded inference, parameter-efficient
tuning, and prompt-level control to ensure factual accuracy,
reproducibility, and cultural localization. In multilingual or region-
specific deployments, additional layers such as bilingual adapters or
localized tokenizers maintain linguistic fidelity and contextual
relevance. Consequently, educational customization is not merely an
interface problem but a multi-layered optimization process that
integrates representation learning, controlled generation, and policy-
based interaction—Ilaying the technical foundation for the
customization and deployment strategies detailed in the following
sections.
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Approaches to Customizing LL.Ms for Education

Once the need for adaptation is established, the next
challenge is to determine how large language models can be
effectively customized for educational applications. The available
methods span a continuum of technical depth—from lightweight
prompt engineering to parameter-efficient fine-tuning and retrieval-
augmented generation (RAG). Each approach represents a different
trade-off between controllability, cost, latency, and generalization
capability (Pan et al., 2025: 805; Jain et al., 2025: 7; Ye, 2025: 192).

Prompt Engineering and Template Control

Prompt engineering is the most accessible and cost-effective
approach to controlling LLM behavior without retraining. It is
conceptually analogous to programming through natural language
instructions—where the prompt defines both the task and the desired
response structure. Within educational contexts, prompt engineering
governs pedagogical tone, reasoning depth, and structural
consistency in generated responses.

At its core, a prompt can be decomposed into three layers of
control:

1. Role Definition — specifying the model’s instructional
persona (e.g., “You are a high-school mathematics tutor”).

2. Task Framing — defining goals, reasoning constraints, and
expected outputs (e.g., “Explain in steps before revealing the
answer”).

3. Output Structuring — ensuring responses conform to
predictable formats (JSON, Markdown, or class-based
schemas).
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Instructional Role Control

By assigning system-level instructions, developers can
enforce behavioral constraints that shape the model’s response
distribution. This mechanism, known as role conditioning, modifies
the model’s latent state before token generation—eftectively biasing
it toward a desired conversational style or reasoning depth.
For example, specifying the system message as “Act as a Socratic
question generator” guides the model to prioritize interrogative
patterns and withhold final answers until reasoning steps are
complete.

system_prompt = """ You are an Al teaching assistant for
undergraduate Operating Systems. Adopt a supportive tone, explain
concepts step by step, and encourage reasoning before providing

mneern

final answers.

user_prompt = "Explain how semaphores prevent race
conditions."

Explanation:

This prompt enforces persona persistence and pedagogical
consistency. By explicitly defining role and response behavior, the
model internalizes a constrained discourse pattern, improving
reproducibility across sessions.

Template Design and Structured Prompts

Templates extend role prompting by adding modular control.
Each educational task—question generation, feedback generation,
grading—can have a standardized template. This creates a
reproducible pattern that enforces uniform style and evaluation
logic.

TEMPLATE = """

### Learning Objective
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{objective}

##t Explanation
{explanation)

### Example Question
{example}

##Ht Common Mistakes

{mistakes}

"

Developers can instantiate this template dynamically with
programmatic variables:

filled prompt = TEMPLATE.format(objective=
"Understand the concept of deadlock in operating systems.",
explanation="A deadlock occurs when two or more processes wait
for resources held by each other.", example="Describe a real-world
analogy for deadlock.", mistakes="Forgetting to mention mutual
exclusion condition. Confusing deadlock with starvation.")

Structured Output and Typed Schema Control

Free-form outputs limit integration with downstream
analytics systems. To make results machine-readable, models can be
instructed to produce structured JSON or class-based outputs
validated by Python’s data classes or pydantic models. This design
pattern—typed response control—bridges prompt engineering and
software engineering.

from pydantic import BaseModel
class LessonOutput(BaseModel):
learning objective: str

hints: list[str]
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solution_steps: list[str]
evaluation_criteria. str

This schema-driven method transforms generative models
into deterministic components that emit predictable objects.
The same principle scales to grading pipelines and dashboards where
each field corresponds to rubric items or assessment criteria.

Chaining and Multi-Stage Prompt Composition

Complex educational workflows, such as question generation
followed by rubric evaluation, can be realized through prompt
chaining. Here, outputs from one model call become inputs to
another—forming a directed sequence of reasoning tasks.
Libraries such as LangChain or Llamalndex support these pipelines.
This models modular reasoning. Each prompt has a well-defined
contract and output type, mirroring software modularization
principles.

def generate question(concept):

return ["Generate a multiple-choice question about
{concept}.”

def grade_response(question, answer):

return f"Evaluate the following answer using Bloom's
taxonomy.\nQuestion: {question}\nAnswer: {answer}"

question = generate question("Virtual Memory")

evaluation = grade response(question, "It allows more
processes to be executed using disk as RAM.")

One-Shot and Few-Shot Prompting

Another dimension of prompt engineering concerns the
number of exemplars provided within the input context.

Modern LLMs can perform in-context learning, adapting to a task
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by observing examples embedded directly in the prompt rather than
through gradient updates or fine-tuning.

When a single demonstration is included, the configuration
is termed one-shot prompting; when several demonstrations are
supplied, it becomes few-shot prompting. In both cases, the model
implicitly constructs a task representation from these exemplars,
conditioning its token-level probability distribution to mirror the
structure and reasoning patterns present in the examples. This
mechanism allows developers to approximate small-scale
supervised learning purely through context manipulation, providing
an efficient alternative to parameter training.

In educational applications, few-shot prompting is highly
effective for rubric-based grading, question generation, and concept
explanation tasks. Each embedded exemplar defines both the
expected reasoning depth and the output format, enabling consistent
behavior without modifying model weights. One-shot setups are
useful for simple classification or scoring tasks; few-shot
configurations provide stronger generalization and stability by
exposing the model to intra-task variation.

few shot_prompt = """

Evaluate student answers according to the rubric.
Example 1

Q: Define an operating system.

A: Software that manages hardware and resources — Grade:
10

Example 2
Q: What is a race condition?

A: Two processes accessing shared data simultaneously —
Grade: 8
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Now evaluate:

Q: Explain the purpose of semaphores.

"

A: They synchronize process access to shared memory.

In this prompt, the model infers grading criteria from the in-
context examples and applies the learned structure to the new query,
performing few-shot inference without retraining. The approach
combines the interpretability of explicit exemplars with the
flexibility of generative reasoning, making it especially suitable for
prototype systems where labeled data are limited.

Automatic Prompt Optimization

After designing a base prompt or few-shot template, the next
step is to automatically improve it using measurable feedback.
This process, called Automatic Prompt Optimization (APO), treats
the prompt itself as a variable that can be optimized without
changing the model’s parameters. The goal is to find a prompt that
produces the best results for a given task—such as grading accuracy,
factual correctness, or rubric alignment.

In simple terms, APO runs a search loop:
1. Start with an initial prompt.

2. Generate small variations (called mutations) by rewording,
adding examples, or changing structure.

3. Test each new version on a small evaluation dataset.
4. Keep the version that performs best and repeat.

In educational systems, automatic prompt optimization can
fine-tune grading templates, tutoring responses, or feedback
structures based on teacher evaluations or real student data. It
provides a practical way to adapt LLM behavior to institutional goals
without retraining or fine-tuning the underlying model.
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Retrieval-Augmented Generation (RAG) for Educational
Systems

While prompt engineering governs how a model reasons
within its internal knowledge, it cannot compensate for factual gaps
or curriculum-specific data that were absent from pretraining. RAG
addresses this limitation by coupling the generative power of large
language models with a dedicated knowledge retrieval component.
In educational contexts, RAG enables models to ground their outputs
in authoritative sources such as textbooks, course notes, learning
management systems (LMS), and institutional repositories, thereby
improving factual accuracy, curricular alignment, and explainability.

RAG Architecture and Components

A standard RAG pipeline consists of three interconnected
modules:

1. Retriever — converts a learner query into an embedding
vector and retrieves semantically related documents from a
knowledge store using dense or hybrid search techniques
(e.g., FAISS, ColBERT, BM25).

2. Reader / Generator — conditions the LLM on the retrieved
passages and synthesizes a response grounded in that
evidence.

3. Indexer — periodically encodes and updates the knowledge
base to reflect syllabus revisions or new teaching materials.

This modular structure allows continual improvement
without retraining the underlying model. Educators can simply
update course documents in the knowledge base to refresh the
system’s knowledge.

Educational Use Cases
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By integrating syllabus documents and textbooks into the
retrieval layer, RAG systems can ensure that tutoring responses
remain consistent with officially approved content. For instance,
LearnRAG demonstrated that retrieval from structured course
outlines improved factual grounding and reduced hallucinations in
adaptive learning systems by more than 20 percent (Shan, 2025: 3).

RAG can align automated grading with institutional rubrics
by retrieving exemplar answers, grading criteria, or annotated
feedback examples. The generator then uses this evidence to justify
grades with transparent rationale, producing explainable assessment
artifacts that teachers can audit.

Frameworks such as EduPlanner employ multi-agent RAG
pipelines where one agent retrieves learning objectives and another
synthesizes lesson materials tailored to those objectives (Zhang et
al., 2025: 3). This division of labor enables large-scale curriculum
mapping while preserving instructional coherence.

Techniques for Enhanced Educational Grounding

Several retrieval enhancements are particularly beneficial for
education:

e Hierarchical Retrieval. Index both course-level and topic-
level materials to support multi-granular queries—from
“Explain recursion” to “Give an example from Unit 3.”

o Citation Grounding. Append references or URLs of
retrieved passages to each response, improving academic
traceability and deterring hallucination.

e Query Expansion. Reformulate learner questions using
pedagogical taxonomies (e.g., Bloom’s verbs: define,
analyze, evaluate) to retrieve materials at the appropriate
cognitive level (Imperial et al., 2024: 6).
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e Dynamic Context Windows. Allocate retrieval context
proportionally to question complexity, optimizing latency for
real-time tutoring.

e Multilingual Retrieval. Deploy bilingual encoders or
translation-aware retrievers to serve linguistically diverse
classrooms while maintaining content fidelity.

Integration with Learning Ecosystems

Modern educational infrastructure facilitates seamless RAG
deployment. Vector databases such as Milvus or Pinecone can store
encoded curriculum content, while connectors allow integration with
LMS platforms like Moodle or Canvas. Teachers can upload new
materials directly, triggering automatic re-indexing. Through APIs,
the same retrieval layer can feed both chat-based tutors and analytic
dashboards, ensuring consistent pedagogical grounding across
institutional tools.

Challenges and Considerations

Despite its promise, RAG introduces challenges related to
content quality, retrieval bias, and scalability. Poorly curated or
outdated materials can propagate misconceptions, and unbalanced
retrieval may over-represent certain topics. Continuous evaluation
pipelines that log retrieval coverage and response fidelity are
therefore essential. Furthermore, as educational datasets expand,
maintaining low-latency retrieval requires efficient vector
compression and adaptive caching.

Parameter-Efficient Fine-Tuning (PEFT) for Educational
LLMs

Prompting and retrieval ground an LLM’s behavior
externally, yet some educational uses—such as consistent grading,
tone control, or curriculum-specific reasoning—require internal

adaptation. Parameter-Efficient Fine-Tuning (PEFT) offers this
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alignment by updating only a small fraction of model weights
(usually <5 %) while keeping the pretrained backbone frozen (Ke et
al., 2025; Afzal et al., 2024). It therefore bridges full fine-tuning and
zero-shot prompting in cost, stability, and pedagogical control.

Tablo 1 Summary of major PEFT methods and their educational

benefits
|Meth0d ||Mechanism ||Educati0nal Benefit |
Adds low-rank Domain-specific reasoning (e.g.,
LoRA trainable matrices physics explanations) with minimal
inside attention layers. ||compute.
Prefix / Prompt- Learns “soft prompts Personalizes tutor persona or
Tunin prepended to classroom language style
g embeddings. guage style.
Adapters / Inserts or lightly Modular subject updates
BitFit updates small modules.|[((MathAdapter, HistoryAdapter).
Quant1zeq LQRA for Enables on-device fine-tuning in
QLoRA memory-limited
. classrooms.
devices.

Fine-tuning data should mirror curriculum objectives, age
level, and feedback style. Even small, high-quality sets of exam
items or annotated answers can teach models rubric awareness.
Evaluation must test pedagogical alignment (tone, reasoning steps)
as well as factual accuracy—often through expert rubrics rather than
generic text metrics (Imperial et al., 2024).

PEFT modules are lightweight and portable: institutions can
host a single base model and load course-specific adapters as needed.
This enables privacy-preserving, sustainable customization
compliant with FERPA/GDPR (Dong & Xie, 2024). Combined with
RAG, PEFT yields dual-layer alignment—stable pedagogical logic
from fine-tuning plus dynamic factual grounding from retrieval.
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Deployment Strategies and Infrastructure

Deploying  educational language models requires
infrastructures that balance privacy, scalability, latency, and
sustainability. Once customization is complete, deployment
determines how effectively models support classrooms and
institutional workflows.

On-premise deployments ensure full data control and are
preferred in K—12 or research settings requiring privacy and
reproducibility. These setups, hosted within university or school data
centers, guarantee compliance with regulations such as FERPA and
GDPR while supporting integration with internal databases and
analytics systems.

Cloud deployments offer elasticity and easier maintenance,
providing scalable access for large user bases or multilingual
courses. Such configurations enable continuous model updates but
require governance over data residency, cost, and third-party API
reliance.

A hybrid architecture combines both approaches—
performing sensitive inference locally while using secure cloud
services for retrieval, analytics, or load balancing (Dong & Xie,
2024). This design optimizes both privacy and accessibility,
supporting continuous model updates without compromising
institutional control.

To ensure reproducibility and scalability, containerized
deployments are commonly employed. Tools such as Docker and
Kubernetes enable modular orchestration of model components—
fine-tuned adapters, retrieval indexes, and tutoring interfaces—
within isolated microservices. This approach simplifies updates,
improves fault tolerance, and allows institutions to scale individual
components independently.
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For resource-limited or offline classrooms, lightweight and
quantized models can be deployed on edge servers or local
gateways. This supports equitable access and sustainability while
enabling real-time inference without internet dependency.

Integration with Learning Management Systems (LMS)
such as Moodle or Canvas can be achieved through REST or
GraphQL APIs, embedding tutoring and feedback tools directly into
existing teaching platforms. Continuous monitoring pipelines
further track model performance, bias drift, and retrieval quality over
time, ensuring both pedagogical reliability and system transparency.

In essence, effective deployment transforms customized
models into operational educational ecosystems—secure,
modular, and accountable—capable of augmenting human teaching
through scalable yet ethically governed Al infrastructure.

Privacy, Ethics, and Governance in Educational LLM
Deployment

As LLMs enter classrooms, privacy and governance
become central to responsible deployment. Educational data often
include personally identifiable information, performance metrics, or
behavioral traces that demand strict compliance with FERPA,
GDPR, and regional data-protection acts. Systems must ensure that

no raw student data are transmitted or stored beyond institutional
control (Dong & Xie, 2024).

Key safeguards include:

e Data Minimization: Retain only essential inputs and
anonymize stored transcripts.

e Local Processing: Prefer on-premise or edge inference for
sensitive age groups.
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e Access Transparency: Provide audit logs detailing how and
when model outputs are generated.

o Bias and Fairness Auditing: Periodically test responses for
cultural, gender, or linguistic bias using standardized
benchmarks.

o Explainability Tools: Offer teachers visibility into reasoning
chains or retrieval citations to support instructional oversight.

Governance frameworks should combine technical controls
(secure APIs, encrypted storage) with institutional policies defining
model versioning, retraining intervals, and ethical review
procedures. Transparent documentation—model cards describing
datasets, limitations, and pedagogical scope—builds trust among
educators and learners (Zhao & Wan, 2025).

Case Studies and Framework Comparison

Practical implementations illustrate how customization and
deployment strategies converge in real educational ecosystems.
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System / Customization Deployment||Educational ||Reported
Study Method Mode Function Outcome
. 1 + 0,
LearnRAG |[Retrieval- . Adapnve . 20 % factual
Hybrid tutoring using ||accuracy,
(Shan, Augmented
. cloud syllabus reduced
2025) Generation L
documents hallucination
EduPlanner |[Multi-agent RAG Curriculum Coherent
(Zhang et ||+ Prompt Cloud design and cross-topic
al., 2025) ||[Templates lesson synthesis|[planning
Adapteval lpppr  JpA _|{Awomated o ubric
(Afzal et al., Adapters) On-premise ||summarization alienment
2024) P and grading £
Standardize ||Prompt + RAG QA generation Tmp r(?ved. .
. . . . explainability
(Imperial et |lalignment to Cloud with curriculum and
al., 2024) |lexpert standards citation .
compliance
COGENT grliléﬁtc:dlum_ Srafoe-riate Increased age-
(Liu et al., . Edge / Local pprop specific
prompting content
2025) . relevance
framework generation

Future Directions and Research Outlook

Educational LLMs are evolving beyond text generation

toward multimodal, lifelong learning companions.

research frontiers define the next phase:

1. Multimodal
handwriting,

modeling.

Integration:
and gesture analysis

Incorporating

Several

speech,

for richer learner

2. Continual and Federated Learning: Allowing models to
update from distributed classrooms without sharing raw data,

supporting global yet privacy-preserving improvement.

3. Pedagogical Explainability: Embedding reasoning paths
aligned with Bloom’s Taxonomy to reveal cognitive levels

of generated content.
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4. Cross-Institutional Interoperability: Developing open-
standard adapters so universities can share educational
modules without exposing proprietary data.

5. Sustainable AI Practices: Using quantized inference,
renewable-energy data centers, and adapter reuse to reduce
carbon cost.

Ultimately, the value of educational LLMs will depend not
merely on generative power but on alignment with human learning
principles—transparency, adaptivity, and inclusiveness. When
coupled with responsible deployment, these systems can transform
instruction into an interactive dialogue between pedagogy and
computation.
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LLM-SUPPORTED EDUCATIONAL
APPLICATIONS: DESIGN, INTEGRATION, AND
EVALUATION

SINEM MIZANALI!

Introduction

Large Language Model (LLM)-based artificial intelligence
tools have become a central focus for schools, teachers, and virtually
every discipline related to learning. Accordingly, LLM-based
artificial intelligence tools have assumed a central position in
research and application areas (Giannakos et al., 2025). As the
theoretical foundations of LLMs (see Chapter 1) and customization
strategies (see Chapter 2) mature, the integration of these
technologies into educational ecosystems has the potential to
redefine teaching and learning processes.

This section addresses how LLM-based applications are
designed, integrated, and evaluated in education. Within this scope,
the section has three main objectives: conceptualizing examples of
LLM-based applications used in education, outlining the technical
and user-centric design principles of these applications, and

! Research Assistant, Istanbul Gedik University, Computer Engineering, Orcid:
0000-0002-3002-3057
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presenting practical insights through performance and quality
evaluation methods and case studies. In line with these objectives,
the areas of application for LLM-based applications in education
(quiz generation, essay evaluation, language learning support,
coding assistants, etc.) will first be addressed, followed by blueprints
for the architectural design of these applications. Subsequently, the
user experience and interface dimension will be evaluated. The
section will conclude with selected case studies and the results
obtained from these studies.

Use Cases of LLMs in Education

The integration of artificial intelligence into educational
environments has given rise to new approaches that transform the
practices of both students and educators. Among the various
technologies driving this transformation, Large Language Models
(LLMs) are powerful tools that influence learning and teaching
(Biancini, Ferrato, & Limongelli, 2025). LLMs' abilities to generate
text, classify, summarize, translate, and make logical inferences
make them usable in many stages of the learning process (Kasneci
et al., 2023). Giannakos et al. (2025) emphasize that generative Al
tools, such as LLMs, offer new opportunities for automatic content
generation, formative feedback, and assessment in educational
contexts; however, the pedagogical robustness of these tools has not
yet been sufficiently examined. Studies on the use of LLM in
education show that these systems can function not only as tools for
transferring knowledge but also as tools that provide cognitive
support and generate feedback. (Kasneci et al., 2023).

LLMs offer advantages in automating repetitive tasks and
providing feedback when human resources are insufficient. In this
context, LLM-based educational applications can be categorized into
two main groups:
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e Student-Focused Applications: These applications can be
considered tools that directly support learning processes.

e Teacher and institution-focused applications: These can
be considered tools that assist in planning, evaluating, and
managing learning processes.

Student-Focused Applications

From the student perspective, LLMs can be used in various
functions to support the learning process. Student-centered
applications related to the use of LLMs in education are summarized
below by reviewing the literature under the following subheadings.

Automatic Quiz Generation

In the field of education, Large Language Models are
increasingly being used in automated question generation to simplify
time-consuming assessment and evaluation processes for teachers
(Biancini et al., 2025). Quiz Generation applications can generate
questions tailored to the subject matter, difficulty level, and target
learning outcomes based on a specific text. However, despite its
potential to simplify teachers' assessment processes, automated
question generation still requires human oversight for content
accuracy, semantic coherence, and question variety (Azzi, Erdds,
Németh, Varadarajan, & Afrifa, 2025). Therefore, LLM-based quiz
tools are typically designed with the human-in-the-loop principle. In
this context, Biancini et al. (2025) compared multiple-choice
question generation using GPT-3.5, LlaMA 2, and Mistral and
demonstrated that GPT 3.5 was significantly superior in terms of
clarity and alignment with the source text under the knowledge
injection strategy. The findings support the practical value of human-
in-the-loop designs in measurement and assessment. As a more
specific example, in a study by Dijkstra, Genc, Kayal, and Kamps
(2022) GPT-3 was used to generate multiple-choice questions and
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answers for reading comprehension tasks. The researchers argued
that automated exam creation not only reduces the burden of manual
exam design for teachers but, above all, provides a useful tool that
makes it easier for students to practice and test their knowledge while
learning from textbooks and preparing for exams. Such applications
encourage students to practice regularly while also enabling teachers
to produce more systematic, measurable, and learning-goal-aligned
assessment materials.

Automated Essay Scoring and Written Feedback

Traditional forms of measurement and assessment processes
in education are quite time-consuming and labor-intensive. Although
providing feedback is critically important in education, evaluating
open-ended responses and creating personalized feedback for each
student are quite difficult and time-consuming processes (Xavier et
al., 2025). Large Language Models have become the center of
academic discussions in recent years with their potential to transform
these processes. Recent research on this topic shows that LLMs can
not only automate grading but also generate meaningful and
personalized feedback that supports students' cognitive development
(Fagbohun, Iduwe, Abdullahi, Ifaturoti, & Nwanna, 2024; Maity &
Deroy, 2024).

LLM-based automatic essay scoring (AES) systems are one
of the earliest and most widespread applications in education. These
systems can holistically analyze features such as text length,
consistency, vocabulary diversity, and linguistic accuracy. Fagbohun
et al. (2024) emphasized in their study that models can evaluate
student responses across a wide range, from short answers to long
essays, in terms of content, structure, grammar, and conceptual
accuracy, while also providing detailed, explanatory, and
constructive feedback. Thanks to this approach, the assessment
process moves beyond the concept of grading and becomes a
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feedback loop that guides learning. Although studies show that LLM
models perform assessments at a level of reliability similar to that of
real human evaluators, the importance of human oversight should
not be overlooked. Even if LLMs score and/or provide feedback with
high accuracy, issues such as model bias, data privacy, and ethical
accountability necessitate human oversight. In this regard, Fagbohun
et al. (2024) suggest that LLMs should be designed as tools that
support teachers' decision-making processes rather than replace
them.

In addition to generating questions, LLMs show significant
potential in response evaluation (Fagbohun et al., 2024). The ability
to accurately evaluate student responses and provide feedback is a
critical component of the educational process. Traditionally, this task
has been performed by educators who must carefully evaluate the
content and context of each response (Balfour, 2013). Consequently,
LLMs have the potential to revolutionize education through response
evaluation and written feedback. With their ability to understand,
generate, and evaluate text, these models can help guide students on
their educational journey through their capabilities in automatic
assessment and constructive feedback (Maity & Deroy, 2024).

Language Learning and Personal Learning Assistants

LLM-based chat assistants offer revolutionary innovations in
helping students learn a second language. A study by Kasneci et al.
(2023) shows that ChatGPT and similar models interact with
students in natural language, instantly correcting their mistakes,
providing example sentences, and offering comments aimed at
increasing learning motivation. In this context, students can practice
using LLM models as tutors when learning a new language. In
addition, LLMs can provide content according to the student's level
and create personalized learning paths. Furthermore, they act as
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partners in continuous interaction, complementing the traditional
student-teacher interaction in language learning.

LLMs' ability to provide real-time feedback in areas such as
pronunciation and speaking practice creates an accessible support
mechanism for students with different profiles (ElI Shazly, 2021).
Findings in the literature indicate that these approaches have a
positive effect on language development (Kasneci et al., 2023).

However, as mentioned in the previous subheadings, issues
such as pedagogical accuracy and cultural bias must be carefully
monitored at this point. Therefore, teacher guidance and the human-
in-the-loop principle are essential in the use of LLMs in the context
of language learning.

Coding, creating/generating code columns

Large Language Models offer promising solutions for
automatic code generation by leveraging extensive training on
various code bases. Unlike traditional methods, LLMs can generate
code in a wide variety of programming languages with minimal user
effort (Eagal, Stolee, & Ore, 2025). Coding assistants can review the
code written by students, explain error messages, offer solutions, and
suggest alternative coding approaches. This allows students to
receive immediate and contextual support in both debugging and
design/refactoring processes.

Studies in the literature indicate that LLM-powered coding
assistants reduce students' problem-solving time but may sometimes
weaken the student's critical thinking process by creating
overconfidence (Akgapmar & Sidan, 2024; Groothuijsen, Beemt,
Remmers, & Meeuwen, 2024). Therefore, it is important that these
tools are used under teacher guidance. Furthermore, while it is
technically possible to design a website or mobile application using
only LLMs, principles such as verification, security, and
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explainability must be observed throughout the process in such
applications.

Another study in computer education was contributed to the
literature by MacNeil et al. (2022). In this study, GPT-3 was used to
generate code explanations. This study successfully demonstrated
GPT-3's potential to support learning by explaining the aspects of a
specific piece of code.

In this context, when combined with appropriate pedagogical
design and supervision, LLM-based coding assistants have the
potential to enhance students' debugging skills, conceptual
understanding, and productivity. However, they should be supported
by instructional safeguards to mitigate the risks of dependency and
overconfidence.

Teacher and institution-focused applications

Large language models have become an indispensable
opportunity to enhance learning and teaching experiences for
individuals at all educational levels, including elementary school,
middle school, high school, and university, due to the diverse
applications they offer. They possess features that can be beneficial
to individuals at every level of education. In addition, they offer
opportunities for students with special needs. In line with the
principle of equal opportunity in education, every individual has the
right to education regardless of religion, language, or race. In this
regard, LLMs provide benefits to individuals when used for the right
purposes.

Curriculum and Course Design Support

LLMs can be used to create lesson plans, learning outcomes,
and activity suggestions for teachers. For example, a teacher can
quickly obtain a customized lesson flow tailored to their goals by
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using an English prompt such as “generate a weekly lesson plan on
Newton's Laws for 10th grade students.”

Furthermore, these systems can assess learning outcomes
based on students' previous performance data and adapt learning
goals. In addition, they can generate improvement plans related to
learning outcomes. Such tools provide information support,
especially for teachers new to the field. However, the suggestions
obtained should be reviewed by the teacher to ensure they are used
safely in the classroom context.

Feedback, Measurement, and Analytical Reporting

LLMs can automatically analyze student performance as
powerful text classifiers and provide teachers with summary and
actionable reports. For example, within a writing course, students'
texts can be summarized by the LLM and classified according to
error types. Another alternative is to classify them according to
subject matter. This allows teachers to quickly analyze which topics
need improvement at the individual or class level and take action
accordingly. Such systems serve as a decision support mechanism
that accelerates and enriches decision-making processes rather than
replacing teachers. Having teachers review reports for pedagogical
appropriateness and contextual accuracy enhances the quality of
feedback and strengthens the consistency of classroom practices.

Hybrid and system-level applications

The most effective scenarios in education frequently
manifest in hybrid systems where student- and teacher-focused
functions operate in an integrated manner. For instance, in a
language learning platform, a large language model (LLM) assesses
student text via the student module and offers immediate feedback,
while the analytics module supplies the teacher with class-wide error
statistics. Such systems can be designed utilizing a dual-agent
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architecture approach: the primary agent engages with the student,
whereas the secondary agent informs the teacher or generates
systemic reports.

In pilot systems implemented at select universities (Kasneci
etal., 2023) large language models (LLMs) have been integrated into
various educational contexts, including student advising, homework
oversight, and in-course assistance. The findings suggest an
enhancement in student motivation; however, educators remain
apprehensive regarding the reliability of the systems and the
transparency of assessments.

Applications based on LLMs present considerable
opportunities within the educational landscape, particularly
concerning personalized learning, equitable access, and scalability.
Nonetheless, challenges such as hallucination (the generation of
incorrect information), bias, data privacy, and pedagogical
appropriateness represent substantial limitations. The management
of these risks will be addressed comprehensively in subsequent
chapters of the book (see Chapter 4).

The effective implementation of these use cases depends on
robust technical architecture. In this context, the next section will
examine in detail the architectural design, technical integration, and
performance evaluation strategies for these applications.

Architectural Blueprints

This section details how the applications described in the use
cases section are built, which technical components they combine,
and how LLM architectures can be integrated into education
systems.

The most critical step in developing applications based on
large language models in education is to correctly design the
technical architecture of these systems. In this context, the success
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of the application depends not only on the accuracy of the model but
also on the system's design, integration, reliability, and measurability
qualities. An LLM-based educational application should be built on
an architectural structure where the data flow is defined and user
interaction is modeled to evaluate outputs.

The design of LLM-supported education systems requires an
architectural framework based on solid pedagogical foundations. In
this regard, the architectural plan must be aligned not only with
technological capabilities but also with educational objectives. Thus,
automation supports meaningful learning experiences rather than
replacing them. Accordingly, the architectural plan can be structured
in three layers.

e Interaction Layer (User Interface); the layer where students
and educators interact with the system.

e Cognitive Processing Layer (LLM Core + Middleware);
where inputs are interpreted, transformed, and
contextualized.

e Learning Analytics and Assessment Layer; the layer where
the pedagogical quality, reliability, and learning impact of
outputs are evaluated.

Figure 1 shows the Architectural Blueprint.
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Figure 1. Architectural Blueprint Structure
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The Interaction Layer represents the user-centric interface
that facilitates educational dialogue between humans and LLM. The
core design principles can be listed as multi-modal interaction,
adaptive interfaces, and transparency. Multi-modal interaction refers
to text, voice, or visual inputs to support different learners. React or
other modern user interface frameworks can be used to create
accessible and inclusive user experiences.

At the heart of the architecture lies the Cognitive Processing
Layer, which functions as the bridge between the user interface and
the model’s reasoning capability. It typically includes:

e Prompt Orchestration Engine: dynamically constructs
prompts using contextual and pedagogical metadata (e.g.,
learning goals, student history).

e LLM Interface: a standardized API gateway (e.g., OpenAl,
Anthropic, or open-source models) that handles requests,
responses, and model selection.
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e Knowledge Integration Subsystem: optional retrieval-
augmented generation (RAG) modules or educational
databases to provide grounded, domain-specific responses.

e Session Memory: to maintain pedagogical coherence over
multi-turn interactions.

This layer embodies the system’s cognitive logic, aligning
model reasoning with instructional design principles.

The Learning Analytics Layer monitors the model’s outputs,
user engagement, and learning effectiveness. It may include:

e Automated feedback engines that map model outputs to
rubric-based assessment frameworks.

¢ Human-in-the-loop evaluation workflows that enable
educators to verify or adjust model-generated feedback.

e Learning analytics dashboards for visualizing progress,
misconceptions, or engagement patterns. The goal is to
ensure that Al outputs are pedagogically valid, not just
technically fluent.

Figure 2 shows the system architecture for the Al-supported
learning platform.
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Figure 2. Systems Architecture for AI Driven Learning Platform

System Architecture for Al-Driven Learning Platform

Learning Analytics & E_Im
Evaluation =@

Ul / Frontend Layer

Scoring / Rubrics React / Web
Feedback Interface

Visualization Accessibility
Educator Features

Dashboard

[ Q Cognitive Processing y

Knowledge
Retrieval

Prompt
LLM Interface

User Interface and User Experience Considerations

Providing clear and reliable feedback in systems used by
students and developing data-driven dashboards for teachers are of
critical importance. Educational applications built on Large
Language Models require not only powerful artificial intelligence
models but also interaction designs that put the user at the center. An
effective user experience directly determines the success of the
model. In a pedagogical context, a good LLM application is a system
that not only produces accurate information but also facilitates
student understanding and gives teachers a sense of control (Holmes,
Bialik, & Fadel, 2019).

The study by Giannakos et al. (2025) reveals that LLM-
supported educational tools require the adoption of a human-
centered design in which teachers and students have initiative,
control, and interpretive control over outputs generated by artificial
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intelligence. This section will examine user experience in LLM-
based education systems from both a student-centered and teacher-
centered perspective.

Student-Centered Interaction Design

In education, the interaction between LLMs and students
goes beyond the traditional “question-answer” format. The goal here
is to transform the student from merely a recipient of information
into an active co-learner. Therefore, the interface and interaction
design should reduce the student's cognitive load, facilitate
guidance, and increase motivation.

The most common form of student interaction is dialogue-
based systems. An LLM-based educational chatbot not only corrects
the student's mistakes but also guides the thinking process. For
example:

Student: “I goed to the park yesterday.”

Assistant: “You almost got it! The correct past tense of ‘go’
is ‘went’. So the sentence should be “I went to the park yesterday.”

This type of feedback provides positive reinforcement while
correcting errors (scaffolded feedback). Research (Kasneci et al.,
2023) shows that this type of interaction increases students'
confidence and retention of information, especially in language
learning.

For students with a visual learning style, graphical
explanations or diagrams can be added alongside text-based outputs.
Thanks to multimodal LLMs such as GPT-4V and Gemini, students
can see the solution steps to a math problem through shapes rather
than text. Such multiple representations support deep comprehension
in learning theories. In addition, multimodal chat interfaces can
support students with dyslexia or limited reading fluency. In other
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words, multimodal LLMs are also highly beneficial for individuals
with special needs who have temporary or permanent disabilities.

LLMs can generate responses based on the student's past
performance or preferences. For example, the system learns concepts
that the student struggled with from previous responses and
reinforces them in subsequent tasks. LLM-based systems are
evolving from neutral information providers into supportive tools
that also consider the student's emotional state. Even in simple
examples, systems that detect student reluctance (“Don't worry, let's
try this step by step”) increase cognitive resilience.

Teacher-Centered Interaction Design

User experience in education is not limited to students alone.
Control panels and analytics screens designed for teachers are
elements that determine the pedagogical value of the system.
Teachers need transparency, traceability, and customization features
to trust LLM-based applications. LLM-based education systems are
evaluated not only for technical accuracy but also for ethical
interaction principles. One of the fundamental components of user
experience is the concept of trust. If a student or teacher can partially
understand how the system works, they can more easily trust it.

Providing the rationale behind the model's response increases
user confidence. For example, if a quiz assessment tool clearly
explains why an answer is incorrect, the model's explanatory nature
makes the response instructive for the student. Similarly, the
response will be traceable for the teacher.

Some systems increase transparency by showing which
information source the answer was generated from (source
attribution). However, teacher control is still important at this stage.
Retrieval Augmented Generation (RAG)-based structures
technically support this type of traceability (Gao et al., 2024). LLM-
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based interfaces used in education must be grounded in pedagogical
theories, unlike traditional software systems. In this context, the use
of large language models (LLMs) in education requires a human-
centered approach that goes beyond traditional user experience
principles. The following principles are recommended in this context
(Shneiderman, 2020);

e Cognitive Load Management: The interface should be free
of unnecessary information and understandable in a single
step. It should be designed to be instructive and reduce
cognitive load. This will increase the student's attention and
focus.

e Scaffolded Interaction: The model guides the student to the
goal step by step, not all at once. This allows the student to
participate in the process.

¢ Dialogic Feedback: Explanatory feedback is preferred over
one-sentence responses.

e Transparency by Design: The model's resources,
limitations, and confidence level should be made visible.

e Inclusivity and Accessibility: Interfaces should be
accessible to different age, language, and cultural groups. In
line with inclusive education, everyone should benefit from
equal learning opportunities.

These principles integrate Shneiderman (2020) foundations
of “human responsibility, high reliability, and enhanced creativity”
into educational design. LLM-based systems in education thus
become not only technically functional but also ethical, explainable,
and pedagogically meaningful. Shneiderman (2020) emphasizes that
human control and high automation are not opposing but
complementary design goals. In educational user experience, this
principle means leveraging automation for efficiency while
preserving teacher expertise.
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Performance and Quality Evaluation

Evaluation is central to the sustainability and reliability of
LLM-based educational applications. A system must not only
function correctly, but also demonstrate compliance with learning
outcomes, pedagogical values, and ethical standards. Therefore, the
performance of LLMs in education should be assessed not only by
technical criteria, but also in terms of pedagogical effectiveness, user
trust, and contribution to the learning experience (Giannakos et al.,
2025; Kasneci et al., 2023).

Language generation quality, consistency, and error rate are
traditional technical indicators for LLM-based systems. Metrics such
as BLEU, ROUGE, and METEOR can be used in generation tasks;
however, in an educational context, these metrics must be supported
by pedagogical meaningfulness. For example, a quiz generation tool
receiving a high BLEU score does not guarantee the conceptual
accuracy of the questions or their suitability for the student's
cognitive level. Therefore, hybrid evaluation frameworks have been
proposed in recent years. First, the model's outputs can be scored
both by automatic metrics and by expert teachers in the field.
Another alternative is to analyze model errors in categories such as
“factual errors,” “instruction violations,” and ‘“pedagogical
mismatch.” Finally, the same input can be tested with different
models and consistency analysis can be performed (Kasneci et al.,
2023).

Another element in educational applications could be
considered hallucination. Misinformation carries the risk of direct
learning loss and the formation of incorrect concepts in education. A
three-tiered safeguard can be proposed for this risk. To prevent this,
the response is based on the relevant information source, and if the
reference is missing, a warning is returned. Another alternative is for
the model to indicate its own confidence level. For example, it could
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return a response such as “I am 70% confident about this answer.”
Finally, an independent verification model can check the LLM
output. These methods affect not only technical accuracy but also the
student's confidence in the information. Justified explanations of
responses support the student's critical thinking skills.

Performance should also be evaluated in terms of time, cost,
and system stability. In educational environments, low latency, high
uptime, and scalable architecture directly impact the user experience.
In RAG (Retrieval-Augmented Generation)-based systems,
techniques such as cache optimization and embedding-based query
matching increase this efficiency (Gao et al., 2024). However, more
importantly, these metrics must be balanced with pedagogical value:
a meaningful explanation produced in a slightly longer time should
be preferred over a fast but superficial response (Holmes et al.,
2019).

Another dimension that is as important as technical accuracy
is the pedagogical suitability of model outputs and their contribution
to the learning process. The concept of pedagogical alignment is
used to assess whether LLM-based tools are compatible with
learning objectives (Giannakos et al., 2025). An application should
not only provide accurate information but also support the learner's
learning objectives. The most direct way to measure pedagogical
quality is to track changes in student learning outcomes. This is
evaluated using both quantitative (test scores, number of tasks
completed) and qualitative (student self-reflection, perceived
benefit) data.

The success of LLMs can be measured by their impact on
student engagement and motivation. For example, Kasneci et al.
(2023) showed that ChatGPT can increase children's curiosity and
questioning behavior. In addition, the lack of sufficient digital and
artificial intelligence literacy among teachers and students using
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LLMs is considered one of the challenges in LLM usage. It is evident
that trust and transparency mechanisms are necessary for user
experience (Kasneci et al., 2023).

Although Large Language Models offer opportunities in
learning design processes in terms of speed and creativity, automatic
content, feedback, and assessment generation, and supporting
students' self-regulation skills; they also bring many challenges such
as model biases, ethical issues, data privacy deficiencies, the blurring
of the definition of the human role, and the risk of rapid integration
being pedagogically inadequate (Giannakos et al., 2025).

The sustainable integration of LLMs into education must be
balanced with responsibility. While these systems can personalize
learning and reduce teachers' workload, their uncritical adoption
carries the risk of undermining ethical transparency. This tension
between opportunity and oversight will form the basis of the ethical
discussions addressed in Chapter 4.

Case Studies

Under this heading, both success indicators and limitations
will be discussed based on LLM applications tested in different
learning environments.

In this context, a study conducted by El Shazly (2021)
examined ChatGPT's contribution to students' language learning
process. In the study, students received written and verbal feedback
while practicing conversation with ChatGPT. The model also
instantly suggested corrections for spelling mistakes, grammar
errors, and stylistic improvements. Among the results obtained in
this study, it was observed that students' language anxiety decreased
by 40% and that students showed more courage while practicing
speaking. However, it was also seen that most students began to trust
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the accuracy of the grammar corrections provided by the model,
which led to a weakening of their critical thinking skills.

The study conducted by Akcapinar and Sidan (2024)
examined the effect of an Al programming assistant on students'
exam scores and their tendency to accept misinformation generated
by Al. The authors developed a customized Al programming
assistant using a GPT-based LLM. In the study, which used
experimental design, students were asked to take a programming
exam once with Al assistance and once without Al assistance. The
results of the exam taken with Al assistance showed a significant
increase. However, when examining the student-Al interaction logs
for a specific question, it was found that the Al generated incorrect
answers for that question for 36 students, and 33 of the 36 students
who received the incorrect answer provided the wrong response to
that question. Despite the obvious error in the Al-generated answer,
22 students directly copied and pasted the Al response. Only 3
students recognized the incorrect answer generated by the Al and
answered the question correctly. The fact that a significant portion of
the students accepted the incorrect answer provided by the Al
without questioning clearly demonstrates how carefully Al tools
must be used in learning environments.

Xavier et al. (2025) present a controlled experiment
comparing traditional teacher feedback with LLM-supported
feedback via a platform among 60 middle school students in Brazil.
The results of the experiment showed no significant difference in
students' perceptions of feedback quality. In other words, the vast
majority of students could not distinguish feedback generated by
LLM from teacher feedback. The study found that LLM assistance
produced longer feedback messages without significantly increasing
grading time.
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The study by Biancini et al. (2025) experimentally examined
the role of LLMs in assessment processes. The research
comparatively evaluated the performance of GPT-3.5, LLaMA 2,
and Mistral models in generating multiple-choice questions. One of
the most significant contributions of the study is the knowledge
injection approach, whereby test data is transferred to the model
externally, independent of the model's internal knowledge. This
enables teachers to have full control over the source text. This
approach emphasizes the necessity of developing LLM-based
systems in educational settings according to the “human in the loop”
design principle. The experimental findings were obtained from 21
educators. According to the results of the study, GPT-3.5 showed
statistically significant superior performance compared to the
LLaMA 2 and Mistral models in all criteria. In particular, the
difference was significant in the criteria of clarity and alignment with
the source text. This study demonstrates that LLMs are not only
linguistic production tools but can also be effective partners in
designing assessment and evaluation in education. However,
researchers emphasize that human expertise should not be
completely eliminated. Although the questions generated by LLMs
have high accuracy rates, they still require expert oversight in terms
of content diversity, cognitive level (e.g., Bloom's Taxonomy), and
contextual appropriateness. In this context, the fundamental
approach in designing LLM-supported educational applications
should be to keep the teacher at the center of the process, using the
model's automation capacity as an auxiliary design element
(Biancini et al., 2025). Additionally, researchers emphasize that
future studies should expand LLM-based question generation not
only in terms of linguistic accuracy but also in terms of cognitive
level classification based on learning objectives and personalized
assessment designs. Models to be developed could enable the
measurement of learning outcomes at different cognitive levels
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among students. This approach paves the way for LLM-supported
educational applications to be integrated not only into content
production but also into learning analytics and adaptive assessment
processes. Thus, LLM-based assessment systems, integrated with
teacher-centered design principles, lay the groundwork for an
ethical, reliable, and pedagogically meaningful Al integration
(UNESCO, 2023).
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CHAPTER 4: ETHICAL CHALLENGES,
HALLUCINATION RISKS, AND RESPONSIBLE Al
IN EDUCATION

BASAK BULUZ KOMECOGLU!

Introduction

Artificial Intelligence (AI) has emerged as a constitutive
process in the present educational culture, and not merely as a mere
form of technology, but as an epistemic and moral actor, which
increasingly steers teaching, assessment and policy-making in
education (Jose et al., 2025). Large language models (LLMs) and
other generative Al systems have reconfigured the way knowledge
is constructed, represented, and verified in a pedagogical setting. In
this process of transformation, education is confronted with two
tasks - how to leverage AI’s personalization and efficiency, and how
to protect basic academic and ethical imperatives such as fairness,
integrity, and accountability (Sharma, et al., 2025; Memarian &
Doleck, 2023).

As recent scholarship points out, the inclusion of Al at the
centre of education is fraught with both opportunities and structural
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vulnerabilities. First, adaptive learning systems and automated
feedback tools offer inclusivity, prompt assessment, and data-driven
teaching. On the other hand, they introduce new mechanisms of
asymmetrical human judgment versus algorithmic inference,
generating moral questions about transparency, bias, and epistemic
dependence (Klimova & Henriksen, 2024). The normative codes that
historically shaped educational practice—autonomy of the learner,
validity of the measurements used and the status of the educator as
moral agent— now face opaque algorithmic systems whose
workings are neither fully explainable nor contestable (Bittle et al.,
2025).

Among the new anxieties, hallucination — the construction
of linguistically consistent but factually inconsistent output by
generative Al — is an especially critical epistemic concern. In these
educational contexts of factual reliability and conceptual precision
which are foundational to learning, such artificial content threatens
the integrity of knowledge and evaluation procedures (Elsayed,
2024) Hallucination is an example of ‘systemic epistemic
instability,” which creates a gap between fluent language production
and reliability based on facts (Cao, 2025). This phenomenon,
emerging as a co-author of the artificial intelligence education
discourse, provides a perspective for some critical discussions on the
reconstruction of trust, authority, and verification. This phenomenon
provides a perspective for some critical discussion of rebuilding
trust, authority, and verification when Al emerges as a co-author of
educational discourse.

In addition, the pedagogical implications are not just about
content authority, but also about academic truth and human agency.
Generative Al platforms challenge both help and authorship as well
as the accepted views of originality, effort and evaluative fairness
(Mouta et al, 2025). AI’s ability to replicate reasoning and produce

assessments threatens to displace the teacher’s evaluative role,
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increase dependence and reduce students’ critical independence
(Pratiwi et al.,2025). Ethical Al in education requires “human-in-the-
loop” oversight to ensure reflective judgment remains embedded in
pedagogy as an end in itself (Lopez-Meneses et al., 2025; Fajardo-
Ramos et al., 2025)

These developments have provided a stimulus for the
development of Responsible Al in Education (AIEd) frameworks,
which aim to harmonise technological innovation with ethical
governance. Research published today highlights the need for multi-
stakeholder accountability: developers to provide fairness and
explainability, institutions to embed governance systems, educators
to ensure that educators choose the appropriate use, and learners to
acquire Al literacy skills (Fu & Weng, 2024; Zhuang et al., 2025).
The aim is not just risk mitigation, but to build ethically sustainable
learning environments in which automation does not replace human
judgment, but rather serves human judgment.

Thus, it is the purpose of this chapter to achieve three
objectives. It firstly describes the pedagogical reweavings and
tensions introduced by Al in education through the use of the
artificial intelligence with respect to the pedagogical transformation
and conflicts. Second, it studies four core ethical dilemmas -data
ethics, bias, transparency and accountability -which it builds on
recent empirical data. Third, it discusses hallucination as an
epistemic phenomenon and conceptualizes governance under
Responsible Al principles. The chapter concludes with policy-
oriented reflections on balancing innovation with responsibility and
on nurturing a human-centred Al pedagogy. By locating ethical
reflection within the realm of grounded educational practice, the
chapter contends that responsible Al is not a technical add-on, but a
moral and epistemological precondition for the sustainability of
truth, justice, and trust in a technology-mediated education.
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The Rise of Al in Education: Opportunities and Tensions

Evolution of AI Tools in Education

The integration of Al into educational environments has
evolved from an experimental phase to a systemic one. Early
machine learning applications focused on adaptive testing and
automatic grading. However, advancements in natural language
processing have enabled large-scale interactions with intelligent
tutoring systems and generative assistants (Chandrakant, 2025).
These developments represent a paradigm shift from rule-based
automation to probabilistic reasoning. AI now models learning
trajectories, predicts potential performance, and co-produces
instructional materials.

Al-powered tools, such as writing support systems,
conversational tutors, and personalized analytics dashboards, are
increasingly integrated into both formal and informal learning
settings (Zhai et al., 2021; Chu et al., 2025) . Applications of LLM-
based platforms synthesize course content, offer tailored feedback,
and facilitate peer collaboration (Zhang et al, 2025; Guo et al., 2024;
Naie et al., 2024; Shahzad et al., 2025; Abu-Rasheed et al., 2024).
Concurrently, these Al technologies are becoming integral to
administrative decision-making, including admissions screening,
early warning systems, and curriculum optimization, extending their
influence beyond pedagogy to the governance of educational
organizations (Zhao et al., 2025; Hu et al., 2024; Chu et al., 2025).
This growth has blurred the line between human and computational
authority in the learning process. While traditional educational
technologies acted as mediating resources, Al systems now assume
interpretative and evaluative roles previously held by educators. The
transition from "supporting cognition" to "substituting cognition"
necessitates a rethinking of the epistemic division of labor in
learning (Grinschgl & Neubauer, 2022; Zhuang et al., 2025)
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Pedagogical Transformations

The pedagogical implications of the adoption of Al systems
are not just in terms of the efficiency gains. Recent academia also
focuses on the way Al systems disrupt epistemological
underpinnings of the teaching and learner context by mediating
access to, representation and legitimacy of knowledge (Creely &
Carabott, 2025; Marshall et al.,, 2024 ). Adaptive learning
environments change the pace and sequencing of teaching, and
generative Al tools also change the way students think about
authorship, originality, and reflective thinking (Li et al.,2024; Martin
et al.,2020; Baidoo-Anu & Ansah, 2023). Teachers are increasingly
seen as curators of Al-generated information, helping their students
process information with interpretive evaluation, not direct
instruction. This shift accords with post-human pedagogy: learning
emerges through interaction between human and non-human agents
(Katsenou et al., 2025). And yet, it also spawns tensions around
control, reliability, and the decline in professional competence. An
expanding body of academic evidence indicates that Al-enhanced
pedagogy has the capacity to promote engagement as well as
formative feedback, but also to create a passive reliance on
algorithm-mediated recommendations (Pitts et al., 2025). In other
words, Al’s transformative pedagogy is dialectical: while it increases
human capability, it also restricts it within algorithmic boundaries.

Ethical Tensions

AT’s advent as a tool to educate holds pedagogical potential,
but it also breeds enduring ethical friction in education. Three
issues—epistemic dependence, assessment fairness, and human
agency—remain especially pertinent in present scholarly research.

1.Epistemic Dependence
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Epistemic dependence is the extent to which learners (and
educators) look to Al systems as authoritative sources of knowledge
(Kahl, 2025). When LLM-driven systems produce fluent yet
unverifiable outputs, it may be easier to embrace these outputs with
little critical examination of what is generated.

This dependency undermines students’ epistemic agency —
their ability to assess and justify belief — and has the power to
supplant critical reasoning with algorithmic trust. Empirical
evidence indicates that extended exposure to Al explanations leads
to lower metacognitive awareness and higher acceptance of
inaccurate claims (Yeh & Siah, 2025). The educational task is, then,
to build learning environments in which Al literacy — the capacity
to interpret, question, and verify machine outputs rather than
uncritical consumption — is engendered (Ng et al., 2024; Dabher,
2025; Southworth et al., 2023).

2.Assessment Fairness

While Al-driven assessment systems promise objectivity,
they can duplicate hidden biases inherent in their training data.
Automated essay scoring, speech recognition, and predictive
analytics have been shown to discriminate against students because
of linguistic variation, accent, or socioeconomic background (Baker
& Hawn, 2022; Jones-Jang et al. (2025) emphasize that perceptions
of fairness are crucial to Al-driven grading as a matter of legitimacy:
even statistically credible models can damage trust if learners
consider decision-making opaque as well as culturally insensitive.
Consequently, fairness in assessment must be understood as both an
algorithmic and a relational construct—requiring scoring criteria to
be transparent and opportunities for human appeal, according to Fu
and Weng (2024). Institutional policies should aim to have Al
systems that complement, rather than displace, educators’ evaluative
judgment, striking a balance between efficiency and equity.
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3.Human Agency

In the context of artificial intelligence (Al), human agency
refers to individuals’ capacity to act and make choices independently
in accordance with their own beliefs, values, and goals. It
encompasses multiple dimensions, including intentionality (acting
with purpose), autonomy, adaptability, and responsibility (ethical
accountability) (Holmes, 2024). In education, the evolution of Al
reflects a shift toward Paradigm Three (Al-empowered, learner-as-
leader), in which learners are seen not as passive recipients but as
active participants with autonomy to define their own academic
goals (Ouyang & Jiao, 2021). Al offers potential to enhance human
capabilities by providing personalized learning experiences,
increasing efficiency, and supporting decision-making—an
augmentation-oriented approach that envisions a hybrid model
where technology amplifies human potential (Sethuraman, 2025;
Roe & Perkins, 2024). However, the use of Al in education also
carries risks of diminishing agency. One of the most prominent risks
is cognitive offloading, where students overly rely on technology
instead of developing their own mental strategies—thereby
weakening critical thinking, self-reflection, and independent
problem-solving skills (Shum, 2024; Holmes, 2024). As seen in
early Al approaches (Paradigm One: Al-directed, learner-as-
recipient), Al systems may predetermine learning paths, restricting
learners’ autonomy (Ouyang & Jiao, 2021). Al can also steer student
preferences toward narrow algorithmic defaults, increasing the risk
of modal collapse and creating an algorithmic panopticon that limits
meaningful choice (Bozkurt, 2025). To preserve human agency, it is
essential that educators maintain control over core pedagogical
decisions (human oversight) and employ Al in ways that support
distinctly human capacities such as critical thinking, creativity, and
ethical judgment (Mouta, Pinto-Llorente & Torrecilla-Sanchez,

_78--



2025; Sethuraman, 2025). Al should augment, not replace, human
intelligence (Shum, 2024).

Ethical Challenges of Al in Educational Contexts

The ethical use of Al in education is about how to keep alive
basic values — autonomy, justice, privacy, and accountability — in
environments increasingly mediated by data and algorithms. While
Al systems have the capacity of enhancing learning contexts, they
also serve to instantiate new asymmetries of knowledge and power,
especially when learners become data subjects and educators are
subsumed under algorithmic decision-making (Nguyen et al., 2023;
Adams et al., 2023 ). This section analyses four interrelated domains
that structure current ethical debates in educational Al: data ethics
and privacy, algorithmic bias and fairness, transparency and
explainability, and accountability and governance.

1.Data Ethics and Privacy

Data ethics and privacy poses among the most significant
ethical problems to be resolved today within educational institutions
(Mienye and Swart, 2025; Akgun and Greenhow, 2022). Student and
teacher privacy abuses have heightened due to the growing use of Al
systems. Privacy violations are situations where people disclose an
excessive amount of personal information (including metadata) on
the internet; such metadata may include linguistic features, racial
identity, biographical information, and geolocation information
(Regan and Jesse, 2019; Remian, 2019). Laws to protect sensitive
data do exist, though violations of data access and security by big
tech companies employing Al technologies have exacerbated
privacy fears (Stockman and Nottingham, 2022). Although Al
systems frequently ask users for permission to access their personal
data, many users give it without understanding, and without having
the chance to think first and foremost, about what they are revealing

to others. Such unreflective data sharing infringes upon personal
--79--



autonomy (i.e., human agency) and control over their own privacy
(Nguyen et al., 2023). Indeed, in the case that it is a school that
requires such systems, students and parents become implicated in the
question of ethics: “even if they explicitly consent to participate,
they are being forced to take part in it, since they can no longer opt
out” (Turner, Pothong & Livingstone, 2022).

Yet another major ethical question brought up with the
incorporation of Al in education is surveillance. These systems
utilize algorithms and machine learning models to harvest granular
data collected on the actions and preferences of students and
teachers. Al-based surveillance doesn’t just keep an eye on what
people do; it also monitors and predicts what its users will do next
(Charteris, 2022; Ryymin, 2021; Dai, Thomas and Rawolle, 2025).
For example, these monitoring technologies can be embedded as
predictive systems designed to forecast learners’ learning
performance, strengths, weaknesses, and behavioral patterns
(Alamri & Alharbi, 2021; Almalawi, Soh and Samra, 2024). Issues
arise when such predictors do end up challenging the autonomy of
the individual, the ability to act on what is to one’s liking or on an
even-valued basis. Algorithmic predictions threaten that autonomy
and freedom, which both students and educators require, for
information. Once students know that their thoughts and behaviours
are tracked by the Al systems, they become restricted in the extent
of their learning engagement and lose confidence in the degree to
which their ideas are their own (Lo Piano, 2020; Regan & Jesse,
2019; Akgun & Greenhow, 2022). We can mitigate these safety and
privacy issues by educating both teachers and learners at a better
level about the ethical nature of Al. For this reason, the MIT Media
Lab and others have launched a series of "Al and Data Privacy"
workshops on the topic, which engage students ages 7—14 years old
in critical reflection (Akgun & Greenhow, 2022). They encourage
learners to examine how algorithms interpret human behavior and
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also how a child's choices with regard to online consent and the legal
principles of the Children’s Online Privacy Protection Act (COPPA)
are an issue for them (Anderson, 2024).

Additionally, regions like the European Union (EU) have
published guidelines addressing ethical responsibilities, such as the
Assessment List for Trustworthy Al (ALTAI) (Hleg, 2020). Its
guidelines emphasize privacy, preventing surveillance, and
eliminating discrimination as matters of utmost importance. As the
role of Al in education continues to expand, what practitioners need
to know about potential dangers and ethical aspects is the biggest
challenge.

2.Algorithmic Bias and Fairness

Algorithmic bias is one of the most clearly documented
ethical challenges in educational Al. Systems trained on historical
data reproduce existing inequalities and encode cultural, linguistic,
or gendered biases (Baker & Hawn, 2022) For example, automated
essay scoring models have been found to favour academic writing
styles that conform to the norms of the dominant linguistic culture,
which, in some cases, has led to the exclusion of minority language
learners (Matta, Mercer & Keller-Margulis, 2023 ). This aligns
predictive analytics used for at-risk identification — predictive
models often link socio-economic characteristics to performance,
exacerbating structural disadvantage (Almalawi, Soh & Samra,
2024). Fairness in education includes perceived justice, beyond
statistical inequities, — the extent to which students and teachers see
algorithmic decisions as legitimate (Liinich, Keller &
Marcinkowski, 2024). Jones-Jang et al. (2025) emphasize that
fairness perception is determined by transparency, feedback
mechanisms, and the ability to question Al outputs. Without them,
even technically correct systems undermine institutional trust. It
takes multi-level intervention to mitigate algorithmic bias: inclusive
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sampling of data, bias auditing, explainable decision-path
visualization, and a hybrid evaluation using human & machine
judgment. Fairness, cannot be completely automated, but must be
“co-produced through human oversight and algorithmic
accountability” (Kyriakou & Otterbacher, 2023).

3. Transparency and Explainability

Transparency and explainability are two epistemic
preconditions of ethical Al for education (Contreras & Jaimes,
2024). When users cannot see what any given output from a system
means—as a score, as a recommendation, or as feedback—the
validity of such a decision vanishes. But most of these educational
Al solutions are black boxes, especially the deep neural network
ones, which are not subject to pedagogical scrutiny (Yue, Jong &
Dai, 2022; Balasubramaniam et al., 2023). The difficulty of
interpreting the decisions of complex Al models—such as Large
Language Models (LLMs)—undermines trust among educators,
students, and other stakeholders (Geethanjali & Umashankar, 2025).
For this reason, transparency and explainability are emphasized as
essential quality requirements in ethical guidelines for Al systems
and are considered fundamental prerequisites for the successful
integration of Al into educational environments (Balasubramaniam
et al., 2023; Raza et al., 2024). Nearly all organizations examined
highlight the importance of transparency and regard explainability
as an integral component of it. The primary purpose of incorporating
transparency and explainability is to build and maintain trust. In
high-stakes contexts such as education, Al systems must be
transparent, auditable, and aligned with human values
(Balasubramaniam et al., 2023).

To address this transparency challenge, Explainable
Artificial Intelligence (XAI) has emerged as a critical paradigm
aimed at reducing opacity in educational Al applications (Ali &
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Husain, 2015; Geethanjali & Umashankar, 2025). XAl seeks to make
Al 'models understandable to humans by providing clear and justified
explanations for their decisions—for example, in automated grading,
personalized learning pathways, or virtual tutor recommendations
(Rachha & Seyam, 2023). Such explanations may be produced
through inherently interpretable models, such as decision trees or
rule-based systems, or through post-hoc techniques like SHAP and
LIME (Raza et al., 2024).

XA fosters deeper learning by enabling students not only to
see what they should improve, but also to understand why these
improvements are necessary (Singh, 2025). Furthermore,
transparency and explainability are essential for ensuring fairness, as
they help identify and mitigate algorithmic bias and ethical concerns
during system development and deployment (Akinrinola et al., 2024;
Johnson & Zhang, 2024). In this way, XAl supports the adoption of
Al systems as trustworthy and responsible partners that reinforce
educational goals (Rachha & Seyam, 2023).

4.Accountability and Governance

The widespread adoption of artificial intelligence (AI)
systems in education has created an ethical dilemma centered on the
question of who should be held responsible in high-stakes
scenarios involving algorithmically mediated decisions—for
example, exam scoring or vocational guidance systems (Herrera-
Poyatos et al., 2025; Ramnani, 2024). Accountability refers to being
answerable for the consequences of one’s actions or decisions, and
it is regarded as a foundational component of a democratic, tolerant,
and inclusive society (Porayska-Pomsta & Rajendran, 2019). In
education, accountability is closely tied to internal performance
monitoring, which ensures that institutional decisions align with
intended outcomes (Algazo & Ibrahim, 2024). However, the
tendency of digital governance systems to rely on standardized and
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quantifiable data may conflict with educators’ professional
autonomy by constraining their discretion and their ability to adapt
decisions to local contexts. This risks limiting phronesis—the
capacity for context-informed practical judgment (Larsen, 2025)..
Because the complexity and opacity of Al systems may obscure
decision-making processes, the absence of clear accountability
mechanisms risks turning ethical failures into technological
inevitabilities. In Responsible Al (RAI) systems, auditability is an
ex ante requirement ensuring that decisions and processes are
traceable and verifiable, while accountability pertains to post hoc
evaluation of whether the system has performed as intended
(Herrera-Poyatos et al., 2025).

The responsible integration of Al applications in education
requires a holistic governance framework that addresses ethical,
legal, and social dimensions. Governance defines how power is
distributed, how resources are managed, and how complex systems
are directed. In higher education, Al integration has the potential to
enhance decision-making and operational efficiency through data-
driven insights and automation (Herrera-Poyatos et al., 2025; Algazo
& Ibrahim, 2024; Mariam, Adil & Zakaria, 2024). Yet this also
introduces challenges related to data privacy, ethical concerns, and
institutional power dynamics. Proposed frameworks such as the Al
Ecological Education Policy Framework aim to address these
challenges across three main dimensions: governance, pedagogy,
and operations. Within this framework, the Governance
Dimension, initiated by institutional leadership, bears primary
responsibility for addressing ethical concerns such as academic
integrity, data privacy, transparency, accountability, and security
(Chan, 2023).. Institutions must be transparent about the algorithms
they use, their functions, and their potential biases or limitations—
an essential step in building trust among students and staff regarding
the use of Al technologies. Ultimately, governance for responsible
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Al systems should focus on ethical and lawful use, encouraging
policymakers and administrators to develop frameworks that ensure
processes remain transparent, inclusive, and aligned with
educational values (Mariam, Adil & Zakaria, 2024).

Hallucination and the Epistemic Integrity of AI Systems

The rapid integration of Artificial Intelligence (Al)
systems—particularly Large Language Models (LLMs)—into
critical domains such as education and science introduces significant
challenges to epistemic integrity (Chen, 2025). Hallucinations occur
when an Al system produces information that is fabricated,
nonsensical, or factually incorrect, even though it appears fluent,
syntactically coherent, and persuasive (Wachter, Mittelstadt &
Russell, 2024; Li, Y1 & Chen, 2025). This phenomenon stems from
the foundational architecture of such models: LLMs operate not
through conceptual understanding or causal reasoning, but by
predicting the next token in a sequence based on statistical patterns
within vast datasets. This probabilistic nature is the core reason why
hallucination is an inherent feature of LLM outputs (Yingzhe, 2025;
Li, 2023). Hallucinations may take the form of factual
inconsistencies, invented references, or subtler distortions such as
consensus illusion or oversimplification (Li, Yi & Chen, 2025;
Yingzhe, 2025). The polished and authoritative style in which such
inaccuracies are presented can diminish users’—especially
students’—capacity for critical evaluation. Hallucinatory content
can disrupt students’ conceptual scaffolding, increasing the risk of
developing ingrained misconceptions that are difficult to correct in
the long term (Elsayed, 2024; Yingzhe, 2025; Ayeni et al.,2024) .
This threat to epistemic integrity is not merely a technical flaw but
points toward a deeper philosophical issue known as the “Accuracy
Paradox”. The paradox suggests that excessive optimization for
accuracy, intended to reduce hallucinations, may cause greater harm

by generating an illusion of epistemic certainty and fostering
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uncritical user trust. While accuracy typically denotes statistical
consistency with existing “ground truth” datasets, epistemic truth is
more complex and requires contextualization, justification, and
robustness against error (Li, Yi & Chen, 2025; Laux, Wachter &
Mittelstadt). Since LLMs are often optimized for fluency and
rhetorical persuasiveness, they may convince users of their
reliability even when their outputs lack epistemic validity. The
portrayal of Al systems as “knowing agents” and the attribution of
human-like cognitive status to them (anthropomorphism) blur the
boundaries between human and machine epistemic processes,
leading users to overestimate Al capabilities. This dynamic can
constrain human epistemic agency, the essential ethical capacity of
individuals to maintain control over their own processes of

knowledge formation—crucial in educational contexts (Chen,
2025).

To safeguard epistemic integrity and overcome the Accuracy
Paradox, regulatory frameworks and system designs must shift away
from narrow accuracy metrics toward epistemic reliability (L1, Yi &
Chen, 2025). In scientific domains, ensuring that LLMs make
reliable contributions requires embedding them into rigorous
workflows. Systems such as AlphaFold and GenCast employ
strategies like theory-guided training (encoding physical and
chemical laws to guide learning) and confidence-based error
screening (e.g., the ensemble of probabilistic predictions in GenCast
or the pLDDT scores in AlphaFold) to flag potential errors
(Rathkopf, 2025).. In education, however, the primary challenge is
resisting the development of passive dependency habits that may
arise from the convenience and speed of Al tools (Chen, 2025).
Therefore, it is essential to equip students to become critical
evaluators of Al-generated content (Yingzhe, 2025). Pedagogical
strategies should explicitly teach verification techniques such as
lateral reading and aim to cultivate epistemic sensitivity—the ability
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to recognize when critical scrutiny is necessary (Elsayed, 2024).
Ultimately, overcoming these challenges requires an approach to Al
integration that leverages the power of such systems while upholding
core educational values and aligning with human expertise and
epistemic agency (Chen, 2025).

Responsible AI Frameworks for Educational Practice

The rapid integration of Artificial Intelligence (Al)
systems—especially generative Al models such as Large Language
Models  (LLMs)—into  educational  environments  offers
unprecedented opportunities for personalizing learning experiences,
optimizing administrative processes, and enhancing instructional
quality (Nguyen & Nguyen, 2025; Chan et al., 2025; Bearman, Ryan
& Ajjawi, 2023). However, this technological expansion also brings
complex ethical challenges and risks, including issues related to
academic integrity (plagiarism, overreliance), data privacy and
security, and algorithmic bias (Chan et al., 2025; Tirado, Mulholland
& Fernandez, 2024; Zhu, Sun & Yang, 2025 ). To address these
challenges and ensure the equitable distribution of Al’s benefits,
Responsible and Trustworthy Al (RAI) frameworks have become
essential. These frameworks aim to ensure that Al systems are
designed and deployed in ways that minimize potential harm and
maximize societal benefit (Tirado, Mulholland & Fernandez, 2024).
Core principles of Responsible Al include fairness and bias
mitigation, transparency, accountability, safety, and explainability.
International organizations (such as UNESCO) and industry
initiatives converge around these foundational values (Nguyen &
Nguyen, 2025; Tirado, Mulholland & Fernandez, 2024).

Applying Responsible Al frameworks in educational practice
requires translating abstract ethical principles into concrete,
actionable strategies. To this end, models tailored to specific
contexts—such as Learning Analytics (LA)—have been developed
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(Tirado, Mulholland & Fernandez, 2024). For example, an integrated
responsible and trustworthy Al framework has been created to
analyze and support students’ learning engagement, implemented
across five stages and encompassing three modules: Explainable Al
(XAI), Safeguard and Auditing, and Adversarial Training. XAI
models provide interpretable information—such as decision rules or
variable importance rankings—to evaluate learning performance.
Safeguard and Auditing modules provide complementary
predictions to prevent students with poor learning performance from
being misidentified as normal learners and to issue early warnings
for at-risk students. Another structural model, the Integrity Al
Model, guides ethical Al integration by focusing on three levels:
guiding principles, educational activities, and impact/empowerment.
Additionally, the GAIDL Framework, designed to offer practical
guidance for Higher Education Institutions (HEIs), aligns ethical Al
considerations with the stages of the software development life cycle
(requirements and data collection, design, development, testing,
deployment, and monitoring) (Chou, 2023).

The success of Responsible Al frameworks depends on how
much stakeholders—especially teachers and students—value ethical
priorities. Studies involving K-12 teachers show that fairness and
safety consistently emerge as the highest priority values across
different scenarios. Fairness requires that AI systems do not
perpetuate existing inequities and ensure equitable outcomes for all
learners. Safety encompasses the accuracy, reliability, and
robustness of Al systems, while also aiming to minimize
psychological, emotional, or academic harm to staff and students.
Transparency, on the other hand, is critical for building trust by
enabling users to understand the reasons behind algorithmic
decisions and for strengthening students’ capacity for critical
thinking (Yin, Karumbaiah & Acquaye, 2025). However, the lack of
interpretability mechanisms in most models (88.1%) creates a
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significant transparency gap—one that conflicts with regulatory
frameworks such as the EU Al Act, which mandates transparency in
high-risk Al applications (Floridi et al., 2018). Effective RAI
integration requires continuous Al literacy and ethics education for
both teachers and students (Nofirman et al., 2025; Smith et al., 2025;
Chan et al., 2025). Such training should prepare students to critically
evaluate AI’s limitations, bias potentials, and the trustworthiness of
its outputs (Watson, 2025). This multidimensional approach is
essential to ensure that Al functions as a responsible and ethical ally
in education (Nguyen & Nguyen, 2025).

Conclusion and Policy Recommendations

Artificial Intelligence (AI) has shifted from its technical
utility to an epistemic and moral actor that profoundly changes the
ways we teach, learn and assess. With educational systems becoming
weighted toward computational judgment, the historically normative
foundations of education—including learner autonomy (which is
central to many types of pedagogic practice), evidential rigor (and
thus to pedagogical legitimacy), epistemic trust, and the moral
agency exercised by the educator themselves—are at odds with
inscrutable algorithmic architectures that are neither fully questioned
nor contested. This shift compels education to face a difficult trade-
off between two imperatives: to seize personalization, scalability,
and efficiency from Al, while at the same time safeguarding fairness,
academic integrity, transparency, and accountability as non-
negotiable ethical commitments.

Among the most significant tensions unveiled in this chapter
are those of epistemic dependence and hallucination. Epistemic
dependence arises when fluent algorithmic outputs replace the
critical reasoning of students and educators, thereby progressively
making deference to machine-generated knowledge the new normal.
Hallucination is, on the other hand, a case of deeper epistemic
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instability—the generation of linguistically consistent but factually
incorrect content, that undermines the very scaffolding of conceptual
understanding. These risks taken together highlight a wider
accountability gap: the opacity of Al decision-making can turn
ethical failures into apparently unavoidable technological results.

In this regard, Responsible Al (RAI) should not be
considered an extension of technology, but must be understood as
the epistemological and moral prerequisite to maintaining truth,
justice, and trust in digitally mediated education. To ensure
successful implementation of RAI they need a governance approach
that combines innovation, as well as ethical stewardship. This new
model must ensure multi-stakeholder accountability (developer vs.
institution vs. educator vs. learner) while also ensuring that Al does
not substitute for, but rather augments, human judgment.

Human-in-the-loop oversight is important in pedagogical
decision-making, allowing reflective judgment to remain an
educational value, as opposed to an operational constraint.
Explainable Al (XAI) paradigms are the key to this, they offer the
understanding when reasoning becomes interpretable algorithm,
letting students understand not just what to do better but why. At the
same time, Al literacy — the ability to discern, verify, and question
Al outputs without simply consuming them — needs to be a core
part of modern education. Educators, for their part, need to be
prepared to use Al in ways that reinforce human capabilities such as
critical thinking, creativity, ethical reasoning and contextual
judgment.

If educational systems are to cultivate a future shaped by Al
in ethically and epistemically robust ways, the primary challenge
resides not in resisting technological transformation, but in
designing and governing Al systems that expand rather than
diminish human agency. Embedding ethical, legal, pedagogical, and
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epistemological principles across all stages of institutional Al
development and deployment will enable the emergence of learning
environments that are technologically sophisticated, equitable,
transparent, and resilient in their epistemic foundations.
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